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Abstract

This paper formulates a generalized model of multi-armed bandit experiments that ac-
commodates both cumulative regret minimization and best-arm identification objectives.
We identify the optimal instance-dependent scaling of the cumulative cost across experi-
mentation and deployment, which is expressed in the familiar form uncovered by Lai and
Robbins (1985). We show that the nature of asymptotically efficient algorithms is nearly
independent of the cost functions, emphasizing a remarkable universality phenomenon.
Balancing various cost considerations is reduced to an appropriate choice of exploitation
rate. Additionally, we explore the Pareto frontier between the length of experiment and
the cumulative regret across experimentation and deployment. A notable and universal
feature is that even a slight reduction in the exploitation rate (from one to a slightly lower
value) results in a substantial decrease in the experiment’s length, accompanied by only a
minimal increase in the cumulative regret.

Keywords: multi-armed bandits, regret minimization, best-arm identification, Thompson
sampling

1. Introduction

The multi-armed bandit literature is divided into two distinct segments. One, focused
on best-arm identification or pure exploration, aims to minimizing the expected number
of measurements required to confidently identifying an optimal treatment arm. Another,
focused on cumulative regret minimization, aims to interleave exploration and exploitation
so as to maximize the cumulative reward earned.

The existence of these two widely studied problems reflects that practitioners conducting
adaptive experiments have varied goals. Those conducting clinical trials or A/B tests may
wish to end experimentation quickly and focus on deploying a specific treatment arm in
the population. Formulating a best-arm identification problem appears natural in those
cases, but it overlooks that the quality of treatment decisions during the experiment may
be an important consideration (Berry, 2004). In simulation optimization problems (Hong
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et al., 2021), the quality of decision-making during the experiment is unimportant, but the
time required to simulate the performance may depend on the arm itself, and these distinct
sampling costs should be reflected in the formulation.

We formulate a generalized model of a bandit experiments. In this model, there are K
treatment arms with unknown quality θ = (θ1, . . . , θK), and a population of T individuals
is arriving sequentially at each period t = 0, . . . , T −1. During the experimentation phase, a
decision-maker pulls one treatment arm It ∈ [K] ≜ {1, . . . ,K} for the individual at period
t and observes a noisy signal of arm It’s quality. At any period τ ∈ {0, 1, . . . , T}, the
decision-maker can choose to end the experimentation phase and deploy an arm Îτ ∈ [K]
to the remaining individuals throughout periods {τ, . . . , T − 1}. In this work, we assume
that noisy signals of treatment arm i ∈ [K] are independently drawn from a canonical
one-dimensional exponential family parameterized by mean parameter θi, and we focus on
problem instances with a unique best arm. Formally, θ ∈ Θ where

Θ ≜
{
θ ∈ RK : I∗(θ) is unique

}
with I∗(θ) ≜ argmaxi∈[K] θi.

Distinct per-individual cost functions measure the cost of treatment decisions during
the experimentation and deployment phase. For treatment arm i ∈ [K], there is a per-
individual cost Ci(θ) of employing it within-experimentation and a per-individual cost ∆i(θ)
of deploying it post-experimentation. The total expected cost of the experiment is

Costθ(T, Alg) ≜ E

[
τ−1∑
t=0

CIt(θ) + (T − τ)∆Îτ
(θ)

]
,

where Alg is an algorithm, i.e., an adaptive rule for selecting the treatment arms (I0, . . . , Iτ−1),
the stopping time τ and the deployed arm Îτ .

We place two assumptions on the cost functions:

Assumption 1 For any θ ∈ Θ, there is a strictly positive cost to continuing the experiment,
i.e., mini∈[K]Ci(θ) > 0.

Assumption 2 For any θ ∈ Θ, recommending the best arm I∗ = I∗(θ) uniquely minimizes
post-treatment costs, i.e., ∆I∗(θ) = 0 and ∆j(θ) > 0 for j ̸= I∗.

The next example offers some discussion of the generalized cost function and its rela-
tionship to past literature.

Example 1 (Cumulative regret minimization and best-arm identification) For any
arm i ∈ [K], its per-individual post-experiment cost ∆i(θ) = θI∗ − θi and within-experiment
cost Ci(θ) = c+∆i(θ) where c > 0. Then the total cost

Costθ(T, Alg) = E

[
c · τ +

τ−1∑
t=0

(θI∗ − θIt) + (T − τ)
(
θI∗ − θÎτ

)]

aggregates a term
∑τ−1

t=0 (θI∗ − θIt) that captures within-experiment regret, a term (T −
τ)

(
θI∗ − θÎτ

)
that captures post-experiment regret of deploying the arm Îτ , and a term c · τ
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that penalizes long experiments. The cost c might, for instance, reflect inherent operation
costs involved with running a clinical trial.

For each given c, our analysis studies the limits of attainable total cost as the population
size T grows. Varying c then allows us to unify insights from two threads of the bandit
literature:

• (Cumulative regret minimization) When c is nearly zero, our theory matches the clas-
sical theory of regret pioneered by Lai and Robbins (1985). This is natural, since when
c = 0 this problem is equivalent to that of cumulative regret minimization in bandit
problems1.

• (Best-arm identification) When c is very large, our theory recovers results on best-arm
identification (Garivier and Kaufmann, 2016). In this regime, the term

∑τ−1
t=0 (θI∗ − θIt)

that captures the cost contribution of within-experiment regret is negligible compared
to the other two sources of cost. Ignoring that cost, the decision-maker’s goal is to
stop rapidly while still gathering enough information to deploy an arm Îτ with small
expected regret.

2. Contributions and informal presentation of the main results

Asymptotic performance limits. We study the nature of experimentation rules that
minimize total costs Costθ(T, Alg) as the population size T tends to infinity. We show that
asymptotically optimal algorithms incur costs that grow logarithmically with the population
size. With this in mind, we define the normalized cost of an algorithm

NCostθ(Alg) ≜ lim sup
T→∞

Costθ(T, Alg)

log(T )
.

Then for every possible instance θ ∈ Θ, its problem complexity is defined as

NC∗
θ ≜ inf

Alg∈A
NCostθ(Alg), (1)

where A is the class of uniformly good rules similar to that in the classical work of Lai and
Robbins (1985).

The classic result of Lai and Robbins (1985) applies to Example 1 in the case of c = 0. In
this case, Costθ(T, Alg) encodes an algorithm’s expected regret, and they show the problem

complexity NC∗
θ =

∑
j ̸=I∗

θI∗−θj
KL(θj ,θI∗ )

. The next theorem shows that for our generalized model,

NC∗
θ takes on a related form.

Theorem 1 (Informal) For any θ ∈ Θ, there exist θ̄I∗,j ∈ (θj , θI∗) for each j ̸= I∗ such
that

NC∗
θ =

∑
j ̸=I∗

Cj(θ)

KL(θj , θ̄I∗,j)
.

1. There is no disadvantage taking τ = T when c = 0. Stopping earlier is a feasible strategy which goes by
the name ‘explore-then-commit’ in the bandit literature
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The exact form of θ̄I∗,j is identified in our theory. If, in the limit, an efficient algorithm
plays the best arm I∗ much more often than any competing arm j ̸= I∗, then θ̄I∗,j ≈ θI∗

and the result of Lai and Robbins (1985) is essentially recovered. In settings where all
within-experiment costs share the same value, i.e. C1(θ) = · · · = CK(θ) = γ > 0, the

term
NC∗

θ
γ is equal to the problem complexity terms that have appeared previously in the

best-arm identification literature (Garivier and Kaufmann, 2016; Russo, 2020). Indeed, the
expressions in this literature appear different at first glance, and our new mathematical
analysis is needed to put them into an expression that resembles Lai and Robbins (1985).

Universality of (asymptotically) optimal algorithms. We have defined what ap-
pears to be a substantial generalization of the typical mutli-armed bandit problem. One
might expect these problems require substantially new bandit algorithms, which carefully
calibrate their exploration on the basis of the within-experiment and post-experiment cost
functions. Surprisingly, this not the case. Instead, a universality phenomenon emerges,
where the nature of asymptotically optimal allocation rules is nearly independent of the
details of the cost functions.

Let us illustrate the main idea informally by focusing on one concrete algorithm. We take
Thompson sampling, one of the most widely used strategies for standard multi-armed bandit
algorithms, and modify it as in Russo (2020) by introducing a single tuning parameter.
Given observations gathered so far, Thompson sampling (TS) defines a randomized rule
for sampling an arm to measure. Top-two Thompson sampling (TTTS) uses TS as a
subroutine, sampling arms randomly until two distinct candidates are chosen and then
flipping a biased coin to pick among those two. The bias of the coin, denoted by β ∈
(0, 1), is an important tuning parameter. Russo (2020) explains that it governs the long-
run proportion of measurement effort assigned to exploitation, and thus it is also called
exploitation rate. When β = 1, TTTS is standard Thompson sampling and in the limit
measures the true bast arm almost always. When β < 1, TTTS samples the true best arm
β fraction of the time in the limit. The remaining 1− β fraction of the time, the algorithm
measures one of the k − 1 alternative arms and the allocation among these is determined
automatically.

The next theorem states that, if the exploitation rate β is tuned appropriately to
the problem instance, then TTTS with appropriate stopping and recommendation rules
is asymptotically efficient. The surprising feature of this result is that TTTS is agnostic to
the within-experiment and post-experiment cost functions. We show that the chosen stop-
ping and recommendation rules are agnostic to these as well. The cost structure impacts
the optimal exploitation rate but, fixing this, has no impact on how remaining measurement
effort is allocated among the other k − 1 arms.

Theorem 2 (Informal) For any θ ∈ Θ, if top-two Thompson sampling is applied with
optimally tuned β, generalized likelihood ratio stopping rule and plug-in recommendation
rule, then

NCostθ(TTTS) = NC∗
θ.

Our focus on TTTS here is merely illustrative, so we will not discuss the algorithm’s
shortcomings or its strengths. For our theory, the only important feature of TTTS is its lim-

iting allocation. Russo (2020) identified limiting proportions pβ(θ) =
(
pβ1 (θ), . . . , p

β
K(θ)

)
,
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which describe the fraction of measurements allocated to each arm in the limit under cer-
tain top-two sampling rules. When θ is fixed, we write pβ = pβ(θ) and

(
pβ1 , . . . , p

β
K

)
=(

pβ1 (θ), . . . , p
β
K(θ)

)
for simplicity. Figure 1 provides a visualizations of these limiting pro-

Figure 1: Proportions allocated to sub-optimal arms vs. exploitation rate

portions as β varies for the Gaussian instance with common known variance but unknown
mean vector θ = (θ1, . . . , θ5) = (1, 2, 3, 4, 5). Our theory applies, in an appropriate sense,
to any algorithms with these limiting proportions.

Pareto frontier between regret and speed. We have identified, informally, that a
one dimensional class of allocation proportions (pβ)β∈(0,1) is optimal under a generic set of
objective functions. By then plotting various performance measures as a function of the
exploitation rate β, we can trace the Pareto frontier. We illustrate this in Figure 2 while
focusing on two important performance measures: (1) experiment’s length Eθ[τ ] and (2)

total regret across experiment and deployment, Eθ

[∑τ−1
t=0 (θI∗ − θIt) + (T − τ)

(
θI∗ − θÎτ

)]
.

One can think of this as varying the parameter c is Example 1.2 One extreme point on
this frontier, attained when β → 1 (i.e. c → 0), focuses solely on regret minimization.
Other points prioritize committing quickly to a single decision. The best-arm identification
problem is an extreme point here in which speed of confidently identifying I∗ is prioritized;
for this instance θ = (1, 2, 3, 4, 5), the optimal β = 0.45. The extra regret incurred by such
solutions can be understood as the price of early commitment. A striking and universal
feature is that when decreasing β from 1 to a slightly lower value (e.g. 0.9 for this instance),

2. In Figure 2, we divide experiment’s length and total regret by log(T ) and let T → ∞, which gives the
normalized length and regret, respectively.
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Figure 2: Pareto frontier between total regret and experiment’s length

there is a significant decrease in experiment’s length with only a minimal increase in total
regret.
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