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ABSTRACT

Attention is foundational to large language models (LLMs), enabling different
heads to have diverse focus on relevant input tokens. However, learned behav-
iors like attention sinks, where the first token receives the most attention despite
limited semantic importance, suggest some heads may be inactive, and point to
a significant source of computational redundancy. To analyze this phenomenon,
we propose a taxonomy of 12 score functions that measure different ways a head
can be inactive. Thresholding these scores allows us to analyze different sets of
potentially inactive attention heads. We evaluate whether identified heads are in-
active through model interventions, finding that more than 12% of attention heads
are inactive on average, and can be ablated in specific contexts while maintaining
MMLU accuracy to within 1% of the pretrained LLM. Across 3 model families,
our score functions that measure the average norm of a head’s output consistently
identify inactive heads that would not have been found by score functions that
rely solely on attention weights. We establish that relying on a score function
that measures a first token attention sink would underestimate the prevalence of
inactive heads, failing to identify more than 7% of inactive heads on average. We
also show how measuring score distributions can provide insights into attention
behavior. For instance, we find evidence that finetuning causes little to no change
in attention behavior, and that even within the same model family, large model
scales present markedly different attention behaviors.

1 INTRODUCTION

Attention is a key component of the transformer architecture, which has led to breakthroughs in
language modeling (Radford et al., 2019; Touvron et al., 2023; Dubey et al., 2024; OLMo et al.,
2024; Yang et al., 2024). The attention mechanism allows tokens to incorporate information from
relevant tokens, with multiple heads of attention capturing different types of relevance (Vaswani,
2017). But several works have found that attention can become “dormant” and concentrate on initial
tokens, which are semantically irrelevant (Yu et al., 2024; Chen et al., 2025). The question we seek
to answer is: How prevalent are inactive attention heads?

Depending on how one defines the word inactive, different answers are possible. Past work has
focused exclusively on the attention weights (Guo et al., 2024a), labeling heads as “dormant” using
a threshold-based score function. This is motivated by the idea that if a head attends primarily to
the first token, and the first token has a near-zero value state, then the head output will be near-zero.
However, this reasoning ignores other possibilities. Because an attention head’s output is a convex
combination of value vectors, a head could attend to multiple tokens with near-zero value states to
produce a near-zero output. In this work, we consider the many ways a head can be considered
inactive, and produce a taxonomy of attention heads.

While classifying heads provides a useful taxonomy for understanding learned attention behaviors,
identifying potentially inactive heads is not enough. Without zeroing out attention head outputs to
erase their contribution to the hidden state, it is impossible to verify if identified heads are actually
inactive. To address this, we perform model interventions while evaluating on the MMLU bench-
mark, and measure the effect of removing identified heads on model accuracy. Using 14 models
across 3 model families, this experimental setup also allows us to analyze how attention head be-
haviors change as models scale and as models are finetuned. We make the following contributions:
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Figure 1: The Inactive Head Taxonomy. Our simple score functions measure all three components
of attention: attention weights, value vectors, and head output vectors. In each cell, we give an
example of the type of attention head that would be identified by each score function once scores
are thresholded. For attention weights, the colorbar displays weights. For vectors, color represents
direction, and length of the blue bar represents magnitude. For example, the Avg Weight of First
Token score (Gu et al., 2025; Guo et al., 2024a) is calculated by computing average weight to the
first token, and heads that exhibit high attention to the first token are identified if their their score
exceeds a threshold. Value vectors and head outputs do not play a role, which we illustrate with a
fade. Including normalized versions of these 6 score functions, there are 12 in total.

• We develop a taxonomy of 12 score functions that measure distinct properties of attention
heads, and we threshold scores to classify attention heads, based on different definitions
of inactive. We evaluate whether identified heads are truly inactive through model inter-
ventions which show that, on average, more than 12% of attention heads are inactive in
pretrained LLMs we consider. Using prior characterizations of “dormant heads” would
underestimate inactive heads, and fail to identify 7% of heads that are inactive.

• We find that, across model families and across model scale, inactive heads are consistently
identified through the same score functions. In particular, measuring the average head out-
put norm is most indicative. By finding a more model-agnostic score function, we provide
evidence that inactive heads across transformer LLMs should be understood through head
outputs rather than attention weights.

• We demonstrate that analyzing score distributions provides useful insights into attention:
they reveal that finetuning induces minimal changes in attention behavior, and that scal-
ing has little effect until models reach large sizes. Together, this suggests attention head
behavior is more invariant to common training modifications than one might expect.

While our work has the potential to be used for efficient inference, our focus is strictly on under-
standing inactive attention heads. Specifically, how can we identify them and evaluate whether they
are truly inactive?

2 BACKGROUND AND RELATED WORK

The idea that transformers may not be effectively utilizing all attention heads first came up in the
context of machine translation. The work of Voita et al. (2019) and Michel et al. (2019) demonstrated
that attention heads in transformer models could be removed with minor performance degradations.
Methods for determining which heads can be removed have involved optimization of different kinds
of objectives based on: stochastic gates (Voita et al., 2019), importance scores (Michel et al., 2019),
iterative pruning (Behnke & Heafield, 2020), and subset pruning (Li et al., 2021). In this work,
however, we do not use static pruning, where a head is permanently removed. Rather, our model
intervention study (Section 4.3) is a form of dynamic pruning, where different heads are dropped
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Figure 2: Score functions identify different sets of heads. Identifying different sets of heads
ensures we capture a broad range of head characteristics, rather than focusing solely on the attention
sink pattern of Avg Weight of First Token (Gu et al., 2025). Using 100 FineWeb-Edu training
samples, we measure IoU of classifications between each score function on Llama-3.1-8B. We also
measure Precision of one score function’s classifications relative to another’s, using the column
score function as ground truth. Column score functions are abbreviated using the first letter of each
word, and are in the same order as rows. For each score function, we dynamically choose thresholds
such that ∼ 10% of heads are identified as potentially inactive. Even head scores normalized by
scores of other heads in the layer, denoted by “(LN)”, do not show significant IoU or Precision with
their unnormalized counterpart.

at every forward pass. Our objective is to measure how much head computation is wasted in each
forward pass by inactive heads that can be zeroed out. We assume inactive heads are those that can
be zeroed out, prior to concatenation and output projection of the multi-head attention mechanism.

Multi-head attention. The multi-head self-attention mechanism (Vaswani, 2017) allows multiple
attention heads to operate in parallel, each focusing on different aspects of the input sequence. For
an input of N tokens with dimensionality dm, learned linear projections transform queries, keys, and
values (Q,K,V ∈ RN×dm ) into lower-dimensional representations: dk-dimensional queries/keys
and dv-dimensional values, specific to each of the h heads. The self-attention operation within each
head computes attention weights, defined as A = softmax(QK⊤

√
dk

), where A ∈ [0, 1]N×N and each
row sums to 1, which are then applied to the value vectors. Another way to view the output of the
ith attention head headi ∈ RN×dv is that, for every position in the sequence, we compute a convex
combination of value vectors, weighted by the corresponding row of A. The outputs of all heads
are concatenated and passed through a final linear projection to produce the module’s output. The
attention weights, A, are one of the few features we can visualize to get a sense of how pretrained
LLMs work. For a token sequence, high attention weights (close to 1) reveal which tokens are
considered most relevant. Thus, it is surprising that attention can concentrate on initial tokens,
called “attention sinks”, as shown in App. Figure 19.

Attention sinks. An attention sink or sink token is a token that, despite limited semantic impor-
tance, disproportionally receives high attention weight from other tokens in a sequence. They tend to
occur either at the first position of the input sequence (Xiao et al., 2024; Guo et al., 2024a), at certain
word tokens (e.g., , “and” and “of”), or delimiter tokens (Sun et al., 2024; Yu et al., 2024). The first
token can be an attention sink even when it is not a BOS token (Xiao et al., 2024; Gu et al., 2025).
To understand the prevalence of attention heads with sinks, Gu et al. (2025) propose to measure the
average weight assigned to the first token and check if it exceeds a threshold τ : 1

N

∑N−1
i=0 Ai,0 > τ .

In our work, we refer to this metric as “Avg Weight of First Token” and use it as a starting point,
but ultimately find that different threshold-based score functions are needed for identifying inactive
heads in model families outside of Llama (Dubey et al., 2024) and GPT-2 (Radford et al., 2019).

As can be seen in App. Figure 19, attention sinks also exhibit value-state drains (Guo et al., 2024b;
Gu et al., 2025; Kobayashi et al., 2020), where the norm of the value state is near zero. Note that
if the sink token’s value state is zero but the attention weight to the sink token is one, the output of
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Table 1: Equations for Inactive Head Taxonomy. We define how each score function is used to
identify inactive heads with a threshold-based rule. Sample attention heads are in Appendix A.3
Figure 7. We sweep a range of thresholds τ for each function.

Score Function Definition

Avg Weight of First Token (AWFT) 1
N

∑N−1
i=0 Ai,0 > τ

Avg Entropy of Query Distributions (AEQD) 1
N

∑N−1
i=0 Ent(Ai,:) < τ

First Token Value Vector Norm (FTVVN) ∥V0,:∥2 < τ

Avg Value Vector Norm (AVVN) 1
N

∑N−1
i=0 ∥Vi,:∥2 < τ

Last Token Head Output Norm (LTHON) ∥headiN−1,:∥2 < τ

Avg Head Output Norm (AHON) 1
N

∑N−1
i=0 ∥headii,:∥2 < τ

this head (prior to the output projection) is zero, leading Guo et al. (2024a) to call this a dormant
attention head.

Dormant attention. Guo et al. (2024a) propose the idea that attention heads can be either active or
dormant. They perform a model intervention study on 3 attention heads of Llama-2-7B Base, where
a specific attention head output is zeroed out, and the difference in loss as a result of the intervention
is measured. They find that the difference in loss can depend on whether input text is from Wikipedia
or GitHub; a head that is dormant on Wikipedia samples does not change the loss when the head
output is zeroed. In our work, we go beyond analyzing one attention head at a time and propose to
zero out all “dormant heads” while evaluating models on a real-world benchmark task. If “dormant
heads” are truly inactive, then zeroing them out should have little effect on model performance. We
also propose new score functions that measure different definitions of inactive. Unlike Guo et al.
(2024a) and Gu et al. (2025) who measure only attention weights, our score functions also consider
value vectors and head outputs. By considering the range of ways a head can be inactive, we present
a more accurate picture of inactive attention heads in pretrained models. A better understanding
of inactive attention heads has the potential to be used for efficiency (Li et al., 2021), KV cache
reduction (Liu et al., 2023), and compression (Ge et al., 2024).

3 THE INACTIVE HEAD TAXONOMY

We outline a number of simple score functions, each capturing different ways a head could be
considered inactive. Each score function assigns a score to every attention head in a transformer
LLM. By thresholding the scores, we classify and study different sets of heads. We summarize each
score function in Table 1. We use the ℓ2-norm wherever applicable.

Attention patterns. An attention head could appear inactive due to the patterns in its attention
weights. Both overly focused and overly diffuse attention can be considered “inactive,” depending
on the input. Prior work has recognized the case where attention can concentrate on a single token
(Gu et al., 2025; Guo et al., 2024a), where attention is distributed too little, and quantified it by
calculating the Average Weight of the First Token (AWFT). However, this does not capture the case
where there are multiple sink tokens (See App. Figure 19). To measure when attention concentrates
on a few tokens, we choose to measure the Entropy of each Query’s Distribution over keys, averaged
over all queries. Calculating this amounts to measuring entropy of each row of the attention weights,
then taking an average. If average entropy of the head is low, it implies attention concentrates on
few tokens. If a head’s average entropy is under a threshold τ , we can classify it as potentially
inactive. The smaller we make τ , the more strict we are in classifying heads that exhibit this pattern.
Changing the direction of the inequality in Avg Entropy of Query Distributions could capture cases
where attention is too uniform (i.e., too much attention to all keys), but we chose not to consider this
case because heads in early layers tend to exhibit this pattern, and early layers tend to be important
(Sun et al., 2025).
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Value vectors. An attention head could appear active with its attention patterns, but could be
inactive if all the value vectors are near-zero. To measure this, we compute Avg Value Vector Norm:
the average ℓ2-norm of value vectors in the head. It is also possible that while attention patterns may
not primarily concentrate on the first token, some tokens could still use the first token as a “value-
state drain” (Guo et al., 2024a). To capture heads that do this, we compute the First Token Value
Vector Norm, i.e., the ℓ2-norm of the value vector corresponding to the first position. As with other
score functions, we consider normalizing by the average score of other heads in the layer.

Head outputs. Finally, an attention head could be inactive if its output is small. This key assump-
tion is most closely captured by the score functions that measure the head output: when a head
produces small outputs, its contribution to the residual stream will be minimal, and these heads can
be zeroed with little to no accuracy drop. Because multiple choice (MC) benchmark evaluations re-
trieve the probability assigned by the model to the correct answer from the probability distribution of
the last position, we also propose to measure the Last Token Head Output Norm. To capture cases
where most positions have head outputs that are small, we measure the Avg Head Output Norm.
More information on why we do not use the circuit-based definition of a head output can be found
in Appendix A.1.

Normalization. We classify heads using the score functions in Table 1, but we also consider nor-
malization by the score of other heads in the same layer. Abusing terminology, we refer to this as
layer normalization, or “(LN)” throughout. As an example, the Avg Head Output Norm (AHON)
score function for the ith attention head in a layer is computed as follows: AvgNorm(headi), where
AvgNorm(T ) = 1

N

∑N
i=0 ∥Ti,:∥2 computes the average ℓ2-norm of the rows of input matrix T and

where headi ∈ RN×dv is the head output. Then, the normalized version, Avg Head Output Norm
(LN), is simply normalized by the average AHON score of heads in the same layer:

AvgNorm(headi)
1

Nlayer

∑Nlayer

j=0 AvgNorm(headj)
(1)

Thresholding the score of Equation (1) whenever it is < τ controls how strictly we classify a head
as inactive. For example, when τ = 0.1, heads with output norms less than 10% of the layer average
are considered inactive. Code implementations are provided in Appendix A.13.

4 EXPERIMENTS

First, we study which score function is best at identifying inactive heads. Then, we use head scores
to study how attention behaviors change as models scale and are finetuned.

4.1 SETUP

We download 14 pretrained models using Hugging Face transformers (Wolf et al., 2020):
Llama-3.1-8B, Llama-3.1-8B-Instruct (Dubey et al., 2024), Llama-3.2-3B, Llama-3.2-3B-Instruct
(Meta, 2024), OLMo-2-1124-7B, OLMo-2-1124-7B-SFT, OLMo-2-1124-7B-DPO, OLMo-2-1124-
7B-Instruct (OLMo et al., 2024), Qwen2.5-0.5B, Qwen2.5-1.5B, Qwen2.5-3B, Qwen2.5-7B,
Qwen2.5-7B-Instruct, and Qwen2.5-14B (Yang et al., 2024). We refer to models from the same
organization as belonging to the same “model family.” We evaluate models on MMLU (Hendrycks
et al., 2021) (5-shot) in our model intervention experiments. For datasets that do not use an LLM-
as-a-Judge, MMLU is the multiple-choice (MC) benchmark with the highest Spearman correla-
tion with ChatBot Arena (Li et al., 2023; Chiang et al., 2024), and thus makes it the most ap-
propriate choice for aligning with real-world chatbot preferences while keeping evaluation consis-
tent and tractable. Additional results on PIQA (0-shot) (Bisk et al., 2020) and WinoGrande (5-
shot) (Sakaguchi et al., 2021) can be found in Appendix A.4. All evaluations are performed using
lm-evaluation-harness (Gao et al., 2024). We also use FineWeb-Edu (Lozhkov et al., 2024),
which is a pretraining dataset of educational webpages. We randomly truncate FineWeb-Edu train-
ing sequences to between 10 and 3000 tokens to exhibit a variety of sequence lengths. Additional
model and dataset details are in Appendix A.14.
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Figure 3: Measuring Avg Head Output Norm is best at identifying inactive heads for most mod-
els. For every model, we rank the 12 scoring functions by normalized AUC, which captures their
ability to select inactive heads. Avg Head Output Norm (LN) ranks 1st for 8 out of 14 models, and
ranks in top-3 for 13 out of 14 models. Top scoring functions are consistent across model families.

Metrics and Thresholds. In a transformer with Nheads attention heads per Nlayers layers, and
a dataset D of token sequences, a forward pass on input sequence x ∈ D will produce attention
weights, value states, and head outputs for every head. We measure these components, and assign a
score to every head, arranged in a matrix S ∈ RNheads×Nlayers . Thresholding S results in a boolean
matrix B of the same size. In our model intervention experiments, a different boolean matrix is
constructed for every new forward pass and “% of Model Heads Zeroed” refers to the percent of
True values in B, averaged over all token sequences in D. The proportion of heads each score
function identifies as inactive can be controlled by the threshold τ , which we vary for each function.
The thresholds for each score function are chosen by measuring head scores across MMLU inputs,
constructing the CDF of scores, and calculating the p-th quantile1 for p ∈ [0, 5, 10, 15, 20, 25, 30].
This way, we can estimate the proportion of heads that will be selected for each threshold, allowing
us to focus on zeroing out at most 30% of heads. All score distributions are in App. Figure 16.

4.2 SCORE FUNCTIONS IDENTIFY DIFFERENT SETS OF HEADS

To ensure that each score function measures a different aspect of attention heads, we measure the
agreement between predictions (post-thresholding) using IoU. We also measure precision, taking
one of the score functions as ground truth. We use Llama-3.1-8B and 100 FineWeb-Edu sequences
to collect scores, and we threshold them dynamically to make predictions. In Figure 2, we see that
the max IoU is 0.58, while the max Precision is 0.73. This suggests no score function is effectively
the same as another. High agreement tends to occur between unnormalized and normalized pairs
of score functions (i.e., AWFT and AWFT (LN)), but not always. For example, Last Token Head
Output Norm has an IoU of 0.58 with Average Head Output Norm. In a similar vein, First Token
Value Vector Norm has an IoU of 0.47 with Average Value Vector Norm. This effect may occur
because the presence of small-magnitude vectors drives down the overall average magnitude. The
score function that best predicts the same heads as AWFT is AWFT (LN) with a precision of 0.61.
Notably, normalizing by the average score of other heads in the layer significantly reorders heads.
All other score functions have Precision under 0.19 with AWFT. Because each scoring function

1In the case of Avg Weight of the First Token, we calculate the (1 − p)-th quantile because the threshold
inequality reversed.
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Figure 4: Inactive heads can be identified and zeroed with minor performance degradation. For
each model, we plot the top-3 scoring functions. Average Weight of First Token is not in the top-3
for OLMo-2-1124-7B-Instruct, but we include it for comparison to prior work. The gray dotted line
represents baseline accuracy of the pretrained model. The black line represents zeroing out heads
uniformly at random. The Avg Head Output Norm (LN) scoring function is best at identifying
the most heads, that when zeroed, maintain accuracy. Complete results for all models and score
functions can be found in App. Figure 9.

Table 2: On average, more than 12% of attention heads can be zeroed while keeping average
accuracy within 1% of the original model. For every model, we calculate the highest percentage
of heads that can be zeroed using Average Weight of First Token (AWFT), and compare to our score
functions (i.e., all score functions excluding AWFT). Higher is better. The overall best score function
is also shown. Our score functions only improve or are within less than 0.3% of AWFT. We are able
to identify and verify more inactive heads than previously possible with AWFT. Specifically, using
AWFT would classify less than 5% of heads as inactive, which misses 7% of heads, on average.

Model % of Heads Zeroed Best Score Function

AWFT Ours

Llama-3.2-3B 8.34 8.05 (-0.29) Avg Weight of First Token
Llama-3.2-3B-Instruct 6.87 13.04 (+6.17) Avg Head Output Norm (LN)
Llama-3.1-8B 8.56 17.11 (+8.55) Avg Head Output Norm (LN)
Llama-3.1-8B-Instruct 1.01 10.97 (+9.95) Avg Head Output Norm (LN)
OLMo-2-1124-7B 0.42 8.34 (+7.93) Avg Head Output Norm (LN)
OLMo-2-1124-7B-SFT 1.70 18.95 (+17.25) Avg Head Output Norm (LN)
OLMo-2-1124-7B-DPO 2.14 20.60 (+18.46) Avg Head Output Norm (LN)
OLMo-2-1124-7B-Instruct 1.46 19.54 (+18.07) Avg Head Output Norm (LN)
Qwen2.5-0.5B 7.43 14.42 (+6.99) Last Token Head Output Norm (LN)
Qwen2.5-1.5B 7.55 7.49 (-0.07) Avg Weight of First Token
Qwen2.5-3B 5.67 8.78 (+3.11) Avg Head Output Norm
Qwen2.5-7B 1.25 7.54 (+6.29) Avg Head Output Norm (LN)
Qwen2.5-7B-Instruct 1.13 5.76 (+4.63) Avg Value Vector Norm (LN)
Qwen2.5-14B 11.04 9.88 (-1.17) Avg Weight of First Token

Average 4.61 12.18 (+7.56) -

identifies a distinct subset of heads, we can verify their predictions with confidence that they capture
different underlying properties.

4.3 VERIFYING INACTIVE HEADS THROUGH MODEL INTERVENTIONS

To verify inactive attention heads, we conduct model interventions by zeroing out the outputs of
identified heads from each score function, and measuring the resulting impact on model accuracy.
For every model, we also compare to a random baseline where attention heads are zeroed uniformly

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

at random. An effective inactive head score function should identify a substantial fraction of heads
that can be zeroed out without compromising the performance of the pretrained model. What score
function is best at identifying inactive attention heads?

In Figure 4, we measure how MMLU accuracy changes as we zero out heads selected by different
score functions. For brevity, we present one model from each model family: Llama-3.1-8B-Instruct,
OLMo-2-1124-7B-Instruct, and Qwen2.5-3B. To do this, we vary the threshold of each score func-
tion such that identified heads are at most 30% of the model’s heads. We plot the top-3 score
functions for every model in Figure 4, but complete results for all models and score functions can
be found in App. Figure 9. In Table 2, we quantify the percent of heads that can be zeroed while
keeping accuracy to within 1% of baseline. We find that, for 8 out of 14 models, the Avg Head
Output Norm (LN) score function is best at identifying the most attention heads that when zeroed,
maintain accuracy to within 1% of baseline. For 13 out of 14 models, AHON (LN) ranks in the
top-3 scoring functions. Avg Weight of First Token underestimates the number of inactive heads.

The fact that a single, simple threshold-based function like Avg Head Output (LN) can identify the
most inactive heads for multiple models, suggests that looking at attention weights is a misleading
signal. While heads with attention sink patterns seem to occur in all models we consider (See
App Figure 19), our results suggest these patterns are not solely indicative of inactivity. Moreover,
our results confirm that while attention head patterns may appear “dormant” (Guo et al., 2024a),
their outputs are not. Removing attention heads using Avg Weight of First Token as the score is
particularly ineffective for OLMo-2 models. While it is appealing to look only at attention patterns
as a consistent feature across models of varying organizations and architectures, it appears that small
head outputs are consistently more indicative of inactivity.

Despite looking for negligible head outputs, the complexity and non-linearity of LLMs make it
difficult to know whether heads with “small” outputs can be zeroed while maintaining accuracy. To
the best of our knowledge, we are the first to systematically evaluate the degree of head inactivity
and investigate whether these heads are unnecessary. Takeaway: Inactive attention heads are best
identified by measuring Avg Head Output Norm (LN). Measuring attention weight patterns like Avg
Weight of First Token are not model-agnostic.

Ranking Score Functions. Each of 12 score functions use a different set of 7 thresholds. Accu-
racy curves that terminate at different x-axis values make it difficult to assess which method is best.
So, we choose to measure performance by Area Under the Curve (AUC) normalized by the x-axis
span of each accuracy curve. For every model, the ranking of each score function is displayed in
Figure 3. Notably, Avg Head Output Norm and its normalized version are more model-agnostic,
ranking 1st for 10 out of 14 models. In contrast, Avg Weight of First Token ranks 1st for only
Llama-3.2-3B and Qwen2.5-14B, and performs most poorly for the OLMo-2 family of models.

4.4 SCORE DISTRIBUTIONS FOR STUDYING ATTENTION BEHAVIORS

As described in Section 3, each score quantifies a characteristic about an attention head: how much
attention is paid to the first token, how small is the first value vector, how small is the average head
output, etc. Analyzing the scores of heads can give us a broad idea of attention head behavior.
Every model and score function combination produces a distribution of scores. By measuring the
similarity of these score distributions, we can determine whether attention behavior is similar or
different. With the exception of the AWFT score function, most score distributions have similar
modes (See App. Figure 16). Thus, we chose the Wasserstein distance to measure similarity between
head score distributions. In Figure 5, we see that AWFT score distributions are similar within a
model family, illustrated by a dark block diagonal pattern. The only outlier is Qwen2.5-14B, which
has distributions more similar to Llama models than Qwen2.5 models. For AHON (LN) score
distributions, Llama and OLMo-2 models are more similar to each other than to Qwen2.5 models.

We use the Qwen2.5 models (Yang et al., 2024) to understand how model scale affects attention
head behaviors. There are 5 model types ranging from 0.5B parameters to 14B parameters, but
while the models share the same pre-training data, the exact number of training tokens each model
was exposed to is not publicly documented. Assuming model scale is the only variable, it appears
that model scale impacts attention head behaviors. As Qwen2.5 models grow in size, they are quite
similar to one another, until the 14B scale. For example, on most score functions, Wasserstein
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Figure 5: Head score distributions can be similar within a model family. Smaller Wasserstein
distances indicate similar score distributions. Full results for all 13 scoring functions can be found
in App. Figure 17.

distance is near-zero, indicated by a clear dark region that corresponds to inter-model similarity.
But at the 14B scale, there appears to be only 2 score function distribution where Qwen2.5-14B is
similar to other models in the Qwen2.5 family: Avg Value Vector Norm and its layer normalized
version. This may suggest that larger models learn to specialize their heads in different ways. The
similarity of score distributions between the Llama-3 models we consider may have more to do with
their training objective as opposed to training data. In particular, because Llama-3.2 was created
from pruning Llama-3.1-8B, then performing knowledge distillation, these models are trained to be
similar (Meta, 2024).

To study finetuning, we primarily rely on the OLMo-2 models which have checkpoints after SFT,
after DPO (Rafailov et al., 2023), and after RLHF (Lambert et al., 2024). We also have the Instruct
models corresponding to the Llama-3.2-3B, Llama-3.1-8B, and Qwen2.5-7B base models. Figures 5
and 17 illustrate that all finetuning strategies we consider (SFT, DPO, RLHF) have nearly no effect
on score distributions, suggesting little change in attention behaviors. Across all score functions,
finetuned models have the smallest Wasserstein distances with their base model. In the case of all
the OLMo-2 models, the Wasserstein distances of their score distributions are more similar to each
other than any other model. These results indicate that finetuning primarily preserves the underlying
attention head behaviors of the base model.

5 CONCLUSION

Understanding when attention heads are inactive requires looking beyond attention weights. Simple
score functions, based on previously ignored components like value vectors and head outputs, can
capture a wider array of inactivity. By assigning different scores to every head in a transformer
LLM, we can classify different subsets of attention heads as inactive using a threshold. While there
is some overlap in the subsets of inactive heads we classify using different scoring functions, we
find that most scoring functions capture diverse characteristics. By zeroing out identified inactive
heads during MMLU evaluations, we find that more than 12% of heads can be zeroed out while
maintaining accuracy to within 1% of the baseline model, on average. Using a score function based
on a first token attention sink would classify less than 5% of heads as inactive on average, which
underestimates the true prevalence of inactive heads. For the majority of models we consider, the
score function that measures average head output norm produces the best signal for identifying
inactive heads across model families. While attention sinks and sink tokens are almost synonymous
with an inactive head, our work demonstrates that there are other sets of heads that are more inactive,
and that we can identify them in a more model-agnostic way. Additionally, we show how measuring
score distributions can be informative: we use them to explore how finetuning causes little to no
change to attention behavior, and how model scale does very little to attention behavior until very
large scale. Future work could consider how the MLP module, which proceeds the attention module,
could be inactive per-token if converged to an optimal hidden state.

9
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David Traum, and Lluı́s Màrquez (eds.), Proceedings of the 57th Annual Meeting of the Associ-
ation for Computational Linguistics, pp. 5797–5808, Florence, Italy, July 2019. Association for
Computational Linguistics. doi: 10.18653/v1/P19-1580. URL https://aclanthology.
org/P19-1580/.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
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A APPENDIX

A.1 DEFINING AN ATTENTION HEAD OUTPUT

Vaswani (2017) define an attention head output as the convex combination of value states, resulting
in a dv-dimensional vector where dv = dmodel

h , dmodel is the hidden size, and h is the number of heads.
Other works multiply the dv-dimensional vector by a Rdv×dmodel slice of the output projection matrix
(Elhage et al., 2021). This is often called the “circuit-based” definition. In the following, we explain
why this choice does not affect our intervention results.

Given N input tokens, an attention head will multiply attention weights Ai ∈ RN×N with value
states Vi ∈ RN×dv so that Zi = AiVi ∈ RN×dk for i = 1 . . . h, where i is the head index. In
multi-head attention, we first concatenate H = [Z1; . . . ;Zh] ∈ RN×(hdv). Then, do an output
projection

Y = HWO with WO ∈ R(hdv)×dmodel

Elhage et al. (2021) partition WO row-wise into h blocks of size dv × dmodel:

WO =


W

(1)
O

W
(2)
O
...

W
(h)
O

 , W
(i)
O ∈ Rdv×dmodel (2)

Then they note that the output can be written exactly as the sum of h terms:

Y =

h∑
i=1

ZiW
(i)
O (3)

Elhage et al. (2021) use the above to argue that attention heads are independent saying that this is
“equivalent to running heads independently, multiplying each by its own output matrix, and adding
them into the residual stream.” But crucially, before we add the output of the attention module to
the residual stream, we actually add up all head contributions (i.e., the summation in Equation (3)).
This means that WO can implement cancellations (if, for example, two head contributions sum to
zero) or other special linear combinations of heads.

Our choice and why it does not affect results in Section 4.3. Because WO mixes all heads’
outputs into the shared model space, we did not want to integrate these parameters into our mea-
surement. Thus, we define the pre-output-projection Zi as the attention head output. Importantly,
whether we choose to define Zi or ZiW

(i)
O as the ith head’s output, when “zero out a head” Zi, both

will be zero.

Table 3: Circuit-based definition of head output. We measure the percent of model heads that
can be removed while maintaining accuracy within 1% of baseline (higher is better). For 3 different
models evaluated on MMLU, using the circuit-based definition of a head output is comparable to
using the original definition.

Model AWFT AHON (LN) Circuit-based AHON (LN)

Llama-3.1-8B-Instruct 1.01 10.97 9.88
Qwen2.5-3B 5.67 7.29 5.95
Qwen2.5-7B 1.25 7.54 9.04
Average 2.64 8.60 8.29
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Figure 6: Circuit-based definition of head output. For 3 different models evaluated on MMLU,
using the normalized circuit-based definition of a head output is comparable to using the original
definition. Dashed lines denote layer normalized (LN) score functions.

Implementing the circuit-based definition. We implement the circuit-based definition of Av-
erage Head Output Norm (LN), and evaluate it on MMLU using 3 models in Figure 6. More
specifically, this means that for every head of index i we measure the norms of the rows of
ZiW

(i)
O ∈ RN×dmodel , then average them to produce a score. Table 3 quantitatively shows that

the percent of heads that can be zeroed using both definitions is comparable.

A.2 ADDITIONAL NORMALIZATION STRATEGIES

In Section 3, we describe normalization by the score of other heads in the same layer. For score
functions that measure a particular token in the sequence, like Last Token Head Output Norm, it
is also possible to normalize by other vectors within the same head. We refer to normalization by
other vectors in the same head as head normalization, or “(HN)” within this Appendix. We explored
this normalization strategy with the Last Token Head Output Norm score function, but found it was
always worse than the layer normalization, “(LN)”. HN is only included in App. Figures 9 to 11.

A.3 SAMPLE INACTIVE HEADS USING SCORE FUNCTIONS

In Figure 7, we give examples of attention heads that are identified by each unnormalized score
function, by using threshold-based rules of Table 1. To keep each attention weights matrix small, we
use a random, short 50 token sequence from FineWeb-Edu and execute a forward pass on Qwen2.5-
7B and OLMo-2-1124-7B. In Figure 8, we show how the normalized AHON (LN) score function
can capture distinct kinds of heads. For example, the first head has a first token sink, the second
head has two sinks, and the third head has a second token sink. AHON (LN) is able to identify all
three as inactive.

As a summary of the kind of head that each score function is meant to capture, we provide a short
explanation for each:

• Avg Weight of First Token (AWFT): When attention concentrates on first token

• Avg Entropy of Query Distributions (AEQD): When attention concentrates on a few tokens

• First Token Value Vector Norm (FTVVN): When first value vector is near-zero

• Avg Value Vector Norm (AVVN): When most value vectors are near-zero

• Last Token Head Output Norm (LTHON): When last head output token near-zero

• Avg Head Output Norm (AHON): When most head output tokens are near-zero
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Figure 7: Sample Attention Heads for 6 Unnormalized Score Functions. In each row, we plot
3 sample attention heads for each score function in Table 1. To the right of each attention weights
matrix, we plot the ℓ2-norm of Value Vectors and Head Outputs. We also include the layer index and
head index of each attention head above each plot. Lower scores are better for all score functions
other than AWFT. Note the variety of heads that are identified by each score function.

A.4 FULL RESULTS OF SECTION 4.3

In Section 4.3 Figure 4, we present intervention results for 3 models. Results for all 14 models are
presented in Figure 9.

A.4.1 ADDITIONAL DATASETS

We also run the same experiments and analysis on the PIQA (0-shot) (Bisk et al., 2020) and Wino-
Grande (5-shot) Sakaguchi et al. (2021) datasets. Plots on how accuracy degrades with different
percent of model heads zeroed can be found in Figures 10 and 11. The quantitative analysis, where
we measure the maximum proportion of heads that we can zero while maintaining accurcay to within
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Figure 8: Sample Attention Heads using Avg Head Output Norm (LN). We plot 3 sample atten-
tion heads for AHON (LN), the best score function by AUC (See Figure 3). To the right of each
attention weights matrix, we plot the ℓ2-norm of Value Vectors and Head Outputs. Note that the first
head has a first token sink, the second head has two sinks, and the third head has a second token
sink. AHON (LN) is able to capture all three distinct heads.

1% of the original model can be found in Tables 4 and 5. On PIQA, our score functions show that
more than 21% of attention heads can be zeroed while keeping average accuracy within 1% of the
original model. On WinoGrande, more than 14% of attention heads can be zeroed while keeping
average accuracy within 1% of the original model. Thus, our claim in the main body of the paper is
a conservative estimate of inactive heads. In all cases, our score functions can identify more heads
than Avg Weight of First Token (AWFT).

Table 4: PIQA Benchmark: On average, more than 21% of attention heads can be zeroed
while keeping average accuracy within 1% of the original model. For every model, we calculate
the highest percentage of heads that can be zeroed using Average Weight of First Token (AWFT),
and compare to our score functions (i.e., all score functions excluding AWFT). Higher is better. The
overall best score function is also shown. We are able to identify and verify more inactive heads
than previously possible with AWFT.

Model % of Heads Zeroed Best Score Function

AWFT Ours

Llama-3.2-3B 21.76 17.37 (-4.39) Avg Weight of First Token
Llama-3.2-3B-Instruct 15.32 25.78 (+10.46) Avg Head Output Norm (LN)
Llama-3.1-8B 0.00 17.85 (+17.85) First Token Value Vector Norm (LN)
Llama-3.1-8B-Instruct 31.30 25.39 (-5.91) Avg Weight of First Token
OLMo-2-1124-7B 20.74 22.70 (+1.97) Avg Head Output Norm (LN)
OLMo-2-1124-7B-SFT 1.87 20.12 (+18.26) Last Token Head Output Norm (LN)
OLMo-2-1124-7B-DPO 2.93 15.87 (+12.94) First Token Value Vector Norm (LN)
OLMo-2-1124-7B-Instruct 2.54 26.83 (+24.30) Avg Head Output Norm (LN)
Qwen2.5-0.5B 0.00 18.36 (+18.36) Avg Head Output Norm (LN)
Qwen2.5-1.5B 24.33 21.32 (-3.01) Avg Weight of First Token
Qwen2.5-3B 16.51 21.42 (+4.91) Avg Head Output Norm
Qwen2.5-7B 0.00 28.66 (+28.66) First Token Value Vector Norm
Qwen2.5-7B-Instruct 2.84 11.45 (+8.61) Avg Head Output Norm (LN)
Qwen2.5-14B 0.00 26.12 (+26.12) First Token Value Vector Norm (LN)

Average 10.01 21.38 (+11.37) -

All models and score function evaluations can be found in Figure 9.

A.5 INACTIVE HEAD DISTRIBUTIONS BY LAYER

Using OLMo-2-1124-7B-Instruct and 3 datasets (MMLU, PIQA (Bisk et al., 2020), and Wino-
Grande (Sakaguchi et al., 2021)), we plot the percent of inactive heads per layer in Figure 12. We
consider two score functions, Average Weight of First Token (Gu et al., 2025) and Average Head
Output Norm (LN) (the best performing method in Section 4.3). We choose thresholds such that
∼ 15% of heads are identified as potentially inactive. Specifically, for OLMo-2-1124-7B-Instruct,
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Table 5: WinoGrande Benchmark: On average, more than 14% of attention heads can be
zeroed while keeping average accuracy within 1% of the original model. For every model, we
calculate the highest percentage of heads that can be zeroed using Average Weight of First Token
(AWFT), and compare to our score functions (i.e., all score functions excluding AWFT). Higher is
better. The overall best score function is also shown. We are able to identify and verify more inactive
heads than previously possible with AWFT.

Model % of Heads Zeroed Best Score Function

AWFT Ours

Llama-3.2-3B 9.11 11.64 (+2.53) Avg Head Output Norm (LN)
Llama-3.2-3B-Instruct 5.57 20.37 (+14.79) Avg Head Output Norm (LN)
Llama-3.1-8B 6.86 17.08 (+10.22) Avg Head Output Norm (LN)
Llama-3.1-8B-Instruct 12.44 11.89 (-0.55) Avg Weight of First Token
OLMo-2-1124-7B 15.39 16.12 (+0.73) Avg Head Output Norm (LN)
OLMo-2-1124-7B-SFT 2.32 19.00 (+16.68) Avg Head Output Norm (LN)
OLMo-2-1124-7B-DPO 2.79 16.94 (+14.15) Avg Head Output Norm (LN)
OLMo-2-1124-7B-Instruct 3.02 20.91 (+17.89) Last Token Head Output Norm (LN)
Qwen2.5-0.5B 6.49 11.35 (+4.86) Avg Head Output Norm (LN)
Qwen2.5-1.5B 7.49 12.68 (+5.18) First Token Value Vector Norm
Qwen2.5-3B 5.73 10.32 (+4.60) First Token Value Vector Norm
Qwen2.5-7B 6.60 15.69 (+9.10) First Token Value Vector Norm (LN)
Qwen2.5-7B-Instruct 2.00 8.03 (+6.03) Avg Value Vector Norm (LN)
Qwen2.5-14B 10.80 10.25 (-0.55) Avg Weight of First Token

Average 6.90 14.45 (+7.55) -

we use a AWFT threshold τ of 0.077 for MMLU, 0.265 for PIQA, and 0.109 for WinoGrande. We
use AHON (LN) threshold of 0.457 for MMLU, 0.435 for PIQA, and 0.473 for WinoGrande. Note
that thresholds for our normalized score function are more similar, indicating their generality across
datasets.

When using Average Weight to First Token as the score function (Figure 12, Left), there are sig-
nificant differences between MMLU and PIQA: On MMLU, inactive heads tend to occur in later
layers, averaging above ∼ 60% of inactive heads in layer index 23. But for PIQA, inactive heads
tend to occur in early layers, averaging above ∼ 50% of inactive heads in layer index 3. There is
less variance among datasets when using Average Head Output Norm (LN) as the score function
(Figure 12, Right), demonstrating the consistency of our score function across data distributions.

A.6 MULTIPLE FORWARD PASS ANALYSIS

The main body of the paper focuses on analyzing a single forward pass because that is how log-
likelihood evaluations of MMLU, PIQA, WinoGrande and other MC benchmarks are performed. To
explore how heads may change from inactive to active, based on increasing context, we choose 3
FineWeb-Edu train sequences of at least 512 OLMo-2 tokens in length:

• Seq 0 ID: urn:uuid:0d8a309d-25c5-405d-a08a-c11239f0d717. Category: Literary com-
mentary.

• Seq 1 ID: urn:uuid:316c7af5-14e1-4d0b-9576-753e17ef2cc5. Category: Popular Science
or Journalism.

• Seq 2 ID: urn:uuid:c337bcd8-6aa1-4f2d-8c48-b916442ebbee. Category: Educational arti-
cle on software licensing.

We choose to evaluate inactive heads of OLMo-2-1124-7B-Instruct as each of these sequences grows
in Figure 13. We analyze AWFT and AHON (LN) score functions because AWFT is prior work,
and AHON (LN) is the best score function we discover in Section 4.3. As expected, AWFT presents
decaying curves where the model has fewer inactive heads as sequence length increases. As se-
quences increase in length, each query has more potential tokens it can attend to, making it less
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likely that the first token receives disproportionate attention. Additionally, as can be seen in Fig-
ure 20 and Appendix A.3, OLMo-2 models tend to use additional sink tokens (not just the first
token). In contrast, measuring AHON (LN) inactive heads as sequence length increases, we observe
noisy measurements of inactive head proportions in short sequences that converge as each sequence
gets sufficiently long. In measuring both AWFT and AHON (LN) inactive heads, it is clear that
inactivity is context-dependent.

We are also interested in where changing attention heads are located. We examine inactive head
masks for AWFT and AHON (LN) in Figures 14 and 15. Every matrix cell indicates a particular
attention head, and we color yellow any head that is identified as inactive. Unlike AWFT score
function measurements, AHON (LN) inactive heads are more spread out throughout the model. We
also observe the same phenomenon in Appendix A.5 Figure 12.

A.7 SCORE DISTRIBUTIONS ON MMLU

All score function distributions, from MMLU, can be found in Figure 16.

A.8 FULL RESULTS OF SECTION 4.4 WASSERSTEIN DISTANCES

All Wasserstein distance matrices, for all score functions, can be found in Figure 17.

A.9 SCORE DISTRIBUTIONS COMPARISON: FINEWEB-EDU VS. MMLU

In Figure 18, we show how the distribution of Avg Weight of First Token scores change when the
input dataset changes. Qwen2.5-7B has a small fraction of heads that exceed 0.8 average attention
to the first token on FineWeb-Edu, but on MMLU there are essentially none. One explanation is
the token sequence length which, for 5-shot MMLU, tend to be approximately 3000 tokens long.
In contrast, the FineWeb-Edu sequences we use are randomly truncated to be between 30 and 3000
tokens.

A.10 ATTENTION SINKS AND VALUE-STATE DRAINS

Sample attention sink patterns and value-state drains can be found in Figure 19.

A.11 REDUNDANCY OF ATTENTION PATTERNS

Numerous works have noted the prevalence of redundant attention patterns across attention heads,
even from different layers Xiao et al. (2024); Mu et al. (2024); Guo et al. (2024a); Liu et al. (2023);
Ge et al. (2024), and attention sinks make up part of those patterns. In Figure 20, we observe the
same phenomena in recent pretrained LLMs. We plot attention matrices from the last 8 layers of five
models. The chosen head indices are simply ordered sequentially. Not only are attention patterns
similar among heads of every model, different models have different sink token behaviors. Llama-
2-7b-hf uses two sinks and divides weight between them. Llama-3.1-8B uses the first token as a
sink. OLMo-2-1124-7B, like Llama-2-7b-hf, uses two sink tokens, but the second intermediate sink
is at a different position than that of Llama-2-7b-hf. Qwen2.5-7B tends to use the second token as a
sink, while Qwen2.5-14B uses the first token. We exclude Llama-3.2-3B from Figure 20 because it
presents similar attention patterns to Llama-3.1-8B.

For every model in Figure 20, we also show the top 2 principal components across all attention
matrices (of which there are Nlayer × Nheads). It is surprising to see a few principal components
capturing more than half of the observed variance of attention matrices, for all models.

The input to all models in Figure 20 is from MMLU’s high school computer science, dev
split, index 2. The input text is in the same format used by lm-evaluation-harness (Gao
et al., 2024):

The following are multiple choice questions (with answers) about
high school computer science.

What is the output of "abc"[::-1] in Python 3?
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A. Error
B. abc
C. cba
D. c
Answer:

A.12 ON LM-EVALUATION-HARNESS EVALUATIONS

For reliable and complete evaluations, use batch size=’auto’ in lm-evaluation-harness. It not only
finds an optimal batch size for your hardware to prevent memory errors but also mitigates the issue
where an entire batch may be skipped because one sample cannot fit on the GPU.

A.13 PYTORCH IMPLEMENTATION OF AVG HEAD OUTPUT NORM (LN) AND AVG WEIGHT
TO FIRST TOKEN

We provide sample PyTorch code (Paszke, 2019), for Avg Head Output Norm (LN) and Avg Weight
to First Token, that can be integrated into a self-attention module’s forward pass. When using
lm-evaluation-harness (Gao et al., 2024) to evaluate pretrained models, additional steps
must be taken to ignore padding tokens during log likelihood evaluations (on MC datasets).

All score functions are implemented within the self-attention module and take as input the following
tensors: attention weights of size (B,Nhead, S, S), value states of size (B,Nhead, S, dv), and a float
threshold. B denotes the batch size, S denotes the sequence length, Nhead denotes the number of
attention heads, and dv is the dimension of the value states. As output, both implementations return
a boolean mask of dormant heads of size (B,Nhead) and attention outputs of size (B,Nhead, S, dv).
In the dormant mask, an entry is True if the head is declared dormant, and False otherwise. Note
that models that use grouped-query attention (GQA) (Ainslie et al., 2023) or multi-query attention
(MQA) (Shazeer, 2019) still construct tensors of these sizes, so the specific kind of multi-head
attention is not relevant.

Listing 1: Avg Weight to First Token in PyTorch

1 def awft_dormant_mask(attn_weights, value_states, threshold):
2 avg_weight = attn_weights.mean(dim=-2) # (B, N_head, S)
3 first_token_avg_weight = avg_weight[:,:,0] # (B, N_head)
4 dormant_mask = first_token_avg_weight > threshold # (B, N_head)
5

6 # Model intervention: set dormant head outputs to zero
7 attn_output = torch.matmul(attn_weights, value_states)
8 attn_output[dormant_mask] = 0
9 return attn_output, dormant_mask

Listing 2: Avg Head Output Norm (LN) in PyTorch, following Equation (1)

1 def ahon_ln_dormant_mask(attn_weights, value_states, threshold):
2 attn_output = torch.matmul(attn_weights, value_states)
3 norm_per_token = attn_output.norm(dim=-1) # (B, N_head, S)
4 avg_norm_per_head = norm_per_token.mean(dim=-1) # (B, N_head)
5

6 # compute average across all heads in layer
7 layer_context = avg_norm_per_head.mean(dim=1) # (B,)
8 rel_avg_norm_per_head = (avg_norm_per_head / layer_context[:, None])

# (B, N_head)
9 dormant_mask = rel_avg_norm_per_head < threshold # (B, N_head)

10

11 # Model intervention: set dormant head outputs to zero
12 attn_output[dormant_mask] = 0
13 return attn_output, dormant_mask
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A.14 ADDITIONAL MODEL AND DATASET INFORMATION

Model details. Model inference is done in the original data type of the saved weights
using AutoModelForCausalLM.from pretrained(...,torch dtype="auto"), ex-
cept for OLMo-2 models, where we use float16. All models are downloaded using Hugging Face
(HF) transformers (Wolf et al., 2020). Parameter counts and release dates are shown in Table 6.

Model Name Params Heads Per Layer Num Layers Total Heads Release Date

Llama-3.1 8B 8.03B 32 32 1024 Jul 2024
Llama-3.2-3B 3.21B 24 28 672 Sep 2024
OLMo-2-1124-7B 7.3B 32 32 1024 Nov 2024
Qwen2.5-7B 7.62B 28 28 784 Feb 2025
Qwen2.5-14B 14.8B 40 48 1920 Feb 2025

Table 6: Additional model information of pretrained LLMs used in this work.

Dataset details. The test split of the MMLU benchmark contains 14,042 multiple-choice (MC)
questions spanning 57 tasks including mathematics, US history, computer science, law, and more.
Each question has 4 answer choices.

We also use PIQA (Bisk et al., 2020) and WinoGrande (Sakaguchi et al., 2021), but only in Ap-
pendix A.4 to reduce clutter in the main body. PIQA is a MC benchmark dataset of physical com-
monsense questions where each question has 2 answer choices. WinoGrande is a MC benchmark
dataset of pronoun resolution problems where each problem has 2 answer choices.

A.15 PRACTICAL IMPLICATIONS AND LIMITATIONS

Architectures. We think there is evidence that different problems require different fractions of
model parameters to solve (Raposo et al., 2024; Lin et al., 2017). Our experiments provide concrete
evidence that this occurs in self-attention, and we think sparsity can be beneficial for designing
architectures like MoEs but for attention modules. We may not need to have all heads in memory if
only a subset will be used. A router could potentially be developed to select the appropriate heads.
Our work provides necessary background on inactive attention heads so that future work can develop
new architectures for this problem.

Efficiency It should be possible to dynamically prune different heads on-the-fly whenever we
identify a head as inactive. But it is unknown whether the overhead in identifying these heads
(by computing scores) will make inference so slow that the compute savings are not worth it. In
particular, our best score function (AHON (LN)) has the issue that it requires computing the head
output itself, making it impossible to save compute when “skipping” a head. However, future work
may discover a more proper score function that would allow for compute saving. For example,
Lin et al. (2017) showed that image classifiers could be dynamically pruned at runtime, for each
individual input. Another potential direction is KV cache compression: specifically, not storing K/V
for heads that are inactive. Our work also opens up new directions for investigation like finetuning
inactive heads.

Limitations. We focus on analyzing a single forward pass because that is how log-likelihood
evaluations of MMLU, PIQA, WinoGrande and other MC benchmarks are performed. Analyzing
generation is complex because zeroing out a single incorrectly identified head can ruin the rest of
the generated sequence (i.e., more opportunities for failure). For example, if we zero out too many
heads, we could sample a token representing a different language. Analyzing generation is a natural
next step, as it is used for more practical use-cases.

A.16 LLM USAGE

LLMs were used to aid or polish writing. Gemini 2.5 Pro and ChatGPT were used with prompts like
“revise this sentence”.
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Figure 9: Complete MMLU Results of Section 4.3. For 14 models, we consider 13 scoring func-
tions, and evaluate each at 7 distinct thresholds τ for each.
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Figure 10: Additional PIQA Results for Section 4.3. For 14 models, we consider 13 scoring
functions, and evaluate each at 7 distinct thresholds τ for each.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 11: Additional WinoGrande Results for Section 4.3. For 14 models, we consider 13
scoring functions, and evaluate each at 7 distinct thresholds τ for each.
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Figure 12: Inactive Head Distribution by Layer. For OLMo-2-1124-7B-Instruct, as for other
models, the percent of heads inactive per layer varies based on the data distribution (MMLU vs.
PIQA vs. WinoGrande) when using Average Weight to First Token. There is less variance among
datasets when using Average Head Output Norm (LN) as the score function.

Figure 13: Inactive Heads as Sequence Length Changes. For OLMo-2-1124-7B-Instruct, we
consider 3 FineWeb-Edu sequences, and evaluate the percent of inactive heads in the model as the
sequence length increases. We compare AWFT (τ = 0.077) and AHON (LN) (τ = 0.457) score
functions.

Figure 14: Inactive Heads as Sequence Length Changes. For OLMo-2-1124-7B-Instruct, we plot
an inactive head mask for increasing sequence lengths of “Seq 0” from Figure 13. Yellow indicates
an inactive head, as identified by AWFT score function.
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Figure 15: Inactive Heads as Sequence Length Changes. For OLMo-2-1124-7B-Instruct, we plot
an inactive head mask for increasing sequence lengths of “Seq 0” from Figure 13. Yellow indicates
an inactive head, as identified by AHON (LN) score function.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 16: Head Score Distributions on MMLU. For 13 scoring functions, we plot a density
distribution and a CDF of head scores. We only show scores for Llama-3.1-8B, OLMo-2-1124-7B,
and Qwen2.5-7B for brevity.
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Figure 17: Wasserstein Distance of Head Score Distributions between Models. For each of 13
score functions, we plot a matrix of Wasserstein distances between score distributions of different
models.

Figure 18: Distribution of Avg Weight of First Token Scores changes when the input distribu-
tion changes. Using the same 3 models, we find that the distribution of Avg Weight of First Token
scores varies significantly when using input sequences from MMLU (right) instead of FineWeb-Edu
(left).
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Figure 19: Attention sink tokens have the smallest value vector norms. For different models, we
input the same question from MMLU. In the first row, we plot the attention weights for an arbitrary
head (Layer 26, Head 13) across all models. In the second row, we plot the ℓ2-norm of the value
vector at every position.

Figure 20: PCA of Attention Matrices. Attention patterns from different heads appear homoge-
neous and dominated by attention sinks. We input the same multiple-choice question from MMLU
into Llama-2-7b-hf, Llama-3.1-8B, OLMo-2-1124-7B, Qwen2.5-7B, and Qwen2.5-14B then visu-
alize the attention matrices. Each model row displays a sample of eight attention matrices from
the last eight layers, followed by the top-2 principal components of all attention matrices, with the
explained variance of each component displayed. The top-2 principal components display bright
columns of attention sinks while capturing ≥ 50% of the variance. “L26 H2” denotes the attention
head at index 2 of layer 26.
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