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Abstract

Large language models (LLMs) have recently
been introduced to graph learning, aiming to ex-
tend their zero-shot generalization success to tasks
where labeled graph data is scarce. Among these
applications, inference over text-attributed graphs
(TAGs) presents unique challenges: existing meth-
ods struggle with LLMs’ limited context length
for processing large node neighborhoods and the
misalignment between node embeddings and the
LLM token space. To address these issues, we
establish two key principles for ensuring gener-
alization and derive the framework LLM-BP ac-
cordingly: (1) Unifying the attribute space with
task-adaptive embeddings, where we leverage
LLM-based encoders and task-aware prompting
to enhance generalization of the text attribute em-
beddings; (2) Developing a generalizable graph
information aggregation mechanism, for which
we adopt belief propagation with LLM-estimated
parameters that adapt across graphs. Evaluations
on 11 real-world TAG benchmarks demonstrate
that LLM-BP significantly outperforms existing
approaches, achieving 8.10% improvement with
task-conditional embeddings and an additional
1.71% gain from adaptive aggregation. The code?
and task-adaptive embeddings® are publicly avail-
able.
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1. Introduction

Inspired by the remarkable generalization capabilities of
foundation models for text and image data (Achiam et al.,
2023; Liu et al., 2021; Radford et al., 2021), researchers
have recently explored extending these successes to graph
data (Liu et al., 2023b; Mao et al., 2024; Zhao et al., 2023a;
Fan et al., 2024; He et al., 2024), aiming to develop models
that generalize to new or unseen graphs and thereby reduce
reliance on costly human annotation (Li et al., 2024f; Chen
et al., 2024d; Feng et al., 2024; Li et al., 2024g). Among
various types of graph data, text-attributed graphs (TAGs)
have found a wide range of applications. These graphs com-
bine both topological relationships and textual attributes
associated with each node, which naturally arises in recom-
mendation systems (where user and item nodes may have
textual descriptions or reviews) (Bobadilla et al., 2013), aca-
demic graphs (where publications include extensive textual
metadata) (McCallum et al., 2000; Giles et al., 1998), and
financial networks (where transactions and accounts come
with textual records) (Kumar et al., 2016; 2018). Given the
labeling challenges posed by cold-start problems in recom-
mendation systems or fraud detection in financial networks,
methods that can operate with limited labeled data are cru-
cial. In particular, robust zero-shot node labeling across
unseen TAGs has become an area of great interest.

Numerous studies have been dedicated to inference tasks
on TAGs. Early efforts have primarily focused on adapt-
ing pre-trained language model (LM) encoders (Li et al.,
2024e; Fang et al., 2024), sometimes in combination with
graph neural networks (GNNs) (Hou et al., 2022; Velickovié
et al., 2018), to incorporate structural information. How-
ever, these approaches often struggle to achieve strong gen-
eralization performance, largely due to the limited capac-
ity of the underlying models. With the advent of large
language models (LLMs) (Kaplan et al., 2020; Huang &
Chang, 2022), researchers have proposed two main strate-
gies for integrating LLMs into TAG inference: 1) Direct
Node-Text Input. Here, raw node texts are directly fed
into LLMs. This method demonstrates reasonably good
zero-shot performance on TAGs when text attributes are
highly informative for node labels (Chen et al., 2024c; Li
et al., 2024d). However, when the textual attributes are in-
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Principle I: Unifying the Text Space and
Obtaining Task-Adaptive Embeddings

Text-Attribute Graph

<Instruct> Given the webpage.
classify it into the following 3
classes.

student, staff, faculty.
<Query>

{node raw text} (@ or@)
<Response>
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<Instruct> Given the webpage,
classify it into the following 3
classes.

physics, economics, arts.
<Query>

{node raw text} (@ or@)
<Response>

Dr. B is a professor at B University.
specializing in condensed matter
physics. Her research explores
quantum materials and emergent
electronic phenomena.
(faculty, physics)
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Principle IT: Developing a Generalizable Adaptive
Graph Information Aggregation Mechanism
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Figure 1: The two generalization principles and the framework of LLM-BP.

sufficient, it becomes necessary to aggregate information
from a larger neighborhood in the graph, while this is con-
strained by the limited context length LLMs can digest and
reason over. 2) Embedding-Based Integration. In this
approach, node texts and their neighboring structural in-
formation are first encoded into compressed embeddings,
which are then processed by LLMs (Chen et al., 2024b;
Tang et al., 2024a; Luo et al., 2024; Wang et al., 2024;
Zhang et al., 2024a). Because LLMs are not inherently
trained on arbitrary embedding spaces, aligning these em-
beddings with the LLM’s token space is essential - an idea
partly inspired by how vision-language models align multi-
modal data (Radford et al., 2021; Zhai et al., 2023). How-
ever, unlike the vision-language domain, where large-scale
text—image pairs (Schuhmann et al., 2022) are abundant,
the graph domain typically lacks comparable datasets. This
scarcity reduces the model’s generalization in practice.

In contrast to prior heuristic approaches, this work aims
to design a method from first principles for robust zero-
shot generalization on TAGs. Because TAGs are inher-
ently multimodal, the proposed method must simultane-
ously address potential distribution shifts in both textual
attributes and graph structure. Specifically, text attributes
can vary widely, for example from scientific papers (Mc-
Callum et al., 2000) to e-commerce product reviews (Ni
etal., 2019). Edge connection patterns can range from ho-
mophilic graphs such as citation networks, where papers on
similar themes are linked (Giles et al., 1998), to heterophilic
graphs such as webpages, which connect nodes with dis-
tinct topics (Mernyei & Cangea, 2020). Moreover, the la-
beling task itself can shift which requires a task-adaptive
approach to process both textual features and network struc-
ture. Consequently, the core insight behind our model de-
sign is grounded in the following two key principles.

Principle I: Unifying the text space and obtaining
task-adaptive embeddings. LLMs offer powerful text-
understanding capabilities that naturally unify the textual
feature space, and have recently been shown to benefit from

task-adaptive prompting (Kong et al., 2024). However, to
handle the large-scale graph aggregation discussed later,
we require these capabilities to extend beyond raw text to
an embedding space. Hence, we propose to adopt LLM-
based encoder models such as LLM2Vec (BehnamGhader
et al., 2024; Li et al., 2024a) for text embedding. Al-
though this approach might appear to be a naive extension of
smaller LM-based embedding methods (e.g., those relying
on SBERT (Reimers, 2019) or RoBERTa (Liu, 2019)), we ar-
gue that leveraging the decoder-induced encoder structure of
LLMs is essential for achieving task-adaptive embeddings.
In particular, we introduce a novel prompting strategy that
encodes text attributes conditioned on inference-task de-
scriptions, enabling significantly improved zero-shot infer-
ence - an ability not readily achieved by smaller LM-based
embeddings.

Principle II: Developing a generalizable adaptive graph
information aggregation mechanism. Graph structure de-
termines the node neighboring relationships and thus the
information aggregation from which nodes may benefit the
inference. Inspired by the belief propagation (BP) algo-
rithm (Murphy et al., 2013) that gives the optimal statistical
inference over pairwise correlated random variables, we pro-
pose to regard the graph as a Markov Random Field (MRF),
each node as a random variable, and mimic BP to aggregate
information for node label inference. Because BP is rooted
in basic mathematical principles, this approach is widely
generalizable. Algorithmic adaptivity across different TAGs
hinges on estimating the coupling coefficients in the graphs,
which can be done by having LLMs analyze the attributes
of sampled pairs of connected nodes. Moreover, this BP-
inspired approach naturally adapts to varying levels of text
attribute quality: nodes with higher-quality text attributes
present greater influence on their neighbors, and vice versa.

By applying the two principles outlined above, we pro-
pose our new strategy, LLM-BP, for zero-shot inference
over TAGs. LLM-BP does not require any training or fine-
tuning. We evaluate LLM-BP on 11 real-world TAG datasets
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from various domains, including citation networks (McCal-
lum et al., 2000; Giles et al., 1998; Sen et al., 2008), e-
commerce (Ni et al., 2019), knowledge graphs (Mernyei &
Cangea, 2020), and webpage networks (Craven et al., 1998),
covering both homophilic and heterophilic graph structures.

Experimental results demonstrate the effectiveness of LLM-
BP. Notably, our task-conditional embeddings (Principle
I) improve performance by 8.10% on average compared to
the best LM-based encoders. In addition, our BP-inspired
aggregation mechanism (Principle II) provides an extra
1.71% performance gain with our embeddings, demonstrat-
ing strong generalization across both homophilic and het-
erophilic TAGs. Our experiments also reveal that current
methods aligning graph-aggregated embeddings to LLM
token spaces significantly underperform approaches that
simply use smaller LM encoders without even incorporating
graph structures. This outcome indicates that the primary
source of generalization in these methods is the smaller
LM’s text embeddings, rather than LLM-based reasoning
on embeddings. It reinforces our earlier argument that lim-
ited training data hinders effective alignment in this context,
urging caution for future work considering this strategy.

2. Related Works

Here, we briefly review existing methods by examining how
they enable model generalization across TAGs.

Tuning Smaller LM Encoders. These methods typi-
cally rely on a source-domain graph for training. No-
table works include ZeroG (Li et al., 2024e) that tunes
SBert (Reimers, 2019) on source datasets to align class-
description embeddings with node text, thereby enhancing
zero-shot performance on target datasets. Another approach,
UniGLM (Fang et al., 2024), fine-tunes BERT (Kenton
& Toutanova, 2019) using contrastive learning on source
datasets to yield a more generalizable encoder. GNN5s
trained with UniGLM embeddings in a supervised manner
outperform models that directly adopt LM embeddings.

Training GNNs for Generalization. These methods focus
on leveraging graph structure in a generalizable manner.
Among them, graph self-supervised learning (Liu et al.,
2022) is particularly common for producing representations
without labeled data, often employing contrastive learning or
masked modeling (Velickovi€ et al., 2018; Hou et al., 2022;
Zhao et al., 2024). GraphMOE is a more recent technique
inspired by the success of mixture-of-experts (Shazeer et al.,
2017), pre-training parallel graph experts targeting different
structures or domains (Hou et al., 2024; Liu et al., 2024,
Xia & Huang, 2024; Qin et al., 2023). Others also consider
LM-GNN co-training including (He & Hooi, 2024; Zhu
et al., 2024) that also follow a constrastive learning idea.
Note that, however, all these methods still require training.

In contrast to the above effort that adopts smaller LM en-
coders, works that involve the use of LLMs are reviewed in
the following and may achieve better generalization. More
related works including LLM-based data augmentations for
GNN training for generalization and LLMs for other graph
reasoning tasks can be found in Appendix. A.

LLMs with Node-Text Input. LLMs being directly fed
with raw node texts demonstrates strong zero-shot ability
on TAGs (Chen et al., 2024c; Huang et al., 2024; Li et al.,
2024d). However, they suffer from the limitation of not
being able to incorporate graph structural information.

LLMs with Graph-Embedding Input. With smaller
LM-encoded node embeddings, various strategies integrate
graph structure by aggregating these embeddings, such
as neighborhood-tree traversal or concatenating the aver-
aged embeddings from different hops (Chen et al., 2024b;
Tang et al., 2024a; Luo et al., 2024), or via pre-trained
GNNs (Zhang et al., 2024a; Wang et al., 2024). As men-
tioned earlier, these methods rely on aligning embeddings
with the LLMs’ token space. For instance, LLaGA (Chen
et al., 2024b) trains a simple MLP on citation networks
and (Wang et al., 2024) employs a linear projector on the
ogbn-Arxiv (Hu et al., 2020) dataset, both using the next-
token prediction loss, while (Tang et al., 2024a) adopts
self-supervised structure-aware graph matching as the train-
ing objective. However, due to limited TAG-domain data,
the space alignment in these methods often remains under-
trained, leading to degraded performance.

Multi-Task Graph Foundation Models. More ambitious
studies aim to generalize across various graph-related tasks
within a single framework. Notable approaches include
graph prompting (Liu et al., 2023c), which introduces
“prompting nodes” to transform diverse graph tasks into
a unified format. These frameworks then train GNNs to
address the tasks (Li et al., 2024e; Liu et al., 2023a; 2024)
or further integrate LLMs (Yang et al., 2024; Kong et al.,
2024). Although these works are impressive, they still fail to
achieve zero-shot performance comparable to those methods
that focus on specific graph data domains.

3. Generalization Principles for LLM-BP
3.1. Notations and Problem Formulation

Let (G, X,Y) represent a TAG of interest, where G(V, £)
denotes the graph structure, V is the node set of size n, and
£ is the edge set. The node textual attributes are represented
as X = {Xy,..., X, }, and each node belongs to one of ¢
classes, with labels given by Y = {y1, y2, ..., yn} € [c]™.

The objective is to infer the labels of nodes in TAGs based on
the node attributes and graph structure. This study primarily
focuses on the zero-shot setting, where no labeled data
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are assumed to be available in advance. Additionally, a
few-shot setting is considered, where k labeled nodes are
known for each class. Due to space limitations, results for
the few-shot setting are provided in Appendix D.6.

3.2. Motivation and the Overall Framework

LLMs are commonly used as decoders for next-token pre-
diction. While LLMs excel at processing natural language
inputs, they are not inherently compatible with graph data.
Recently, some studies have explored methods to integrate
graph data into LLMs, primarily for reasoning tasks (Perozzi
et al., 2024; Zhang et al., 2024c¢; Tang et al., 2024b).

In the context of TAGs, accurate node label inference relies
on effectively combining the attributes of multiple nodes, es-
pecially when a node’s individual attributes are insufficient
to determine its label. However, as noted earlier, LLMs are
constrained by limited context windows, making it challeng-
ing to process all attributes from the potentially large set of
connected nodes. Traditional approaches to compressing
graph structural information involve creating embeddings,
such as using GNNs to aggregate information from the tar-
get node’s neighbors. While effective, these embedding
methods do not seamlessly integrate with LLM inputs and
often require non-trivial training effort to align the LLMs’
token space with the node embedding space (Chen et al.,
2024b; Wang et al., 2024; Tang et al., 2024a).

Our approach, LLM-BP, does not confine LLMs to their
traditional usage. We first leverage their capabilities to gen-
erate task-adaptive node embeddings. Then, instead of re-
quiring LLMs to directly process these embeddings, LLMs
are further employed to analyze graph data and provide gen-
eralizable guidance in aggregating these embeddings. These
two steps are to match the two generalization principles
proposed in Sec. 1. Classification is ultimately performed
by computing the cosine similarity between the final node
embeddings hX = [h:¥ ..., h:X] and candidate class em-
beddings q¢ = [¢¥, ..., ¢C]. In the zero-shot setting, class
embeddings are generated as follows: we randomly sample
! < n nodes and employ LLMs to infer their labels. The
embeddings of sampled nodes form distinct clusters based
on LLMs’ prediction. We compute the average embedding
of the embeddings closest to the cluster center to obtain the
class embedding. In the few-shot setting, class embeddings
are obtained by averaging the embeddings of labeled nodes
within each class. See Appendix. B.2 for details.

3.3. Principle I: Task-Adaptive Node Embeddings h™

Creating generalizable text embeddings is no longer a sig-
nificant challenge. Even smaller LM encoders, such as
SBert (Reimers, 2019), are capable of achieving this. In-
deed, most existing works utilize these encoders to generate
initial node embeddings for TAGs (Chen et al., 2024d;b;

Tang et al., 2024a; Wang et al., 2024). However, for these
embeddings to be directly usable for label prediction without
the need for additional transformation models, it is crucial
to incorporate task-specific information. In other words, the
embeddings must be tailored to the specific task, resulting
in what we term task-adaptive embeddings.

Achieving task adaptivity, however, presents a notable chal-
lenge. Smaller LM encoders lack the expressive power nec-
essary to encode nuanced task-specific information. This
limitation motivates our adoption of LLM-induced encoders,
driven by the emergent capabilities of LLMs in contextual
learning (Sahoo et al., 2024; Chen et al., 2023).

There have been recent advancements in extending LLMs
to generate text embeddings (BehnamGhader et al., 2024,
Muennighoff et al., 2022). In our approach, we utilize a
form of LLM2Vec (BehnamGhader et al., 2024), which
transforms LLM decoders into encoders via retaining the
unidirectional attention mechanism. Following the method-
ology in (Li et al., 2024a), we extract the output embedding
of (response) - the token positioned immediately after the
inputs - as the text embedding for the input node attributes.

To embed task-specific information into node embeddings,
we propose a prompting strategy structured with the follow-
ing template:

(Instruct){task_description }{class_info}(query) X, (response). (1)

Here, (-) encloses specific tokens. The task details are de-
scribed in {task_description}, and {class_info} contains the
basic information of each class. An example is given in
Fig. 1. The class information serves as a crucial contex-
tual enhancement, enabling LLMs to generate embeddings
in a conditioned manner. For more detailed on the class-
conditional prompt for each dataset used in this study, refer
to Appendix. B.2 and E.I.

3.4. Principle II: Generalizable Graph Aggregation

Graph structures can provide essential correlated informa-
tion for node label inference by characterizing the relation-
ships between node attributes and labels (Zhu et al., 2003;
Kipf & Welling, 2016; Velickovi¢ et al., 2017; Hamilton
etal., 2017; Zhu et al., 2020; Wei et al., 2022).

Specifically, we may consider each node’s label and at-
tributes as random variables, and each edge as a coupling
between them for connected node pairs. The fundamental
BP algorithm enables principled statistical inference over
this set of correlated random variables (Murphy et al., 2013).
Since BP is inherently agnostic to the application domain of
the TAG, emulating BP offers a mechanism to aggregate cor-
relation information encoded in the graph structure across
domains.
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Markov Random Field Modeling We consider the joint
probability distribution Pg (Y, X') over the graph where Y
and X denotes the random variables of node labels and
attributes, respectively. In Pg (Y, X), the distribution over
the node labels given the graph structure is denoted as

7H¢ yL H ¢u yuyj (2)

Y iev (i,5)€€

Here ¢;(y;) denotes the unary potential for node 1,
i (s, y,) is the edge potential capturing the correlation
between labels y; and y; of adjacent nodes, and Zy is the
normalization constant. For node attributes, MRF model-
ing assumes that each node’s attributes are conditionally
independent of others given the node labels, which can be
characterized by the distribution:

[[ewx) @

[IPo(Xi|w) =

eV %

(X |Y)=

where ¢, (X;) captures the likelihood of having node i’s
attributes X; given its label y;.

The proposed modeling approach is highly adaptive, as it
can capture the varying graph connectivity patterns across
different TAGs through interpretable edge potentials. For
instance, 1;;(y;, y;) represents the unnormalized likelihood
that nodes with labels y; and y; are connected. This for-
mulation naturally incorporates the modeling of graph ho-
mophily and heterophily: ;;(y;, vi) > i;(vs,y;) indi-
cates homophily, while v;; (y:, v:) < i (yi,y;) reflects
heterophily. Furthermore, ¢,, (X;) enables the model to
account for variations in the quality of text attributes (w.r.t.
their indicative power for the labels) across different TAGs,
further enhancing its adaptivity. For node classification, we
can infer Bg (V" | X) o¢ [Ty ox, (40) Ty Y (01 )
where ©x, (y;) = @y, (Xi)di(yi)-

Belief Propagation Exact inference for Pg(Y|X) is in-
tractable in large-scale graphs with cycles (Koller, 2009). In
practice, loopy belief propagation (LBP) is often used to con-
duct an approximate inference (Murphy et al., 2013), which

follows: Initialize the distributions pgo) (y;) x ¢x,(y;) and

mgaj(y]) = 1/cforalli,j € V.Fork =1,2,...,L, we do
log m§-li(yi) = LSEy, [log ¥i; (yi, y;)+ “
k—1 1
log p ><y]> log ;"3 ()],

log pi" () =log p” (i) + > logm ") (w),

JEN(4)

where =2 denotes the equality with difference up-to a
constant. LSE stands for the log-sum-exp function:

LSE,, [f(yi,y;)] = log [Zyj exp(f(yi,yj))}. The final

arg max,, pgk) (yi) gives the label prediction. Detailed

derivation can be found in Appendix. C.

Algorithm 1 LLM-BP

input TAG (G, X)

output Class label prediction {g; };c[n]
1: h*X < Task-adaptive encoding following Eq. (1)
2: if zero-shot then
3 Sample [ < n nodes, infer labels with LLMs,
4 Nodes clusters based on LLM prediction,

5:  qY < Average embedding of samples near center,

6

7

8

9

. else if few-shot then
. q% < Average embedding of k samples per class,
: end if
: Estimate ;5 (y;,y;) by employing the LLM to analyze
the graph data (e.g., using Eq. (6) based on the estimated
homophily level r.)
10: Initialize p(© (y;) + Eq. (5) and m{") . (y;) = 1
11: Run LLM-BP (Eq. (4)) for L iterations or its approxi-
mation (Eq. (7)) for single iteration
12: ; - argmaxy, logp{" (yi; ;)

LLM-BP To execute the above LBP algorithm, we need
to specify several components based on the TAG. First,

(0) (y;) represents the distribution of the label y; given the
observed attributes X; alone, which can be estimated using
normalized cosine similarities:

P\ (y:) = softmax({cos(hX, h$)/Thher) (5

where hX and h{ denote node i’s class-conditional embed-
ding and class k’s embedding given by the LLM encoder
as discussed in the previous section. cos(-) denotes cosine
similarity and 7 is the temperature hyper-parameter.

Second, we characterize the edge potentials ©;; (y;,y;). We
employ an LLM agent to assess the homophily level of
the TAG. Specifically, we uniformly at random sample T'
connected node pairs (T' < |€|), and for each pair, we
prompt the LLM to determine whether the two nodes belong
to the same class based on their attributes, as illustrated in
Fig. 1. The ratio of “Yes” responses, denoted by r is used
to set

ig\Yis Yj) = . ) 6
?/Jg(y y]) {1_7“7 lfyi#yj (6)

Note that a more complex v;;(y;, y;) can be adopted by
estimating the edge probabilities between any two classes.
However, we choose the homophily level as a proof of con-
cept. LLMs can provide a reasonably accurate estimation of
the homophily level, as pairwise comparisons are typically
much simpler tasks compared to full-scale classification.

(Wei et al., 2022) demonstrated that linear propagation can
approximate a single iteration of LBP when feature quality
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Dataset Text Domain Graph Structure

Cora (McCallum et al., 2000) CS Publication Homopholic
Citeseer (Giles et al., 1998) CS Publication Homopholic
Pubmed (Sen et al., 2008) Medical Publication Homopholic
History (Ni et al., 2019) History Books Homopholic
Children (Ni et al., 2019) Children Literature Homopholic
Sportsfit (Ni et al., 2019) Sports Goods Homopholic
Wikics (Mernyei & Cangea, 2020)  Knowledge Graph Homopholic
Cornell (Craven et al., 1998) School Webpage Heterophilic

Texas (Craven et al., 1998)
Wisconsin (Craven et al., 1998)
Washington (Craven et al., 1998)

Heterophilic
Heterophilic
Heterophilic

School Webpage
School Webpage
School Webpage

Table 1: TAG Datasets selected in experiments.
is limited. Based on this insight, we adopt the following

approximate LBP formulation (denoted as BP appr.):
log ;" (1) =log (" (y O+ @

Z log pjo) (yi),

JEN(4)

sgn log

where the homophily level r influences the sign of the log-
likelihood aggregation from neighboring nodes. We sum-
marize the overall pipeline in Algorithm. 1

4. Experiments

In this section, we evaluate LLM-BP based on its two design
principles, with a primary focus on zero-shot node classi-
fication tasks. Evaluations of few-shot node classification
and link prediction tasks are provided in Appendix. D.6 D.7.
First, we demonstrate the effectiveness of task-adaptive en-
coding and identify issues with existing methods that rely
on aligning node embeddings with the LLM token space.
Second, we validate the effectiveness of the proposed BP
algorithm. Finally, we present the end-to-end performance
of LLM-BP, comparing it to state-of-the-art baselines. We
first introduce the datasets and baselines used in the study:

Datasets As listed in Table 1, we selected eleven real-
world TAG datasets that encompass a variety of text do-
main shifts, including citation networks, e-commerce data,
knowledge graphs, and webpage networks, which cover
both homophily and heterophily structures. For more de-
tails, see Appendix B.1.

Baselines: We select representative baselines from all exist-
ing categories for model generalization on TAGs:

o Vanilla LM / LLM Encoders: including Sentence-BERT
(SBert) (Reimers, 2019), RoBERTa (Liu, 2019), text-
embedding-3-large (OpenAl, 2024), and bge-en-icl (Li et al.,
2024a), a state-of-the-art LLM2Vec encoder.

e Vanilla LLMs: including GPT-3.5-turbo (Achiam et al.,
2023) and GPT-40 (Hurst et al., 2024), the latter being
among the most advanced LLMs in reasoning. They process
raw node texts without incorporating graph structures.

o Tuning LM Encoder / GNNs: including ZeroG (Li et al.,

2024e), UniGLM (Fang et al., 2024) that tune LM encoders,
ZeroG is specifically proposed for zero-shot node classifica-
tion. DGI (Velickovié et al., 2018), GraphMAE (Hou et al.,
2022) that perform Graph-SSL are also compared.

o LLMs with Graph Adapters: including LLaGA (Chen
et al.,, 2024b), TEA-GLM (Wang et al., 2024), and
GraphGPT (Tang et al., 2024a), which are the three rep-
resentative works adopting LLMs with projectors to align
compressed node representations with the token space.

o Multi-Task Graph Foundation Models: Consisting of
OFA (Liu et al., 2023a) and GOFA (Kong et al., 2024),
which are the state-of-the-art multi-task foundation models.

e LILMs for Data Augmentation: referring to LLM-
GNN (Chen et al., 2024e), specifically designed for zero-
shot node classification, which utilizes LLMs as annotators
for pseudo-labels and further train GNNs for inference.

o Neighborhood Aggregation (NA): referring to the training-
free method proposed in (Yang et al., 2024), which injects
graph structural information into node representations by di-
rectly aggregating the averaged neighborhood embeddings.

Settings: Unlike LLM-BP which does not require addi-
tional fine-tuning of LLMs, most of the baselines—except
from vanilla encoders, LLMs or NA-require fine-tuning.
Methods of vanilla encoders and LLM-BP that require sam-
pling nodes to obtain class embeddings under zero-shot
settings are repeated 30 times with seed 42 to 71, and the
average performance is reported in the following experiment
sections. Implementation details for baselines and LLM-BP
can be found in Appendix. B.3 B.2.

4.1. Evaluation for Task-Adaptive Node Embedding
o Exp.1: Ineffectiveness of LLMs w/ Graph Adapters

Figure 2 illustrates the accuracy of encoder-based meth-
ods alongside two representative LLMs-with-graph-adapters
methods across each dataset. Notably, using text embed-
dings generated by SBert (Reimers, 2019) without incorpo-
rating graph structural information significantly outperforms
both LLaGA (Chen et al., 2024b) and GraphGPT (Tang
et al., 2024a). These two methods align node representations
that combine SBert embeddings with graph information to
the LLMs’ token space via a projector. This finding suggests
that the generalization capabilities of these approaches pri-
marily stem from the pre-trained language model encoders
rather than the LLMs’ inherent understanding of TAG data.
Consequently, future works should exercise caution when
adopting this strategy.

e Exp.2: Effectiveness of The Task-Adaptive Encoder

According to Figure 2, the task-adaptive encoder achieves
the best performance on most of the datasets, enhancing
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Figure 2: Zero-Shot Accuracy of vanilla encoders vs.
LLMs-with-Graph-Adapters. All the encoder-based
methods do not leverage graph structure information.

LLM2Vec.

Task-Adaptive Encoder (Ours).

Figure 3: t-SNE visualization of encoders on Citeseer.

the vanilla LLM2Vec on average by 2.3%, highlighting
the importance of incorporating task-specific information
during encoding. To further illustrate this, we use the Cite-
seer (Giles et al., 1998) dataset as an example and perform
t-SNE visualization (Van der Maaten & Hinton, 2008) on the
embeddings derived from the encoders. As shown in Fig. 3,
when provided with class information, the task-adaptive en-
coder generates embeddings that exhibit tighter clustering
for the same class compared to other baselines. The signif-
icance test of improvement from task-adatove encoding is
provided in Table. 5 in Appendix. D.1.

Note that the benefits of class information are observed only
in encoders derived from LLM decoders potentially due to
their strong contextual learning capabilities. As illustrated

Histor
v Pubmed

SBert (Encoder). Roberta (Encoder). Text-Embedidng-3-Large.

Figure 4: Class information fed into different encoders.

in Fig. 4, incorporating class information into smaller LM
encoders, such as SBert (Reimers, 2019) or RoBERTa (Liu,
2019), may even degrade performance. Regarding Text-
embedding-3-large (OpenAl, 2024), the impact of class in-
formation remains inconclusive due to the unknown internal
mechanisms of the black-box encoder.

4.2. Generalizable Graph Aggregation

== r (Ground Truth)
r(by LLM Agent

Graph Type

# Sampled Edges L 08
Citation 100 é
E-Commerce 100 T 04
Knowledge Graph 100
Web Page 50 o2
bl

& N

@ & SO oﬁ‘ K c" & $
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Figure 5: Left: Number of edges sampled per dataset. Right:
GPT-40-mini’s prediction of the homophily level .

e Exp.3: LLM Agents for Homophily Level » Estima-
tion As shown in Fig.5 (Left), we randomly sample k edges
(k = 100 for large graphs and k¥ = 50 for small ones),
incorporating them into prompts (Fig.1) for LLM-based es-
timation of the homophily level r (Sec.3.4). We evaluate
four LLMs: GPT-40, GPT-40-mini(Hurst et al., 2024), GPT-
3.5-Turbo (Achiam et al., 2023), and Mistral-7B-Instruct
v0.3 (Jiang et al., 2023). Each model responds to each
node pair over five trials, with the final estimate determined
by majority voting. Full results are provided in Fig.7 in
appendix, demonstrating that GPT-40-mini and GPT-40 ef-
fectively estimate r, GPT-3.5-Turbo performs reasonably
well, while Mistral-7B-Instruct-v0.3 fails. Balancing accu-
racy and cost efficiency, we select GPT-40-mini’s estimation
(Fig. 5 Right) for subsequent studies.

o Exp.4: Effectiveness of the BP Algorithm Experimental
results are presented in Fig. 6, where we evaluate the four
approaches over various graph structures. Specifically, We
compare the BP algorithm (Eq. 6) and its linear approx-
imation (Eq. 7) with vanilla encoders that do not utilize
structure (Raw) and the NA baseline. For all the four en-
coders across all the datasets, the proposed BP algorithm
slightly outperforms its linear approximation, and they con-
sistently outperform Raw. Moreover, in most datasets, they
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Homophilic Heterophilic Avg Rank
Citation Graph E-Commerce & Knowledge Graph Schools
Method Cora Citeseer Pubmed History Children Sportsfit Wikics Cornell Texas Wisconsin  Washington
Acc FI Acc F1 Acc Fl1 |Acc Fl1 Acc FI Acc FI Acc Fl |Acc Fl Acc FlI Acc FlI Acc Fl1 | Acc Fl
Sbert (Reimers, 2019) 69.75 67.21 66.69 63.31 70.57 71.38|53.53 20.45 22.59 20.13 43.79 38.26 59.06 56.19|63.66 54.39 64.58 49.79 62.10 52.07 63.52 48.00( 7.27 7.09
Roberta (Liu, 2019) 70.71 68.47 66.95 63.57 69.54 70.31(55.39 21.84 24.25 22.41 41.51 36.09 59.08 56.49|61.68 51.84 62.25 49.26 60.33 49.08 60.60 45.34| 7.18 7.18
Text-Embedding-3-Large (OpenAl, 2024)|71.90 69.87 66.24 63.30 75.96 75.75|50.15 19.21 24.68 24.10 58.39 53.03 61.78 58.82|81.50 70.11 75.42 63.17 73.14 63.02 66.35 57.69| 5.36 4.45
LLM2Vec (BehnamGhader et al., 2024) |67.34 65.92 67.13 64.37 74.57 74.65|53.14 19.06 25.56 24.31 57.00 52.29 62.34 58.32|81.26 69.08 76.68 63.12 73.36 62.50 65.92 53.34| 5.64 5.36
SBert + NA (Yang et al., 2024) 72.49 69.90 68.66 64.75 71.26 71.87|57.86 21.98 25.28 22.74 46.84 40.85 66.26 63.57|54.21 44.66 56.04 41.09 54.23 46.11 58.88 43.05| 5.82 6.00
GPT-3.5-turbo (Achiam et al., 2023)  |70.11 52.11 66.83 47.58 89.75 66.16|55.07 30.36 29.73 26.13 67.21 54.45 65.53 51.19|45.54 39.30 56.14 32.53 58.86 46.84 51.09 35.68| 5.64 8.18
GPT-40 (Hurst et al., 2024) 70.29 62.95 64.77 47.78 89.85 67.39(53.30 31.68 30.76 29.20 66.35 56.22 66.10 56.04|45.54 41.92 63.10 50.51 56.60 52.54 48.90 42.54| 591 6.36
UniGLM (Fang et al., 2024) 45.57 43.25 52.26 48.41 70.33 69.78|44.24 24.84 21.48 19.17 33.46 32.99 55.05 52.08|23.03 22.06 21.39 18.90 27.16 26.45 24.01 23.08/11.36 9.91
ZeroG (Li et al., 2024¢) 60.4 56.02 50.35 45.15 74.68 71.75|36.55 16.84 12.72 12.61 14.27 533 46.74 40.86/10.47 6.46 53.48 15.95 12.66 5.02 8.3 3.07 |12.27 12.73
DGI (Velickovi¢ et al., 2018) 16.79 12.77 1524 15.04 25.10 19.18|20.98 3.89 2.22 1.04 7.48 3.47 1498 4.24 |14.66 10.02 11.23 9.42 12.08 6.95 20.96 14.15/13.91 14.73
GraphMAE (Hou et al., 2022) 15.13 7.10 8.11 7.67 36.56 34.29|36.36 5.75 7.24 1.97 30.50 6.99 891 4.03|23.04 14.95 17.65 11.67 23.02 11.87 24.89 13.34/15.18 15.45
OFA (Liu et al., 2023a) 20.36 16.57 41.31 33.37 28.18 26.62| 8.25 3.48 3.05 229 15.18 4.7 30.77 25.22|29.84 12.62 11.77 587 4.8 344 6.04 4.28|13.91 1473
GOFA (Kong et al., 2024) 71.06 70.21 65.72 64.18 74.76 73.00|56.25 31.57 12.15 7.73 37.87 33.19 68.62 62.93|39.50 35.47 38.37 29.54 32.51 25.12 31.02 21.24| 8.00 7.45
GraphGPT (Tang et al., 2024a) 17.48 12.68 13.93 12.78 42.94 25.68|12.31 9.15 9.94 4.24 453 244 33.59 30.21(10.18 14.71 18.48 9.85 12.35 6.32 20.64 15.79[14.55 14.64
LLAGA (Chen et al., 2024b) 11.62 14.42 19.52 23.34 7.56 13.42|7.95 8.89 10.09 5.02 1.84 2.66 10.98 16.73|12.57 20.1 15.51 22.97 15.09 20.85 10.48 18.98|15.36 13.64
LLM-BP 72.59 71.10 69.51 66.29 75.55 75.32|59.86 22.66 24.81 22.66 61.92 57.51 67.75 63.53|83.28 71.80 81.66 65.41 77.75 63.70 73.14 57.33| 2.27 2.55
LLM-BP (appr.) 71.41 70.11 68.66 65.62 76.81 76.81|59.49 23.02 29.40 28.45 61.51 57.09 67.96 64.27|84.92 74.19 79.39 64.63 75.65 62.53 70.04 55.53| 2.45 2.27

Table 2: Zero-Shot End-to-End Evaluation. ‘NA’ refers to neighborhood embedding aggregation.
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Figure 6: Experiments on graph information aggregation. ‘Raw’ refers no graph structure usage, ‘w/ NA’ refers to the
neighborhood embedding aggregation (NA) proposed in (Yang et al., 2024), ‘w/ BP’ refers to the belief propagation
following Eq. 6, ‘w/ BP (appr.)’ refers to its simplified linear form that follows Eq. 7.

also surpass the NA baseline, particularly on heteophilic
graphs, where direct neighborhood embedding aggregation
negatively affects performance. These results highlight the
generalizability of our data modeling approach and the ef-
fectiveness of the key-parameter estimation design in BP.

4.3. End-to-End Evaluation

e Exp.5: Main Results in the Zero-Shot Setting The
main experimental results are presented in Table 2. Among
the baselines, vanilla encoders and LLMs demonstrate
strong zero-shot generalization. GPT-3.5-Turbo (Achiam
et al., 2023) ranks first on the Sportsfit dataset, while GPT-
40 (Hurst et al., 2024) achieves the best performance on
Pubmed and Children.

UniGLM (Fang et al., 2024) and ZeroG (Li et al., 2024e) per-
form well in domains aligned with their pre-training, such
as citation networks (e.g., ZeroG enhances SBert’s perfor-
mance on Cora, Pubmed, and Wikics). However, both strug-
gle on TAGs with unseen text distributions (e.g., Sportsfit)
or novel graph structures (e.g., webpage networks), suggest-

ing that fine-tuned LM encoders may suffer performance
degradation on out-of-domain TAGs. Similarly, graph-SSL
methods (DGI (Velickovi¢ et al., 2018), GraphMAE (Hou
et al., 2022)) show limited generalization across structural
shifts.

Among multi-task graph foundation models, GOFA
achieves strong performance, likely benefiting from a larger
pre-training corpus for graph-text alignment (Hu et al., 2021;
Ding et al., 2023) compared to GraphGPT (Tang et al.,
2024a) and LLaGA (Chen et al., 2024b), which are trained
solely on ogbn-arxiv. However, GOFA still requires broader
pre-training and instruction fine-tuning to improve general-
ization under text domain shifts, and its reliance on GNNs
may limit effectiveness on heterophilic data.

Notably, LLM-BP and LLM-BP (appr.) achieve the highest
average ranking across all datasets on both homophilic and
heterophilic graphs. For fine-grained average ranking that
distinguish between homophilic and heterophilic graphs,
refer to Appendix. D.2. Another interesting observation is
that when we randomly sample 20c nodes to obtain the class
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embeddings with the help of LLMs following Algorithm. 1,
the zero-shot performance of the encoders in this setting is
comparable to their performance between 5-10-shot setting
as shown in Table. 10 in the Appendix. Further comparisons
with LLM-GNN (Chen et al., 2024e) and TEA-GLM (Wang
et al., 2024) are provided in Appendix D.5.

o Exp.6: Main Results under Few-shot Setting We con-
duct the evaluation in k = 1, 3,5, 10-shot settings. Using
10 different random seeds, we sample the shots from the
training set and repeat the experiments 10 times. The ex-
perimental results are presented in Table 10 in Appendix D.
Across all k-shot settings, LLM-BP and LLM-BP (appr.)
outperform the baseline models.

5. Discussion and Limitations

Graph learning tasks often face substantial data constraints
compared to other domains, underscoring the importance of
establishing fundamental principles that foster model gen-
eralization. Our approach exemplifies this by leveraging
LLMs to analyze graph data and determine suitable infer-
ence strategies, particularly via homophily estimation for
belief propagation. While LLM-BP achieves notable suc-
cess on TAGs for node classification and extends partially
to link prediction, it remains a step away from a fully com-
prehensive graph foundation model that addresses a wider
range of graph learning tasks. Nonetheless, the core idea of
leveraging LLM-driven graph analysis to guide algorithmic
decisions aligned with task-specific inductive biases holds
broad potential for future applications.
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A. More Related Works

LLMs for Data Augmentation annotate pseudo-labels via their advanced zero-shot text classification performance. E.g.,
LLM-GNN (Chen et al., 2024e), Cella (Zhang et al., 2024b) and (Hu et al., 2024) propose heuristics to actively select and
annotate pseudo-labels for supervised GNN training. (Pan et al., 2024) performs knowledge distillation with LLMs as
teachers. (Yu et al., 2023; Li et al., 2024c) generate synthetic node text with LLMs. The performance of these methods
depend on the capability of LLM, and may still require relatively high annotating and training cost.

LLMs for Graph Property Reasoning focus on reason graph structure properties (e.g., shortest path, node degree,
etc) (Tang et al., 2024b; Dai et al., 2024; Yuan et al., 2024; Ouyang et al., 2024). Representative works include (Perozzi
et al., 2024; Chen et al., 2024a; Zhang et al., 2024c; Cao et al., 2024; Wei et al., 2024).

Tuning LMs/GNNs towards Better Task-Specific Performance aims to push the limits of task-specific performance on
TAGs other than generalization. These methods develop novel techniques to optimize LMs or GNNs for pushing the limits
of in-domain performance (Chien et al., 2022; Duan et al., 2023; He et al., 2024; Zhao et al., 2023b; Zhu et al., 2021; Li
etal., 2021; Yang et al., 2021; Bi et al., 2021; Pang et al., 2022; Zolnai-Lucas et al., 2024; Yang et al., 2021).

Text embeddings Generating unified text embeddings is a critical research area with broad applications, including web
search, accounting documents (Li et al., 2024b) and question answering. Numerous text encoders (Reimers, 2019; Liu,
2019; Song et al., 2020) based on pre-trained language models have served as the foundation for various embedding
models. Recently, decoder-only LLMs have been widely adopted for text embedding tasks (Li et al., 2023; Moreira et al.,
2024) achieving remarkable performance on the Massive Text Embedding Benchmark (MTEB) (Muennighoff et al., 2022).
This progress stems from LLM2Vec (BehnamGhader et al., 2024), which introduces a novel unsupervised approach to
transforming decoder-only LLMs into embedding models, including modifications to enable bidirectional attention. Recent
findings (Li et al., 2024a) suggest that retaining the unidirectional attention mechanism enhances LLM2Vec’s empirical
performance.

B. Experiment Details
B.1. Dataset Details

Meta-Data In Table. 3, we show the meta-data of all the eleven datasets used in our experiments.

Number Number  Number Ground Truth
of Nodes of Edges of Classes Homophily Ratio

Cora 2708 10556 7 0.809
Citeseer 3186 8450 6 0.764
Pubmed 19717 88648 3 0.792
History 41551 503180 12 0.662
Children 76875 2325044 24 0.464
Sportsfit 173055 3020134 13 0.9
Wikics 11701 431726 10 0.678
Cornell 191 292 5 0.115

Texas 187 310 5 0.067

Wisconsin 265 510 5 0.152
Washington 229 394 5 0.149

Table 3: Meta data of the datasets in this study.

Dataset Split For the datasets (all the homophily graphs) that have been used for study in TSGFM (Chen et al., 2024d),
we follow their implementation to perform data pre-processing, obtain raw texts and do data split, the introduction to data
source can be found at Appendix.D.2 in their original paper, the code can be found at the link !.

As to the heterophily graphs, the four datasets are originally from (Craven et al., 1998). We obtain the raw texts from (Yan

"https://github.com/CurryTang/TSGFM/tree/master?tab=readme-ov-file
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et al., 2023), which can be found from?. As to data split, for zero-shot inference, all the nodes are marked as test data; for
few-shot setting, k labeled nodes are randomly sampled per class and the rests are marked as test data. To the best of our
knowledge, the four heterophily graph datasets used in this study are the only graphs that provide raw texts feature.

B.2. LLM-BP Implementation Details

Infrastructure and Seeds All the local experiments run on a server with AMD EPYC 7763 64-Core Processor and
eight NVIDIA RTX 6000 Ada GPU cards, methods are mainly implemented with PyTorch (Paszke et al., 2019), Torch-
Geometric (Fey & Lenssen, 2019) and Huggingface Transformers (Wolf, 2019). To obtain the embeddings, all the encoders
that run locally on the server without API calling in this study run with the random seed 42.

Class Embedding

e Zero-Shot Setting: We uniformly randomly sample 20c nodes per graph, where ¢ denotes the number of classes, we
employ GPT-40 (Hurst et al., 2024) to infer their labels. With the predictions from LLMs, the sampled nodes form distinct
clusters. For each cluster, we take the top-£ (10 in the experiments) nodes whose embedding are closest with the cluster
center and calculate their average embedding as the class embedding.

We notice that some works directly feed text descriptions into encoders as class embeddings (Yang et al., 2024; Chen et al.,
2024d), we find that different encoders can be highly sensitive to variations in text description. Therefore, we adopt the
above method to ensure fairness among different encoders.

eFew-Shot Setting: We directly take the class embedding as the averaged embeddings of labeled nodes per class.

The Task-Adaptive Encoder: We directly adopt the pre-trained LLM2Vec encoder released by (Li et al., 2024a), which is
based on Mistral7B-v0.1 (Jiang et al., 2023). We check the pre-training data used in the original paper for aligning LLM
decoders with the embedding space, the datasets are mainly for text-retrieval and therefore do not overlap with the TAG
datasets adopted in our study. For detailed introduction of the datasets for LLM2Vec pre-training, see Section 4.1 training
data in the original paper. The task-adaptive prompting follows the format as:

( Instruct )
“Given the {task description}, classify it into one of the following k classes:
{class labels}

{ query)

{raw node texts}.”

( response )

, where the {task descriptions} prompts for each dataset is the same as that used for vanilla LLMs, see Table. 13 for details.

Hyper-Parameters for BP algorithm For LLM-BP, we adopt 5 message-passing layers, for its linear approximation form,
we use a single layer. The temperature hyper-parameter 7 in computing node potential initialization in Eq. (5) is set as 0.025
for LLM-BP and 0.01 for LLM-BP (appr.) across all the datasets. Attached in Table. 4 is the homophily ratio » we used
(predicted by GPT-40-mini (Hurst et al., 2024).

Cora Citeseer Pubmed History Children Sportsfit Wikics Cornell Texas Wisconsin Washington

Ground Truth 0} ) 76 0.79 0.66 0.46 0.90 067 011 0.6 0.15 0.19
Homophony Ratio
rpredicied by 05 g 0.81 0.73 0.35 0.81 052 005  0.04 0.06 0.02
GPT-40-mini

Table 4: r predicted by GPT-40-mini, that is used in all the experiments in this study.

’https://github.com/sktsherlock/TAG-Benchmark/tree/master
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B.3. Baseline Implementation Details

e Vanilla Encoders Vanilla encoders like SBert (Reimers, 2019), Roberta (Liu, 2019) and text-embedding-3-large (OpenAl,
2024) directly encode the raw text of the nodes. LLM2Vec uses the prompts:

(Instruct){task_description } (query) X; (response). €]
, where the {task_description} for each dataset is provided in Appendix. E.1.
e Vanilla LLMs Prompts for GPT-40 and GPT-3.5-turbo adopts the format as follows:

“role”: “system”
“content”: “You are a chatbot who is an expert in text classification”
“role”: “user”
“content”: “We have {task description} from the following k categories: {class labels}
The text is as follows:
{raw node text}
Please tell which category the text belongs to:”

The {task description} for the vanilla LLMs for each class is provided in Appendix. E.2.

e Tuning LM/GNNs We adopt the pre-trained UniGLM (Fang et al., 2024) released by the official implementation, which
adopts Bert as the encoder, for direct inference. For ZeroG (Li et al., 2024¢), we re-implement the method and train it on
ogbn-arxiv (Hu et al., 2020) for fair comparison with other baselines.

As to GNNs tuning methods, we pre-train GraphMAE (Hou et al., 2022) and DGI (Veli¢kovic et al., 2018) on ogbn-arxiv (Hu
et al., 2020), where the input for both models are from SBert (Reimers, 2019), and we follow in implementation in
TSGFM (Chen et al., 2024d) benchmark.

o Multi-Task GFMs OFA (Liu et al., 2023a) is trained on ogbn-arxiv (Hu et al., 2020). As to GOFA, we directly adopt the
model after pre-training (Hu et al., 2021; Ding et al., 2023) and instruct fine-tuning on ogbn-arxiv (Hu et al., 2020) provided
by the authors due to the huge pre-training cost, the zero-shot inference scheme also follows their original implementation.

e LL.Ms with Graph Adapters Both LLaGA (Chen et al., 2024b) and GraphGPT (Tang et al., 2024a) are trained on
ogbn-arxiv (Hu et al., 2020), we follow the hyper-parameter setting in their original implementation.

C. Detailed Derivations

C.1. Derivation for Eq. (4)

In a node classification task, given a node ¢, our goal is to minimize the mean-square error (MSE) in predicting the node
label under the observations X:

min MSE(:) = E[(ss —3:)" | X]. ©)
The optimal solution g; is then given by:
gi = Y vip(yi | X), (10)
Yi
where the posterior marginal p(yi | X ) is computed as:
pyi | X) =D P(V | X). (11
Y\i

Factorized Posterior under an MRF. Assuming a Markov Random Field (MRF) over a graph G = (V, &), the posterior
distribution factors as:

Pg(Y | X) o H@Xi(yi) H Vij (vis v5), (12)

S (i,5)€E

where the node potential is defined as o, (i) = @y, (Xi) i (vi)-
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General Message-Passing Framework. To compute the marginal p(y; | X), the loopy belief propagation (LBP)
algorithm iteratively updates messages between nodes. The general message update rule from node ¢ to node j at iteration k
is:

mi () = aing O |ex, ()i (i) [T mis (i) ] (13)
Yi LeEN (D)\J

where «;_, ; is a normalization constant ensuring the message sums to 1.

Node Belief Updates. The node belief pgk) (yz) at iteration £ is obtained by combining the node potential with incoming
messages from all neighbors:

P (w) = ex. () [T m, (). (14)
LeN (i)

Reformulating the Messages. Substituting Eq. (14) into Eq. (13) simplifies the message-passing equation. The message
from node 7 to node j at iteration k can be rewritten as:

(k) N p" () 5
mi;(ys) = aiajziﬁij(ym%)m (15)
Yi J—1 g

This reformulation prevents double-counting the contribution of node j to node 7 in the previous iteration.

Log-Space Stability. To avoid numerical underflow, the log-space version of the message update is commonly used:
logm").(y;) = LSE,, [log Wij (i ys) +logpt (i) — logm!*)) (yz-)} : (16)

where LSE(-) = log > exp(+).

Summary. By iteratively applying these message updates and node belief calculations, LBP provides an approximation
for the posterior marginal p(y; | X). The final prediction ¢; under the MMSE criterion is:

Z uinl” (). (17)
This completes the derivation of the message-passing update in Eq. (4).

D. More Experiment Results

D.1. Significance Test of Effectiveness of Task-Adaptive Encoding

Cora Citeseer Pubmed History  Children  Sportsfit ~ Wikics Cornell Texas  Wisconsin Washington
Task-Adaptive Encoding 190%h1CgIh 0.7% 1.3% -0.2% 1.3% 1.3% 2.3% 3.2% 5.2% 3.3% 3.7% 1.0% 2.6% 1.0% 1.8% 4.0% 4.9% 1.5% 2.7% 0.1% 0.8% -0.2% 0.5%
Vanilla \II;LMZVec P value 1e-8 0.38 le-10 1e-9 3e-59 le-4 3e-8 Te-18 Se-8 le-3 0.82
Task-Adaptive Encoding lgo%h?glh -0.3% -0.2% 0.5% 1.0% -0.3% 1.0% 6.9% 9.1% 4.1% 4.4% 0.7% 2.8% 1.1% 2.0% 3.1% 4.1% 3.1% 4.7% 0.1% 1.2% -0.04% -0.1%
Texl—Embet\i/;mg—}Large P value 6e-27 8e-7 0.51 Te-21 5e-59 0.03 1e-9 2e-25 1e-9 0.07 le-13

Table 5: Lower and upper bound of improvement (1) in accuracy of task-adaptive encoding over baselines with 90%
confidence interval, with significance level p ({).

We conduct significance test on the improvment of task-adaptive encoding over vanilla LLm2Vec (Li et al., 2024a) and Text-
Embedding-3-Large (OpenAl, 2024) under the zero-shot setting, with results shown in Table. 5. We replicate experiment for

100 times with random seeds from 42 to 141 and obtain classification accuracy of each method. To check normality, we
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first apply Shapiro-Wilk test (SHAPIRO & WILK, 1965). If the data follows a normal distribution, we perform a Paired-t
test (Student, 1908); otherwise, we use Wilcoxon Signed-Rank test (Wilcoxon, 1992), with packages from SciPy (Virtanen
et al., 2020). The lower and upper bounds under 90% confidence interval are estimated with bootstrap algorithm (Tibshirani
& Efron, 1993) to sample 10, 000 times. Task-adaptive encoding show statistically significant improvement over vanilla
LLM2Vec in 9 out of 11 dataset and outperforms Text-Embedding-3-Large in 8 out of 11 datasets (bolded in the table).

D.2. Fine-Grained Ranking Results

We report the fine-grained ranking results of each method on homophilic and heterophilic graphs. The ranking is shown
in Table. 6. Across the three sub-categories of graphs, LLM-BP and its approximation algorithm both achieves the top
performance.

Ranking Homophilic Heterophilic
Acc F1 Acc F1
Sbert 857 800 500 5.50
Roberta 771 757 625  6.50
Text-Embedding-3-Large  6.43  5.71 350 225
LLM2Vec 6.86 6.14 350 4.00
SBert + NA 457 500 800 7.75
GPT-3.5-turbo 443 786 7775 8.5
GPT-40 486 629 775 6.0
UniGLM 11.00 943 12.00 10.75
ZeroG 1129 11.00 14.00 15.75
DGI 1529 1571 15.00 15.00
GraphMAE 14.86 1529 1225 13.75
OFA 1429 1429 1525 16.25
GOFA 6.71 571 1025 10.50
GraphGPT 1443 1486 1475 14.25
LLAGA 15.86 14.71 1450 11.75
LLM-BP 28 314 125 1.50
LLM-BP (appr.) 28 229 175 225

Table 6: Average ranking in homophilic and homophilic graphs.

D.3. LLM Agents’ Prediction on Homophily Ratio r
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GPT-40-mini. GPT-3.5-turbo. Mistral7B-Instruct-v0.3.

Figure 7: LLM agents’ performance on predicting the homophily constant 7.

More prediction performance of GPT-40, GPT-3.5-turbo and Mistral7b-Instruct-v3 are shown in Fig. 7.

D.4. Sensitivity Analysis of Sampled Edge Numbers

We conduct sensitivity analysis on homophily ratio r prediction with respect to the number of sampled edges that feeds to
LLM. According to Table. 7, the homophily ratio prediction performance is stable across the sampled edge numbers from
40 to 100.
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‘ Cora ‘ Citeseer ‘ Pubmed ‘ Bookhis ‘ Bookchild ‘ Sportsfit ‘ Wikics

| value gap | | value gap| | value gap| | value gap| | value gap| | value gap| | value gap |

ground truth | 0.81 - 0.76 - 0.79 - 0.66 - 0.46 - 0.90 - 0.67 -
100 0.70 0.11 | 081 0.05 | 0.81 002 | 0.73 007 | 035 0.11 | 0.81 0.09 | 052 0.15
80 070 0.11 | 077 001 | 083 0.04 | 075 0.09 | 037 0.09 | 076 0.14 | 055 0.12
40 0.65 0.16 | 077 0.01 | 0.81 002 | 0.75 009 | 033 0.13 | 0.75 0.15 | 0.50 0.17

Table 7: Sensitivity test of homophily ratio prediction performance with respect to the number of sampled edges. As shown
in the left column, 100, 80 and 40 edges are sampled to feed the LLMs to predict homophily ratio . ‘value’ refers to the
predicted r, and ‘gap’ is the gap between prediction and ground truth.

D.5. Zero-Shot Comparison with LLM-GNN (Chen et al., 2024¢) and TEA-GLM (Wang et al., 2024)

Cora Citeseer Pubmed Wikics
DA-AGE-W 7496  58.41 65.85 59.13
DA-RIM-W 74.73 60.80 77.94 68.22
DA-GraphPart-W  68.61 68.82 79.89 67.13
LLM-BP 72.59 69.51 75.55 67.75
LLM-BP (app.) 7141 68.66 76.81 67.96

Table 8: Accuracy compared with LLM-GNN, where ‘DA’ denotes the ‘C-Density’ methods proposed in (Chen et al.,
2024e), -W’ refers to the weighted cross-entropy loss function used for training, AGE (Cai et al., 2017), RIM (Zhang et al.,
2021), GraphPart (Ma et al., 2022) are different graph active learning baselines used in the original paper.

Cora Pubmed History Children
TEA-GLM 20.2 84.8 52.8 27.1
LLM-BP 72.59  75.55 59.86 24.81
LLM-BP (app.) 71.41  76.81 59.49 294

Table 9: Accuracy compared with TEA-GLM (Wang et al., 2024).

Here we present the comparison with LLM-GNN (Chen et al., 2024e) in Table. 8. We compare with three different graph
active learning heuristics from their original paper. Our training-free methods, LLM-BP and LLM-BP (appr.) achieves top
performance on Citeseer and Wikics, while performs comparably with the baselines in Cora and Pubmed. Note that the
results of LLM-GNN are from Table. 2 in the original paper.

The comparison with TEA-GLM is shown in Table. 9. Results of TEA-GLM are from Table.1 in their original paper.

D.6. Experiment Results in Few-Shot Setting

We use 10 different random seeds from 42 to 52 to sample the k-shot labeled nodes from training dataset, and report the
average accuracy and macro F'1 score with standard variance. Results are shown in Table. 10. Across all the ks, our
LLM-BP achieves the top ranking performance across all the eleven datasets, exhibiting similar insights with the zero-shot
setting.

D.7. Zero-Shot Link Prediction Results

For each dataset, We randomly sample & remove 1000 edges and 1000 node pairs from the graph as testing data. A
straightforward approach is to compare the cosine similarity between node embeddings to determine the presence of
a link. Specifically, we aggregate embeddings for 3 layers on the incomplete graph and compute the cosine similarity
between node representations, achieving better zero-shot performance than LLMs-with-Graph-Adapters methods (Wang
et al., 2024; Chen et al., 2024b; Tang et al., 2024a), as shown in Table. 11. Note that the performance in the table refers to
LLM-with-Graph-Adapters that have only been trained on other tasks and never on link prediction tasks.
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Cora Citeseer Pubmed History Children Sportsfit Wikics Cornell Texas Wisconsin ‘Washington Avg. Rank
Acc F1 Acc Fl Acc F1 Acc Fl1 Acc F1 Acc Fl Acc F1 Acc Fl1 Acc F1 Acc F1 Acc F1 Acc Fl
1-Shot
SBert Raw 428452 42.1£5.7 42.4%7.7 38.8£6.6 52.2+6.7 51.1+6.6 14.942.5 10.5£3.2 9.11.7 17.8%4.4 17.243.0 34.6£3.2 31.0+3.1 40.4#9.1 32.3%6.9 26394 23.5+6.0 47.0£7.7 35.1x5.0 36.0+12.8 27.6¢8.4 9.9 10.7

SBert BP 43.945.1 43.0£5.6 43.848.1 15.542.6 9.842.7 8.4+1.4 +5.1 18.34£3.5 35.943.5 32.043.5 41.3#8.9 33.446.5 27.948.1 25.6+! 279473 85 8.6

SBert BP (appr.) 43.144.9 42,4254 42.8+7.7 3 1£2.6 10. 9.2£1.6 40.9+9.0 329469 26.7£9.1 24. .9 27.8+8.1 89 95
T-E-3-Large Raw 472454 46.3£5.7 40.2+6.3 12.5+1.9 13.. 12.0¢1.4 #6.6 30.644.3 40.3+4.6 36.4+3.4 554484 46.5+7.0 50.847.7 42.5+6.4 72 71
2 BP 49.1£5.3 48.0+£5.5 41.6+7.0 3 13.1£2.1 12. 3 10.8+1.3 34.747.4 32.144.8 42.4£5.0 38.0+3.7 59.6+6.8 50.7£6.6 52.9+8.2 44.5+6.5 52 51
T-E-3-Large  BP (appr.) 48.4+5.2 47.4£5.6 40.7+6.6 37.445.7 55.4£7.7 12.7£2.0 13. 8 30.9+4.4 41.3+4.8 37.3£3.5 57.0¢7.3 47.7£6.8 51.8+8.0 43.4+6.6 6.1 6.0
LLM2Vec Raw  39.8+6.6 38.0+6.9 47.9£9.5 42.247.7 54.9+7.7 5 12.8+3.6 10. B 8 50.1£12.5 40.848.8 50.9+12.0 40.9+6.5 8.5 87
LLM2Vec BP 40.5+6.7 38.5£7.0 48.9£10.7 42.748.6 54.6+9.1 25.7+14.6 13.4£4.1 9.4£1.3 8.8xl.1 2 53.0489.9 43.8£6.6 52.9x11.2 74 72

LLM2Vec  BP (appr.) 40.3£6.6 38.4+7.0 48.6+10.0 42.6+8.1 55.248.0 52.848.2 25.0+13.7 13.3+3.8 10.1£1.5 10.0£1.4 28.0+5.8 26.745.1 34.6+4.6 31.9+4.1 51.7+11.2 42.3+7.4 52.1+11.3 42.0+6.2 62.5+7.2 49.8+4.7 49.7420.2 36.8+10.0 7.4 7.1
LLM-BP (ours) Raw  43.5+5.9 42.4£6.1 53.0+8.3 47.3%6.6 57.8+7.1 54.8+8.8 28.7+11.4 17.243.7 13.4+3.1 14.742.3 36.4%7.7 35.3+7.3 38.4+7.8 35.1£5.4 57.5+12.4 47.9£10.3 60.0+12.7 48.7£6.7 69.5+10.6 54.5£6.6 53.4+19.4 39.0£10.1 3.8 3.5
LLM-BP (ours) BP 46.346.8 44.447.2 54.48.9 48.4+7.1 58.248.1 54.2+10.5 30.1£12.9 17.7+4.0 .5 13.242.0 37.748.2 36.6+7.7 39.3+ A 64.847.4 54.247.6 63.0+11.3 51.3+6.6 73.6+8.8 59.3+6.4 53.6+17.6 42.3+10.0 2.3 2.0
LLM-BP (ours) BP (appr.) 44.7+6.4 43.5£6.4 53.7+8.5 47.9+6.8 57.7+7.4 54.539.2 29.5+12.2 17.743.9 13.5+3.2 14.842.4 36.9£7.9 35.8+7.5 39.348.5 36.0£6.1 61.0£10.8 50.8+£9.7 62.1x11.9 50.5£6.5 71.339.9 56.6%6.3 54.1x19.1 40.8£10.6 2.7 2.4

3-Shot
SBert Raw  57.64£5.2 56.845.3 57.3+4.0 53.243.7 62.1£5.1 62.7+4.7 21.9+2.4 13.4 13.120.9 31.74#3.8 29.3£2.8 47.2+4.4 44.4+3.8 51.845.0 41.4+4.8 49.5+7.3 36.1#4.5 54.9+6.1 43.1+4.7 49.4£11.2 39.146.3 11.1 11.4
SBert BP 58.7 54.3+4.2 63.7£6.1 64.3£5.6 23.442.4 12 11.8£0.8 35.1+4.4 32.6+3.1 49.5+4.5 46.4+4.0 52.2+4.7 42.4+4.6 48.9+6.9 36.6+4.7 55.0+5.9 434448 50.249.5 399458 9.6 9.5

22.3+2.5 13.742.2 13.3£1.0 32.3+3.9 29.9+2.8 48.244.5 45.443.9 51.6+4.5 41.5+4.6 49.7+7.3 36.4+4.4 54.7+£5.7 42.9+4.2 49.8+10.3 39.4+59 10.4 10.5
21.0£1.9 18. 5 17.9£1.6 54.0+4.6 49.9+2.8 54.8+4.3 51.4+4.0 72.843.3 63. 2 77.9+7.7 67.8+11.6 69.848.1 58.9+6.2 61.1+13.0 49.36.5 7.5 7.9
22.3+2.3 16.242.1 15.9£1.3 56.3%5.0 52.2+3.1 57.0+4.4 53.5+4.2 73.3+3.7 63.6£29 79.5+7.3 69.8+12.2 70.9+8.3 60.1£6.2 63.8+9.5 51.4+50 55 53
21.542.0 18.3£2.5 18.2+1.6 54.7+4.7 50.6£2.9 56.2+4.4 52.8+4.1 73.243.5 63.6+2.9 78.7+7.5 68.8+11.8 70.5+8.4 59.4+6.3 62.0£12.0 50.0¢5.8 6.3 6.5
24.2+3.4 18. 17.8+1.1 49.5+3.6 46.9£2.2 51.7+5.1 49. 2 72.6; 61.9+6.9 75.0+7.1 71.548.3 70.7%6.1 59. 7 63.3x10.2 49.6+39 8.2 8.0
25.844.0 16.442.8 15.6+1.0 52.843.9 50.142.5 53.94£6.0 51.5£5.7 74.1+5.2 64.246.5 79.6+4.6 74.5+8.1 72.6£5.0 60.744.0 65.0+10.0 51.7+4.1 55 5.5
25.43.7 18.74#3.7 18.3%1.1 50.9+3.7 48.242.3 54.0£5.5 51.8+5.3 74.1x5.1 64.0£6.4 77.6£52 73.2%74 72.2£5.6 60.6+4.6 64.6x10.1 50.8+4.1 6.1 5.9
LLM-BP (ours)  Raw  60.0+4.0 59.243.9 64.6+4.4 60.3+3.6 68.7£5.2 69.0+4.8 59. 0 32.243.0 22.. 22.3£1.5 58.244.0 55.742.6 55.14#4.9 53.5+4.6 79.9+3.8 722457 82.5+54 79.046.2 83.0+4.0 72.3+4.6 71.4x12.5 58.3+6.0 3.6 3.5
LLM-BP (ours) BP 64.3+4.6 63.1+4.3 66.5:4.8 61.84+4.0 69.7£6.2 69.7+5.8 62.8+6.1 33.4+3.2 20.. 19.6+1.4 60.2+4.2 57.8+2.8 57.8+5.6 56.0+5.2 81.1+4.0 73.6+5.5 85.443.5 80.4+7.0 84.0+4.3 73.3+4.8 71.9£10.6 60.1+5.7 1.9 1.7
LLM-BP (ours) BP (appr.) 61.7+4.2 60.9+4.0 65.7+4.8 61.3+3.9 69.245.5 69.5+5.1 61.6+5.9 33.243.0 22.7+3.5 22.741.6 59.244.1 56.7+2.7 57.4+4.7 55.844.5 81.3+4.0 73.6+5.7 84.6+4.7 81.3+6.0 84.3+4.1 73.2+52 72.1x11.8 59.1£6.2 2.2 24

SBert BP (appr.) 58.415. 53.643.9 62.5£5.1 63.1x4.7
T-E-3-Large Raw  64.1 51 .9 70.6+4.8 69.9+4.9
T-E-3-Large BP 66.3+5.8 64.8+4.9 57.5+4.8 53.844.3 72.4%5.6 71.6+5.7
T-E-3-Large BP (appr.) 65.6£5.8 64.1+4.9 56.0+4.4 52.6+4.0 71.1£5.0 70.445.1
LLM2Vec Raw  56.9+4.9 56.. 9 62.3+4.2 58 .7 66.6£6.4 66, .9
LLM2Vec BP 59.645.3 59.0£5.3 64.6+4.5 59.943.9 67.3£7.5 67.4+6.7
LLM2Vec  BP (appr.) 59.2£5.0 58.7+4.9 63.7+4.3 59.2+3.7 67.126.6 67.4+6.0

b

©

5-Shot
SBert Raw  61.4+3.5 60.843.2 61.4+4.6 57.4+4.2 66.5+4.8 67.3+43 46.7+4.5 25.3+2.5 16.3+2.3 15.7+0.9 39.1+3.1 36.0£1.8 50.5+2.5 48.8+2.1 55.9£3.6 45.4+3.7 56.1%6.9 40.54£57 59.8+4.5 455+4.3 56.1£7.6 44.1£32 11.5 11.6
SBert BP 62.744.0 62.0£3.7 62.624.7 58.3+4.1 67.9£5.7 68.7+4.9 50.8+52 26.9+2.6 14.7£1.9 13.9£0.8 43.423.6 40.2+2.1 52.842.4 50.9+2.1 57.2#3.6 46.4+3.7 55.8%7.0 41.6x5.5 60.0£4.0 45.5+3.5 53.8+6.1 43.1x2.5 102 10.2
SBert BP (appr.) 62.243.7 61.. 4 61.844.6 57.8+4.2 67.0+4.8 67.8+4.3 25.942.5 16.4 16.0£0.9 40.0+£3.2 36.9£1.9 51.6+2.5 49.9+2.0 5. 45543.8 56.5+7.0 412458 59.9+4.1 45.7+4.0 55.1£7.0 43.74#2.9 10.6 10.6

26.9+2.9 21. 22.01.1 61.7+4.9 57.3£2.4 59.63.1 56.9+3.2 75.0+4.4 67.7+3.3 84.2+3.0 812427 74.5x7.7 61.9+7.5 64.1£10.3 54.6+4.2 7.5 7.4
28.3+3.1 19.542.3 19.440.9 63.9+5.4 59.642.6 62.0£3.3 59.1£3.6 75.3+4.1 67.943.1 84.7+2.6 80.6+6.2 76.3+7.2 63.3%6.5 65.4+9.1 56.2+4.6 54 5.5
27.6+3.1 22. 22.4%1.2 62.5+5.1 58.1£2.5 61.0£3.2 58. 3 754+4.2 68.3+3.1 84.2+82.9 81.3+2.6 75.6+7.6 62.7+£7.3 64.6x10.1 54.8+4.7 6.1 5.8
29.8+2.9 22.; 22.1£1.0 56.844.5 54.442.1 58.543.6 56.444.2 75.5+5.6 68.3£5.1 81.8+3.8 77.6+2.7 78450 64.3+4.4 70.3x8.0 55.6+3.6 7.5 7.7
76.2£6.0 69.2+6.0 83.8+2.5 80.5+2.1 81.0+4.3 67.0+3.9 71.148.3 57.7¢42 55 53
76.3£6.0 69.1+5.8 83.0£3.4 79.442.3 66.6+4.2 70.74#8.5 56.5¢4.0 59 6.0
5 . .3 62.243.6 60.4+3.5 82.8+3.1 76.5+4.8 87.6+3.9 85.9+2.6 87.3x3.4 76.1+4.9 77.5+8.8 63.5+4.1 35 3.6
38.7+3.7 24.342.2 23.5+0.9 66.6+5.6 63.6+2.4 65.2+3.7 63.1+3.7 83.3+3.1 77.6+4.8 88.2+2.8 86.3+2.6 88.4+2.5 76.8+4.0 75.8+7.7 64.0+4.7 19 1.9

T-E-3-Large Raw  69.4£3.1 68.4£2.7 60.9+4.4 57.3£3.6 74.8+5.0 74.4+4.9
T-E-3-Large BP 70.6£3.1 69.5£2.7 63.3+4.6 59.34£3.8 75.6+5.5 75.0+5.6
T-E-3-Large  BP (appr.) 70.5£3.4 69.4£2.9 61.9+4.4 58 .7 75.4£5.2 74 .2
LLM2Vec Raw  61.643.6 61.143.4 64.6+5.0 61.0£4.5 71.4£5.9 71.8+5.4
LLM2Vec BP 64.0£3.4 63.3£3.4 66.9£5.3 62.9+4.7 72.9+6.8 73.2+6.2
LLM2Vec  BP (appr.) 64.0£3.5 63.3+3.5 65.9+5.1 T72.445.6
LLM-BP (ours) ~ Raw  65.1£2.8 64.4+3.0 65.5+5.4 73.945.9
LLM-BP (ours) BP 69.5£3 68.3+3.3 67.4%5.8 74.1£6.2

LLM-BP (ours) BP (appr.) 67.0+2.7 66.0+2.8 66.7+5.8 74.1£5.9 38.443.6 26.9£2.7 27.0£1.1 65.5+5.5 62.542.4 64.6+3.4 62.843.5 83.6+2.9 77.6+4.4 87.9+3.7 86.4+2.6 88.4+28 76.6+4.9 77.4+9.0 64.8t54 24 24
10-shot

SBert Raw  69.843.3 68.5£3.1 67.0+2.0 63.0£1.8 68.9+4.1 69.3+4.6 31.2¢0.9 20.2£1.8 19.7£0.9 46.6+3.2 43.5+2.0 59.5£2.1 58.1x1.8 61.7+#2.9 48.1x4.6 60.5+3.7 47.2+6.6 66.1£3.4 49.5+4.0 62.8+4.1 46.4+3.6 113 11.2

SBert BP 70.6+3.2 69.2+! 68.3£1.9 64.1£1.7 70.5+4.9 70.845.5 33.241.2 18.0£1.4 17.3£0.8 51.6+3.9 48.3+2.3 62.4: +1.9 62.0£2.7 48.8+4.7 60.0£33 455+4.8 49.4+£3.8 58.5+4.3 453437 9.8 10.1

31.9+1.0 20.6£1.9 20.1£1.0 47.8+3.4 44.6+2.0 60.8+2.1 59.5x1.8 62.0+2.6 48.7x4.6 60.4+3.6 46.6£6.2 66.4+3.4 49.6x4.4 61.2+4.1 45.8+3.7 104 10.5
33.042.1 27.142.3 26.9+1.4 68.1+3.8 63.142.1 68.81.9 66.6+1.7 80.1+2.1 71.6+3.4 86.5+3.2 84.242.9 81.843.5 68.3%6.5 74.7+4.2 60.0+4.6 75 7.6
34.8+2.2 .7 23.4£1.0 70.0+4.1 65.2+2.1 71.3£2.0 68.8£1.8 80.5+2.7 72.3+4.1 87.2£2.6 85.4+2.8 81.9+2.9 68.7£5.2 73.7#3.9 60.74#3.7 55 5.5
33.942.2 27.642.4 27.3+1.4 68.8+3.9 63.942.1 70.2£1.9 68.0+1.8 80.7+1.7 72.243.1 86.7+#3.3 84.6+3.2 82.0£3.5 68.7x6.5 74342 60.0+4.2 6.1 6.2
37.5£1.8 27.242.8 27.0+1.3 63.443.3 60.7£1.6 68.8+2.4 66.7+2.4 80.6+3.6 72.9+4.4 85.9+3.0 82.6+4.4 84.5+1.7 69.0+5.1 81.6+4.5 614459 78 75
23.2%1.1 66.2+£3.6 63.6£1.7 71.2+2.6 68.8+2.4 80.9£3.1 73.5+4.2 87.3+2.0 84.9+2.8 85.9+2.4 70.3+4.3 80.5+4.4 63.0£53 53 52
73.9+3.7 86.6£2.6 86.0+1.8 70.6+4.4 81.7+43 629453 58 5.7

SBert BP (appr.) 70.3%3.. 67.5£1.8 63.4x1.7 69.3+4.3 69.7+4.8
T-E-3-Large Raw  74.9£1.2 73.7+1.4 65.7+1.8 61.9£1.5 78.3+4.2 78.1+4.0
T-E-3-Large BP 76.6£1.3 75.241.5 68.3+2.0 64.0£1.7 79.1+4.4 78.7+4.3
T-E-3-Large  BP (appr.) 76.4+1.3 75.0£1.6 66.7+1.9 62.7+1.6 78.744.3 78.4+4.2
LLM2Vec Raw  68.1£2.7 66.9+£3.0 68.0+2.8 64.5+£2.6 72.9+4.2 73.243.9
LLM2Vec BP 70.4£3.0 69.3£3.2 70.6+2.9 66.5£2.7 74.9+4.1 75.0+3.8 69.9+4.2 39.6+2.4 24.642.
LLM2Vec  BP (appr.) 70.0: 69.5£2.8 65.7+2.6 73.5+4.2 73.844.0 68. 39.5+2.1 28.143.1 27.8+1.3 64.9+3.5 62.2+1.7 71.242.5 69.1+2.4

LLM-BP (ours) ~Raw  70.4: 69.1£2.6 65.5+2.2 74.3+4.3 74.5£4.2 72. .. .8+2.0 30.4+0.9 68.5£3.4 65.2+1.4 71.4+2.3 69.4+2.3 80.0¢4.2 90.7: .6 90.7x1.7 78.7+5.3 85.9+2.7 68.8+3.7 3.6 3.6
LLM-BP (ours) BP 74.243. . T1.3£2.8 67.3+2.2 75.5+4.2 75.6+4.0 74.5+2.9 44.7+2.4 28.2+1.8 26.7+0.8 70.5+3.5 67.4£1.6 73.7+2.4 71.4+2.4 86. 80.8+4.1 90.7+1.8 +3.1 90.6£1.7 76.9+45.2 83.1#3.5 67.9+3.5 24 26
LLM-BP (ours) BP (appr.) 71.9+3.5 70.6+3.7 70.4+2.6 66.7+2.1 74.8+4.4 75.0+4.2 73.6£3.0 44.6+2.4 31. 1 30.8+£1.0 69.7+3.5 66.5+1.5 73.6+2.2 71.6+2.1 86.8+2.9 81.0£3.8 90.7+1.9 88.1+3.0 91.7+1.7 78.8+5.2 85.0+3.3 68.3+4.0 2.5 2.3

Table 10: Few-Shot Performance. ‘T-E-3-Large’ is short for Text-Embedding-3-Large.

We leave the design of task-adaptive embeddings and generalized graph structural utilization for link prediction as future
work, including task-adaptive encoding prompts.

E. Prompts
E.1. Task Description for Vanilla LLM2Vec without Class Information

Table. 12 shows the task description for vanilla LLM2Vec encoder across all the datasets.

E.2. Prompts for Vanilla LLMs

Table. 13 shows tha task description for vanilla LLM decoders.
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Citation Graph E-Commerce & Knowledge Graph
Cora Citeseer Pubmed History Children Sportsfit Wikics

OFA 0.492 - 0.481 0.431 0.484 0.517 -

LLaGA 0.527 - 0.543 0.515 0.500 0.502 -

GraphGPT 0.520 - 0.569 0.449 0.422 0.597 -

TEA-GLM 0.586 - 0.689 0.579 0.571 0.553 -
SBert 0.979+0.033 0.990+0.001 0.979+0.003(0.985+0.002 0.972+0.030 0.975+0.003 0.972+0.003
Text-Embedding-3-Large 0.975+0.003 0.989+0.002 0.979+0.003{0.985+0.001 0.980+0.002 0.987+0.001 0.977+0.002
LLM2Vec 0.966+0.004 0.982+0.002 0.970+0.003|0.971+0.002 0.973+0.003 0.975+0.002 0.978+0.003

Table 11: Performance on zero-shot link prediction tasks (AUC). Results of baselines are from (Wang et al., 2024).

Dataset

Task Description

Cora
Citeseer
Pubmed
History
Children
Sportsfit
Wikics
Cornell

Texas

Wisconsin
Washington

Encode the text of machine learning papers:
Encode the description or opening text of scientific publications:
Encode the title and abstract of scientific publications:
Encode the description or title of the book:
Encode the description or title of the child literature:
Encode the title of a good in sports & fitness:
Encode the entry and content of wikipedia:
Encode the webpage text:

Encode the webpage text:

Encode the webpage text:

Encode the webpage text:

Table 12: {Task description} for vanilla LLM2Vec (Li et al., 2024a) encoder. See Eq. 8 for detailed prompting format.

Dataset Task Description
Cora opening text of machine learning papers
Citeseer description or opening text of scientific publications
Pubmed title and abstract of scientific publications
History description or title of the book
Children description or title of the child literature
Sportsfit the title of a good in sports & fitness
Wikics entry and content of wikipedia
Cornell webpage text
Texas webpage text
Wisconsin webpage text
Washington webpage text

Table 13: {Task description} in the prompts for both vanilla LLM decoders (See Section. B.3) and task-adaptive encoder

(See Section. B.2).
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