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Abstract

Meta-learning allows an intelligent agent to leverage prior learning episodes as
a basis for quickly improving performance on novel tasks. A critical challenge
lies in the inherent uncertainty about whether new tasks can be considered similar
to those observed before, and robust meta-learning methods would ideally reason
about this to produce corresponding uncertainty estimates. We extend model-
agnostic meta-learning with variational inference: we model the identity of new
tasks as a latent random variable, which modulates the fine-tuning of meta-learned
neural networks. Our approach requires little additional computation and doesn’t
make strong assumptions about the distribution of the neural network weights, and
allows the algorithm to generalize to more divergent task distributions, resulting in
better-calibrated uncertainty measures while maintaining accurate predictions.

1 Introduction

Meta-learning algorithms aim to leverage prior experience from multiple related tasks (Lake et al.,
2017; Schmidhuber, 1987). However, it is not theoretically well understood what collection of tasks
is sufficiently related so that effective meta-learning across these tasks can take place (Vuorio et al.,
2019; Zintgraf et al., 2018). Because of this, it is important that meta-learning algorithms can reason
with uncertainty about the tasks at hand. A robust meta-learner should be distribution agnostic, in the
sense that it does not depend heavily on a uniform distribution over tasks to meta-learn from. While
it is necessary to assume task similarity, applying a meta-learning algorithm to tasks lying outside of
its originally trained task distribution should ideally not lead to nonsensical predictions, but to an
honest conclusion by the algorithm that it is uncertainty about the task at hand.

To realize this, we place the work of Finn et al. (2017) and Vuorio et al. (2019) on Model Agnostic
Meta-Learning (MAML) methods in a Bayesian framework (Blundell et al., 2015; Kingma & Welling,
2014). We continue the work of Ravi & Beatson (2018), Grant et al. (2018) and Finn et al. (2018),
but then in a distribution agnostic context to allow for the application of meta-learning over more
divergent tasks. In particular, we model the identity of new tasks as a dense variational vector which
modulates the fine-tuning of meta-learned neural networks.

Sections 2 and 3 of this paper will discuss the merits of the aforementioned works. Section 4 describes
our variational inference extension, evaluated empirically in sections 5 and 6. Section 7 concludes.

2 Meta-Learning: a probabilistic perspective

Probabilistic machine learning can be expressed as learning the posterior distribution p(θ|D), with
model parameters θ and data D, by solving the following MAP estimation: θ∗ =θ p(D|θ)p(θ).
As shown graphically in Figure 1, we can translate this to a meta-learning setting by adding an
intermediate step to this inference process, casting the problem as hierarchical Bayesian inference
(Grant et al., 2018). In this case, θ represents the meta-parameters, and D represents a meta-dataset,
or a dataset of datasets (tasks). The learned meta-parameters, in conjunction with a new task Di,
allow us to recover the task-specific parameters φi:

p(φi|Di, θ), (1)
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Figure 1: A high-level probabilistic graphical representation of meta-learning, in the unsupervised (a)
and supervised (b) case. Index I represents the distinct tasks, while J indexes the individual datapoints
within task I. θ represents the meta-parameters, φ represents the task specific parameters, and y are
the labels to be predicted, informed by the input data x in the supervised case.

Applying principles derived from Bayes’ rule, we arrive at the full hierarchical meta-learning objective:

p(θ|D) ∝
∏
i

[∫
φi

p(Di|φi)p(φi|θ)dφi
]
p(θ). (2)

We can choose to replace this full marginalization by considering only the most likely value of
φi, as obtained by maximizing (1) (Koller & Friedman, 2009). As this inference problem cannot
be straightforwardly solved for the complex problems tackled in machine learning, two distinctive
meta-learning approaches appeared that each approximate the inference procedure in their own way.

2.1 Model-based meta-learning

Model-based meta-learning approximates the inference procedure by introducing a meta-model fθ,
such as a neural network with weights θ, that maps the new task Di to the task-specific parameters
φi. This models the posterior over task-specific parameters φi explicitly as the output of a neural
network, often using a point estimate of the maximum likely value of φi, which we refer to as φ∗i
(Schmidhuber et al., 1996). The predicted parameters φ∗i parameterize a task-specific network gφ∗

i
.

2.2 Model-agnostic meta-learning

In contrast, Model-Agnostic Meta-Learning (MAML) algorithms (Finn et al., 2017, 2018; Grant
et al., 2018) meta-learn an initialization θ of the task-specific model parameters φi, to be finetuned
with gradient descent to the new task to obtain φ∗i . Grant et al. (2018) show that this corresponds
to approximating (1) as the product of a likelihood p(Di|φi) and prior p(φi|θ), as in the integral in
(2), and is mathematically equivalent to placing a prior over the fine-tuned parameters φ∗i , centered
around θ. This means that the task-specific estimation of φ∗i becomes a simple gradient descent
fine-tuning procedure with a loss function L:

φ∗i ← θ − α∇θL(f(Di; θ)), (3)
performed for one or more gradient steps with learning rate α. The meta-learning objective becomes:

min
θ

L(f(Dtest
i ;φ∗i )) (4)

(Finn et al., 2017). This effectively results in an optimization problem where values for θ are found,
such that it becomes easier to finetune them to optimal values for task specific parameters φ∗i with a
few steps of gradient descent.

2.3 Unifying the branches

Multimodal MAML (MMAML) (Vuorio et al., 2019) combines both branches. It trains a separate
black-box meta-model, a recurrent network, to output a single vector z. Instead of directly using this
vector as the parameters for the prediction task, it uses it to adapt an initialization θ. This is done by
applying a number of simple single-layer decoders to the vector, the output of which each adapts a
single layer of the network via a FiLM adaptation (Perez et al., 2017). Figure 2 shows a schematic
representation, where the FiLM adaptation is denoted by ◦. From this initialization, a regular MAML
procedure is performed on the task network g{θ,z}. This allows the combined models to learn an
embedded representation of the task identity, used to nudge the initialization to a mode from which
MAML can more easily fine-tune to the specific task. This allows the procedure to approximate a
much wider range of optimal task-specific parameters φ∗i with a neural network of limited depth.
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Figure 2: Schematic representation of Multimodal MAML. Image recreated from Vuorio et al. (2019).

2.4 Variational methods for meta-learning

While these methods show good empirical results, their approximations lose information about
the uncertainty over predictions. Variational inference (Blundell et al., 2015) provides ways of
maintaining these uncertainty considerations. It reframes the inference problem as an optimization
problem by defining parameterized distributions and optimizing them to approximate intractable
posteriors, by maximizing the Evidence Lower Bound (ELBO) (Blei et al., 2017):

log p(D) = ELBO+KL(qψ(Z)||p(Z|D)),

with ELBO = Eq[log p(D, Z)]− Eq log qψ(Z)
= Eq[log p(D|Z)]−KL(qψ(Z)||p(Z)).

(5)

Here, ψ represents the variational parameters of the newly introduced distribution qψ(Z) that are to
be optimized, Eq represents the expectation over this distribution, and KL represents the Kullback-
Leibler divergence (Kullback & Leibler, 1951). Maximizing this objective guarantees that the
distribution q(Z) approaches the intractable and unknown posterior p(Z|D) (Blei et al., 2017).

3 Related work
A few previous methods have applied variational inference to meta-learning. First, Grant et al.
(2018) propose an extension to MAML that uses a Laplace approximation of a Gaussian distribution
centered around φ∗i , calculated based on the curvature of the loss function at φ∗i . This is a fairly crude
approximation, and computationally expensive for larger models, but effective on smaller problems.

Amortized Bayesian Meta-Learning (ABML) (Ravi & Beatson, 2018) maximizes a lower bound to
the model evidence from the hierarchical meta-learning formulation in (2). To optimize this lower
bound, they introduce a variational distribution q(φi) over the posterior parameters, defined to be
equal to the result of a fixed number of gradient descent steps from the prior parameters θ. By
optimizing this with respect to θ, they obtain a method similar to the original MAML, but modeling
each parameter as a mean and a variance. It therefore models the parameter space as independent
Gaussian distributions, which is an oversimplification in theory, but tends to perform well in practice.

A third method, called PLATIPUS, does not treat the task specific parameters probabilistically, but
uses a MAP estimate (Finn et al., 2018). As it learns a distribution via variational inference over
the global parameters θ, repeated samples from this parameter space give rise to a distribution over
φi as well, dependent on the initial conditions of the sample from θ. This results in a method akin
to Hamiltonian Monte Carlo (Duane et al., 1987). In order to compensate for the fact that a MAP
estimate is used for φi, the method additionally conditions the meta-parameters θ on the task specific
data. It does so by applying MAML, and parameterizes the conditioned distribution through a single
step of gradient descent so that samples from p(θ) are now samples from the task specific distribution
p(θi) ∼ N (µθ − ∇θL(Di), σθ), where L is the loss function being optimized. This allows the
parameters to be nudged in the right direction, before adding randomness through the sampling
operation, and further fine-tuning towards samples of φi. Empirical results show good performance
on ambiguous meta-learning tasks, indicating that the nudging of the prior allows the MAP estimation
of φi to effectively cover the posterior distribution.

These prior methods are purely optimization based (Vuorio et al., 2019) and therefore don’t generalize
knowledge very well between tasks from multimodal task distributions. One exception is a continual
meta-learner proposed by Jerfel et al. (2018), which deals with multimodal distributions by modelling
the hyperparameters θ as a set of n different initializations, of which the final task specific parameter
φi is considered to be a Dirichlet Mixture. This is conceptually identical to casting MAML as
hierarchical Bayes (Grant et al., 2018), with a mixture distribution as a prior, instead of a Gaussian.
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Figure 3: Probabilistic graphical model for the VTE-MAML algorithm. λ represents the variational
parameters in the modulation network, z represent the variational encoding of the task identity. Solid
arrows represent the probabilistic dependencies, and dashed arrows the variational approximations.

4 Method

We integrate variational inference into MMAML by introducing Variational Task Encoders for
Model-Agnostic Meta-Learning (VTE-MAML). These Variational Task Encoders perform a nudging
operation on θ, similar to PLATIPUS, except that the meta-parameters are modelled by an RNN,
similar to MMAML, yielding improved coverage over multimodal task distributions (Vuorio et al.,
2019). This yields the graphical model shown by the solid lines in Figure 3. Here, zi represents a
variational encoding of the task at hand. This is then decoded via a small decoder network for each
layer in the network, the outputs of which are used to modulate θ. The MAML procedure is applied
to this modulated initialization to find a MAP estimate φ∗i . The structure of VTE-MAML is the same
as in Figure 2, except that z is variational, requiring a novel objective that we derive next.

4.1 The VTE-MAML objective

To perform inference on this graphical model, we derive a variational optimization objective for the
posterior p(zi|Di). First, we express the full joint probability of the model as

p(D, z, φ, θ) = p(θ)
∏
i

[p(zi)p(φi|zi, θ)p(Di|φi)]. (6)

where p(θ) is the prior over the meta-parameters θ, i indexes the tasks in our meta-dataset, p(zi)
represent the priors over the variational task embeddings, p(φi|zi, θ) represents the task-specific
parameters conditional on the task identity and the meta-parameters, and Di is the dataset for task i.
We derive the model evidence p(D) by marginalizing over all other variables in the joint probability:

p(D) =
∫
θ
p(θ)

∏
i

[∫
zi
p(zi)

∫
φi
p(φi|zi, θ)p(Di|φi)dφidzi

]
dθ. (7)

Following the procedure for deriving the ELBO for hierarchical models from Ranganath et al. (2016),
we introduce a variational distribution over the global parameters qλ(θ):

log p(D) = log

∫
θ

p(θ)
∏
i

[∫
zi

p(zi)

∫
φi

p(φi|zi, θ)p(Di|φi)dφidzi
]
q(θ)

q(θ)
dθ

= logEq(θ)

p(θ)∏i

[∫
zi
p(zi)

∫
φi
p(φi|zi, θ)p(Di|φi)dφidzi

]
q(θ)


≥ Eq(θ)

[
log p(θ) +

∑
i

[
log

∫
zi

p(zi)

∫
φi

p(φi|zi, θ)p(Di|φi)dφidzi
]
− log q(θ)

]

= Eq(θ)

[∑
i

log

∫
zi

p(zi)

∫
φi

p(φi|zi, θ)p(Di|φi)dφidzi

]
− Eq(θ)

[
log

q(θ)

p(θ)

]

= Eq(θ)

[∑
i

log

∫
zi

p(zi)

∫
φi

p(φi|zi, θ)p(Di|φi)dφidzi

]
−KL(q(θ)||p(θ)).

(8)
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Algorithm 1 VTE-MAML Meta-Training
Input: Meta-dataset: D
Hyperparameters: Priors: p(θ) = {µθ, σθ}; p(z) = {µzi , σzi}i; Inner learning rate: α; Outer
learning rate: β
Initialize θ, λ
repeat

Sample batch of tasks T : Di
for all Di in T do
Di = Dtrain

i , Dtest
i

Sample ε ∼ N (0, 1)
Infer (µzi , σzi) = qλ(zi|Dtrain

i )
Evaluate KL((µzi , σzi)||p(zi))
Reparameterize zi = µzi + σzi ∗ ε
Modulate θi ← FiLM(zi, θ)
Fine-tune φi ← SGDk(θi;α,D

train
i )

Evaluate − log p(Dtest
i |φi)

end for
θ ← θ − β∇θ

∑
T [− log p(Dtest

i |φi)]− log p(θ)
λ← λ− β∇λ

∑
T [− log p(Dtest

i |φi) + KL((µzi , σzi)||p(zi))]
until converged
return: θ, λ

By introducing the variational distribution, we can express the integral over θ as an expectation over
our new distribution qλ(θ). By applying Jensen’s inequality in the third step, we recover the ELBO
as originally derived (Blei et al., 2017). The exact procedure above can be repeated for the integral
over zi (Ranganath et al., 2016). This results in:

log p(D) ≥Eq(θ)
[∑
i

Eq(zi)[log
∫
φi

p(φi|zi, θ)p(Di|φi)dφi]

−KL(q(zi)||p(zi))
]
−KL(q(θ)||p(θ)).

(9)

log p(D) ≥max
λ

Eq(θ)
[∑
i

Eq(zi)[log p(Di|φ∗i )] −KL(q(zi)||p(zi))
]
−KL(q(θ)||p(θ))

with φ∗i = SGDk(θ;α,Di) ≈φi
p(φi|zi, θ).

(10)

SGDk represents k steps of stochastic gradient descent with learning rate α, on task-specific data
Di. This allows us to replace the intractable integral over φi with a simple evaluation at the MAP
estimate in the objective. Similar to Finn et al. (2018), we assume that the probabilistic conditioning
of the initialization on the task will provide enough variance over the initialization so that the MAP
estimate will not significantly affect the uncertainty estimates, as in Hamiltonian Monte Carlo (Duane
et al., 1987).

Finally, we assume that during meta-training we have a large number of tasks, with only very few data
points per task, i.e. I � J . In this case, the posterior distribution over θ, approximated by variational
distribution q(θ), will approach a Dirac delta function at θ∗ =θ p(θ|D) (Amit & Meir, 2018; Ravi &
Beatson, 2018). This allows us to replace the expectation over q(θ) with a simple evaluation at θ∗
and replaces the final KL-divergence term with − log p(θ), equal to an L2-regularization norm in the
case of a Gaussian prior. This leads to our final objective, here inverted to serve as a loss function to
be minimized:

L(θ, λ;D) =
∑
i

[
Eq(zi) [− log p(Di|φ∗i )] + KL(q(zi)||p(zi))

]
− log p(θ). (11)

4.2 The VTE-MAML algorithm

The full meta-training strategy is shown in Algorithm 1. The meta-testing strategy is analogous
to MMAML and detailed in the supplementary materials. In this version of the algorithm, the KL
is calculated analytically and the expectation of the likelihood over q, Eq(zi)[− log p(Di|φ∗i )], is
approximated based on a single sample, since previous work has shown no significant performance
increase when using more samples (Blundell et al., 2015; Kingma & Welling, 2014).

This method has a number of advantages over existing MAML-based meta-learning methods. It
reasons with uncertainty about the underlying tasks and task distribution, without making strong
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assumptions about the distribution over the network weights φi. While VTE-MAML still uses
a Gaussian variational distribution in the task embedding, the decoder networks can transform
this distribution to an arbitrary shape before modulating the network parameters, which allows for
correlations to exist between the distributions over model parameters. Secondly, the method is more
distribution agnostic than existing probabilistic methods, as it is able to cover a flexible distribution
over tasks, and reason appropriately about tasks that are outside the task distribution it was trained on.
As Vuorio et al. (2019) have shown, modulating the network with a separate model-based modulation
greatly improves the range of distributions covered by the meta-learner. Turning this modulation into
a variational task encoding can be intuitively understood as modelling the identity of the task, that
informs the model about some critical characteristics of the task at hand. Finally, while improving
on these aspects, the meta-learning procedure is still model agnostic, and requires little additional
computation. Further details are given in the supplementary materials.

5 Experimental setup

We evaluate VTE-MAML on a range of synthetic problems specifically designed to exhibit uncertainty
over diverse task distributions, as well as standard few-shot learning benchmarks. To evaluate VTE-
MAML’s generalizability over multimodal task distributions, we compare against Multimodal MAML
(MMAML) (Vuorio et al., 2019). To evaluate probabilistic properties, such as uncertainty calibration,
we compare against PLATIPUS (Finn et al., 2018). We also compare against MAML (Finn et al.,
2017) as a baseline.

5.1 Datasets

We reconstruct the synthetic multi-modal regression tasks used in Vuorio et al. (2019). They consists
of five families of functions, generated with a range of possible parameters and added noise. In
addition, we generate multi-modal classification tasks consisting of three modes, each with a range
of permutations and added noise. The models will be trained on 6 data points, constituting a 2-way
3-shot classification task. We also evaluate all methods on the MiniImagenet benchmark (Vinyals
et al., 2016), using the same canonical splits of 64 training, 12 validation, and 24 test classes to
generate the n-way, k-shot tasks used to evaluate MAML, MMAML, and PLATIPUS in prior work.

5.2 Model details

Each algorithm was trained with identical underlying model architectures. Where possible, hyperpa-
rameters from previous literature were applied, along with a grid search around these parameters. For
the synthetic tasks, the base model had four dense layers with 100 units and ReLU non-linearities.
For the MiniImagenet task, the base model had 4 convolutional blocks with kernels of size 3 with 32
filters, followed by batch normalization, a ReLU non-linearity, and 2 x 2 max-pooling. The output
is flattened and passed through a single dense layer to get the 5-way output required. Multimodal
MAML and VTE-MAML also use a modulation network. For the synthetic tasks, we used two-layer
bidirectional LSTMs with 40 hidden units to mirror the implementation by Vuorio et al. (2019). The
networks used to decode the task encoding consist of three dense layers of 80 units each. For the
MiniImagenet task, the encoders are convolutional neural networks with four layers with channel
sizes 32, 64, 128, and 256, respectively, again mirroring Vuorio et al. (2019). The activations are
fed through a final dense layer which transforms this vector into the final task encoding of size 128.
These are decoded by 3-layer neural networks with 128 hidden units, beforer FiLM adaptation.

5.3 Performance metrics

To evaluate the accuracy of the uncertainty estimates, we evaluate the models based on Expected
Calibration Error (ECE) and Maximum Calibration Error (MCE) (Guo et al., 2017). These statistics
estimate how much our confidence in the predictions may differ from the actual results of prediction.
To evaluate whether our method is distribution agnostic, we train the meta-learners on a limited
number of task modes, and evaluate them on the other modes. This allows us to observe how well the
algorithms deal with tasks that are not identically distributed with the tasks it was trained on. All
experiments are repeated ten times, and we report the mean along with the 95% confidence interval.
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Figure 4: Qualitative results from the Multimodal Regression experiments with 5 modes. The red
triangles represent the training examples, the blue dots the true distribution of the unseen test data.
Many additional examples are provided in the additional materials.
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Figure 5: Illustration of classification tasks. Triangles
show training points, dots show the true data distribu-
tion. Background colors represent model predictions.
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6 Results

6.1 Multimodal supervised learning performance

First, Figure 4 illustrates the behavior of the meta-learners on a few 5-mode regression tasks. Addi-
tional examples, as well as full details for reproducing all results can be found in the supplementary
materials. For VTE-MAML, the sampled grey curves show the associated uncertainty, which seems
to correspond well to the available training data. Full evaluation results are shown in Table 1 (left). In
all tables, we indicate the best result and those within the confidence interval of the best result in bold.
We find that VTE-MAML performs particularly well on unseen modes (function families not seen
in the training tasks), while performing on par with with MMAML on 5-mode tasks. If we further
reduce the multi-modality of the data to 3 modes (by using only 3 function families), VTE-MAML
slightly under-performs the state of the art Multimodal MAML (MMAML) model. PLATIPUS has
no explicitly modelled task identity, making it less able to adapt to multimodal task distributions.

Qualitative results on the multi-model classification tasks are shown in Figure 5. Lighter background
colors represent higher uncertainty in the predictions. We observe that both Multimodal MAML
and VTE-MAML give reasonable predictions. However, MMAML is overconfident in areas without
training data, while VTE-MAML clearly shows increased uncertainty in areas where no training
points exist. Full results are shown in Table 1. Once again, with fewer modes, MMAML is more
accurate, but the difference disappears on more multi-modal tasks, and VTE-MAML outperforms
all other methods on unseen modes. PLATIPUS has good performance in general, although it also
degrades when the number of modes increases.

Table 1: Multimodal classification (left) and regression (right) results
Model Mean Squared Error

3 modes 5 modes Unseen modes

MAML 1.35 ±0.09 2.12 ±0.22 4.33 ±0.27
MMAML 0.42 ±0.04 0.90 ±0.15 4.52 ±0.34
PLATIPUS 0.96 ±0.12 1.80 ±0.19 4.02 ±0.31
VTE-MAML 0.76 ±0.05 1.10 ±0.09 3.35 ±0.29

Model Accuracy (%)
2 modes 3 modes Unseen mode

MAML 85.55 ±0.13 82.40 ±0.25 76.09 ±0.42
MMAML 86.58 ±0.09 84.05 ±0.30 75.37 ±0.49
PLATIPUS 86.02 ±0.12 82.90 ±0.33 76.03 ±0.52
VTE-MAML 85.93 ±0.20 83.75 ±0.38 77.90 ±0.46
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Table 2: 1-shot 5-way MiniImagenet results.
Model Accuracy (%) ECE MCE

MAML 47.58 ±0.13 5.75 ±0.07 25.48 ±0.52
MMAML 49.90 ±0.08 7.10 ±0.16 31.76 ±0.92
PLATIPUS 49.80 ±0.45 4.10 ±0.13 21.15 ±0.62
VTE-MAML 48.96 ±0.14 3.96 ±0.12 17.42 ±0.45

Table 3: Calibration metrics on Multimodal classification task.
Model 2 modes 3 modes Unseen mode

ECE MCE ECE MCE ECE MCE

MAML 2.34 7.93 4.94 13.69 15.04 31.51
MMAML 7.06 24.30 11.07 44.87 14.65 34.54
PLATIPUS 3.21 8.05 4.10 13.76 14.90 29.31
VTE-MAML 4.16 13.27 4.08 13.86 12.28 26.32

6.2 MiniImagenet

The results of the MiniImagenet benchmark are shown in Table 2. VTE-MAML shows slightly
degraded performance compared to both Multimodal MAML and PLATIPUS. This is somewhat
expected since this task does not contain any explicit multimodal aspects, reducing the advantages
of VTE-MAML over PLATIPUS. However, VTE-MAML does produce slightly better uncertainty
estimates. We will now study this in more detail.

6.3 Uncertainty calibration

Table 3 shows the calibration metrics ECE and MCE on the classification tasks. This shows that
VTE-MAML has substantially better calibration of uncertainty compared to MMAML. PLATIPUS
provides better uncertainty estimates on tasks with very few modes, but since it is not explicitly
designed with multimodal distributions in mind, this benefit disappears when additional modes are
added to the problem. On tasks unseen during training, VTE-MAML estimates uncertainty better
than the other models, and as shown in Table 1, it is more accurate on such tasks as well. Note that the
original MAML algorithm also produces good calibration of uncertainty, although mainly on tasks
with very few modes. Looking at the results on the real-world but less multi-modal MiniImagenet
task (Table 2), VTE-MAML also shows improved calibration compared to MAML and MMAML.
Compared to PLATIPUS, it has similar ECE scores and slightly better MCE scores.

6.4 Behavior of the variational task encoding

Figure 6 displays the Mean Squared Error scores on the 5-mode regression tasks for MAML, Multi-
modal MAML and VTE-MAML, in relation to the number of inner gradient steps performed. Without
gradient updates, VTE-MAML performs similar to MAML, which has no modulation network. This
indicates that the modulation network in VTE-MAML places the modulated parameters in a local
maximum with high curvature, so that fewer gradient updates result in improved performance. This
does raise the question of whether the modulation network is doing anything significant at all. There
are a few pieces of evidence that suggest otherwise. First, the performance on most multimodal tasks
improves with the use of the variational modulation network. Second, the functions resulting from
VTE-MAML show clearly increased variance in areas where fewer data points are provided. If the
algorithm learned to ignore the modulation network, this would not occur. Third, we see in Figure 6
that the modulation network helps VTE-MAML to converge faster than MAML.

7 Conclusion

The approach presented in this paper improves on model-agnostic meta-learning (MAML) methods
by making them reason with uncertainty about the target tasks, and making them more robust to
dealing with more disparate and multimodal distributions. It does this by modelling the identity
of tasks as a dense variational embedding vector. By adapting the initialization of MAML with
decoded samples from the variational embedding, we approximate hierarchical Bayesian inference.
As such, this method combines the benefits of two state-of-the-art techniques: MultiModal MAML
and PLATIPUS. We empirically observe that the procedure covers more divergent task distributions,
while maintaining more reasonable estimates of uncertainty over the tasks. It is more honest about
its generalization to tasks that it has not seen in training, and makes more reasonable predictions on
these tasks. This can be achieved with relatively few additional computations, and without making
strong assumptions about the distributions of the neural network weights, remaining model-agnostic.
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Variational Task Encoders for Model-Agnostic Meta-Learning:
Supplementary Material

1. Meta-Testing Algorithm pseudo code
Algorithm 1 shows the meta-testing, or fine-tuning, proce-
dure for VTE-MAML on new tasks. This is straightfor-
wardly derived from the training algorithm presented in the
Methods section. In this algorithm Di represents the new
dataset, θ represents the learned meta-parameters of the
model, λ represents the learned variational parameters of
the modulation network to model the variational distribution
qλ(zi|Di).

Algorithm 1 VTE-MAML Meta-Testing

Input: New task dataset: Di, Learned: θ, λ
Hyperparameters: Inner learning rate: α
Infer (µzi , σzi) = qλ(zi|Di)
for each sample of φi do

Sample ε ∼ N (0, 1)
Reparameterize zi = µzi + σzi ∗ ε
Modulate θi ← FiLM(zi, θ)
Fine-tune φi ← SGDk(θi;α,Di)

end for
return: all samples of φi

2. Experiment Details
This section contains details on how we constructed the
synthetic multimodal tasks used in our experiments. The
regression tasks are reconstructed from Vuorio et al. (2019)
to allow a direct comparison.

2.1. Multimodal Regression

The training tasks for the Multimodal Regression meta-
dataset are generated on the fly during training and testing
and correspond exactly to the functions used in Vuorio et al.
(2019)1. These tasks are sampled randomly from one of the
function families, with equal likelihood for each function
family. The function families for the 3-modal regression
tasks are Sinusoidal, Linear and Quadratic functions. For
the 5-modal regression tasks additionally the L1-norm and
Tanh functions are added. For the experiments performed on
unseen modes, the model is trained on the first three modes,

1This does not exactly correspond to the description in the
paper by Vuorio et al. (2019), as their supplementary materials
contain minor errors. Instead, these values correspond to the ones
used in their experiments, as can be inspected in their source code.

Figure 1. Illustration of the multimodal regression task, with 100
data points generated per function for illustrative purposes. In
reality, the algorithm will be trained on a 5-shot regression task.
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and evaluated on the last two. For each of the regression
tasks, the input values x are sampled uniformly from the
interval [−5, 5]. Each of the functions also has added noise ε,
which is sampled for individual data points from a Gaussian
distribution N (0, 0.3). Figure 1 shows an illustration of
these function families.

Sinusoidal functions are generated according to the follow-
ing formula:

y = A ∗ sin(x+ b) + ε,

where A ∈ [0.1, 5], and b ∈ [0, 2π]. Linear functions are
generated according to the formula:

y = A ∗ x+ b,

where A ∈ [−3, 3], and b ∈ [−3, 3]. Quadratic functions
are generated according to the formula:

y = A ∗ (x− c)2 + b,

where A ∈ [−0.15,−0.02] ∪ [0.02, 0.15], b ∈ [−3, 3], and
c ∈ [−3, 3]. L1-norm functions are generated according to
the formula:

y = A ∗ |x− c|+ b,

where A ∈ [−3, 3], b ∈ [−3, 3], and c ∈ [−3, 3]. The Tanh
functions are generated according to the formula:

y = A ∗ tanh(x− c) + b,

where A ∈ [−3, 3], b ∈ [−3, 3], and c ∈ [−3, 3].
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Figure 2. Illustration of the three modes of the classification tasks, showing the intertwined half moons, concentric circles and linear
separation respectively. Showing 100 data points per task for illustrative purposes. In reality, the algorithm is trained on 6 data points
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2.2. Multimodal Classification

The multimodal classification tasks are generated dur-
ing training and testing as well, and belong to three
distinct modes. The 2-modal classification task con-
sists of intertwined half moons and concentric circles.
The 3-modal classification task additionally has a lin-
early separable classification task added. Each of these
datasets can be straightforwardly generated by using the
Scikit-learn python package (Pedregosa et al., 2011),
which implements these as functions in the dataset mod-
ule. These functions are make moons,make circles
and make classification respectively. With the follow-
ing parameters. For make moons, noise = 0.2. For
make circles, distance = 0.5 and noise = 0.1. For
make classification, n features = 2,n informative = 2
and n redundant = 0.

Since make moons and make circles generate identical
datasets each time, apart from the noise, additional transla-
tions are applied to these functions to make sure that each
task is distinct. The intertwined half moons are rotated by
sampling an angle α ∈ [0, 2π] and multiplying the input
values {x1, x2} with the rotation matrix R corresponding to
that angle. The concentric circle tasks are made unique by
scaling and translating the input values {x1, x2} according
to the following formula:

x∗1 = A1 ∗ x1 + b1

x∗2 = A2 ∗ x2 + b2,

where where A1, A2 ∈ [0.5, 2.5], and b1, b2 ∈ [−2.5, 2.5]

3. Model Implementation and Training
For the regression tasks each algorithm uses a meta-batch
size of 125 tasks for the 5-modal regression, and 75 tasks
for the 3-modal regression, ensuring that each task batch
has 25 tasks from each mode. Each algorithm performs
five inner update steps during training and ten inner update
steps during validation and evaluation. VTE-MAML re-
quires priors to be defined for the distributions p(θ) and
p(zi), as discussed in section 7.1, this choice does not seem

Table 1. Learning rates (LR) used in experiments.

Task Model Inner LR Outer LR

Regression

MAML 0.01 0.001
MMAML 0.01 0.001
PLATIPUS 0.001 0.001
VTE-MAML 0.001 0.001

Classification

MAML 0.01 0.001
MMAML 0.01 0.001
PLATIPUS 0.01 0.001
VTE-MAML 0.001 0.001

MiniImagenet

MAML 0.01 0.005
MMAML 0.01 0.005
PLATIPUS 0.001 0.001
VTE-MAML 0.001 0.0005

to significantly impact the model performance, so for each
experiment simple unit Gaussians were used. For the classi-
fication tasks, the hyperparameters used were identical to
those used for regression, with the exception that for each
classification task the meta-batch size was kept at 125 tasks,
irrespective of the number of modes.

For MiniImagenet, the models were trained on meta-batches
consisting of 4 tasks, as larger meta-batch sizes ran into
memory limitations. Once again, the models were updated
for 5 inner steps during training, and 10 inner steps during
evaluation and validation.

The most significant hyperparameters that were iterated on
during training were the inner and outer learning rates. The
inner learning rate corresponds to the learning rate used for
the fine-tuning of the global parameters θ via SGD to result
in the task-specific parameters φi. The outer learning rate
corresponds to the learning rate that is used during meta-
training to optimize the global parameters θ, and in the case
of VTE-MAML, also λ. The learning rates used for each
of the models on each of the experiments were established
using a grid search, and the final used values are shown in
Table 1.
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Figure 3. Illustration of the ”split decision” artefact that can be
observed occasionally in regression tasks
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4. Additional results and analysis
This section provides additional results, and dive deeper into
some of the observations reported in the paper.

4.1. Qualitative Samples

Figure 4 shows an extensive range of sampled multi-model
regression tasks and the results for VTE-MAML, MAML,
and MMAML. These are the results for the 5-mode exper-
iments, and every column shows examples of the result
for one specific mode: sinusoid, linear, quadratic, L1, and
tanh, respectively. Purple triangles represent the training
points, blue dots the true data distribution. The blue line
and red line represent the MAML and Multimodal-MAML
predictions, respectively.

Grey lines represent samples from VTE-MAML (ours),
showing that our method indeed provides accurate uncer-
tainly estimates on multi-modal tasks. As explained in
the paper, occasionally some overconfident predictions are
made, especially when the few provided training points
suggest that a simpler model can be used.

4.2. Bimodal posterior examples

As discussed in the paper, we occasionally observed that
the non-probabilistic fine-tuning step occasionally causes a
collapse to a bimodal posterior, or a ’split decision’ between
two alternative functions which are close to the mean. Fig-
ure 3 shows a few extreme cases where this was observed.

4.3. Model calibration details

Figure 5 shows model calibration details for VTE-MAML,
MAML, and MMAML. Ideally, the histograms should cor-
respond to the diagonal. Red bars below diagonal indicate
overconfidence in positive label. Grey bars in overlay in-
dicate the fraction of predictions that fall within the corre-
sponding bucket. The top row shows results for the 3-mode
classification experiments, the second row (unseen mode)
shows models trained on 2 modes and tested on the held
out mode, while the last row shows the results on MiniIma-
geNet.

Overall, we can conclude that VTE-MAML produces much
more accurate uncertainty estimates, although some over-
confidence can still be observed.

5. Computational Complexity
In terms of computational complexity during training, VTE-
MAML is broadly comparable to Multimodal MAML. The
majority of the computational complexity arises from back-
propagation through the inner update steps of the MAML
procedure. Multimodal MAML and VTE-MAML add an
additional modulation network, which leads to a roughly
25% increase in training time in our experiments, compared
to non-multimodal alternatives.

Note that, since all uniquely probabilistic properties of
VTE-MAML are relegated to this modulation network, the
MAML procedure could be replaced with a more computa-
tionally efficient alternative such as REPTILE (Nichol et al.,
2018) or iMAML (Rajeswaran et al., 2019) if a performance
increase is desired. This does however constitute further
approximations of the probabilistic objective, which may
affect the quality of the uncertainty estimated. Such a faster
implementation and the resulting speed-accuracy trade-off
was not yet evaluated in this work.

During training, VTE-MAML does not markedly differ
in complexity from Multimodal MAML, as only a single
sample from the Variational Task Encoder is required for op-
timization, and the KL-divergence can be straightforwardly
calculated analytically. However, when fine-tuning, our al-
gorithm does require separate fine-tuning for each desired
sample from the model. In practice, this is rarely problem-
atic, as each task only requires a very limited number of
gradient updates in the fine-tuning procedure.
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Figure 4. Randomly sampled multi-model regression tasks and the results for VTE-MAML, MAML, and MMAML.
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Figure 5. Model calibration on Multimodal classification and MiniImagenet tasks. Each bucket contains at least 500 predictions. Top row
shows calibrations for multimodal classification with three modes. Middle row shows calibration on unseen mode of classification task.
Bottom row shows calibration on MiniImagenet.
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(a) MAML classification.
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(b) Multimodal MAML classification
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(c) VTE-MAML classification
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(d) MAML unseen mode
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(e) Multimodal MAML unseen mode
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(f) VTE-MAML unseen mode
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(g) MAML MiniImagenet
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(h) Multimodal MAML MiniImagenet
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(i) VTE-MAML MiniImagenet

The MiniImagenet experiments in this work were trained on
a single NVIDIA RTX 2070 Super GPU for approximately
12 hours. The experiments on the synthetic classification
and regression datasets did not experience any significant
speedup from a GPU, due to the moderate input and network
size. These were therefore trained on a four-core CPU, again
for approximately 12 hours.

6. Reproducibility
All results can be reproduced using the provided code, which
will be available on GitHub after the reviewing phase.

The README provides instructions for downloading or
generating the used datasets, as well as the commands to
re-train all the models. Already trained models are also
provided. The ’Experiments’ folder also includes a set of

Jupyter notebooks that can be run to reproduce all of the
figures shown in the paper and the additional materials.
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