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Abstract

This paper investigates the dynamics of t-Stochastic Neighbor Embedding (t-SNE), a pop-
ular tool for visualizing complex datasets in exploratory data analysis, optimized by the
Nesterov’s accelerated gradient method. Building on the foundational work that connects
t-SNE with spectral clustering and dynamical systems, we extend the analysis to include
accelerated dynamics which is not addressed in the previous work, revealing the emergence
of Bessel and modified Bessel functions as a novel aspect of the algorithm’s behavior charac-
terizing the temporal evolution of the accelerated t-SNE. Because the ordinary differential
equation corresponding to the optimization process under consideration has a closed-form
solution, by performing eigenvalue decomposition of the data’s adjacency matrix as a pre-
processing step, we can obtain low-dimensional embeddings at any point in time without
performing sequential optimization. This advancement not only enhances the practical util-
ity of t-SNE but also contributes to a deeper understanding of its underlying dynamics.

1 Introduction

Data visualization plays a pivotal role in exploratory data analysis, enabling the comprehension of complex
datasets by reducing them to more cognitively manageable two or three-dimensional representations. Among
various dimensionality reduction techniques, t-distributed stochastic neighbor embedding(t-SNE) (van der
Maaten & Hinton, 2008), a descendant of the stochastic neighbor embedding (Hinton & Roweis, 2002), has
emerged as powerful tools for visualizing the overall structure of data and understanding how clusters are
formed across diverse fields. t-SNE continues to undergo technical and theoretical development, and its
applications are also expanding. In (Zhu & Ting, 2022), the use of an isolation kernel instead of a Gaussian
kernel accelerates computation, while (Böhm et al., 2023) integrates contrastive learning within computer
vision research, and (Skrodzki et al., 2023) explores the concept of coarse embedding to expedite inference.
Furthermore, the concept has been extended into hyperbolic space using polar quadtree techniques, as
demonstrated in related research by (Zhou & Sharpee, 2021; Guo et al., 2022). Also, theoretical advancements
have been made, such as the convergence study presented in (Jeong & Wu, 2024). For general low-dimensional
representation, the concept of dynamical dimension reduction is introduced in (Yoon & Osting, 2022).

In this paper, we focus on another aspect of t-SNE, the acceleration of the optimization procedure from
the viewpoint of dynamical system. In many software implementation of t-SNE (Szymański & Kajdanow-
icz, 2017; Krijthe, 2015), the optimization procedure includes a momentum term. We consider applying
momentum-based methods such as the Momentum Method (MM) and the Nesterov’s accelerated gradient
(NAG) method (Nesterov, 1983) to t-SNE aiming to enhance the convergence behavior of the optimiza-
tion dynamics in the early exaggeration (EE) stage. We analyze the impact of these modifications from a
continuous-time dynamical systems perspective.

We note that the t-SNE is composed of two stages: the EE stage and the embedding stage (van der Maaten &
Hinton, 2008). Some previous theoretical studies (Linderman & Steinerberger, 2019; Cai & Ma, 2022) have
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conducted analyses focusing on the EE stage. While these methods are often introduced to accelerate prac-
tical optimization, our primary focus here is on understanding the dynamical behavior of the system rather
than achieving computational speed-up. Since this stage itself possesses a sufficiently rich mathematical
structure, we will also focus on the EE stage, and the embedding stage is not modified in this study.

1.1 Contributions

We draw upon the foundational work of (Cai & Ma, 2022), who established a connection between t-SNE
clustering dynamics and spectral clustering under certain conditions for gradient descent (GD) method,
framing the data clustering phenomenon within a dynamical systems perspective. While the use of MM or
NAG can potentially accelerate the optimization in the EE stage, it is not obvious whether the resulting
embeddings still preserve cluster structures in the same way as standard GD. Our contribution extends
this analysis by demonstrating that the incorporation of MM and NAG can accelerate the EE dynamics;
in particular, we show that NAG introduces mathematical entities such as the Bessel and modified Bessel
functions into the system. Through rigorous theoretical analysis and empirical validation, we show that our
approach offers a further insights into the dynamical properties of t-SNE.

Our main contributions are summarized as follows:

• We explore an approach of dynamical system analysis of t-SNE including a momentum term, and
further extended to the NAG. We find that in the former case (MM), even with the same linear
ODE, convergence is theoretically faster [Proposition 5.4], and in the case of the NAG, it leads
to the derivation of related ODEs as the first kind Bessel functions or modified Bessel functions.
[Theorem 6.4] As these claims suggest, our approach explicitly involves eigenvalues and eigenvectors.
When the data size is n, solving the eigenvalue problem requires computational complexity O(n3),
which is greater than the original O(n2) complexity. Therefore, in this paper, we limit our numerical
experiments to datasets of relatively small volume.

• We derive these ODEs and their relations, organizing them into several theorems, propositions and
lemmas, where all proofs are provided in the Appendix. As a matter of fact, deriving parallel results
already given without momentum in (Cai & Ma, 2022) to those with momentum term are technically
not straight forward.

• Since the closed-form solution of the ODE is available, embeddings at any point in time can be easily
obtained. [Proposition 5.4, Theorem 6.4]

• We find that insights related to EE stage in (Cai & Ma, 2022) are replicated in our method with
acceleration, leading to the conclusion that the optimization algorithm converges in less time than
when using GD. Since the EE stage does not have an explicitly defined objective function with the
acceleration parameter α > 1, it is challenging to monitor the function value and determine an ap-
propriate stopping point during optimization. As a secondary benefit of our continuous formulation
via ODEs and their closed-form solutions, we can define a principled stopping criterion based on a
threshold applied to the Accumulated Residual Ratio (ARR) of major and minor eigenvalue contri-
butions. [(27), (28)] This approach enables the identification of a suitable termination time within
the continuous framework. Such a mechanism is particularly advantageous when t-SNE is employed
as part of a larger system or pipeline, where an automatic and interpretable stopping condition is
beneficial.

• We theoretically demonstrate that, under certain conditions, iterative computations for both MM
and NAG can be replaced by their continuous counterparts by adopting this continuous relaxation
approach using ODEs. [Proposition5.2, 6.2] It provides theoretical justification for results that had
previously been obtained heuristically through iterative methods. We can confidently rely on the
original discrete optimization algorithms (MM and NAG), as they retain the essential dynamics while
being more computationally efficient. However, since solving the ODEs typically requires eigenvalue
decompositions of large matrices, the practical advantage of using the continuous formulation is
limited.
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• By interpreting the spectral decomposition of the dynamics in terms of Lyapunov exponents, we
offer a novel theoretical perspective on the formation of clusters in t-SNE. [PropositionH.1, H.2]
Components associated with positive Lyapunov exponents dominate the long-term behavior and
effectively determine the clustering structure, with the corresponding eigenvectors encoding cluster
assignments. [(29)] In contrast, components with negative Lyapunov exponents decay over time and
gradually vanish from the embedding. Notably, in the case of NAG, these stable components do
not simply decay exponentially but exhibit non-monotonic, oscillatory behavior governed by Bessel
functions.

1.2 Key take aways for t-SNE users

We investigate both the theoretical and practical aspects of MM and NAG, based on the framework of GD.
Our study builds upon the theoretical foundation established by (Cai & Ma, 2022), which demonstrated that
the EE stage of the t-SNE algorithm can be approximated by a first-order ODE. The solution of this ODE
can be expressed explicitly in terms of the adjacency matrix’s eigenvalues and eigenvectors, and providing a
theoretical justification for why t-SNE reveals the data’s cluster structure.

In our paper, we extend this line of reasoning by investigating whether a similar theoretical framework can
be applied to other optimization schemes such as MM and NAG. Specifically, we ask: Can the dynamics of
MM and NAG during the EE stage also be described using ODEs, and if so, do the same assurances hold?

The answer to this question is “yes”: we theoretically demonstrate that optimizing t-SNE with either MM
or NAG likewise yields the emergence of clear cluster structures. This result implies that, although the
computational cost of optimization was previously a concern for t-SNE, one can now employ accelerated
gradient methods with confidence. Furthermore, our work proposes a novel stopping criterion for the ODE-
based formulation, a point which is not explicitly addressed in (Cai & Ma, 2022)’s original work. This
contributes both to the theoretical understanding and practical usability of accelerated variants of t-SNE.

Next, we present the practitioner-oriented takeaway. We derive the corresponding ODEs and their closed-
form solutions by continuously relaxing the step-by-step iterative process. This relaxation enables, particu-
larly in the EE stage, the approximation of intermediate states at arbitrary time points by evaluating the
ODE solution. In addition, we propose a stopping criterion, referred to as the ARR metric defined in (28),
which provides a principled method for determining an appropriate termination time. To apply our approach
in practice, two major assumptions must be taken into account:

• When the data size n is sufficiently small, the eigenvalue problem required by the method—typically
of computational complexity O(n3)—can be solved within a practical amount of time.

• The assumptions stated in the theoretical takeaway—namely, (I1), (T1.M), (T2.M) for the MM
method, and (I1), (T1.N), (T2.N) for NAG—are satisfied.

Provided these conditions hold, the following approach becomes applicable:

• Preparation: Compute the adjacency matrix P and its eigenvalues.

• EE stage: Compute the ARR-based criterion and determine the stopping time.

• Embedding stage: Obtain the low-dimensional embedding by evaluating the formula (3) with
m(k+1) = 0, where acceleration is unnecessary in order to obtain stable results in the embedding
stage.

2 Related work

Dealing with t-SNE, a method of dimensionality reduction, as a dynamical system requires a background
in both the methodology of dimensionality reduction and analysis of algorithms as dynamical systems.
Moreover, the unique properties of t-SNE and the development of related research are also pertinent. We
concisely summarize the related studies for each aspect.
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2.1 Dimensional reduction methodology

In dimensionality reduction, numerous methods have been established to transform high-dimensional data
into a more manageable, lower-dimensional representation, aiding in elucidation of the data structure. Prin-
cipal component analysis (PCA) (Jolliffe, 1986) serves as a foundational linear method, identifying principal
axes of maximum variance. Isometric mapping (Isomap) (Tenenbaum et al., 2000) focuses on preserving
the geometric distances on the manifold, effectively maintaining the spatial relationships among data points.
Locally linear embedding (LLE) (Roweis & Saul, 2000) isolates local linear relationships by reconstructing
points from their immediate neighbors, reflecting the intrinsic geometry of the manifold. The Laplacian
eigenmap technique (Belkin & Niyogi, 2001) constructs a graph Laplacian and leverages its eigenfunctions
to achieve a lower-dimensional projection that reveals the manifold’s local characteristics.

By further developing graph-based methods such as Isomap and LLE, SNE (Hinton & Roweis, 2002) and
t-SNE (van der Maaten & Hinton, 2008) have been proposed as methods that learn embeddings directly and
have become very popular. UMAP (McInnes & Healy, 2018) and PHATE (Moon et al., 2019) have been
developed as powerful alternatives to the t-SNE algorithm, and recently, the relationships between t-SNE
and UMAP have also been discussed (Damrich et al., 2023).

2.2 Gradient methods to differential equation

The approach of deriving and analyzing ODEs as continuous limits of iterative optimization algorithms is
widely adopted. This includes attempts to extend acceleration techniques beyond NAG (Wibisono et al.,
2016), employing Runge-Kutta integrators (Zhang et al., 2018) and symplectic integrators (Goto & Hino,
2025), and formulating continuous-time models using Lyapunov analysis and tools from stochastic calcu-
lus (Orvieto & Lucchi, 2019). These studies exemplify the breadth of research exploring different aspects of
continuous approaches to optimization. There are more geometrically sophisticated methods, such as (De-
fazio, 2019), which addresses NAG on a Riemannian manifold, and (Wilson et al., 2021), which performs
analysis using Lyapunov functions. In deriving the ODEs related to the NAG method, we refer to several
results from (Su et al., 2016), where the emergence of Bessel functions for a related ODE is established.

2.3 SNE algorithm and recent developments

In addition to the studies introduced in the introduction, variants of t-SNE and relationships with other
methods are also being actively researched (Kobak et al., 2019; Chen et al., 2015; Pezzotti et al., 2017;
Fujiwara et al., 2020). A generic formulation of embedding algorithms that includes SNE and other existing
algorithms are studied, elucidating their relation with spectral methods and graph Laplacians (Carreira-
Perpiñán, 2010; Vladymyrov & Carreira-Perpiñán, 2012).

There are several theoretical attempts, such as (Linderman & Steinerberger, 2019), which compares spectral
clustering and t-SNE and (Arora et al., 2018), which states that t-SNE works well under specific conditions
called γ-spherical and γ-separated in EE stage. The paper (Linderman & Steinerberger, 2022) presents
theoretical and experimental results, focusing on sufficient conditions for the parameters α for acceleration,
and h for step size under the assumption of GD. It also discusses considerations regarding disjoint clusters and
the independence of the results from initial values. Note that such results include both EE and subsequent
embedding stages.

Additionally, recent studies have addressed aspects related to implicit regularization and scaling effects in
clustering algorithms. For instance, (Auffinger & Fletcher, 2023) discusses implicit regularization mecha-
nisms, as highlighted in Proposition 6.5, which connects closely to early stopping in clustering optimization
processes. Additionally, (Murray & Pickarski, 2024) explores the scaling effects arising from the gradual
decrease of pij , which is the element of adjacency matrix commonly used in t-SNE is the symmetric proba-
bility matrix P = (pij), as n → ∞. This phenomenon appears to relate to Lemma 5.5 or 6.3, particularly
the condition concerning the sign of αλR(L(P)) − 1

n−1 , where λR(L(P)) stands for Rth-eigenvalue of the
unnormalized Laplacian matrix of P. These findings provide critical insights into how regularization and
scaling behaviors influence clustering performance and stability under large-scale settings.
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2.4 Acceleration methods

It is widely known that a drawback of t-SNE is its high computational cost, and many attempts have been
made to improve its computational efficiency. The original paper (van der Maaten & Hinton, 2008) uses both
early exaggeration effect by adopting acceleration parameter α > 1 and momentum methods. The Barnes-
Hut tree is a well-known approach for accelerating the t-SNE optimization procedure (van der Maaten, 2013;
2014). The n-body force calculations is utilized in (Yang et al., 2013; Vladymyrov & Carreira-Perpiñán,
2014). (Skrodzki et al., 2024) applies Barnes-Hut approximation idea into hyperbolic disc to accelerate low-
dimensional embedding. We note that it is experimentally shown in (Lambert et al., 2023) that NAG can
be an alternative to EE.

Although the term “acceleration” often suggests computational speed-up, we clarify that our current frame-
work focuses on theoretical acceleration in the continuous-time dynamics, rather than practical runtime
efficiency. In fact, due to the reliance on full eigendecomposition of the graph Laplacian, the overall com-
putational complexity remains O(n3) in our current implementation. Nonetheless, we believe that this
spectral formulation offers valuable analytical insight, and that future implementations using approximate
eigensolvers (e.g., Lanczos algorithm) may help bridge the gap between theoretical structure and practical
scalability.

For example, the oscillatory behavior revealed through Bessel-type dynamics is directly captured in the ARR
metric we propose, which provides an interpretable and data-driven criterion for early stopping. This ana-
lytical formulation could inspire new techniques for adaptive exaggeration scheduling or spectrally informed
initialization, potentially improving both the interpretability and efficiency of t-SNE variants in large-scale
applications.

3 Original t-SNE algorithm

We explain the original t-SNE algorithm (van der Maaten & Hinton, 2008). For a vector a = (ai)1≤i≤n ∈ Rn,
define its lp norm by ∥a∥p = (

∑n
i=1 |ai|p)1/p. For a matrix A = (aij) ∈ Rn×n and its spectral norm is

∥A|| = sup∥x∥2≤1 ∥Ax∥2. We also introduce sets of orthogonal matrices O(n, k) = {V ∈ Rn×k; V⊤V = Ik}
and O(n) = O(n, n). We use the notation [n] = {1, 2, . . . , n} for n ∈ Z>0. The diameter of a set S(⊆ Rn) is
diam(S) = supx,y∈S ∥x − y∥2. For a symmetric matrix A = (aij)1≤i,j≤n ∈ Rn×n, we define degree operator
D : Rn×n → Rn×n as D(A) = diag(

∑n
i=1 ai1, . . . ,

∑n
i=1 ain), and Laplacian operator L : Rn×n → Rn×n by

L(A) = D(A) − A. Also, we set 1n = (1, . . . , 1)⊤ ∈ Rn and Hn = 1
n(n−1) (1n1⊤

n − In) ∈ Rn×n.

Let {Xi}i∈[n] ⊆ Rdh be the dh-dimensional data points. For the pairs of data points {(Xi, Xj)}1≤i ̸=j≤n, we
define a symmetric matrix P = (pij)1≤i,j≤n ∈ Rn×n with pii = 0 for ∀i ∈ [n] and pij = (pi|j + pj|i)/(2n) for
i ̸= j, where

pj|i = exp(−||Xi − Xj ||22/2τ2
i )∑

l∈{1,2,...,n}\{i} exp(−||Xi − Xl||22/2τ2
i ) . (1)

Here, τi > 0 is the bandwidth parameter. The aim of t-SNE is to achieve a low-dimensional representation
{yi}i∈[n] ⊆ Rdl , dl < dh of {Xi}i∈[n]. Typically, dl is two or three because t-SNE is predominantly used for
visualization, and in this paper, we consider dl = 2 without loss of generality. Consider a symmetric matrix
Q = (qij)1≤i,j≤n where qii = 0 for ∀i ∈ [n] and

qij = (1 + ||yi − yj ||22)−1∑
l,s∈{1,2,...,n},l ̸=s(1 + ||yl − ys||22)−1 (2)

for i ̸= j. We get the low dimensional representation {yi}i∈[n] by minimizing the Kullback-
Leibler (KL) divergence (Kullback & Leibler, 1951) between matrices P and Q as (y1, . . . , yn) =
arg miny1,...,yn

∑
i,j∈[n], i ̸=j pij log pij

qij
.

As described in (Cai & Ma, 2022), the t-SNE algorithm is typically implemented in two distinct phases:
an EE stage followed by an embedding stage. While previous studies have explored accelerating the EE
stage by introducing a parameter α > 1 into the GD framework, this paper extends the concept further
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by investigating whether analogous acceleration strategies can be systematically applied to MM and NAG.
Although the explicit form of the objective function for the case with α > 1 is not known, we proceed by
assuming the following formulation in line with the original t-SNE work (van der Maaten & Hinton, 2008)
and (Cai & Ma, 2022). The following update rule aligns to (Cai & Ma, 2022), which states

y
(k+1)
i = y

(k)
i + h

∑
1≤i,j≤n, i ̸=j

(y(k)
j − y

(k)
i )S(k)

ij (α) + m(k+1)(y(k)
i − y

(k−1)
i ), (3)

where h ∈ R+ represents the step size parameter, originally denoted as 4h in (van der Maaten & Hinton,
2008), and m(k+1) ∈ R is a momentum parameter. The value α > 0, known as the exaggeration parameter,
plays a crucial role in the gradient coefficient S

(k)
ij (α) derived in Appendix A, and is given by

S
(k)
ij (α) =

αpij − q
(k)
ij

1 + ∥y
(k)
i − y

(k)
j ∥2

2
∈ R, (4)

where
∑

1≤i,j≤n,i̸=j(y(k)
j − y

(k)
i )S(k)

ij (α) ∈ R2, and we define adjacency matrix S(k)
α = (S(k)

ij (α))i,j∈[n]. The
algorithm starts with an initialization y

(0)
i = y

(−1)
i , ∀i ∈ [n]. Although the momentum term m(k+1)(y(k)

i −
y

(k−1)
i ) to accelerate the updating algorithm was not discussed for simplicity in (Cai & Ma, 2022), our

aim is to discuss how we may accelerate the convergence of the algorithm and derive a dynamical system
corresponding to accelerated updating methods.

4 Asymptotic behavior of the update equation

The points {y
(k)
i }i∈[n] ⊆ R2 are represented in two dimensions, but they are reorganized into n vectors

according to the first and second coordinates as y(k)
l ∈ Rn, l ∈ [2]. This identification and the following

Theorem 4.1 enable us to make sure that the adjacency matrices S(k)
α is considered as a fixed matrix αP−Hn.

For l ∈ [2], Eq. (3) is reformulated as

y(k+1)
l = [In − hL(S(k)

α )]y(k)
l + m(k+1)(y(k)

l − y(k−1)
l ), (5)

where In ∈ Rn×n is the identity matrix and y(k)
l ∈ Rn is the l-th coordinates of {y

(k)
i }i∈[n].The following

theorem shows that the matrix S(k)
α = (S(k)

ij (α))i,j∈[n] can be approximately simplified. This approxima-
tion, combined with a continuous relaxation with Hn, enables the derivation of ODEs from the recurrence
relation (3), making it one of the core statements of this paper.
Theorem 4.1. (Asymptotic Graphical interpretation, Theorem 2 in (Cai & Ma, 2022)) Let P = (pij)1≤i,j≤n

be a symmetric matrix defined in Eq. (1) and denote η(k) := (diam({y
(k)
i }1≤i≤n))2. Then, for any i, j ∈ [n]

with i ̸= j, and each k ≥ 1 such that η(k) < 1, we have∣∣∣S(k)
ij (α) − αpij + 1

n(n − 1)

∣∣∣ ≤ αpijη(k) + 2η(k)

n(n − 1)(1 − η(k))
. (6)

Then for each k ≥ 1, as long as η(k) and α satisfy η(k) ≪ ||P||
n||P||∞

, α ≫ 1
n||P|| , we have

lim
n→∞

||S(k)
α − (αP − Hn)||

||αP − Hn||
= 0. (7)

With this statement, Eq. (5) admits an approximation

y(k+1)
l ≈ [In − hL(αP − Hn)]y(k)

l + m(k+1)(y(k)
l − y(k−1)

l ). (8)

We consider the global behavior on {y(k)
l }, l ∈ [2] under the following initialization and condition of param-

eters 1.
1The condition (I1) comes from ‘Initialization’, and (T1) describes ‘Trajectory’ as n → ∞.
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(I1) {y
(0)
i }i∈[n], {y

(1)
i }i∈[n] satisfy minl∈[2]{∥y(0)

l ∥2, ∥y(1)
l ∥2} > 0 and

maxl∈[2]{∥y(0)
l ∥∞, ∥y(1)

l ∥∞} = O(1) as n → ∞.

(T1) The parameters (α, h, k) satisfy k(nhα∥P∥∞ + h/n) = O(1) as n → ∞.

Condition (I1) states that the initialization {y
(0)
i } should not be simply all zeros or unbounded, and (T1)

says that the cumulative differences of hL(S(k)
α ) and hL(αP − Hn) are limited.

The update formula (8) is a three-term recurrence relation and two initial vectors y(0)
l and y(1)

l need to be
set. With the momentum term, the vectors y(k+1)

i stays within limited area:
Proposition 4.2. (Localization) Under the condition (I1) and (T1), we have

diam({y
(k+1)
i }i∈[n]) ≤ C max

l∈[2]
{∥y(0)

l ∥∞, ∥y(1)
l ∥∞} (9)

for some universal constant C > 0.

The proposition 4.2 ensures that the data points {y(k)
i } are globally bounded and the condition (I1) leads to

η(k) < 1, and both the theorem 4.1 and the approximate Eq. (8) holds. This result had been derived in (Cai
& Ma, 2022) without the momentum term; however, deriving this result when considering the momentum
term is not trivial and requires an evaluation of the difference in solutions at two consecutive points t − 1
and t originating from the momentum term.

5 Gradient flow with constant momentum coefficient

We assume that m(k+1) = m ∈ (0, 1), which is commonly assumed in existing works (Kovachki & Stuart,
2021; He et al., 2023; Hao et al., 2021; Sutskever et al., 2013; Rashidi et al., 2020). Let {ỹ(k)

l }k≥0 be computed
by the update equation

ỹ(k+1)
l = [In − hL(αP − Hn)]ỹ(k)

l + m(ỹ(k)
l − ỹ(k−1)

l ). (10)

The following lemma derives the ODE that holds for MM in the continuous-time limit as h → 0.

Lemma 5.1. With the assumption ỹ(k)
l ≈ Yl(kh), t = kh and the continuous limit h → 0, the update

rule (10) is reduced to the ODE with initial value ỹ(0)
l = Yl(0)

Ẏl(t) = − 1
1 − m

L(αP − Hn)Yl(t). (11)

Furthermore, the following proposition provides a theoretical guarantee that ỹ(k)
l and Yl(kh) become suffi-

ciently close as h → 0.
Proposition 5.2. (Gradient flow with constant momentum) Under the condition (I1), for l ∈ [2], k ∈ Z≥0,
and some positive constants C1, C2, we have

∥ỹ(k)
l − Yl(kh)∥2

∥Yl(0)∥2
≤ 2khmC1

1 − m
∥L(αP − Hn)∥ + k

2

( h

1 − m

)2
∥L(αP − Hn)∥2C2. (12)

This proposition justifies that the approximation ỹ(k)
l ≈ Yl(kh) works under the conditions (I1), (T1). To

better understand the solution of the derived ODE (11), we consider its eigendecomposition. Remember
that the matrix P is symmetric, and its Laplacian L(P) is likewise. With the eigendecomposition of L(P)
expressed as L(P) = V⊤ΛV, we have
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Lemma 5.3. The matrix L(αP − Hn) is symmetric, and we have eigendecomposition:

L(αP − Hn) = V⊤ΣV, (13)

where Σ = diag(σi)i∈[n], Λ = diag(λi)i∈[n], 0 = λ1 ≤ λ2 ≤ . . . ≤ λn are eigenvalues2 and V ∈ O(n), which
are the same eigenvectors of L(P). Here, the relation between Σ and Λ is

σ1 = λ1 = 0, σi = αλi − 1
n − 1 (2 ≤ i ≤ n). (14)

With the Lemma 5.1, we achieve the explicit expression

Yl(t) = exp
(

− t

1 − m
L(αP − Hn)

)
y(0)

l . (15)

Combining the eigendecomposition and Eq. (15) yields the following proposition:
Proposition 5.4. (Solution path on constant momentum) For l ∈ [2], the first order linear ODE (11) with
initial value Yl(0) = y(0)

l and momentum term m ∈ (0, 1) has the unique solution:

Yl(t) = (u⊤
1 y(0)

l )u1 +
n∑

i=2
exp

(
− t

1 − m

(
αλi − 1

n − 1

))
(u⊤

i y(0)
l )ui. (16)

Propositions 5.2 and 5.4 extend (21) or Proposition 8 in (Cai & Ma, 2022) with a constant momentum
term, as substituting m = 0 in Eq. (16) recovers the original result. The effect of momentum coefficients is
discussed in Appendix I.7.

5.1 Well-conditioned matrix

The behavior of exp
(

− t
1−m

(
αλi − 1

n−1

))
for t ≫ 1 depends on the sign of αλi − 1

n−1 . If negative, the
corresponding components are amplified; if positive, they are suppressed. It implies that

lim
t→∞

Yl(t) ∈ span({u1, . . . , uR}). (17)

If the data {Xi}i∈[n] are well clustered and bandwidths τi are properly chosen, (Balakrishnan et al., 2011)
demonstrates that P is well approximated. We assume the weighted graph of a well-conditioned matrix P∗,
as detailed in Appendix E, has R ≥ 2 connected components.

5.2 Spectral convergence with constant momentum coefficient

Condition(T1) ensures Theorem 4.1 holds. We assume a stronger, analogous condition (T1.M), along with
(T2.M), which governs eigenvalues and clustering behavior in section 5.1:

(T1.M) The parameters (α, h, t) satisfy α ≫ [nλR+1(L(P))]−1 and t
1−m = o(n) as n → ∞.

(T2.M) There exists a symmetric and well-conditioned matrix P∗ ∈ Rn such that λR+1(L(P∗)) ≫
max{( tα

1−m )−1, ∥L(P∗ − P)∥} and tα
1−m ∥L(P∗ − P)∥ = o(1) as n → ∞.

In the context of visualization and clustering, the following lemma is fundamental in identifying which
components remain dominant in the eigendecomposition representation.
Lemma 5.5. Under the conditions (T1.M), (T2.M) and n ≫ 1, we have

αλR(L(P)) − 1
n − 1 ≤ 0, αλR+1(L(P)) − 1

n − 1 > 0. (18)

Especially, the eigenvalues {σi} ⊆ R consist of R-negative numbers or zeros (0 = σ1, σ2, . . . , σR), and n − R
positive numbers (σR+1, . . . , σn).

2We denote i-th eigenvalue as λi(A), if we emphasize the original matrix A.
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Note that this proposition is not explicitly stated in (Cai & Ma, 2022), but it implies that (18) holds under
the conditions (T1.M) and (T2.M). This, in turn, means that the same R eigenvalues and eigenvectors as
in the GD case with m = 0 remain in the visualization, thereby providing a theoretical guarantee that MM
serves as an acceleration of GD.

6 Gradient flow with NAG

Another accelerated gradient method is NAG (Nesterov, 1983), which takes the following form: starting
with ỹ(0)

l and w(0)
l = ỹ(0)

l under our situation:

ỹ(k+1)
l = w(k)

l − hL(αP − Hn)w(k)
l , (19)

w(k)
l = y(k)

l + k − 1
k + 2(ỹ(k)

l − ỹ(k−1)
l ). (20)

Similar to Lemma 5.1, we have another linear ODE with NAG.
Lemma 6.1. With the assumption ỹ(k)

l ≈ Yl(k
√

h) for a smooth curve Yl(t) for t ≥ 0 and l ∈ [2], and
putting k = t/

√
h, we have the ODE corresponding to the update rule of NAG in Eqs. (19), (20) as

Ÿl(t) + 3
t
Ẏl(t) + L(αP − Hn)Yl(t) = 0. (21)

The following proposition provides a theoretical guarantee that ỹ(k)
l and Yl(k

√
h) holds for NAG, just as

Proposition 5.2.
Proposition 6.2. As the step size h → 0, the update rule (19), (20) is reduced to the ODE (21) in the sense
that for all fixed T > 0,

lim
h→0

max
0≤k≤ T√

h

∥ỹ(k)
l − Yl(k

√
h)∥2 = 0. (22)

We aim to demonstrate that this situation would be reasonable under the following conditions:

(T1.N) The parameters (α, h, t) satisfy α ≫ [nλR+1(L(P))]−1 and t = o(n 1
2 ) as n → ∞.

(T2.N) There is a symmetric and well-conditioned matrix P∗ ∈ Rn such that λR+1(L(P∗)) ≫
max{(t2α)−1, ∥L(P∗ − P∥)}, and t2∥L(P∗ − P)∥ = o(1) as n → ∞.

Similar to Lemma 5.5, we have the following lemma:
Lemma 6.3. Under the conditions (T1.N), (T2.N) and n ≫ 1, we have

αλR(L(P)) − 1
n − 1 ≤ 0, αλR+1(L(P)) − 1

n − 1 > 0. (23)

Especially, the entire eigenvalues (σ1, . . . , σn) consist of R-negative numbers or zeros (0 = σ1, σ2, . . . , σR),
and n − R positive numbers (σR+1, . . . , σn).

In the case of NAG, this proposition guarantees that, under the conditions (T1.N) and (T2.N), the same R
eigenvalues and eigenvectors are emphasized in visualization and clustering, and that the number R matches
that in both GD and MM as Lemma 5.5.

As in Lemma 5.3, we have another closed-form expression by solving linear ODE (21).
Theorem 6.4. Under the conditions (T1.N), (T2.N), partition the eigenvectors as V = (U, U⊥), where
U ∈ O(n, R), U⊥ ∈ O(n, n − R) 3. Then, we have

Yl(t) = UΓ1(t)y(0)
l,1:R + U⊥Γ2(t)y(0)

l,R+1:n, (24)
3U⊥ is orthogonal complement of U.
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where

Γ1(t) = diag
(

1,
2

t
√

−σ2
I1(t

√
−σ2), . . . ,

2
t
√

−σR
I1(t

√
−σR)

)
, Γ2(t) = diag

(
2

t
√

σR+1
J1(t√σR+1), . . . ,

2
t
√

σn
J1(t

√
σn)

)
,

and the symbol I1(·) denotes the modified Bessel function of the first kind, while J1(·) represents the Bessel
function of the first kind. Also, y(0)

l,1:R = (y(0)
l,1 , . . . , y(0)

l,R)⊤ ∈ RR, y(0)
l,R+1:n = (y(0)

l,R+1, . . . , y(0)
l,n)⊤ ∈ Rn−R are

the initial values.

The explicit expression (24) is the solution path under the NAG for the t-SNE algorithm. In the Appendix I.1,
we consider the qualitative differences in the solutions of ODEs corresponding to GD, MM, and NAG by
plotting the solutions.

Lemmas 5.5 and 6.3 demonstrate that eigenvalues and eigenvectors for which αλi − 1
n−1 ≤ 0 are emphasized,

highlighting key features for spectral clustering. This phenomenon, where large eigenvalues λi decrease with
increasing t, is referred to as implicit regularization. The subsequent proposition asserts that Yl(t) converges
towards the subspaces spanned by the first R eigenvectors, which form the Laplacian null space commonly
utilized in spectral clustering, thus embodying implicit regularization with the inclusion of momentum terms.
Furthermore, the assumptions regarding t such as t = o(n), t = o(n1/2), tα

1−m ∥L(P∗ − P)∥ = o(1) or
t2α∥L(P∗ − P)∥ = o(1) imply necessity for early stopping to avoid overshooting.
Proposition 6.5. (Implicit regularization, clustering and early stopping) Under the conditions (I1), (T1.M)
and (T2.M), let Yl(t) be the function defined as (16), U0 ∈ O(n, R) be such that the columns span the null
space of P∗. Then we have

lim
n→∞

∥Yl(t) − U0U⊤
0 Yl(t)||2

||Yl(0)||2
= 0, l ∈ [2]. (25)

Also, for a permutation matrix O ∈ Rn×n, we have

lim
n→∞

∥Yl(t) − Ozl∥2

∥Yl(0)∥2
= 0, l ∈ [2], (26)

where zl = (zl1, . . . , zl1, zl2, . . . , zl2, . . . , zlR, . . . , zlR)⊤ ∈ Rn and zlr = θ⊤
r y

(0)
l /

√
nr for r ∈ [R], the number

of zlr is nr, i.e. the number of nodes in the r-th connected component. Similarly, under conditions (I1),
(T1.N) and (T2.N), let Yl(t) be the function defined in (24) U0 ∈ O(n, R) be that the columns span the null
space of P∗. Then we have the same formulas (25), (26).

This proposition shows that in both cases, Yl(t) serves as eigenvectors defining the Laplacian null space,
producing results equivalent to spectral clustering. Despite utilizing the same data points and the same
adjacency matrix P with corresponding eigenvalues and eigenvectors, the increase in t presupposes distinct
formulations: the MM adheres to t = o(n) and tα∥L(P∗ − P)∥ = o(1) as n → ∞, whereas the NAG relies
on t = o(n1/2) and t2α∥L(P∗ − P)∥ = o(1) as n → ∞. It is consistent with the general observation that the
NAG converges more rapidly than the MM. Also, Lyapunov exponents are discussed in Appendix H.

7 Stop timing

While commonly used metrics such as Trustworthiness (Venna & Kaski, 2001) and Continuity (Kaski et al.,
2003) are effective in evaluating the quality of low-dimensional embeddings after dimensionality reduction,
they are not suitable for determining the evaluation timing in the context of ODEs. To address this limitation,
we propose a novel metric, Average Residual Ratio(ARR). As will be confirmed in Section 8.2 and I.6, the
comparison between the proposed ARR and the Trustworthiness values of the embedding indicates a well-
aligned correspondence. The term ’stop time’ is used informally to refer to a general criterion for deciding
when to stop the algorithm, and should not be confused with the technical notion of stopping time in
stochastic analysis. With Eqs. (16), (24), we express Yl(t) =

∑n
i=1 ci,l(t)ui with the time-variant coefficient

ci,l(t) ∈ R. To evaluate the positive contribution of ci,l(t), define ai(t) =
∑

l∈[2] |ci,l(t)|. With Eq. (14) and

in the case of MM, ai(t) =
∑

l∈[2] exp
(

− tσi

1−m

)
|u⊤

i y(0)
l |, where we set m = 0 for GD. By contrast, in the
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case of NAG,

ai(t) =



∑
l∈[2]

∣∣∣ 2y(0)
l,i

t
√

−σi
I1(t

√
−σi)

∣∣∣, (i = 1, . . . , R)

∑
l∈[2]

∣∣∣2y(0)
l,i

t
√

σi
J1(t

√
σi)

∣∣∣, (i = R + 1, . . . , n).
(27)

Figure 1: t-SNE visualization of n = 500 KDD Cup 1999 dataset using three ODEs: GD, MM and NAG.

To determine the stopping time, we propose the Average Residual Ratio(ARR), which divides the equation
into main terms (i = 1, .., R) and residuals (i = R + 1, .., n), based on the average contribution to clustering:

ARR(t) =
1

n−R

∑n
i=R+1 ai(t)

1
R

∑R
i=1 ai(t) + 1

n−R

∑n
i=R+1 ai(t)

. (28)
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Based on the Lemmas 5.5, 6.3 and the observation of Figures 4a, 4b in Appendix, it is expected that ai(t)
increase monotonically for i = 1, . . . , R, and decreasing or gradually decreasing for i = R + 1, . . . , n.

We propose a stopping criterion based on a threshold (e.g., 0.01) and demonstrate its effectiveness in subsec-
tion 8.2. While t-SNE is unsupervised, this heuristic is similar to those used for convergence in algorithms
like GD/MM/NAG. Our analysis shows that components with negative eigenvalues form clusters, while those
with positive eigenvalues don’t contribute to the final embedding. Thus, using the ratio of these components
as a convergence criterion for the ODE is reasonable.

7.1 Lyapunov exponents

The ARR used to determine the stop timing was based on the time parameter t, but considering the solution
of the ODE as a dynamical system reveals an intriguing relationship.

The Lyapunov exponents for MM and NAG are given by H.122, H.123. Lemmas 5.5, 6.3 show that the first
R eigenvalues are non-positive. Let the Lyapunov exponent for MM be λLyap,MM,i and that for NAG be
λLyap,NAG,i. When momentum parameter m does not get close to 1, it is observed that

λLyap,MM,i = − 1
1 − m

(
αλi − 1

n − 1

)
<

√
−αλi + 1

n − 1 = λLyap,NAG,i, for i ∈ [R]. (29)

This is guaranteed by the fact that the function of x satisfies 0 < x < 1 and x <
√

x, and a larger Lyapunov
exponent implies faster cluster convergence. This is consistent with the commonly stated notion that NAG
achieves faster convergence as an optimization method.

8 Numerical experiments

We numerically evaluate our results by comparing the t-SNE algorithms with and without acceleration and
their ODE counterparts with real-world datasets: KDDcup1999 and MNIST4. Results on other data are
shown in Appendix I. In this paper, we set perplexity = 30, as in Cai & Ma (2022) 5. In all experiments
in this section, all initial embedding vectors were generated randomly. The discussion on the methods
of initialization in t-SNE and the impact of different initializations, along with experimental results, are
presented and discussed in Appendices I.4 and I.5.

8.1 Experiment 1: Dynamic behavior of clustering over time

The KDDCup1999 dataset (Stolfo & Chan, 1999; Stolfo et al., 1998; Tavallaee et al., 2009) includes a wide
variety of intrusions simulated in a military network environment, and comprises 42 columns with their
labels. We extracted 100 samples of data for each of the 5 labels (‘smurf’, ‘neptune’, ‘normal’, ‘back’,
‘satan’) from the dataset, totaling 500 samples.

For the solution of ODEs corresponding to GD, MM and NAG, we substitute concrete value of the time t to
obtain two dimensional map of the original points in 42 dimensional space in Fig. 1, where the top, middle
and bottom rows correspond to results of GD, MM and NAG, respectively. The column is aligned with the
same iteration count k, and as we move to the right, k increases, with the corresponding time t increasing
accordingly. The first row corresponds to GD, the second to MM, and the third to NAG. Comparing GD and
MM, as described in Eq. (16), the effect of the momentum term m causes the results to appear as though
time t has been fast-forwarded, even for the same time point. As for NAG, it can be observed that cluster
formation occurs earlier in time t. Specifically, while the second column of MM corresponds to t = 220, the
fourth column of NAG at t = 221.36 already shows that cluster formation is nearly complete. We state the
assumption in Lemma 5.1 about GD and MM, that is we identify the variables as t = kh, where the variables
k is iteration number of the original iterative algorithms, h as step size and t is time variable. For NAG, the
identification can be t = k

√
h as in Lemma 6.1.

4The experiments were conducted on a laptop PC with a 12th Gen Intel(R) Core(TM) i7-1255U processor, 500GB storage,
16GB memory, using Python.

5Perplexity is typically set between 5 and 50, as mentioned in van der Maaten & Hinton (2008).
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Let’s pick up the first MM case (t = 50) and the second NAG case (t = 69.57). The variables t are
formally different, but for MM, due to the presence of the momentum term m = 0.5, it effectively becomes
t = 69.57(= 50/(1 − 0.5))(See the formula in Proposition 5.4, where we adopt that MM can be understood
as fast-forwarding GD with respect to the variable t.). Although they have practically similar variable t, the
results are drastically different. The three plots in the rightmost column are all elongated.

Furthermore, in NAG, the final plot on the rightmost panel corresponds to t = 221.36, while in the MM,
the second plot from the left corresponds to t = 314.29. The application conditions for the NAG are either
t = o(n1/2) in (T1.N) and t2∥P∗ −P∥ = o(1) condition in (T2.N). By contrast, the application conditions for
the MM are either t

1−m = o(n) in (T1.M) and the condition t
1−m ∥P∗ − P∥ = o(1) in (T2.M). This generally

suggests that the NAG can only be applied for relatively smaller values compared to the MM.

8.2 Experiment 2: Stopping criterion

Although we have conducted experiments to demonstrate that the accelerated method can indeed achieve
embeddings in fewer time steps in the previous section, in our analysis, the embeddings are explicitly obtained
as solutions to differential equations. Therefore, while this research originated from accelerating t-SNE, it
no longer makes sense to compare it with other methods from the perspective of computational efficiency.
We demonstrate that by setting a threshold to ARR (28), we obtain a reasonable embedding without
using an iterative optimization algorithm with a popular MNIST dataset, which contains grayscale images
of handwritten digits, and we focus on 400 images with 4 labels(‘2’, ‘4’, ‘6’, ‘8’) totaling 1600 samples,
where each image contains 28 × 28 = 784 pixels. At the same time, we provide a comparison with standard
Trustworthiness metric (Venna & Kaski, 2001), which is commonly used in dimensionality reduction methods
such as t-SNE.

Figure 2 shows the transition of ARR (28) and Trustworthiness with 10 nearest neighbors over the time
t (left) and the embedding results for each method: GD, MM, and NAG after early exaggeration stage
(right-top) and embedding stage (right-bottom).

As t increases, ARR decreases, with NAG being the fastest, followed by MM, and GD being the slowest.
The ARR crosses the 0.01 threshold at t = 2700 for GD, t = 1400 for MM, and t = 280.0 for NAG.
The right panels show that the embeddings at these times provide reasonable clustering. As noted in
section 7.1, cluster formation occurs fastest with NAG, followed by MM and GD. This can be interpreted
by analyzing the Lyapunov exponents of the underlying ODE. When comparing ARR and Trustworthiness,
as ARR decreases, Trustworthiness tends to increase, showing a general inverse correlation. The correlation
coefficient was approximately −0.77. More details are reported in Appendix I.6.

As shown in the original paper (van der Maaten & Hinton, 2008) and the subsequent study in (Cai &
Ma, 2022), the t-SNE algorithm typically visualizes clustering results by performing an embedding stage
following the early exaggeration stage, which intend to facilitate cluster formation. The visualization in the
lower right of Figure 2 follows this convention. It is important to note that the embedding stage is solely for
visualization purposes. Therefore, no acceleration methods such as MM or NAG were applied. Instead, GD
was iteratively used after the early exaggeration stage.

9 Conclusion

In this paper, we derive a linear ODE and Bessel differential equation corresponding to the MM and NAG
in optimizing t-SNE with explicit solutions. In addition, akin to results obtained through GD, perform-
ing an eigenvalue decomposition confirms that implicit regularization, specifically clustering around small
eigenvalues near zero, which is crucial in spectral clustering, similarly holds for them.

In addition to its significance as a theoretical analysis of the t-SNE algorithm—a popular method for dimen-
sionality reduction and visualization—there is practical utility in that the ODE we derive has a closed-form
solution. This means that by performing eigenvalue decomposition of the adjacency matrix in advance, we
have the advantage of obtaining embedding results at any desired point in time.

13



Published in Transactions on Machine Learning Research (06/2025)

0 500 1000 1500 2000 2500 3000

t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

AR
R 

/ T
ru

st
w

or
th

in
es

s

ARR / Trustworthiness for MNIST dataset

Method & Metric
GD ARR
GD TW
MM ARR
MM TW
NAG ARR
NAG TW

0.01 0.00 0.01 0.02 0.03
0.03

0.02

0.01

0.00

0.01

0.02

GD (k=27, t=2700)

0.01 0.00 0.01 0.02 0.03

MM (k=14, t=1400)

0.02 0.01 0.00 0.01 0.02 0.03

NAG (k=28, t=280.0)

1.5 1.0 0.5 0.0 0.5 1.0 1.5
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
GD (k=200)

1.5 1.0 0.5 0.0 0.5 1.0 1.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
MM (k=200)

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

NAG (k=200)

Figure 2: (left): transition of ARR and Trustworthiness (TW). (right): clustering result for MNIST dataset
with ARR=0.01 using three ODEs GD, MM, and NAG (right-top), and result after the following embedding
stage (right-bottom)

While this framework currently relies on a full eigendecomposition of the graph Laplacian, which incurs
O(n3) complexity, we emphasize that this step is used primarily for theoretical analysis and computation
of diagnostic metrics such as ARR. For large-scale applications, we anticipate that approximate methods
such as the Lanczos algorithm or randomized eigendecomposition could reduce the computational burden to
around O(n2), especially for sparse graphs. Exploring these approximations would be a promising direction
for extending our framework to high-dimensional datasets at scale.

We discuss the approximated formula for t-SNE only concerning the EE stage but do not address the
embedding stage. Theoretical analysis of the embedding stage will complement our work and further deepen
the understanding of t-SNE. Additionally, we incorporate bandwidth τi into the perplexity but only examined
specific case. A broader analysis of different scenarios and their implications on perplexity would provide a
more comprehensive understanding.

UMAP (Ghojogh et al., 2021) has been frequently used alongside t-SNE. There are studies discussing the
relationship between t-SNE and UMAP (Damrich et al., 2023); hence, analyzing UMAP through a dynamical
systems-based approach is an intriguing direction for future research.
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A Derivation of the t-SNE gradient coefficient

For the sake of brevity, we omit the iteration index k, we use yi, pij , qij , instead of y
(k)
i , p

(k)
ij and q

(k)
ij . The

contents basically follows to Appendix A in van der Maaten & Hinton (2008).

t-SNE minimizes the KL divergence between the joint probabilities pij in the high-dimensional space Rdh and
the joint probabilities qij in the low-dimensional space Rdl . They are defined in Eq. (1), pij = (pi|j +pj|i)/2n
and Eq. (2), respectively. Cost function C is defined with KL divergence Kullback & Leibler (1951):

C = KL(P ||Q) =
∑

ij

pij log pij

qij
=

∑
ij

(pij log pij − pij log qij) . (A.1)

For the purpose of the derivation briefly, we set two variables dij and Z:

dij = ∥yi − yj∥ (A.2)

Z =
∑
k ̸=l

(1 + d2
kl)−1. (A.3)

Then, with the chain rule, the gradient of the cost function C with respect to yi is given by

∂C

∂yi
=

∑
j

( ∂C

∂dij
+ ∂C

∂dij

)
(yi − yj)/dij (A.4)

= 2
∑

j

∂C

∂dij
(yi − yj)/dij . (A.5)

pij are defined with high-dimensional data points, and they’re irrelevant to yi or dij that is ∂pkl

∂dij
= 0 for

∀k, l ∈ [n]. Then, we have

∂C

∂dij
= −

∑
k ̸=l

pkl
∂ log qkl

∂dij
(A.6)

= −
∑
k ̸=l

pkl
∂(log qklZ − log Z)

∂dij
(A.7)

= −
∑
k ̸=l

pkl

( 1
qklZ

∂((1 + d2
kl)−1)

∂dij
− 1

Z

∂Z

∂dij

)
. (A.8)

The gradient term ∂((1+d2
ij)−1)

∂dij
is only nonzero when k = i and l = j. Then,

∂C

∂dij
= 2 pij

qijZ
(1 + d2

ij)−2dij − 2
∑
k ̸=l

pkl

(1 + d2
ij)−2dij

Z
. (A.9)

Note that
∑

k ̸=l pkl = 1 and we have

∂C

∂dij
= 2pij(1 + d2

ij)−1dij − 2qij(1 + d2
ij)−1dij = 2(pij − qij)(1 + d2

ij)−1dij . (A.10)

Finally, we have
∂C

∂yi
= 4

∑
j

pij − qij

1 + ∥yi − yj∥2 (yi − yj). (A.11)

In this formula, we aim to emphasize the effect of the original data distribution using pij . We formally
substitute pij with αpij and define the term αpij−qij

1+∥yi−yj∥2 as Sij(α). This leads to the expression in Eq. (4).
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B The effect of accelerator parameter

In this section, we examine the effect of the acceleration parameter α separately for GD and MM/NAG.

B.1 The case of GD

First, consider the update equation (B.12) for GD. The low-dimensional representations y
(k)
i and y

(k)
j (i ̸= j)

show that y
(k+1)
i is calculated using y

(k)
i and a gradient term. The sign of αpij −q

(k)
ij determines its directional

influence. We define αpij as the attractive force and q
(k)
ij as the repulsive force. When αpij − q

(k)
ij > 0,

meaning the attractive force is stronger, y
(k+1)
i moves closer to y

(k)
j compared to y

(k)
i . Conversely, when

αpij − q
(k)
ij < 0, the repulsive force dominates, causing y

(k+1)
i to move further away from y

(k)
j . Figure 3

illustrates this situation.

y
(k+1)
i = y

(k)
i + h

∑
1≤i,j≤n, i ̸=j

αpij − q
(k)
ij

1 + ∥y
(k)
i − y

(k)
j ∥2

2
(y(k)

j − y
(k)
i ) (B.12)

𝑦𝑗
(𝑘)

𝑦𝑗
(𝑘)

− 𝑦𝑖
(𝑘)

𝑦𝑖
(𝑘+1)

in case that α𝑝𝑖𝑗(attractive force) > 𝑞𝑖𝑗
(𝑘)(repulsive force) 

In case that  α𝑝𝑖𝑗(attractive force) 
< 𝑞𝑖𝑗

(𝑘)(repulsive force) 

𝑦𝑖
(𝑘)

Figure 3: Diagram of the update equation for y
(k)
i

Therefore, the larger the value of α > 1, the stronger the attractive force among nodes becomes. As a result,
this generally facilitates the formation of clusters.

B.2 The case of MM and NAG

As the update equations (10) for MM and (19) or (20) for NAG show, y
(k+1)
i is calculated using both the

gradient term and the momentum term. Acceleration is achieved by incorporating not only the current
gradient but also past updates. Even when using MM or NAG, the amplification of the attractive force with
α tends to occur.
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In summary, when α > 1, the attractive force generally becomes stronger, making it easier to form clusters
across all optimization methods—GD, MM, and NAG. This suggests that a larger α can accelerate the
clustering process.

C Asymptotic behavior of the update equation

C.1 Proof of Theorem 4.1

This theorem in Cai & Ma (2022) is based without momentum term in (3) and it can be extended even
with momentum term, because the proof doesn’t refer to the update equation (5), but just the definition of
S

(k)
ij (α) in Eq. (4).

C.2 Proof of Proposition 4.2

This proof proceeds in the same manner as the proof of Proposition 3 in Cai & Ma (2022). Note that
y

(k+1)
li ≤ ∥[I − hS(k)

α ]i.∥1∥y(k)
l ∥∞ + m(k+1)∥y(k)

l − y(k−1)
l ∥∞ for any k ≥ 1, where

∥[I − hS(k)
α ]i.∥1∥y(k)

l ∥∞ =
∣∣∣1 − h

n∑
j=1

S
(k)
ij (α)

∣∣∣ + h
∑
j ̸=i

|S(k)
ij | ≤ 1 + 2h

n∑
j=1

|S(k)
ij (α)|.

For the second term, we have

h

n∑
j=1

|S(k)
ij (α)| ≤ hn∥S(k)

α ∥∞ ≤ nh(α∥P∥∞ + ∥Q∥∞) ≤ nhα∥P∥∞ + h(1 + η(k))
n − 1 ,

where the last inequality follows from Eq. (40) in Cai & Ma (2022). Intermediate variable Z is defined
as

∑
i ̸=j(1 + ∥y

(k)
i − y

(k)
j ∥2

2)−1 and we can deduce it with ∥Q(k)∥∞ ≤ 1/Z, Z ≥ n(n − 1)/(1 + η(k)) and
∥Q(k)∥∞ ≤ (1 + η(k))/n(n − 1). Then we have

y
(k+1)
li ≤

(
1 + 2nhα∥P∥∞ + h(1 + η(k))

n − 1

)
∥y(k)

l ∥∞ + m(k+1)∥y(k)
l ∥∞ + m(k+1)∥y(k−1)

l ∥∞

≤
(

1 + 2nhα∥P∥∞ + h(1 + η(k))
n − 1 + m(k+1)

)
∥y(k)

l ∥∞ + m(k+1)∥y(k−1)
l ∥∞

≤
(

1 + 2nhα∥P∥∞ + h(1 + η(k))
n − 1 + m(k+1)

)
(∥y(k)

l ∥∞ + ∥y(k−1)
l ∥∞)

≤
(

2 + 4nhα∥P∥∞ + 2h(1 + η(k))
n − 1 + 2m(k+1)

)
· max

l∈[2]
{∥y(k)

l ∥∞, ∥y(k−1)
l ∥∞},

or

∥y(k+1)
l ∥∞ ≤

(
2 + 4nhα∥P∥∞ + 2h(1 + η(k))

n − 1 + 2m(k+1)
)

· max
l∈[2]

{∥y(k)
l ∥∞, ∥y(k−1)

l ∥∞}.

Introducing rn = nhα∥P∞∥∞ + h
n , we have

∥y(k+1)
l ∥∞ ≤ (2 + 2m(k+1) + Crn) · max

l∈[2]
{∥y(k)

l ∥∞, ∥y(k−1)
l ∥∞} (C.13)

and for any k ≥ 2,
∥y(k)

l ∥∞ ≤ (2 + 2m(k+1) + Crn)k−1 · max
l∈[2]

{∥y(1)
l ∥∞, ∥y(0)

l ∥∞}. (C.14)

Lemma C.1. For ∀k ≥ 2, η(k) and maxl∈[2]{∥y(k)
l ∥∞, ∥y(k−1)

l ∥∞} are bounded by a constant.

22



Published in Transactions on Machine Learning Research (06/2025)

Proof. In case of k = 2, Eq. (C.14) shows that

∥y(2)
l ∥∞ ≤ (2 + 2m(k+1) + Crn) · max

l∈[2]
{∥y(1)

l ∥∞, ∥y(0)
l ∥∞}. (C.15)

The condition (T1) states that maxl∈[2]{∥y(2)
l ∥∞, ∥y(1)

l ∥∞} is bounded. According to (C.14),

η(2) ≤ 4(2 + 2m(2) + Crn)2 · max
l∈[2]

{∥y(1)
l ∥2

∞, ∥y(0)
l ∥2

∞} (C.16)

is also bounded. Then, let’s say that the statement holds for k, i.e. both ∥y(k)
l ∥∞ and ∥y(k+1)

l ∥∞ are
bounded. With inequality (C.13), ∥y(k+1)

l ∥∞ is also bounded. Assuming rn = O(1) by condition (T1)

η(k+1) ≤ 4 max
i∈[n],l∈[2]

|y(k+1)
li |2 ≤ 4 max

l∈[2]
{∥y(k+1)

1 ∥2
∞, y(k+1)

2 ∥2
∞} (C.17)

≤ 4(2 + 2m(k+1) + Crn)2 · max
l∈[2]

{∥y(k)
l ∥2

∞, ∥y(k−1)
l ∥2

∞} = O(1), (C.18)

we have η(k+1) is bounded. By induction, the statement holds for ∀k ≥ 2.

As long as k = k(n) with krn = O(1) by condition (T1), we have

∥y(k)
l ∥∞/ max

l∈[2]
{∥y(1)

l ∥∞, ∥y(0)
l ∥∞} = O(1), (C.19)

or,
diam({y

(k)
i }i∈[n])

maxl∈[2]{∥y(1)
l ∥∞, ∥y(0)

l ∥∞}
≤

maxi∈[n],l∈[2] |y(k)
li |

maxl∈[2]{∥y(1)
l ∥∞, ∥y(0)

l ∥∞}
= O(1). (C.20)

It proves the statement.

D Derivation of ODEs

We proceed to concretely examine the following two cases: MM and NAG.

D.1 Proof of Lemma 5.1

The assumption ỹ(k)
l ≈ Yl(kh) is justfied with the following satatement, which is shown similar to Proposition

8 in Cai & Ma (2022). We consider the momentum terms to be a constant m(0 < m < 1), i.e. m(k+1) = m
for ∀k. So, we can rewrite the formula (8) as follows:

y(k+1)
l ≈ [In − hL(αP − Hn)]y(k)

l + m(y(k)
l − y(k−1)

l ), l ∈ [2]. (D.21)

For l ∈ [2], let {ỹ(k)
l }k≥0 be the sequence defined the iteration with the update formula:

ỹ(k+1)
l = [In − hL(αP − Hn)]ỹ(k)

l + m(ỹ(k)
l − ỹ(k−1)

l ), k ≥ 1 (D.22)

with initial values ỹ(0)
l = y(0)

l , ỹ1
l = y(1)

l . Introduce the assumption Yl(t) ≈ ỹ(k)
l for some smooth curve

Yl(t) defined for t ≥ 0. Set t = kh. Then, the update formula (D.22) reduces to

Yl(t + h) = Yl(t) − hL(αP − Hn)Yl(t) + m(Yl(t) − Yl(t − h)). (D.23)

By dividing by h > 0, we have

Yl(t + h) − Yl(t)
h

= −L(αP − Hn)Yl(t) + m · Yl(t) − Yl(t − h)
h

. (D.24)

From the definition of the derivative d
dt Yl(t) = limh→0

Yl(t+h)−Yl(t)
h = limh→0

Yl(t)−Yl(t−h)
h , we have (15).
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D.2 Proof of Proposition 5.2

For any k ∈ Z≥0, we set ek = ỹ(k)
l − Yl(kh), L = L(αPn − Hn) for brevity.

Lemma D.1. Let Yl(t) the formula in Proposition 5.1, and a symmectic matrix L has an eigendecomposi-
tion,

L = QΛQ−1, (D.25)

where Λ = diag(λ1, · · · , λn), λi ∈ R, λ1 ≤ λ2 ≤ · · · ≤ λn and Q ∈ O(n). For t > 0

∥Yl(t)∥2 ≤
∥∥∥ exp

(
− tλ1

1 − m

)∥∥∥ · ∥Yl(0)∥2. (D.26)

Specifically, if 0 < m < 1 and the condition (I1) holds, ∥Yl(t)∥2 is bounded.

Proof. With the eigendecomposition L = QΛQ−1, we have

∥Yl(t)∥2 ≤
∥∥∥ exp

(
− t

1 − m
L

)∥∥∥ · ∥Yl(0)∥2, (D.27)

≤
∥∥∥Q exp

(
− t

1 − m
Λ

)
Q−1

∥∥∥ · ∥Yl(0)∥2, (D.28)

≤
∥∥∥Q

∥∥∥∥∥∥ exp
(

− t

1 − m
Λ

)∥∥∥∥∥∥Q
∥∥∥−1

· ∥Yl(0)∥2, (D.29)

≤
∥∥∥ exp

(
− tλ1

1 − m

)∥∥∥ · ∥Yl(0)∥2. (D.30)

Using Taylor expansion for some ξ ∈ (kh, (k + 1)h), and Lemma 5.1, we have

Yl((k + 1)h) = Yl(kh) + h
dYl(kh)

dt
+ h2

2
d2Yl(ξ)

dt2 (D.31)

= Yl(kh) − h

1 − m
LYl(kh) + h2

2

( 1
1 − m

)2
L2Yl(ξ). (D.32)

We set these formulae into
ek+1 = Yl((k + 1)h) − ỹ(k+1)

l , (D.33)

or,

ek+1 =
(

Yl(kh) − h

1 − m
LYl(kh) + 1

2

( h

1 − m

)2
L2Yl(ξ)

)
(D.34)

−
(

(1 + m)y(k)
l − hLỹ(k)

l − mỹ(k−1)
l

)
. (D.35)

With Yl(kh) = ỹ(k)
l + ek, we have

ek+1 = ek − hm

1 − m
LYl(kh) + m(ỹ(k−1)

l − ỹ(k)
l ) + 1

2

( h

1 − m

)2
L2Yl(ξ). (D.36)

Due to triangular inequality, we have

∥ek+1∥2 ≤ ∥ek∥2 + hm

1 − m
∥Lỹ(k)

l ∥2 + m∥ỹ(k−1)
l − ỹ(k)

l ∥2 + 1
2

( h

1 − m

)2
∥L2Yl(ξ)∥2. (D.37)

Summing up on the index, we obtain

∥ek+1∥2 ≤ ∥e0∥2 +
k∑

j=0

( hm

1 − m
∥L∥∥ỹ(j)

l ∥2 + m∥ỹ(j−1)
l − ỹ(j)

l ∥2 + 1
2

( h

1 − m

)2
∥L∥2∥Yl(ξj)∥2

)
. (D.38)
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Thanks to our initial condition as in Lemma 5.1, e0 = ỹ(0)
l − Yl(0) = (0, · · · , 0)⊤. Proposition 4.2 says that

we have constant C1 > 0 such that
maxj ∥ỹ(j)

l ∥2

∥Yl(0)∥2
≤ C1. (D.39)

Additionally, with respect to the term ∥ỹ(j−1)
l − ỹ(j)

l ∥2, consider the update equation (10),

ỹ(j)
l − ỹ(j−1)

l = m(ỹ(j−1)
l − ỹ(j−2)

l ) − hLỹ(j−1)
l . (D.40)

We have
∥ỹ(j)

l − ỹ(j−1)
l ∥2 ≤ m∥ỹ(j−1)

l − ỹ(j−2)
l ∥2 + hC1∥L∥ · ∥Yl(0)∥2. (D.41)

By recursively applying these inequalities, we obtain

∥ỹ(j−1)
l − ỹ(j)

l ∥2 ≤ (mj + mj−1 + . . . + m + 1)hC1∥L∥ · ∥Yl(0)∥2 (D.42)

= 1 − mj

1 − m
hC1∥L∥ · ∥Yl(0)∥2 ≤ hC1

1 − m
∥L∥ · ∥Yl(0)∥2. (D.43)

With Lemma D.1 and (I1),

∥Yl(ξj)∥2

∥Yl(0)∥2
≤

∥∥∥ exp
(

− ξjλ1

1 − m

)∥∥∥ ≤
∥∥∥ exp

(
− ξ0λ1

1 − m

)∥∥∥. (D.44)

We denote the right-hand side as C2 > 0. Under these conditions, we have

∥ek+1∥2

∥Yl(0)∥2
≤ 2hm(k + 1)C1

1 − m
∥L∥ + k + 1

2

( h

1 − m

)2
∥L∥2C2. (D.45)

This proves the statement.

D.3 Proof of Lemma 5.3

Since
L(P − αHn) = L(αP − Hn) − 1

n − 1In + 1
n(n − 1)1n1⊤

n , (D.46)

the eigenvectors L(αP − Hn) and L(αP) share the eigenvectors. Also, if we decompose eigenvector as
L(P − αHn) =

∑n
i=1 σiuiu⊤

i ,
L(αP − Hn)ui = σiui. (D.47)

We have σ1 = αλ1, σi = αλi − 1
n−1 for 2 ≤ i ≤ n, which corresponds to (14).

D.4 Proof of Lemma 5.5

Remember that both λi(L(P∗)) ≤ λi+1(L(P∗)) for i ∈ [n−1] and λR+1(L(P∗)) is the first positive eigenvalue,
i.e.

λR(L(P∗)) = 0, λR+1(L(P∗)) > 0. (D.48)

With Weyl’s inequality
|λi(L(P)) − λi(L(P∗))| ≤ ∥L(E)∥, (D.49)

where E = P − P∗. When i = R in inequality. (D.49), we have

|αλR(L(P))| ≤ α∥L(E)∥. (D.50)

The condition (T2.M) says that t
1−m α∥L(E)∥ = o(1), and it’s equivalent that

∀ϵ > 0, ∃N ∈ N s.t. n ≥ N ⇒ t

1 − m
α∥L(E)∥ < ϵ. (D.51)

25



Published in Transactions on Machine Learning Research (06/2025)

If we set ϵ = t
(n−1)(1−m) , we have

αλR(L(P)) − 1
n − 1 ≤ α∥L(E)∥ − 1

n − 1 (D.52)

<
(1 − m)ϵ

t
− 1

n − 1 (D.53)

<
1
t

× (1 − m) × t

(n − 1)(1 − m) − 1
n − 1 = 0. (D.54)

By contrast, when i = R + 1 in Ineq. (D.49)

|λR+1(L(P)) − λR+1(L(P∗))| ≤ ∥L(E)∥. (D.55)

So, we have

λR+1(L(P)) ≥ λR+1(L(P∗)) − ∥L(E)∥. (D.56)

If we set ϵ = (1 − t
n−1 ) × 1

1−m and the condition (T2.M) such as λR+1(L(P∗) ≫ (tα)−1

αλR+1(L(P)) − 1
n − 1 ≥ αλR+1(L(P∗) − α∥L(E)∥ − 1

n − 1 (D.57)

> αλR+1(L(P∗) − (1 − m)ϵ
t

− 1
n − 1 (D.58)

> α × 1
tα

− 1 − m

t
×

(
1 − t

n − 1

)
× 1

1 − m
− 1

n − 1 = 0. (D.59)

Note that the condition (T1.M) t = o(n) assures that ϵ = (1 − t
n−1 ) × 1

1−m > 0 for n ≫ 1 and 0 < m < 1.

E Well-conditioned matrix

As discussed in section 5.1, we’re interested in the behavior of Yl(t) for t ≫ 1. The sign of the terms αλi− 1
n−1

decides it; if negative, the corresponding components are amplified; if positive, they are suppressed as noted
in (17).

This scenario, where αλi − 1
n−1 ≤ 0 for 2 ≤ i ≤ R, indicates that the i-th eigenvalue λi is close to 0 under

α > 0. Although the matrix L(P), by definition, has one connected component, suppose there exists another
matrix P∗ sufficiently close to P such that its Laplacian L(P∗) has R connected components, implying the
dimension of its null space is R. As discussed in (Cai & Ma, 2022), it is natural to pick up Laplacian null
space. We call the adjacency matrix P∗ as “well-conditioned”, if its associated weighted graph has R ≥ 2
connected components.
Proposition E.1. (Proposition 6 in (Cai & Ma, 2022)) Let A ∈ Rn×n be symmetric and well-conditioned
matrix. Then, the smallest eigenvalue of the Laplacian L(A) is 0 and has multiplicity R, and its associated
eigenspace is spanned by {θ1, . . . , θR}, where for each r ∈ [R],

[θi]j =
{

1/
√

ni, if node j belongs component i,

0, otherwise,
(E.60)

and nr is the number of nodes related to r-th connected component. Also, the null space of L(A) is spanned
with these basis

1
√

n1


1n1

0
:
0

 ,
1

√
n2


0

1n2

:
0

 , . . . ,
1

√
nR


0
:
0

1nR

 , (E.61)

where 1nr is a length nr column vector with ones, and 0 is a zero vector with appropriate length.

When the data {Xi}i∈[n] are well clustered and bandwidths τi are appropriately selected, in (Balakrishnan
et al., 2011), it is shown that we have a good approximated matrix of P. Such well-conditioned matrix P∗ is
obtained concretely in section 8. Such matrix P∗ is theoretically used in implicit regularization theorem 6.5.
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F Derivation of ODE for NAG

F.1 Proof of Lemma 6.1

With two equations (19) and (20), we derive another ODE. Applying a rescaling, we have

ỹ(k+1)
l − ỹ(k)

l√
h

= k − 1
k + 2

ỹ(k)
l − ỹ(k−1)

l√
h

−
√

hL(αP − Hn)w(k)
l . (F.62)

Introduce the [assumption] ỹ(k)
l ≈ Y(k

√
h) for some smooth curve Yl(t) for t ≥ 0. Set k = t/

√
h. Then,

as the step size h goes to zero, Yl(t) ≈ ỹ(t/
√

h)
l = ỹ(k)

l and Yl(t +
√

h) ≈ ỹ((t+
√

h)/
√

h)
l = ỹ(k+1)

l Taylor
expansion gives

(y(k+1)
l − y(k)

l )/
√

h = Ẏl(t) + 1
2Ÿl(t)

√
h + o(

√
h), (y(k)

l − y(k−1)
l )/

√
h = Ẏl(t) − 1

2Ÿl(t)
√

h + o(
√

h)

and
√

hL(αP − Hn)w(k)
l =

√
hL(αP − Hn)Yl + o(

√
h). So, (F.62) is written as

Ẏl(t) + 1
2Ÿl(t)

√
h + o(

√
h) =

(
1 − 3

√
h

t

)(
Ẏl(t) − 1

2Ÿl(t)
√

h + o(
√

h)
)

−
√

hL(αP − Hn)Yl(t) + o(
√

h).

By comparing the coefficients of
√

h, we achieve

Ÿl(t) + 3
t
Ẏl(t) + L(αP − Hn)Yl(t) = 0, l ∈ [2]. (F.63)

Note that the first initial condition is Yl(0) = y(0)
l . Also, taking k = 1 in (F.62), we have

(y(1)
l − y(0)

l )/
√

h = −
√

hL(αP − Hn)wl(t) = o(1).

Then, the second initial condition is just Ẏl(0) = (0, . . . , 0)⊤ ∈ Rn.

F.2 Proof of Proposition 6.2

If we define a function f : Rn → Rn as f(y) = 1
2 y⊤L(αP − Hn)y for y ∈ Rn, the function f is differentiable

and ∇f(y) = L(αP − Hn)y. So, we have

∥∇f(x) − ∇f(y)∥2 ≤ σn∥x − y∥2, (F.64)

where σn is the maximum eigenvalue of L(αP − Hn), especially f is σn-Lipschitz function. So, we can apply
Proposition 2 in Su et al. (2016), which shows our statement.

F.3 Proof of Lemma 6.3

Similar to Lemma 5.5, we can deduce the results since we have t2∥L(P − P∗)∥ = o(1), that is

∀ϵ > 0, ∃N ∈ N s.t. n ≥ N ⇒ t2α∥L(E)∥ < ϵ, (F.65)

λR+1(L(P∗)) ≫ (t2α)−1 which are both in (T2.N) and t = o(n1/2) as in (T1.N).

F.4 Proof of Proposition 6.4

As in the Lemma 5.3, we have L(αP − Hn) = VΣV⊤

d2Yl(t)
dt

+ 3
t

dYl(t)
dt

+ VΣU⊤Yl(t) = 0. (F.66)
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By multiplying V⊤ from left-hand side, we have

d2

dt2 (V⊤Yl(t)) + 3
t

d

dt
(V⊤Yl(t)) + Σ(V⊤Yl(t)) = 0, (F.67)

where we used V⊤V = In. By replacing V⊤Yl(t) with Yl(t),

d2Yl(t)
dt2 + 3

t

dYl(t)
dt

+ ΣYl(t) = 0, (F.68)

d2Yl(t)
dt2 + 3

t

dYl(t)
dt

+

 σ1
. . .

σn

 Yl(t) = 0. (F.69)

This means that for any i ∈ [n],

d2Yl,i(t)
dt2 + 3

t

dYl,i(t)
dt

+ σiYl,i(t) = 0 (F.70)

with Yl,i(0) = y(0)
l,i , Ẏl,i(0) = 0.

Lemma F.1. For modified Bessel function of the first kind I1(·), we have

lim
s→+0

2I1(s)
s

= 1. (F.71)

Proof. With Taylor expansion around 0, we have

I1(s) =
∞∑

k=0

1
k!Γ(k + 2)

( t

2

)2k+1
, (F.72)

where Γ(k + 2) is Gamma function at k + 2. For s > 0,

I1(s)
s

= 1
2

∞∑
k=0

1
k!(k + 1)!

(s

2

)2k

. (F.73)

Then,

lim
s→+0

I1(s)
s

= 1
2 · 1

0!1! = 1
2 . (F.74)

Proposition F.2. ODE (F.70) has the following explicit expressions:

Yl,i(t) =


2y(0)

l,i

t
√

σi
J1(t

√
σi), if σi > 0,

2y(0)
l,i

t
√

−σi
I1(t

√
−σi), if σi ≤ 0,

(F.75)

where J1(·) is Bessel function of the first kind, I1(·) is the modified Bessel function of the first kind.

Proof. Firstly, consider the case of σ > 0. For simplicity, we omit the indices l and Zi(u) = uYi(u/
√

σi)
which satisfies

u2Z̈i + uŻi + (u2 − 1)Zi = 0.
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When we set v = u/
√

σi, we have

dZi

du
= d

du

(
uYi

( u
√

σi

))
= d

du

(
uYi(v)

)
= Yi(v) + vẎi(v),

d2Zi

du2 = d

du

(
Yi

( u
√

σi

)
+ u

√
σi

Ẏi

( u
√

σi

))
= 2

√
σi

Ẏi

( u
√

σi

)
+ u

σi
Ÿi

( u
√

σi

)
.

So, we proceed the calculation

u2Z̈i + uŻi + (u2 − 1)Zi

= u2
{ 2

√
σi

Ẏi

( u
√

σi

)
+ u

σi
Ÿi

( u
√

σi

)}
+ u

{
Yi

( u
√

σi

)
+ u

√
σi

Ẏi

( u
√

σi

)}
+ (u2 − 1)uYi

( u
√

σi

)
= 2u2

√
σi

Ẏi

( u
√

σi

)
+ u3

σi
Ÿi

( u
√

σi

)
+ uYi

( u
√

σi

)
+ u2

√
σi

Ẏi

( u
√

σi

)
+ u3Yi

( u
√

σi

)
− uYi

( u
√

σi

)
= u3

σi

{
Ÿi

( u
√

σi

)
+

3√
σi

u
Ẏi

( u
√

σi

)
+ σiYi

( u
√

σi

)}
= 0.

The solution function Zi(u) can be expressed with J1(u)

J1(u) =
∞∑

m=0

(−1)m

(2m)!!(2m + 2)!!u
2m+1,

where we get around
J1(u) = (1 + o(1))u

2 (F.76)

near zero for the variable u. Remember that Y(0)
l,i = y(0)

l,i , we have

Yl,i(t) =
2y(0)

l,i

t
√

σi
J1(t

√
σi), for σi > 0. (F.77)

Secondly, we address the case of σi < 0. Zi(u) = uYl,i(u/
√

−σi), and we obtain the following modified
Bessel differential equation:

u2Z̈i + uŻi − (u2 + 1)Zi = 0. (F.78)
This also comes from the following calculation:

dYi

du
= 1√

−σi
Ẏ

( u√
−σi

)
, (F.79)

dZi

du
= d

du

(
uYi

( u√
−σi

))
= Yi

( u√
−σi

)
+ u√

−σi
Ẏi

( u√
−σi

)
, (F.80)

d2Zi

du2 = d

du

(
Yi

( u√
−σi

)
+ u√

−σi
Ẏi

( u√
−σi

))
= 2√

−σi
Ẏi

( u√
−σi

)
− u

σi
Ÿi

( u√
−σi

)
. (F.81)

Then, we continue

u2Z̈i + uŻi − (u2 + 1)Zi (F.82)

= u2
{ 2√

−σi
Ẏi

( u√
−σi

)
− u

σi
Ÿi

( u√
−σi

)}
+ u

{
Yi

( u√
−σi

)
+ u√

−σi
Ẏi

( u√
−σi

)}
(F.83)

− (u2 + 1)uYi

( u√
−σi

)
(F.84)

= −u3

σi
Ÿi

( u√
−σi

)
+ 3u2

√
−σi

Ẏi

( u√
−σi

)
− u3Yi

( u√
−σi

)
(F.85)

= −u3

σi

{
Ÿi

( u√
−σi

)
+ 3

√
−σi

u
Ẏi

( u√
−σi

)
+ σiYi

( u√
−σi

)}
= 0. (∵ (

√
−σi)2 = −σi). (F.86)
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Similar to the case of σi > 0, we have the explicit expression of Zi(u) with I1(u)

I1(u) =
∞∑

m=0

1
m! (m + 1)!

(u

2

)2m+1
,

or,

Yl,i(t) =
2y(0)

l,i

t
√

−σi
I1(t

√
−σi), for σi < 0. (F.87)

This formula can be extended under σ = 0 with the formula (F.71) i.e. limu→0 I1(u)/u = y(0)
l,i .

As in Lemma 6.3, σi are R-nonpositive eigenvalues, and there are (n − R)-positive eigenvalues. So, Yl(t)
was calculated as V⊤Yl(t), and multiplying V(= (U, U⊥)), we finally obtain

Yl(t) = V
(

y
(0)
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2y
(0)
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)
(F.88)

= (u1, . . . , uR)diag
(

1,
2

t
√

−σ2
I1(t

√
−σ2), . . . ,

2
t
√

−σR
I1(t

√
−σR)

)
(y(0)

l,1 , . . . , y
(0)
l,R) (F.89)

+ (uR+1, . . . , un)diag
( 2

t
√

σR+1
J1(t√σR+1), . . . ,

2
t
√

σn
J1(t

√
σn)

)
(y(0)

l,R+1, . . . , y
(0)
l,n ) (F.90)

= UΓ1(t)y(0)
l,1:R + U⊥Γ2(t)y(0)

l,R+1:n, (F.91)

where U = (u1, . . . , uR) ∈ O(n, R) and U⊥ = (uR+1, . . . , un) ∈ O(n, n − R) is orthogonal complement of U.
Also

Γ1(t) = diag
(

1,
2

t
√

−σ2
I1(t

√
−σ2), . . . ,

2
t
√

−σR
I1(t

√
−σR)

)
, (F.92)

Γ2(t) = diag
( 2

t
√

σR+1
J1(t√σR+1), . . . ,

2
t
√

σn
J1(t

√
σn)

)
. (F.93)

It proves the proposition.

G Implicit regularization

G.1 Proof of Proposition 6.5 concerning MM

The proof for the MM can be directly adapted from proof of Theorem 10 in Cai & Ma (2022), requiring only
the substitution of e−t(αλi− 1

n−1 ) for e− t
1−m (αλi− 1

n−1 ).

G.2 Proof of Proposition 6.5 concerning NAG

Before proceeding with the proof, let us first establish the following lemma:
Lemma G.1. 1. For orthonormal basis U ∈ O(n, R), we can define U⊥ ∈ O(n, n − R) and obtain

∥U∥ = ∥U⊥∥ = 1. (G.94)

2. We have the following asymptotic approximation with J1(s) for s ≫ 1,

1
s

J1(s) ∼
√

2
πs3 cos

(
s − 3π

4
)
. (G.95)

30



Published in Transactions on Machine Learning Research (06/2025)

3. Similarly, for modified Bessel function I1(s), we have the asymptotic approximation for s ≫ 1,

I1(s) ∼ 1√
2πs

es. (G.96)

Proof. 1. For (G.94), we obtain the results with basic linear algebra.

2. The asymptotic expansion of J1(s) is found in 7.21 of Watson (1922) or 10.7.8 in Olver & Maximon
(2010) such as

J1(s) ∼
√

2
πs

cos
(
s − 3π

4
)
. (G.97)

Dividing by s > 0, we have the formula.

3. The statement follows from 7.23 of Watson (1922).

The basic strategy on the proof for NAG still aligns to Theorem 10 in Cai & Ma (2022). Let U0 ∈ O(n, R)
be the matrix whose columns span the null space of L(P∗), and the first column of U0 is n−1/21. Also, let
U ∈ O(n, R) be the collection of eigenvectors of L(P) corresponding the smallest R eigenvalues. With the
Davis-Kahan theorem discussed in von Luxburg (2007); Yu et al. (2015), we have

∥U⊤
0⊥U∥ = ∥U⊤

0 U⊥∥ ≤ ∥L(E)∥
λR+1(L(P∗)) , (G.98)

where E = P − P∗ and U0⊥ is orthogonal complement of U0.

||U0U⊤
0 Yl(t) − Yl(t)||2
||Yl(0)||2

(G.99)

=
∥U0U⊤

0 UΓ1(t)y(0)
l,1:R − UΓ1(t)y(0)

l,1:R∥2

||Yl(0)||2
+

∥U0U⊤
0 U⊥Γ2(t)y(0)

l,1:R − U⊥Γ2(t)y(0)
l,R+1:n∥2

||Yl(0)||2
(G.100)

=
||(U0U⊤

0 − I)UΓ1(t)y(0)
l,1:R||2

||Yl(0)||2
+

||(U0U⊤
0 − I)U⊥Γ2(t)y(0)

l,1:R||2
||Yl(0)||2

(G.101)

=
||(U0⊥U⊤

0⊥)UΓ1(t)y(0)
l,1:R||2

||Yl(0)||2
+

||(U0⊥U⊤
0⊥)U⊥Γ2(t)y(0)

l,1:R||2
||Yl(0)||2

(G.102)

≤ ||U0⊥(U⊤
0⊥U)Γ1(t)|| + ||(U0⊥U⊤

0⊥)UΓ2(t)|| (G.103)
≤ ||U⊤

0⊥U|| · ||Γ1(t)|| + ∥Γ2(t)∥ (G.104)

≤ ||L(E)||
λR+1(L(P∗)) · 2

t
√

−σR
I1(t

√
−σR) + 2

t
√

σR+1
J1(t√σR+1) (G.105)

= ||L(E)||
λR+1(L(P∗)) · 2

t
√

−αλR(L(P)) + 1
n−1

I1

(
t

√
−αλR(L(P)) + 1

n − 1

)
(G.106)

+ 2

t
√

αλR+1(L(P)) − 1
n−1

J1

(
t

√
αλR+1(L(P)) − 1

n − 1

)
. (G.107)

Whenever
∥L(E)∥ ≪ λR+1(L(P∗)), t2

(
αλR(L(P)) − 1

n − 1

)
→ 0 (G.108)
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with αλR+1(L(P)) ≫ 1
n , t2αλR+1(L(P)) → ∞, we have

lim
(t,n)→∞

||U0U⊤
0 Yl(t) − Yl(t)||2
||Yl(0)||2

= 0. (G.109)

Also,

∥U0U⊤
0 Yl(t) − U0U⊤

0 Yl(0)∥2

∥Yl(0)∥2
(G.110)

=
∥U0U⊤

0 UΓ1(t)y(0)
l,1:R + U0U⊤

0 U⊥Γ2(t)y(0)
l,R+1,n − U0U⊤

0 UΓ1(0)y(0)
l,1:R − U0U⊤

0 U⊥Γ1(0)y(0)
l,R+1:n∥2

∥Yl(0)∥2
(G.111)

=
∥U0U⊤

0 U(Γ1(t) − Γ1(0))y(0)
l,1:R∥2

∥Yl(0)∥2
+

∥U0U⊤
0 U⊥(Γ2(t) − Γ2(0))y(0)

l,R+1:n∥2

∥Yl(0)∥2
(G.112)

≤ ∥Γ1(t) − Γ1(0)∥2 + ∥U⊤
0 U⊥(Γ2(t) − Γ2(0))∥2 (G.113)

≤
∣∣∣ 2
t
√

−σR
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∣∣∣ 2
t
√

σR+1
J1(t√σR+1) − 1

∣∣∣ (G.114)

=
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+ ||L(E)||
λR+1(L(P∗)) ·

∣∣∣∣∣ 2
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√

αλR+1(L(P)) − 1
n−1

J1

(
t

√
αλR+1(L(P)) − 1
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)∣∣∣∣∣. (G.116)

Whenever the condition (G.108) holds, we also have

lim
(t,n)→∞

∥U0U⊤
0 Yl(t) − U0U⊤

0 Yl(0)∥2

∥Yl(0)∥2
= 0. (G.117)

Eq. (G.108) is ensured by the conditions of the theorem and the asymptotic behavior in (F.71), (G.95) as
follows:

The condition ∥L(E)∥ ≪ λR+1(L(P∗)) comes from λR+1(L(P∗)) ≫ max{(t2α)−1, ∥L(P∗ − P)∥}.
t2

(
αλR(L(P))− 1

n−1

)
→ 0 comes from t2∥L(P∗ −P)∥ = o(1) as n → ∞ in (T2.N) and t = o(n1/2) in (T1.N).

Also, with the Weyl’s inequality |λi(L(P))−λi(L(P∗))| ≤ ∥L(E)∥, αλR+1(L(P)) ≥ αL(P∗)−α∥L(E)∥ ≫ 1
n

due to α ≫ [nλR+1(L(P∗))] in (T1.N). Finally, t2αλR+1(L(P)) → ∞ can be deduced with Weyl’s inequality
and λR+1(L(P∗)) ≫ (t2α)−1 in (T2.N).

H Lyapunov exponents for each eigensolution

The expressions (16) or (24) can be interpreted as the temporal evolution of a dynamical system. By
examining the Lyapunov exponents, one can gain insight into the asymptotic behaviors for t ≫ 1.

H.1 Lyapunov exponent for GD and MM

We calculate the Lyapunov exponent for MM6. We pick up the ith-term from the equation (16), and set
Lyapunov exponent as λLyap,i for i ∈ [n]:

λLyap,i = lim
t→+∞

lim
δYl,i(0)→0

1
t

log ∥δYl,i(t)∥2

∥δYl,i(0)∥2
, (H.118)

6For GD, consistently interpret m = 0 throughout this subsection.
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where δYl,i(t) the perturbation at time t caused by the initial perturbation δYl,i(0). Now, we have

Yl,i(t) = exp
(

− t

1 − m

(
αλi − 1

n − 1

))
(u⊤

i y(0)
l )ul, l ∈ [2]. (H.119)

Therefore, by canceling out the same terms in the numerator and the denominator,

λLyap,i = lim
t→+∞

lim
δYl,i(0)→0

1
t

log exp
(

− t

1 − m

(
αλi − 1

n − 1

))
(H.120)

= − 1
1 − m

(
αλi − 1

n − 1

)
. (H.121)

Note that the result holds regardless of l ∈ [2]. With the Lemma 5.5, we have the following proposition
Proposition H.1. (Lyapunov exponent for GD and MM) Under the conditions (T1.M), (T2.M), n ≫ 1
and i ∈ [n],

λLyap,i = − 1
1 − m

(
αλi − 1

n − 1

)
. (H.122)

Especially, λLyap,i ≥ 0 (i = 1, . . . , R), and λLyap,i < 0 (i = R + 1, . . . , n).

This statement suggests that the elements of Yl(t) (i = 1, . . . , R) highlight a specific structure within the
cluster, enhancing its distinctive characteristics.

H.2 Lyapunov exponent for NAG

Now, for the case of NAG. Using the formula (24), the asymptotic approximation (G.95) and (G.96), we
arrive at the following conclusion:
Proposition H.2. (Lyapunov exponent for NAG) Under the conditions (T1.N), (T2.N) and n ≫ 1, we
have

λLyap,i =


√

−αλi + 1
n − 1 , (i = 1, . . . , R).

0, (i = R + 1, . . . , n).
(H.123)

Especially, λLyap,i ≥ 0(i = 1, . . . , R).

It also suggests that the elements of Yl(t) (i = 1, . . . , R) emphasize a cluster structure.

The case for i = R+1, . . . , n differs slightly. In GD or MM, λLyap,i is negative, causing to exponential decay.
However, in NAG, oscillations occurs, so the Lyapunov exponent is considered to be 0. This aligns with the
typical differences between GD, MM and NAG.

I Supplemental numerical experiments

I.1 Differences between solution paths of ODE corresponding to GD, MM and NAG

We derived ODEs corresponding to the iterative optimization procedures for t-SNE with and without accel-
eration. We also derived their closed-form solution. We compare the difference between solution paths by
simply plotting them in Fig. 4. As illustrated in Fig.4a, for i ∈ [R], i.e., components corresponding to the
negative eigenvalues of the Laplacian L(αP − Hn) (let’s denote σ < 0), GD follows an exponential function
exp(−tσ), and the MM follows exp(− σt

1−m ), both of which are exponential functions (see Eq. (16)). On the
other hand, NAG follows a function 2I1(t

√
−σ)

t
√

−σ
involving the modified Bessel function of the first kind I1(·)

(see Eq. (24)). Based on their series expansions, these functions are greater than 1 for positive values of t
and converge to 1 as t approaches zero (see Lemma F.1 for NAG case).

By contrast, in Fig. 4b, for t ≫ 1, GD and MM decay exponentially and NAG decays under the for-
mula (G.95). From these conditions, the eigenvectors ui for i ≥ R + 1, i.e., components corresponding to
positive eigenvalues, asymptotically decay to 0 as time t increases.
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Figure 4: Comparison of (Modified) Bessel function and exponential functions.

I.2 Experiments with synthetic dataset

We conduct a comparison between iterative optimization methods for t-SNE and ODEs corresponding to
them, specifically for GD, MM, and NAG, to explore their convergence behaviors using a synthetic dataset,
generated from the following Gaussian Mixture Model (GMM):

Xi|zi = r ∼ N(µr, Σ), zi ∼ Multinomial(π1, π2, π3), for i ∈ [200], (I.124)

where µ1 = (0, 0, 0)⊤, µ2 = (150, −110, 170)⊤, µ3 = (−130, 150, −150)⊤ are the centers of Gaussian distri-

butions, Σ =

30 20 25
20 50 10
25 10 30

 is the common covariance matrix and (π1, π2, π3) = (1/3, 1/3, 1/3). With the

above {zi}i∈[200], we define the element of P∗ as p∗
ij = pij if zi = zj ; otherwise, it is set to 0. The Laplacian

L(αP − Hn) has an eigenvalue with almost 0 and other two negative eigenvalues, i.e. R = 3. According
to Cai & Ma (2022), it can be proven that the conditions (T1.M), (T2.M), (T1.N) and (T2.N) are satisfied
by placing additional assumptions on these.

Figure 5 shows that the comparison between iterative optimization methods with and without acceleration
(GD, MM, and NAG), and ODEs correspond to them for the dataset generated from the above explained
GMM. The optimization is done with step size parameter h = 5, momentum parameter m = 0.5, Perplexity
is 30, and exaggeration parameter α = 10. In the plot, solid lines indicate iterative approaches and dashed
lines denote methods using ODEs. From this plot, we see that the KL-divergence (the objective function of
the t-SNE optimization procedure) aligns well between iterative algorithms and continuous limit ODEs. It
can also be observed that as t increases, the discrepancy in the KL-divergence values between those obtained
from the iterative algorithm and those obtained as the solution path of the ODE becomes larger. This is
consistent with the theoretical results obtained in this paper.

As in section 8, we state the assumption in Lemma 5.1 about GD and MM, we identify the variables as
t = kh, where the variable t as time parameter, k as iteration number and h as step size. For NAG, the
identification can be t = k

√
h as in Lemma 6.1. Figure 6 shows the representation where the top row

corresponds to GD, the middle row to MM, and the bottom to NAG.

We have two kinds of observations.

• Case 1: Focus on that the middle case in GD (t = 35) and the rightmost case in NAG (t = 33.54).
In the case of NAG, even though the value of t is smaller at 33.54 compared to 35 in the case of GD,
the data is well-separated, whereas in GD it is still undifferentiated.

• Case 2: The rightmost case in GD (t = 75) and the middle case in MM (t = 35). Formally, the
time parameter t is different, and the low-dimensional representation looks similar. Considering the
effect of the momentum term m = 0.5, it can be interpreted as accelerating time t, effectively making
it t = 70(= 35/(1 − 0.5)). See the formula (16), where we adopt that MM can be understood as
fast-forwarding GD with respect to the variable t thanks to the moment term with m.
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Figure 5: A comparison between iterative optimization methods and those approximated using ODEs (GD,
MM, NAG).

I.3 Profiles of datasets

In addition of GMM datasets explained in section I.2, the following datasets are used. Here are the links
and their licenses:

• KDDCup1999: https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html, CC BY 4.0 li-
cense referenced by https://archive.ics.uci.edu/dataset/130/kdd+cup+1999+data

• MNIST: https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_
openml.html, BSD license provided by sklearn

• Olivetti Faces: https://scikit-learn.org/stable/modules/generated/sklearn.datasets.
fetch_olivetti_faces.html, BSD license provided by sklearn

For the KDDCup1999 dataset, download the kddcup.data_10_percent.gz file locally and use it. For the
MNIST and Olivetti Faces datasets, we download and use them directly in the code by utilizing the functions
provided by sklearn.

I.4 Experiments through variation of random Initialization

It is well-known that the clustering results using t-SNE may vary with variations of initialization such
as Kobak & Linderman (2021). Cai & Ma (2022) states a sufficient condition in their Theorem 14 as random
initialization, which leads to intercluster repulsion (Th.13) after both early exaggeration and embedding
stage. It is reported that false clustering may appear due to an incidental combination of overlapped cluster
from the early exaggeration stage as in Remark 16 there. By contrast, we focus only on early exaggeration
stage, and numerical experiments on several datasets, performed multiple runs with different initializations
for the same dataset, and present the evaluation results.

We use KDDCup1999, MNIST and Olivetti datasets. The Olivetti face data set consists of images of 40
individuals with small variations in viewpoint. The data set consists of 400 images (10 per individual) of
size 64 × 64 = 4096 and is labeled according to identity.

In order to evaluate the variation of initialization, we used Adjusted Rand Index (ARI) (Hubert & Arabie,
1985), which is commonly employed to evaluate clustering performance with known labels (ground truth
clusters). This index assesses the degree of correspondence between the predicted clusters and the true
class labels, serving as a measure of clustering accuracy in cases where the true labels are available, akin to
supervised learning.

35
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Figure 6: Low-dimensional expression with GMM dataset. Top: GD, Middle: MM, Bottom: NAG.

Figure 7 demonstrates the results. The band visible in the ARI transition represents the results of varying
ARR after randomly changing the initial values 30 times. The width of the band corresponds to the standard
deviation of the ARR.

In all three datasets, ARI increases most rapidly for NAG(green), followed by MM(purple), with GD(pink)
trailing behind. NAG achieves the best results in the shortest time. It is important to note the relationship
between the variables t and k for GD and MM, t = kh, while for NAG, t = k

√
h. As a result, even with the

same value of k, the effective value of t is smaller for NAG, which makes the NAG curve appear truncated.
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(b) MNIST
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(c) Olivetti
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Figure 7: Adjusted Rand Index(ARI) for GD, MM, NAG across different datasets

I.5 Experiments through various initialization methods beyond random initialization

Generally, there are several ways to initializing methods for t-SNE. Kobak & Linderman (2021) reports
the result with initialization using PCA, Linderman & Steinerberger (2019) uses spectral clustering in
initializing. In this section, we experiment several initialization methods and compare the results under the
equation (16) or (24) with the indicator ARI.

We basically follow the way of section I.4. The MNIST dataset is used for the experiments, and the Adjusted
Rand Index (ARI) is employed as the evaluation metric. To assess the stability of each initialization method,
we conduct 10 trials for each approach. In addition to random initialization as described in section I.4, we
attempt representative initializations using PCA, Spectral Embedding (SE) (Belkin & Niyogi, 2003), and
MultiDimensional Scaling (MDS) (Torgerson, 1952). For PCA, SE, and MDS, the dimension is reduced
to two by setting n_components to 2. In the case of SE, the number of neighbors (n_neighbors) used to
construct the Laplacian matrix is set to 300.

Figure 8 demonstrate the results. For the optimization methods GD(orange) and MM(purple), we observe
that changing the initialization from random to other methods results in starting with a relatively higher
ARI, and the metric generally improved as the time t increase.

On the other hand, for NAG (green), it is observed that the ARI starts near zero in all initialization
methods. This is because, in the case of GD and MM, all components of the initial values are included in the
eigendecomposition of Eq. (16) like u⊤

i y(0)
l , whereas for NAG, the decomposition in Eq. (24) only includes

a subset of the initial values in each term like UΓ1(t)y(0)
l,1:R or U⊥Γ2(t)y(0)

l,R+1:n. 7 In the case of NAG, as
time progresses, the influence of the eigenvectors becomes reflected, and the ARI gradually improves.

Furthermore, across the different initialization methods, it is confirmed that the SE leads to the greatest
improvement in terms of ARI in our experiment.

As a minor point, for MDS, using random placement during initialization results in a similar variation in ARI
outcomes as observed with random initialization. In contrast, PCA and SE, being deterministic methods,
do not exhibit such variation.

I.6 Experiments through ARR for other data sets

We also explore the stopping time to obtain the clustering results with ARR(Average Residual Rate) defined
in (28) at appropriate time. In addition, we observe whether another indicator Trustworthiness exhibits a
similar trend to ARR during the optimization process.

In section 8.2, we evaluate ARR for MNIST data set. Here, we evaluate it with KDDCup1999, Olivetti Face
datasets as well. Figure 9 shows the results for KDDCup1999, and Fig. 10 for Olivetti.

7Remember that both Γ1(t) and Γ2(t) are diagonal matrices as in Theorem 6.4.
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Figure 8: A comparison among various initialization methods with MNIST dataset for GD/MM/NAG

The left figure shows the transition of ARR and Trustworthiness. We begin by reviewing ARR. NAG(green)
exhibits the fastest drop in ARR, followed by MM(orange) and then GD(blue). A red dashed line marks
the threshold at ARR = 0.01. As mentioned in section I.4, it is important to note that due to the different
relationships between the variables t and k among GD/MM/NAG8, the NAG curve appears truncated.

Next, we compare ARR with Trustworthiness (Venna & Kaski, 2001). Trustworthiness is a standard metric
used in methods such as t-SNE to evaluate how well the structure of the original high-dimensional data is
preserved in the low-dimensional embedding. Specifically, it measures whether the neighbors in the embedded
space are also neighbors in the original high-dimensional space. The value ranges from 0 to 1, with values
closer to 1 indicating higher agreement.

The same figure also shows the case where the number of neighbors is set to 10 for Trustworthiness.
The dashed blue/orange/green lines represent the Trustworthiness values for each optimization method:
GD/MM/NAG. As ARR decreases, Trustworthiness tends to increase, indicating an approximate inverse
correlation. The correlation coefficient is around −0.85 for KDDCup1999 and −0.90 for Olivetti. Further-
more, because the Trustworthiness value is sensitive to the choice of neighborhood size, the strong inverse
correlation observed in our results does not necessarily indicate that trustworthiness can be used as a general
alternative to ARR for determining the stopping time.

Although Continuity is also a well-known metric (Kaski et al., 2003) similar to Trustworthiness, numerical
experiments in this case showed that its values were nearly equivalent—though not identical—to those of
Trustworthiness. Therefore, we only present Trustworthiness in the figure.

The right panels of figures 9 and 10 show the clustering results of GD, MM, and NAG when ARR = 0.01.

I.7 Experiments with various momentum coefficients

We explore the effect of the momentum coefficient m in the MM. In the Eq. (16), the transition of ARR for
MNIST dataset when changing the coefficient m from 0.1 to 0.9 can be seen in Fig. 11. Other configurations
of MNIST are the same as in section 8.2. The coefficient m was originally assumed to range from 0 to 1,
and it can be confirmed that as m increases, the influence of the residual term on ARR diminishes over a
shorter period of time. Formally, GD can be regarded as having m of 0, which is also consistent with the
results shown with both datasets -KDDCup1999 and Olivetti- in Figs. 9, 10.

8t = kh for GD and MM, whereas t = k
√

h for NAG.
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Figure 9: (left): transition of ARR and Trustworthiness (TW), (right): Clustering result for KDDCup1999
dataset with ARR=0.01 using three ODEs: GD, MM, and NAG.
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Figure 10: (left): transition of ARR and Trustworthiness (TW), (right): Clustering result for Olivetti Face
dataset with ARR=0.01 using three ODEs: GD, MM, and NAG.

I.8 Further analysis of KDDCup1999 dataset

We obtain the adjacency matrix P as depicted in Fig. 12. The heatmap illustrates that the elements of P
exhibit relatively high values (orange or yellow) between clusters, while other regions are closer to black.

Solving the eigenproblem with the Laplacian matrix L(αP − Hn) using α = 10, we obtain eigenvalues
close to zero and four negative eigenvalues, as shown in Fig. 13. They are emphasized during clustering
regardless of the method used (GD/MM/NAG), resulting in the formation of clusters in the low-dimensional
representation.

Furthermore, Fig.14 displays the distribution of the dominant eigenvectors u1, . . . , u5. These eigenvectors
are emphasized in the low-dimensional representation as the time parameter t progresses under Eqs.(16)
and (24). As shown in this figure, the components belonging to the same cluster simultaneously take on the
same values, and the relative magnitudes of these values become crucial when forming clusters in the low-
dimensional space. This mechanism leads to the clustering results depicted in Fig. 1 as the low-dimensional
representation.
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Figure 11: A comparison of MM with various momentum coefficients
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Figure 12: A heatmap of similarity matrix P for the n = 500 samples from KDD Cup 1999 dataset.
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