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ABSTRACT

Automatic annotation of large-scale datasets often introduces noisy labels, which
degrade the performance of deep neural networks. Noisy Label Learning (NLL)
has been well-studied for Convolutional Neural Networks (CNNs) however, its
effectiveness for Vision Transformers (ViTs) remains less explored. In this work,
namely NLL-ViT, we comprehensively benchmark the robustness of ViTs under
diverse label noise settings, and also recommend an entropy based regularization
to improve ViT performance. To this end, we address many key research questions
including vulnerability of ViT to noisy labels, robustness of ViT relative to CNNs,
effectiveness of existing NLL methods for ViT, correlation of prediction entropy
reduction and ViT robustness, and the impact of recommended entropy regulariza-
tion on robustness. In this study, we conducted more than 850 experiments, evalu-
ating ViT-B/16 and ViT-L/16 fine-tuned via MLP-K on two standard loss functions
and ten state-of-the-art NLL methods. Our benchmark spans three noise types in-
cluding closed-set, open-set, and real-world, across eight datasets: CIFAR-10,
CIFAR-100, CIFAR-10N, CIFAR-100N, CIFAR80-O, WebVision, Clothing1M,
and Food-101N. Our findings show that ViT fine-tuning is vulnerable to noisy la-
bels, ViTs fine-tuning is more robust to label noise compared to CNNs, existing
CNN-based NLL methods are only effective in closed-set settings while failing
to outperform standard losses under open-set and real-world noise settings. We
also observe a strong correlation between prediction entropy reduction and ViT
robustness. Also, the recommended entropy regularization combined with stan-
dard classification losses significantly enhances ViTs’ robustness to noisy labels.
We will release the NLL-ViT code publicly upon acceptance.

1 INTRODUCTION

Deep Neural Networks (DNNs) have achieved remarkable success across a wide range of computer
vision tasks, largely due to the availability of large-scale annotated datasets Deng et al. (2009);
Russakovsky et al. (2015); Lin et al. (2014); Shao et al. (2019). However, manual annotation of
such datasets is both time-consuming and expensive. To scale dataset annotation, researchers have
adopted alternatives such as automated labeling techniques Wang et al. (2016); Hu et al. (2016), web
data crawling Xiao et al. (2015), and crowd-sourcing via platforms like Amazon Mechanical Turk
Wei et al. (2022). These approaches, while cost-effective, often introduce noisy labels.

Developing learning strategies that are robust to label noise has become a key area of research.
Existing work in noisy label learning (NLL) can be broadly categorized into four main directions:
(1) Label correction methods that aim to detect and relabel noisy samples Zhang et al. (2017); Smart
& Carneiro (2023); Li et al. (2022); Chen et al. (2024); Wang et al. (2024); (2) Loss correction
methods that modify the loss function based on an estimated noise transition matrix Patrini et al.
(2017); Reed et al. (2014); Han et al. (2018a); Wang et al. (2021); (3) Refined training strategies
such as curriculum learning or co-teaching, designed to mitigate the influence of noisy data during
training Tanaka et al. (2018); Ma et al. (2018); Jiang et al. (2018); Han et al. (2018b); Wu & Sun
(2024); Yao et al. (2021); Karim et al. (2022); and (4) Robust loss functions that are inherently
robust to the effects of noisy labels Ghosh et al. (2017); Ma et al. (2020); Wang et al. (2019); Zhang
& Sabuncu (2018); Ye et al. (2023).

Given the success of Vision Transformers (ViTs) Dosovitskiy & et al. (2020) across a range of com-
puter vision tasks Kirillov et al. (2023b); Radford et al. (2021); Yuan et al. (2021); Sharir et al.
(2021), ViTs have emerged as the de facto standard in the field. Typically, ViTs are pre-trained on
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H1O: ViT fine-tuning techniques are not 
vulnerable to training data label noise.
H1A: ViT fine-tuning techniques are vulnerable 
to training data label noise.

H3O: Existing NLL methods offer no advantage 
to ViT fine-tuning under noisy labels.
H3A: Existing NLL methods significantly 
enhance ViT fine-tuning  under noisy labels.

H4O: There is no correlation between 
prediction entropy reduction and ViT 
robustness to noisy labels.
H4A: There is a significant correlation between 
prediction entropy reduction and ViT 
robustness to noisy labels.
H5O: Explicit entropy regularization does not 
significantly improve the robustness of  ViTs 
under noisy labels.
H5A: Explicit entropy regularization improves 
the robustness of ViTs under noisy labels.

Hypothesis
Closed-Set Open-Set Real-World

RQ1: Is ViT fine-tuning 
vulnerable to noisy labels?

Research Questions

RQ2: Is ViT fine-tuning more 
robust to noisy labels compared  
to CNNs?

RQ3: Are existing NLL methods 
effective for ViT fine-tuning?

RQ4: Is there a corelation 
between prediction entropy 
reduction and ViTs robustness 
to noisy labels?

RQ5: Can entropy 
regularization with standard 
classification losses improve 
the robustness of ViTs to noisy 
labels?

H2O: CNNs are more robust to label noise 
compared to ViT fine-tuning.
H2A: ViT fine-tuning is more robust to label 
noise compared to CNNs.

p-value   Decision p-value   Decision p-value   Decision

0.025

0.174

0.003

0.002

0.469

0.002

0.004

0.006

0.002

0.004

Accept Hypothesis Reject Hypothesis

0.006 0.044 0.001

0.007 0.011

Figure 1: Overview of NLL-ViT. The figure summarizes the hypotheses corresponding to each
research question and indicates whether each hypothesis is accepted or rejected across three noise
types: Closed-Set, Open-Set, and Real-World label noise for ViT-B/16 backbone.

large-scale datasets such as ImageNet-21K and then fine-tuned for downstream tasks rather than
trained from scratch He et al. (2022); Kirillov et al. (2023a). Fine-tuning not only improves gener-
alization with limited labeled data but also reduces computational costs. As a result, it has become
standard practice in both vision and language domains Radford et al. (2021); Kirillov et al. (2023b);
Yuan et al. (2021). While prior work has extensively explored the robustness of ViTs to adversarial
attacks and out-of-distribution data Bai et al. (2021); Zhou et al. (2022); Paul & Chen (2022), their
vulnerability to the presence of label noise training data remains relatively unexplored Liang et al.
(2022). To address this very important issue, we present NLL-ViT. To the best of our knowledge,
NLL-ViT is the first comprehensive benchmark designed to systematically evaluate the robustness
of ViTs’ fine-tuning under numerous label noise settings.

We benchmark two popular ViT backbones, ViT-B/16 and ViT-L/16, under three main categories of
label noise including closed-set, open-set, and real-world human noise, and two subcategories, in-
cluding instance-independent (Symmetric and Asymmetric) and instance-dependent (IDN-C and
BadLabel). The evaluations span eight benchmark datasets including CIFAR-10, CIFAR-100,
CIFAR80N-O, CIFAR-10N, CIFAR-100N, WebVision, Clothing1M, and Food-101N. We bench-
mark ten state-of-the-art NLL methods originally designed for CNNs, including GCE, SCE, NLNL,
DivideMix, APL, NCE+AGCE, ANL, Robust DivideMix, CLIPCleaner, and NoiseGPT. We also
benchmark two standard classification loss functions, including Cross-Entropy (CE) and Focal Loss
(FL). NLL-ViT benchmark provides a unified framework to assess whether these techniques are
effective when transferred to ViTs, offering new insights and highlighting key limitations. Specif-
ically NLL-ViT performs more than 850 experiments to address five key research questions (RQ)
as shown in Figure 1. Our core contributions are:

• We present NLL-ViT, a first comprehensive benchmark that systematically evaluates the
robustness of ViTs under noisy labels, spanning three main categories: closed-set, open-set,
and real-world label noise, and two subcategories: instance-independent noise including
symmetric and Asymmetric, and instance-dependent noise including IDN-C and BadLabel.
We conduct more than 850 experiments across eight benchmark datasets.

• We evaluate two ViT architectures and ten state-of-the-art noisy label learning methods to
assess their effectiveness for ViTs. We also benchmark two standard classification losses
including Cross-Entropy and Focal Loss. We observe that most existing NLL methods are
only effective for ViT fine-tuning under closed-set label noise.
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• We observe a strong correlation between prediction entropy reduction and performance im-
provement, highlighting a hidden functionality of NLL methods. Armed with this insight,
we recommend an entropy-based regularization with standard classification loss functions
to improve ViTs robustness to noisy labels.

2 RELATED WORK

Deep learning methods for Noisy Label Learning (NLL) are typically divided into four distinct cat-
egories: Label Correction Methods: These methods aim to identify and correct mislabeled data
Xiao et al. (2015); Ko et al. (2023); Zhang et al. (2017); Zheng et al. (2021); Yi & Wu (2019);
Zhang et al. (2024a); Wei et al. (2024). Li et al. Li et al. (2017b) average knowledge transfer from
an expert model trained on a clean dataset to enhance a target model trained with noisy data. Recent
works Wang et al. (2024); Feng et al. (2024) have utilized VLMs for correcting noisy labels. Loss
Correction Methods: This category involves adjusting the loss function based on an estimated
noise transition matrix Patrini et al. (2017); Reed et al. (2014); Han et al. (2018a); Sukhbaatar et al.
(2014); Bae et al. (2024). Patrini et al. Patrini et al. (2017) developed loss correction techniques
that are independent of the application domain and network architecture. Another approach, called
‘Masking’ Han et al. (2018a) uses human judgment to handle improbable label transitions effec-
tively. Refined Training Strategies: These strategies are developed to adapt the training process
for better handling of noisy labels Wang et al. (2018); Tanaka et al. (2018); Ma et al. (2018); Jiang
et al. (2018); Han et al. (2018b); Kim et al. (2019); Ma et al. (2018); Zhang et al. (2024b); Li et al.
(2020); Kim et al. (2024). Wang et al. Wang et al. (2018)specifically refine labels within a single
training iteration by identifying and correcting mislabeled examples using a local outlier factor algo-
rithm. Kim et al. Kim et al. (2019) have introduced a method known as Negative Learning for Noisy
Labels (NLNL). Negative learning means an input sample does not belong to a class; instead of con-
ventional Positive Learning (PL) where an input sample belongs to a class. NLNL does not provide
wrong information to the model as frequently as PL and hence is more robust to noisy labels. Ro-
bust Loss Functions: These methods are specifically designed to mitigate the effects of noisy labels
Ma et al. (2020); Ye et al. (2023); Wang et al. (2019); Zhang & Sabuncu (2018); Zhou et al. (2021);
Amid et al. (2019a;b); Lyu & Tsang (2019). Generalized Cross Entropy (GCE) Zhang & Sabuncu
(2018), for example, merges the benefits of Mean Absolute Error (MAE) and Cross-Entropy (CE).
Symmetric Cross Entropy (SCE) Wang et al. (2019) addresses noisy data by combining Reverse
Cross Entropy (RCE) with CE, where RCE is defined as: −

∑kc

k=1 p(k|xi) logq(k|xi). Zhou et al.
Zhou et al. (2021) proposed Asymmetric Generalized Cross Entropy (AGCE) fulfilling the noise tol-
erance condition proposed by Ghosh et al. Ghosh et al. (2017). Ma et al. Ma et al. (2020) designed
Active Passive Loss (APL), which integrates an active component that assigns high probability to
the ground truth class and a passive component that diminishes the likelihood of high probabilities
for other classes. One implementation of APL is NCE+RCE, which has proven effective in noisy
conditions. Expanding on this concept, Ye et al. Ye et al. (2023), noting that existing passive loss
functions are scaled versions of MAE, proposed a new class of passive loss functions called Nor-
malized Negative Loss Functions (NNLFs). An example of NNLF is ANL-CE loss which combines
NCE with negative normalized cross entropy (NNCE).

3 BENCHMARK DESIGN

Noisy Label Learning. In supervised learning, the objective is to learn a mapping from input
features x ∈ X to labels y ∈ Y using a training dataset D = {(xi, yi)}Ni=1. Typically, labels yi are
assumed to be accurate, reflecting the true class of each instance xi. However, real-world datasets
often contain label noise, where observed labels ỹi may differ from true labels yi. Noisy label
learning seeks to train robust models despite this noise, minimizing the impact of incorrect labels
on performance. Formally, let Dclean = {(xi, yi)}ni=1 represent a clean dataset with true labels,
and Dnoisy = {(xi, ỹi)}ni=1 denote the observed noisy dataset. The probability of observing a noisy
label is modeled as: P (ỹi | xi, yi) = T(xi, yi), where T is the noise transition matrix, which may
depend on the instance xi, the true label yi, or both. The goal is to learn a classifier f : X → Y that
generalizes well to the true label distribution (Y) despite training on Dnoisy.

Label Noise Categories. Label noise is mainly categorized into closed-set and open-set synthetic la-
bel noise, and real-world human label noise. In closed-set noise, labels ỹi are restricted to the known

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Selected ViT Fine-Tuning Techniques for Benchmarking
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Figure 2: Comparison of Five Fine-Tuning Strategies for Vision Transformers. Details of architec-
tural modifications for Full Fine-Tuning, AdaptFormer Chen et al. (2022), Visual Prompt Tuning Jia
et al. (2022), MLP-K, and Linear Probing He et al. (2020).

set Y , i.e., the true label yi is replaced with another class in Y . It is divided into instance-independent
and instance-dependent noise. We benchmark two instance-independent types: symmetric or uni-
form noise, where all incorrect labels in Y\yi are equally likely, and asymmetric or class-conditional
noise, where some confusions are favored (e.g., cat ↔ dog). For instance-dependent noise, we use
IDN-C Ye et al. (2023), which trains a model to identify confusing samples, and BadLabel Zhang
et al. (2024b), an adversarial method that produces the most challenging closed-set noise. See Sup-
plementary Section A for details. Open-set noise commonly arises in data from diverse sources
(e.g., web scraping), where samples from unknown classes are mislabeled as known ones Wan et al.
(2024). Formally, let Xopen denote the space of unknown classes, with x′

j ∈ Xopen not belonging
to any class in Y . The open-set noisy dataset is then DOSN = Dclean ∪ (x′

j , ỹj)
m

j=1
, where ỹj ∈ Y .

Real-world human label noise Xiao et al. (2015); Li et al. (2017a); Lee et al. (2018) arises from
annotator errors and shows complex, non-uniform patterns influenced by expertise, fatigue, ambigu-
ous guidelines, or subjectivity. It is common in datasets built from crowd-sourcing, expert labeling,
or user-generated data.

Noise Settings. For closed-set noise, we follow standard protocols on CIFAR-10 and CIFAR-100
Ma et al. (2020); Ye et al. (2023); Zhou et al. (2021). Symmetric noise flips labels randomly with η ∈
{0.4, 0.6, 0.8}, while asymmetric noise flips with similar confusing classes with η ∈ {0.2, 0.3, 0.4}
(e.g., TRUCK→AUTOMOBILE, CAT↔DOG for CIFAR-10, and circular flips within 20 super-
classes for CIFAR-100) Wang et al. (2019); Zhang & Sabuncu (2018). We also include IDN-C Chen
et al. (2021) and BadLabel Zhang et al. (2024b) at η ∈ {0.6, 0.8}. For open-set noise, the last
20 CIFAR-100 classes are treated as out-of-distribution and injected into the remaining 80 classes,
with additional in-distribution corruption using symmetric/asymmetric noise, giving a total noise
ratio ηo = 0.2 + 0.8ηc. For real-world human noise, we evaluated on CIFAR-10N, CIFAR-100N,
WebVision Li et al. (2017a), Clothing1M Xiao et al. (2015), and Food-101N Lee et al. (2018). See
Supplementary Section B for additional details.

Vision Transformer Fine-tuning Paradigm. Fine-tuning adapts pre-trained models on large-scale
datasets like ImageNet Deng et al. (2009) to downstream tasks by optimizing parameters on task-
specific data Dtask = (xi, yi)

n
i=1 with loss L. Full Fine-Tuning (Full-FT) updates all parameters

but is computationally heavy. More efficient alternatives include Linear Probing (LP), which tunes
only the final layer, and MLP-K, which fine-tunes a lightweight classification head. AdaptFormer
Chen et al. (2022) inserts adapter modules for task-specific adaptation, while Visual Prompt Tuning
(VPT) Jia et al. (2022) prepends learnable prompts P = {p1, . . . , pm} to the input sequence. A
visual comparison of these techniques is provided in Figure 2.

Evaluated Baselines We evaluate on cross-entropy (CE) and Focal-Loss (FL) as standard clas-
sification loss functions (SLF). Apart form SLF, we also evaluate on ten SOTA NLL methods,
originally developed for CNNs, to benchmark their performance on ViTs including: General-
ized Cross-Entropy (GCE) Zhang & Sabuncu (2018), Symmetric Cross-Entropy (SCE) Wang
et al. (2019), Negative Learning for Noisy Labels (NLNL) Kim et al. (2019), DivideMix Li
et al. (2020), Active-Passive Losses (APL) combining Normalized Cross-Entropy and Reverse
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Table 1: RQ1: Average performance across clean and noisy settings for closed-set, open-set, and
real-world noise using five fine-tuning techniques. Paired t-test (t-values and p-values) reports the
significance of degradation. AdF: AdaptFormer.

Noise Dataset Full-FT AdF VPT MLP-K LP Average p-value

Closed-Set Clean 95.44 90.55 93.61 91.46 91.34 92.48 0.004Noisy 40.06 65.25 62.00 65.54 66.05 59.78

Open-Set Clean 90.68 92.12 91.28 89.72 89.45 90.65 0.002Noisy 40.75 55.01 54.47 64.97 62.79 55.60

Real-World Clean 95.44 90.55 93.61 91.46 91.34 92.48 0.025Noisy 58.33 78.62 79.46 81.21 77.81 75.09

Table 2: Comparisons on close-set label noise averaged on CIFAR-10 and CIFAR-100. Stan-
dard loss functions (SLF) performance is averaged over cross entropy and Focal loss. Noisy label
learning methods (NLL) performance is averaged over GCE, SCE, NLNL, DivideMix, NCE+RCE,
NCE+AGCE, ANL-CE, Robust DivideMix, CLIPCleaner, and NoiseGPT. H is the recommended
entropy regularization.

Architecture Symmetric Asymmetric IDN-C BadLabel Average p-value0.4 0.6 0.8 0.2 0.3 0.4 0.6 0.8 0.6 0.8
RQ2: Performance comparison of CNN and ViT with CE.

CNN+CE 71.34 65.67 38.84 75.88 69.18 57.38 53.94 28.19 27.28 7.15 49.48 0.006ViT-S/16+CE 77.31 70.67 49.12 77.69 73.19 67.56 51.03 31.81 31.18 9.63 53.92
RQ3: Performance comparison of ViTs+SLF and ViTs+NLL.

ViT-B/16+SLF 76.09 55.39 31.25 82.69 76.55 68.27 54.19 29.30 37.50 12.76 52.39 0.006ViT-B/16+NLL 84.98 81.69 70.88 86.23 82.73 75.84 65.90 42.12 44.04 19.08 65.35
RQ5: Performance comparison of ViT+SLF and ViT+SLF+H, the entropy regularization.

ViT-B/16+SLF 76.09 55.39 31.25 82.69 76.55 68.27 54.20 29.30 37.50 12.76 52.39 0.002ViT-B/16+SLF+H 89.36 85.86 71.51 89.23 87.50 83.50 70.07 43.60 42.48 16.79 67.99

Cross-Entropy (NCE+RCE) Ma et al. (2020), NCE with Asymmetric Generalized Cross-Entropy
(NCE+AGCE) Zhou et al. (2021), Active Noisy Label learning with Cross-Entropy (ANL-CE) Ye
et al. (2023), RobustDivideMix Zhang et al. (2024b), CLIPCleaner Feng et al. (2024), and NoiseGPT
Wang et al. (2024). The choice of SOTA NLL methods is constrained by the availability of open-
source code and their compatibility with ViT architectures, ensuring seamless integration. For each
method, the hyperparameters recommended in the respective papers were employed.

4 RESEARCH QUESTIONS

In NLL-ViT, we address five key research questions regarding the vulnerability of ViTs’ fine-tuning
to noisy labels. For each research question (RQ), we formulate the corresponding null hypotheses
(HiO) and alternative hypotheses (HiA). We evaluated the statistical significance of our findings using
the paired t-test. Figure 1 outlines these research questions along with their respective hypotheses.

Table 3: Average performance
comparison on CIFAR80N-O
under open-set label noise. SLF
performance is averaged over
CE and FL. NLL performance
is averaged over ten SOTA
methods.

Architecture Symmetric Asymmetric Average p-value0.2 0.8 0.4
RQ2: Performance comparison of CNN and ViT with CE.

CNN+CE 42.26 12.1 22.68 25.68 0.044ViT-S/16+CE 73.18 25.89 46.52 48.54
RQ3: Performance comparison of ViTs+SLF and ViTs+NLL.

ViT-B/16+SLF 83.59 38.48 69.72 63.93 0.469ViT-B/16+NLL 79.53 72.07 71.32 74.31
RQ5: Performance comparison of ViT+SLF and ViT+SLF+H.

ViT-B/16+SLF 83.59 38.48 69.72 63.93

0.007ViT-B/16+SLF+H 88.09 76.17 72.65 78.97
ViT-L/16+SLF 80.08 26.76 57.03 54.62
ViT-L/16+SLF+H 87.89 78.51 66.21 77.47
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Table 4: Average performance comparison on CIFAR10N, CIFAR100N, WebVision, Clothing1M,
and Food101N real-world noisy label datasets. SLF performance is averaged over CE and FL. NLL
performance is averaged over ten SOTA methods.

Architecture CIFAR10N CIFAR100N WebVision Clothing1M Food101N Average p-valueAggre Rand1 Rand2 Rand3 Worst
RQ2: Performance comparison of CNN and ViT with CE.

CNN+CE 87.77 85.02 86.46 85.16 77.69 55.50 61.20 69.21 84.51 71.65 0.001ViT-S/16+CE 94.53 95.31 94.53 93.75 90.23 68.75 88.47 64.94 78.31 73.77
RQ3: Performance comparison of ViTs+SLF and ViTs+NLL.

ViT-B/16+SLF 94.53 95.31 94.34 93.95 90.23 68.17 88.57 63.58 76.51 85.01 0.174ViT-B/16+NLL 94.62 94.71 94.21 94.52 92.27 64.41 74.52 64.91 62.62 81.87
RQ5: Performance comparison of ViT+SLF and ViT+SLF+H, the entropy regularization.

ViT-B/16+SLF 94.53 95.31 94.34 93.95 90.23 68.17 88.57 63.58 76.51 85.01 0.011ViT-B/16+SLF+H 95.31 96.09 95.12 95.12 93.17 73.24 89.26 67.01 76.97 86.81

RQ1. IS VIT FINE-TUNING VULNERABLE TO NOISY LABELS?

Motivation. While the robustness of ViTs has been extensively studied in adversarial and out-
of-distribution (OOD) settings Bai et al. (2021); Zhou et al. (2022); Paul & Chen (2022), their
robustness to noisy labels remains less explored. This research question seeks to fill in this gap
by investigating how various ViT fine-tuning techniques perform under different categories of label
noises.

Experimental design. Experiments are performed on the three label noise categories and five fine-
tuning techniques for ViTs including Full-FT, AdaptFormer, VPT, MLP-K, and LP as discussed in
Section 3. In this question, clean training data labels are required to measure the degradation in ViT
fine-tuning performance due to noisy labels. Therefore, datasets such as Clothing1M, Food-101N,
and WebVision that lack clean training sets are not applicable.

Comparison across fine-tuning techniques. Table 1, shows a comparison of five ViT finetuning
techniques on clean and noisy datasets. For closed-set noise, both clean and noisy performances
are averaged over CIFAR-10 and CIFAR100. The noisy performance is averaged over six noise
settings in both datasets ηsym ∈ {0.4, 0.6, 0.8} and ηasym ∈ {0.2, 0.3, 0.4}. In this noise category,
Full-FT has performed best on clean datasets while LP achieved best performance under noisy label
settings. In open-set noise category, clean performance is reported on CIFAR80N-O, while noisy
performance is averaged over three noise settings ηo = 0.2 + 0.8ηsym where ηsym ∈ {0.2, 0.8},
and ηo = 0.2 + 0.8ηasym for ηasym = 0.4. In this noise category, Adaptformer performed best in
clean while MLP-K achieved best performance under noisy settings. In real-world label noise clean
performance is averaged over CIFAR10 and CIFAR100, while noisy performance is averaged over
CIFAR10N and CIFAR100N. Full-FT obtained the best performance in clean dataset while MLP-K
achieved the best performance under noisy settings. For detailed results, see Supp. Section C.1.

ViT performance degradation. All fine-tuning techniques experience significant performance
degradation under noisy settings. Full-FT suffers the largest accuracy decline which may be at-
tributed to the distortion caused by noisy labels in the learned feature space. Our findings are con-
sistent with previous studies Kumar et al. (2022),Hua et al. (2023). MLP-K and LP have emerged
as the most robust fine-tuning techniques in noisy label settings, probably because of fewer tunable
parameters. We observe a similar trend for ViT-L/16 (Supp. Section D.1).

Statistical significance. To statistically assess the vulnerability of ViT fine-tuning to label noise, we
performed the paired t-test comparing the performance of each fine-tuning technique in clean versus
noisy settings. The test yields a p-value of 0.004, 0.002, 0.025 for the three noise categories, which
are below the significance threshold of 0.05. Therefore, the null hypothesis (H1O) is rejected and
alternate hypothesis (H1A: ViT fine-tuning techniques are vulnerable to training data label noise) is
accepted.

RQ2: IS VIT FINE-TUNING MORE ROBUST TO NOISY LABELS COMPARED TO CNNS?

Motivation. CNNs have been extensively explored in the context of NLL, with many existing
methods specifically designed around CNN architectures. In contrast, ViTs leverage self-attention
mechanisms, which may offers distinct robustness properties Bai et al. (2021); Zhou et al. (2022);
Paul & Chen (2022). This research question aims to directly compare ViTs and CNNs under vary-

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Sym 0.4

Sym 0.6

Sym 0.8

Asy 0.2

Asy 0.3

Asy 0.4

IDN 0.6

IDN 0.8

Bad 0.6

Bad 0.8

0 20 40 60 80 100

SLF
NLL
SLF+H

Performance Comparison: Spider Plot Analysis

(a)

86.94 66.66 32.03 93.98 90.57 84.61 48.05 22.26 44.14 16.79 58.98 41.66 36.71 70.17 60.02 48.17 58.98 37.5 31.25 8.59

88.64 70.81 33.47 95.27 93.39 88.2 50 17.59 40.23 18.35 69.8 42.44 22.78 71.34 62.23 52.08 59.76 39.84 34.37 7.31

96.16 95.63 92.7 94.15 94.97 88.89 55.08 19.53 41.41 15.62 82.42 79.29 75.38 82.03 76.55 57.8 57.81 36.32 24.21 3.12

94.98 89.58 48.88 95.48 92.4 84.58 51.56 19.14 44.14 20.7 61.19 47.26 28.51 73.56 60.93 51.55 63.67 41.79 19.92 1.17

85.32 72.03 25.39 86.37 82.05 78.07 75.78 45.31 41.01 9.76 52.92 38.52 10.41 63.14 41.84 36.59 49.22 44.14 14.06 5.47

96.25 96.11 95.52 96.16 95.58 94.73 68.29 26.7 37.63 11.25 82.51 80.57 75.51 82.02 80.96 76.98 68.78 51.22 48.96 15.59

95.96 95.12 89.66 96.2 95.66 75.19 54.69 19.14 49.22 15.23 82.42 80.07 77.34 83.2 78.25 64.71 64.68 45.31 34.37 3.51

95.81 94.53 88.9 94.53 84.37 67.57 63.67 17.58 43.75 14.06 82.81 81.37 78.25 83.85 81.63 70.83 64.84 48.05 30.07 1.95

94.92 94.27 76.17 96.61 95.7 94.14 58.59 21.09 43.35 12.89 83.2 81.5 65.75 82.55 82.52 77.34 65.62 46.09 34.37 9.37

96.18 96.16 95.81 95.53 95.03 87.66 69.3 27.19 36.7 13.4 82.23 81.87 79.28 81.84 80.87 79.29 69.97 51.69 47.51 13.96

91.38 91.01 90.92 91.41 91.25 91.16 90.62 79.35 91.52 80.92 68.05 67.9 66.56 68.49 68.2 67.99 65.17 61.42 50.8 23.5

96.11 95.52 87.04 96.82 95.97 92.47 94.15 79.02 93.12 84.72 78.72 75.39 69.57 80.56 79.87 79.18 66.46 62.39 54.72 25.32

Sym 0.4 Sym 0.6 Sym 0.8 Asy 0.2 Asy 0.3 Asy 0.4 IDN 0.6 IDN 0.8 Bad 0.6 Bad 0.8 Sym 0.4 Sym 0.6 Sym 0.8 Asy 0.2 Asy 0.3 Asy 0.4 IDN 0.6 IDN 0.8 Bad 0.6 Bad 0.8

NoiseGPT

CLIPCleaner

R-DivideMix

ANL

NCE+AGCE

APL

DivideMix

NLNL

SCE

GCE

FL

CE

20

40

60

80

Score

Performance Across Noise Settings

CIFAR-10 CIFAR-100

SLF
N
LL

(b)

Figure 3: RQ3: a) Average performance of ViT+SLF and ViT+NLL under closed-set label noise
on CIFAR-10 and CIFAR-100 with the ViT-B/16 backbone. Noise types include: Sym (Symmetric)
Ye et al. (2023), Asym (Asymmetric) Ye et al. (2023), IDN (IDN-C) Chen et al. (2021), and Bad
(BadLabel) Zhang et al. (2024b). b) Detailed results across datasets and noise settings.

ing types of noisy-label conditions to assess their relative robustness and guide model selection in
practical settings.

Experimental Design. We evaluate the robustness of CNNs and ViTs under the three noise cate-
gories introduced in Section 3. Both architectures are trained with cross-entropy loss and fine-tuned
using MLP-K fine-tuning to ensure a fair comparison. For CNNs, we use an ImageNet-pretrained
ResNet-50 He et al. (2016) backbone, while for ViTs we adopt an ImageNet-pretrained ViT-S/16
Bai et al. (2021). This choice of backbones ensures comparability, as ResNet-50 and ViT-S/16 are
similar in size, with 25M and 22M parameters, respectively.

ViTs and CNNs Performance Comparison. Table 2 reports the average performance of CNNs and
ViTs under closed-set noise on CIFAR-10 and CIFAR-100. Across both datasets, ViTs consistently
outperform CNNs. Table 3 presents results under open-set label noise across three different noise
settings. ViTs again demonstrate a clear advantage, achieving significantly higher accuracy than
CNNs in all cases. Table 4 compares both architectures on five real-world noisy label datasets. On
average, ViTs achieve superior performance, further confirming their robustness to label noise. See
Supplementary E for the detailed result on ViT-S/16. Similar performance trends are observed for
larger ViT variants, including ViT-B/16 (Supplementary Section C.2) and ViT-L/16 (Supplementary
Section D.2).

Statistical significance. The statistically significance of RQ2 on three noise categories is evaluated
using paired t-test. The test yields p-values of 0.006, 0.044, and 0.001 for the three noise categories,
which are below the significance threshold of 0.05. Therefore, the null hypothesis (H2O) is rejected
and alternate hypothesis (H2A: ViT fine-tuning is more robust to label noise compared to CNNs) is
accepted.

RQ3: ARE EXISTING NLL METHODS EFFECTIVE FOR VIT FINE-TUNING?

Motivation. Most existing SOTA NLL methods have been proposed and validated only on CNN.
However, ViTs differ fundamentally from CNNs in inductive biases and representation learning
strategies. This raises an important question: can NLL methods designed for CNNs be effectively
applied to ViTs, or is there a need for ViT-specific solution?

Experimental Design. To investigate this RQ, we apply ten SOTA CNN-based NLL methods to
ViT-MLP-K fine-tuning across three noise categories (Section 3). Each method’s effectiveness is
benchmarked against ViT baselines trained with standard classification losses (SLF) including CE
and FL, to assess whether these NLL methods are effective for ViTs.

Comparison of ViT with and without NLL. Figure 3 and 4 benchmark the ViT-MLP-K for SLF
and SOTA NLL methods across three noise categories. Table 2 compares the average performance
of ViTs with and without NLL methods under closed-set noise using the CIFAR-10 and CIFAR-100
datasets. Across all 10 noise settings, ViT+NLL consistently outperforms ViT+SLF by a significant
margin, demonstrating the effectiveness of NLL methods for this noise category. Table 3, compares
the same performance for open-set noise under three different noise settings. For smaller symmetric
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Figure 4: RQ3: a) Average performance of ViT+SLF and ViT+NLL with ViT-B/16 under open-
set noise (CIFAR80N-O) and real-world noisy datasets: CIFAR-10N, CIFAR-100N, WebVision,
Food101N, and Clothing1M. b) Detailed results across datasets and noise settings.

noise ViT+SLF have better performance than ViT+NLL. However for larger noise rates ViT+NLL
has performed better. Table 4 shows the comparison on five real-world noisy label datasets. On
average, ViT+SLF performs better than ViT+NLL, suggesting that existing NLL methods are not
effective for ViTs under real-world human label noise settings. A similar trend is observed for
ViT-L/16 (See Supplementary Section D.3).

Statistical significance. For the closed-set noise category, the p-value (0.006) is below the signif-
icance threshold of 0.05, leading us to reject the null hypothesis (H3O) and accept the alternative
hypothesis (H3A: Existing NLL methods significantly enhance ViT fine-tuning under label noise).
However, for open-set and real-world noise, the p-values exceed the threshold, so we accept the null
hypothesis (H3O: Existing NLL methods offer no advantage for ViT fine-tuning under label noise).
These results indicate that while existing CNN-based NLL methods can enhance robustness in ViTs
under closed-set noise, they are not effective in more complex noise scenarios like open-set and
real-world human label noise.

RQ4: IS THERE A CORRELATION BETWEEN PREDICTION ENTROPY REDUCTION WITH EPOCHS
AND VITS ROBUSTNESS TO NOISY LABELS?

Motivation. Prediction entropy over the entire dataset X is defined as: H(X ) =
− 1

n

∑n
i=1

∑c
k=1 p(k | xi) log p(k | xi), where p(k | xi) is the softmax prediction probabil-

ity. It reflects a model’s confidence, where higher values typically indicate uncertainty or confu-
sion, often caused by noisy labels. Although NLL methods have been well studied, this relation-
ship has not been investigated in literature. In this RQ, we systematically study the relationship
of entropy reduction and model robustness for ViTs. We define prediction entropy reduction as:
∆H = (H1 − Het)/H1, where H1 is the entropy computed after the first epoch, and Het is the
entropy after the et epochs.

Experimental design. We investigate this relationship using SLF and ten SOTA NLL methods
across three noise categories using eight datasets. We then conduct a Pearson correlation analysis
between prediction entropy reduction and model accuracy across all methods and noise settings.

Prediction entropy relates to model robustness. Our Pearson correlation analysis demonstrates a
strong positive relationship between prediction entropy reduction and the robustness of ViTs across
all three noise categories with Pearson correlation coefficients of 0.76, 0.79, and 0.77 (Figure 5).
This suggests that models exhibiting greater reduction in prediction entropy from early to late train-
ing stages tend to achieve higher test accuracy under label noise.

Statistical significance. We computed the Pearson correlation between test accuracy and prediction
entropy reduction across the three noise categories and assessed the statistical significance of these
correlations using the Student’s t-test for correlation coefficients. The analysis yielded p-values of
0.0004, 0.002, and 0.003, respectively. Since all p-values are below the significance threshold of
0.05, we reject the null hypothesis (H4O) and accept the alternative hypothesis (H4A: There is a
significant correlation between prediction entropy reduction and ViT robustness to noisy labels).
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a) Closed-Set Noise b) Open-Set Noise c) Real-World Noise

Figure 5: RQ4: Entropy Reduction vs. Accuracy across two SLFs and ten SOTA NLL methods
(ViT-B/16 backbone).

RQ5: CAN ENTROPY REGULARIZATION WITH SLF IMPROVE THE ROBUSTNESS OF VITS TO
NOISY LABELS?

Motivation. The findings from RQ4 serve as the primary motivation for RQ5, where we observed a
strong positive correlation between prediction entropy reduction and ViT robustness. This suggests
that prediction entropy reduction during training may improve robustness of ViTs to label noise.
Building on this insight, we investigate whether explicitly incorporating entropy regularization with
SLFs can enhance the robustness of ViTs to noisy label supervision.

Experimental Design. We augment SLFs with an entropy regularization term, forming the com-
posite loss: L = LSLF + λH , where LSLF ∈ {CE,FL} and H is the average prediction entropy.
The regularization coefficient λ is linearly increased from 0 to 0.3 over the course of training to
progressively enforce confident predictions. An ablation study on different choices of λ values is
included in the Supplementary Section C.5.

Entropy regularization improves ViTs robustness. The intuitive proof of entropy regularization
improves robustness is provided in Supp. Section G. Tables 2, 3, and 4 compares the average per-
formance of ViTs with and without entropy regularization under three different noise categories. In
all experiments, ViT+SLF+H consistently outperforms ViT+SLF by a significant margin, demon-
strating the effectiveness of entropy regularization. A similar trend is observed for ViT-S/16 (Supp.
Section E), ViT-L/16 (Supp. Section D.5), and ResNet-50 (Supp. Section F).

Statistical Significance. Paired t-test is performed to assess the statistical significance of the per-
formance improvement by entropy regularization, resulting in p-values of 0.0002, 0.007, and 0.011
for three noise categories. For all noise, categories p-values fall below the significance threshold
of 0.05, leading us to reject the null hypothesis (H5O) and accept the alternative hypothesis (H5A:
Explicit entropy regularization improves the robustness of ViTs under noisy labels). The p-value for
open-set is computed using both ViT-B/16 and ViT-L/16 using CE and FL losses to increase the
number of samples.

5 CONCLUSION

We evaluate the vulnerability of Vision Transformer (ViT) fine-tuning to noisy labels in training data,
focusing on three major noise categories: closed-set, open-set, and real-world human annotation
noise. Our study spans eight benchmark datasets and includes two SLFs along with ten SOTA noisy
label learning methods. Our presented NLL-ViT benchmark is a large-scale systematic evaluation
of the vulnerability of ViTs under diverse label noise settings. NLL-ViT is a large-sclae benchmark
that systematically evaluate the ViTs vulnerability to label noise through five core research questions.
Our findings reveal that ViT fine-tuning is vulnerable to noisy labels (RQ1), ViTs are more robust to
noisy labels than CNNs (RQ2), existing NLL methods offer limited effectiveness for ViTs beyond
closed-set noise (RQ3), prediction entropy reduction strongly correlates with ViTs robustness to
label noise (RQ4), and recommended entropy regularization with SLFs significantly enhances ViT
performance under noisy labels (RQ5). These insights highlight the need for ViT-specific noisy label
learning strategies to be developed. In addition, the recommended entropy-based regularization is a
simple yet effective way to enhance ViTs robustness to label noise.
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VIT FINE-TUNING VULNERABILITY TO LABEL NOISE

SUPPLEMENTARY MATERIAL

LLM USAGE STATEMENT

We made limited use of Large Language Models (LLM) to enhance the clarity and readability of
the text. LLMs were not involved in the conception of ideas, experiment design, analysis, or the
production of results.

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work:

• Code and Implementation: We will release our full codebase, including training and eval-
uation scripts, upon publication. The implementation uses standard deep learning frame-
works (PyTorch) with widely available dependencies.

• Datasets: All datasets used in this work are publicly available: CIFAR-10/100, CIFAR-
10N/100N, CIFAR80N-O, WebVision, Food101N, and Clothing1M. We provide pre-
processing instructions where applicable.

• Hyperparameters: We report or cite the sources which we followed for key hyperparam-
eters (learning rate, optimizer, batch size, weight decay, etc.) We have provided optimal
weight for entropy regularization weight in the main text.

• Experimental Setup: Experiments were conducted on standard 4x NVIDIA A14 GPU
machine. We provide details on training epochs, noise settings, and random seeds to facil-
itate exact replication.

• Evaluation: Results are averaged over three independent runs with different random seeds,
and we report mean and standard deviation.

We believe these steps make it straightforward for other researchers to reproduce and extend our
results.

The supplementary document is organized as follows: Section A provides additional details on
closed-set synthetic label noise. Section B provides additional details on datasets and implementa-
tion. Section C presents a detailed breakdown of the averaged results reported in the main paper,
organized by each research question. Section D reports the results for the ViT-L/16 backbone corre-
sponding to all five research questions. Section E presents results on ViT-S/16 backbone and Section
F presents results on ResNet-50 backbone. Section G provide intuitive proof with worked example
as to how entropy regualrization improves robustness.

A CLOSED-SET SYNTHETIC LABEL NOISE

In closed-set noise, noisy labels ỹi are restricted to the known label set Y i.e. noise corrupts the
true label yi by assigning another class within Y: ỹi ∈ Y . Closed-set noise is further divided into
instance-independent and instance-dependent noise, based on whether the noise depends on instance
features xi or not.

A.1 INSTANCE-INDEPENDENT LABEL NOISE

Instance-independent label noise depends only on the true label yi. The noise transition probability
is modeled as: P (ỹi | yi) = T(yi). Two instance-independent noises are commonly used:

Symmetric or Uniform Noise Ye et al. (2023) assumes a constant noise transition probability across
Y . All labels are equally likely to be transitioned to any incorrect label in Y \ {yi}. For the j-th
class, noise rate (ηj) is defined as the ratio of the number of incorrect labels in that class (lj) to the
number of total samples of that class (nj): ηj = lj/nj . In symmetric noise nj is same for all classes
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and is represented as η. For |Y| = c classes , the transition probability is:

P (ỹi = k | yi = j) =

{
1− η, if k = j,
η

c−1 , if k ̸= j.
(1)

Asymmetric or Class-Conditional Noise Ye et al. (2023) allows certain incorrect labels to be fa-
vored, reflecting real-world biases or annotation errors for example a cat is more likely to be misla-
beled as dog instead of truck. The error rate ηj will vary across different class labels. The transition
probabilities are: P (ỹi = k | yi = j) = Tjk, where Tjk ̸= Tkj for j ̸= k, and

∑
k∈Y Tjk = 1.

A.2 INSTANCE-DEPENDENT LABEL NOISE

Instance-dependent label noise varies with both the true label yi and the instance features xi:
P (ỹi | xi, yi) = T(xi, yi), meaning certain instances are more likely to be mislabeled based on
the characteristics of their features. For instance-dependent noise two types are commonly used:

IDN-C Chen et al. (2021) utilizes deep neural network trained on clean data to simulate the label
noise. For each training instance (xi, yi), the softmax outputs f (ei)(xi) are recorded at each epoch,
and the average predicted probability distribution is computed as: pi =

1
et

∑et
t=1 f

(t)(xi), where et
are the total epochs. The most confusing incorrect class is identified as the one having maximum
probability in pi defined as its confidence score si = pi[ỹi]. The top ηn instances with the highest
confidence scores are selected, and their labels are flipped to ỹi, creating instance-dependent noise
at a specified noise rate η.

Badlabel Zhang et al. (2024b) is an adversarial approach that generates noisy labels by selecting a
subset of instances where the loss values for clean and noisy labels are nearly indistinguishable. A
model is first trained on the clean dataset Dclean to compute the loss ℓ(xi, yi) for each instance. A
subset S ⊂ Dclean of cardinality ηn, is selected by identifying instances that produce loss values with
incorrect labels similar to that of the correct labels. More specifically, for each instance (xi, yi) ∈ S,
the label yi is changed to an incorrect label ỹi ̸= yi such that the loss ℓ(xi, ỹi) is close to ℓ(xi, yi),
maximizing confusion for the model.

B ADDITIONAL DETAILS

B.1 DATASETS

We evaluated the performance across eight datasets: CIFAR-10, CIFAR-100, CIFAR80N-O Wan
et al. (2024), CIFAR10N, CIFAR100N, WebVision Li et al. (2017a), Clothing1M Xiao et al. (2015),
and Food-101N Lee et al. (2018).

CIFAR-10 & CIFAR-100 consists of 60,000 color images of size 32 × 32 pixels, categorized into
10 and 100 classes, with 6,000 and 600 images per class, respectively. We followed the standard
50,000/10,000 train/test split and report test results for both CIFAR-10 and CIFAR-100. Addition-
ally, we reserved 10% of the training data as the validation set for CIFAR-10 and CIFAR-100.

CIFAR-80N is an open-set noisy label dataset derived from CIFAR-100, specifically curated to
study the effects of open-set noise in supervised learning. The dataset is constructed by selecting
80 classes from the original CIFAR-100 dataset as the in-distribution (ID) or clean classes, and
treating the remaining 20 classes as out-of-distribution (OOD) noise sources. To simulate open-
set label noise, the training samples from the 20 OOD classes are randomly placed within the 80
ID classes by randomly assigning them labels from the 80 ID classes. This mimics real-world
scenarios where mislabeled data originates from unknown or unseen categories. The test set remains
clean and contains only correctly labeled samples from the 80 in-distribution classes. CIFAR-80N
preserves the image resolution and format of CIFAR-100 (32 × 32 color images), and follows the
same 50,000/10,000 train/test split, with 10% of the training set reserved for validation.

CIFAR-10N & CIFAR-100N Wei et al. (2022) are noisy versions of the standard CIFAR-10
and CIFAR-100 datasets, designed to reflect real-world human annotation errors. Each sample in
CIFAR-10N and CIFAR-100N retains the original image from CIFAR-10/100 but is annotated with
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a noisy label provided by multiple human annotators via Amazon Mechanical Turk. For CIFAR-
10N, five distinct noisy label variants are provided: aggre (aggregated labels via majority vote),
random1, random2, random3 (three independent annotator responses), and worst (labels selected
from the most error-prone annotators). The estimated noise rates are approximately: 9.03% for ag-
gre, 18% for the random variants, and 40.21% for worst. CIFAR-100N follows a similar setup
with a single noisy annotation per image and an estimated average label noise rate of 40.2%. Both
datasets use the standard CIFAR training/test splits (50,000/10,000), and we follow the same setup,
reserving 10% of the training data as a validation set.

WebVision dataset contains over 2.4 million images collected from the web using search queries
based on the 1,000 classes of the ILSVRC 2012 benchmark Deng et al. (2009). For our experiments,
we used the ”mini” version of WebVision, as proposed by Ye et al. (2023); Jiang et al. (2018),
focusing on the first 50 classes from the Google resized image subset.

Clothing1M Xiao et al. (2015) is a dataset of images of clothing items collected from online retail
websites, divided into 14 classes. It contains one million images with noisy labels, primarily due to
automated annotations derived from the surrounding text.

Food-101N Lee et al. (2018) consists of 310,009 images across 101 food categories. The training
set contains 307,147 images with real-world noisy labels collected from web sources, while the test
set includes 2,962 clean images.

B.2 IMPLEMENTATION DETAILS

We evaluate two Vision Transformer backbones (ViT-B/16 and ViT-L/16), both pre-trained on
ImageNet-21k Dosovitskiy & et al. (2020). Following the optimization strategy of Ye et al. Ye
et al. (2023), we use an SGD optimizer 0.90 momentum and a weight decay of 1×10−4 for CIFAR-
10 and CIFAR10N, and 1× 10−5 for CIFAR-100, CIFAR100N and CIFAR80N-O. For WebVision,
Clothing1M, and Food-101N, we use Nesterov momentum of 0.90 and weight decay of 3 × 10−5

were used. The initial learning rate is set uniformly at 0.001, with a batch size of 256 and gradient
norm clipping at 5.0 across all setups Ye et al. (2023). Baseline method hyperparameters are consis-
tent with those used in the original papers. We will release the code along with all training settings
upon acceptance.

C VIT-B/16 BACKBONE ADDITIONAL RESULTS

C.1 RQ1 RESULTS

Tables 5, 7, 8, and 9, provide a detailed breakdown of fine-tuning technique performance across
various label noise settings. Specifically, Table 7 reports results on clean data and six closed-set
noise variants for CIFAR-10 and CIFAR-100. Table 8 presents results for the open-set noise setting
using the CIFAR80N-O dataset. Tables 9 and 5 show performance under real-world label noise using
the CIFAR-10N and CIFAR-100N datasets, respectively. These tables serve as a detailed extension
of the summary results presented in Table 1 of the main paper.

Table 5: RQ1: Performance breakdown for real-world label noise across fine-tuning techniques on
CIFAR-100N.

Fine-tuning Techniques Clean Noisy100
Full-FT 91.96 70.62
AdaptFormer 83.82 70.57
VPT 89.32 70.57
MLP-K 86.12 68.75
LP 86.12 62.5

C.2 RQ2 RESULTS

Table 10 presents a detailed performance comparison between CNN and ViT-B/16 architectures
across four closed-set noise subcategories: symmetric, asymmetric, IDN-C, and BadLabel. On

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 6: RQ1: Performance breakdown for real-world label noise across fine-tuning techniques on
CIFAR-100N using ViT-L/16.

Fine-tuning Techniques Clean Noisy100
Full-FT 92.68 68.73
AdaptFormer 85.32 71.19
VPT 91.12 69.05
MLP-K 88.4 69.53
LP 85.8 62.89

Table 7: RQ1: Performance breakdown for closed-set label noise across various fine-tuning tech-
niques on CIFAR-10 and CIFAR-100.

Datasets Fine-tuning
Techniques Clean Symmetric noise rate (η) Asymmetric noise rate (η)

0.4 0.6 0.8 0.2 0.3 0.4

CIFAR-10

Full-FT 98.91 33.26 28.37 26.15 89.38 44.24 40.89
AdaptFormer 97.27 86.89 67.32 47.31 92.75 81.05 60.18
VPT 97.90 91.67 63.12 33.11 92.43 87.64 72.28
MLP-K 96.80 86.94 66.66 42.03 93.98 90.57 85.61
LP 96.55 95.08 92.21 62.5 88.6 76.04 61.58

CIFAR-100

Full-FT 91.96 50.32 28.12 25.48 49.38 34.24 30.89
AdaptFormer 83.82 67.61 59.76 52.16 65.75 57.05 45.18
VPT 89.32 67.45 50.35 25.54 68.43 52.64 39.28
MLP-K 86.12 58.98 44.66 38.71 70.17 60.02 48.17
LP 86.12 68.35 58.07 48.51 55.07 46.48 40.10

average, ViT-B/16 demonstrates greater robustness, outperforming CNNs by 10.58% on CIFAR-
10 and 11.64% on CIFAR-100. This table provides a more granular view of the averaged results
previously summarized in Table 2 of the main paper.

C.3 RQ3 RESULTS

Tables 11 and 12 report the mean test accuracy and standard deviation over three runs for symmet-
ric, asymmetric, IDN-C, and BadLabel closed-set noise on the CIFAR-10 and CIFAR-100 datasets,
using the ViT-B/16 backbone fine-tuned with MLP-K. These tables provide detailed results support-
ing Figure 3 in the main paper. Similarly, Tables 13 and 19 present the results for open-set and
real-world noisy label datasets for ViT-B/16 with MLP-K fine-tuning, extending the Figure 4 of the
main paper.

C.4 RQ4 RESULTS

Table 20 reports the test accuracy and corresponding prediction entropy reduction for twelve bench-
marked methods across three noise categories: closed-set, open-set, and real-world label noise. This
table presents the data used to generate Figure 5 in the main paper. To provide a more granular anal-
ysis, Table 21 details the entropy reduction results for closed-set noisy settings on the CIFAR-10 and
CIFAR-100 datasets. Similarly, Table 14 shows the entropy reduction for the CIFAR80N-O dataset
under open-set noise. Lastly, Table 22 presents the entropy reduction across all twelve methods on
five real-world noisy datasets.

Table 8: RQ1: Performance breakdown for open-set label noise across various fine-tuning tech-
niques on CIFAR80N-O.

Datasets Fine-tuning
Techniques Clean Symmetric noise rate (η) Asymmetric noise rate(η)

0.2 0.8 0.4

CIFAR80N-O

Full-FT 90.68 55.05 28.96 38.24
AdaptFormer 92.12 75.89 35.63 53.5
VPT 91.28 74.24 33.72 55.45
MLP-K 89.72 85.15 37.89 71.87
LP 89.45 83.52 34.14 70.72
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Table 9: RQ1: Performance breakdown for real-world label noise across fine-tuning techniques on
CIFAR-10N.

Datasets Fine-tuning
Techniques Clean Noise Subset

Aggregate Random1 Random2 Random3 Worst

CIFAR-10N

Full-FT 98.91 95.46 35.18 34.95 34.97 29.63
AdaptFormer 97.27 96.15 88.72 88.36 87.89 72.18
VPT 97.90 96.54 92.78 92.46 92.53 69.72
MLP-K 96.80 94.53 95.31 94.53 93.75 90.23
LP 96.55 94.14 93.75 94.14 93.75 89.84

Table 10: RQ2: Performance of CNN and ViT-B/16 backbones on CIFAR-10 and CIFAR-100 under
closed-set label noise.

Datasets Arch. Symmetric Asymmetric IDN-C BadLabel Avg.0.4 0.6 0.8 0.2 0.3 0.4 0.6 0.8 0.6 0.8

CIFAR-10 CNN 58.19 38.75 19.09 83 78.15 73.69 52.22 28.04 35.66 13.44 48.02
ViT-B/16 86.94 66.66 32.03 93.98 90.57 84.61 48.05 22.26 44.14 16.79 58.60

CIFAR-100 CNN 40.72 22.98 7.55 58.25 50.3 41.53 52.55 40.45 17.05 4.18 33.56
ViT-B/16 58.98 41.66 36.71 70.17 60.02 48.17 58.98 37.5 31.25 8.59 45.20

Table 11: RQ3: Test Accuracy (mean±std) comparison for SLF and NLL methods on CIFAR-10
and CIFAR-100 datasets for ViT-B/16 backbone using MLP-K finetuning. Performance is reported
for symmetric and asymmetric closed-set label noise for noise rate ηsym ∈ {0.4, 0.6, 0.8} and ηasym ∈
{0.2, 0.3, 0.4}.

Method Clean Symmetric Noise Rate (η) Asymmetric Noise Rate (η)
0.4 0.6 0.8 0.2 0.3 0.4

C
IF

A
R

-1
0

CE 96.80±0.04 86.94±0.31 66.66±0.15 32.03±0.44 93.98±0.03 90.57±0.18 84.61±0.30
FL 96.50±0.07 88.64±0.32 70.81±0.04 33.47±0.41 95.27±0.03 93.39±0.12 88.20±0.12
GCE 96.40±0.03 6.16±0.04 95.63±0.04 92.70±0.06 94.15±0.01 94.97±0.10 88.89±0.42
SCE 96.36±0.04 94.98±0.02 89.58±0.22 48.88±1.03 95.48±0.09 92.40±0.20 84.58±0.17
NLNL 95.42±0.06 85.32±0.02 20.03±0.03 10.00±0.01 86.37±0.17 82.05±0.01 78.07±0.07
DivideMix 96.5±0.32 96.25±0.18 96.11±0.45 95.52±0.25 96.16±0.17 95.58±0.69 94.73±0.48
APL 96.28±0.05 95.96±0.05 95.12±0.13 89.66±0.07 96.20±0.10 95.66±0.07 75.19±0.59
NCE+AGCE 96.31±0.03 95.81±0.08 94.53±0.07 88.90±0.58 94.53±0.12 84.37±0.09 67.57±1.06
ANL 95.83±0.18 94.92±0.63 94.27±0.48 76.17±0.16 96.61±0.48 95.70±0.84 94.14±0.31
Robust DivideMix 96.92±0.17 96.18±0.12 96.16±0.24 95.81±0.18 95.53±0.22 95.03±0.35 87.66±0.17
CLIPCleaner 94.53±0.69 91.38±0.30 91.01±0.32 90.92±0.18 91.41±0.12 91.25±0.69 91.16±0.45
NoiseGPT 96.39±0.11 96.11±0.45 95.52±0.18 87.04±0.44 96.82±0.15 95.97±0.31 92.47±0.95

C
IF

A
R

-1
00

CE 86.12±0.97 58.98±0.55 41.66±1.28 36.71±1.22 70.17±0.12 60.02±0.20 48.17±1.75
FL 83.20±0.55 69.80±0.75 42.44±0.40 22.78±0.66 71.34±0.63 62.23±0.29 52.08±0.10
GCE 83.46±0.55 82.42±0.80 79.29±1.98 75.38±1.77 82.03±0.73 76.55±0.68 57.80±0.18
SCE 83.20±0.48 61.19±0.40 47.26±0.92 28.51±0.39 73.56±0.80 60.93±0.14 51.55±0.77
NLNL 74.33±0.63 52.92±0.36 38.52±0.11 10.41±0.13 63.14±0.04 41.84±0.13 36.59±0.18
DivideMix 84.17±0.05 82.51±0.13 80.57±0.10 75.51±0.18 82.02±0.34 80.96±0.32 76.98±0.48
APL 84.42±0.76 82.42±0.38 80.07±0.55 77.34±0.14 83.20±0.31 78.25±0.28 64.71±0.73
NCE+AGCE 84.11±0.11 82.81±0.84 81.37±1.02 78.25±1.41 83.85±0.97 81.63±0.10 70.83±0.97
ANL 83.79±0.70 83.20±0.68 81.50±1.21 65.75±1.57 82.55±0.80 82.52±0.69 77.34±0.95
Robust DivideMix 84.08±0.18 82.23±0.11 81.87±0.23 79.28±0.52 81.84±0.34 80.87±0.69 79.29±1.02
CLIPCleaner 78.26±0.04 68.05±0.18 67.90±0.09 66.56±0.13 68.49±0.24 68.20±0.20 67.99±0.29
NoiseGPT 83.19±0.52 78.72±0.32 75.39±0.42 69.57±0.64 80.56±0.32 79.87±0.45 79.18±0.11
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Table 12: RQ3: Test Accuracy (mean±std) comparison for SLF and NLL methods on CIFAR-10
and CIFAR-100 datasets for ViT-B/16 backbone using MLP-K finetuning. Performance is reported
for IDN-C and BadLabel closed-set label noise for noise rate η ∈ {0.6.0.8}.

Method Clean IDN-C Noise Rate (η) BadLabel Noise Rate (η)
0.6 0.8 0.6 0.8

C
IF

A
R

-1
0

CE 96.80±0.04 48.05±0.12 22.26±0.18 44.14±0.13 16.79±0.95
FL 96.50±0.07 50.00±0.15 17.59±0.12 40.23±0.42 18.35±0.30
GCE 96.40±0.03 55.08±0.02 19.53±0.06 41.41±0.41 15.62±0.18
SCE 96.36±0.04 51.56±0.40 19.14±0.12 44.14±0.63 20.70±0.75
NLNL 95.42±0.06 75.78±0.68 45.31±0.84 41.01± 0.11 9.76±0.32
DivideMix 96.5±0.32 68.29±0.09 26.70±0.18 37.63±0.52 11.25±0.69
APL 96.28±0.05 54.69±0.55 19.14±0.23 49.22±0.25 15.23±0.44
NCE+AGCE 96.31±0.03 63.67±0.12 17.58±0.48 43.75±0.95 14.06±0.77
ANL 95.83±0.18 58.59±0.12 21.09±0.19 43.35±0.55 12.89±0.63
Robust DivideMix 96.92±0.17 69.30±0.73 27.19±0.64 36.70±0.13 13.40±0.52
CLIPCleaner 94.53±0.69 90.62±0.59 79.35±0.48 91.52±0.95 80.92±0.73
NoiseGPT 96.39±0.11 94.15±0.66 79.02±0.77 93.12±0.10 84.72±0.17

C
IF

A
R

-1
00

CE 86.12±0.97 58.98±0.11 37.5±0.09 31.25±0.22 8.59±0.34
FL 83.20±0.55 59.76±0.32 39.84±0.24 34.37±0.53 7.31±0.11
GCE 83.46±0.55 57.81±0.12 36.32±0.24 24.21± 0.18 3.12±0.19
SCE 83.20±0.48 63.67±0.12 41.79±0.06 19.92±0.09 1.17±0.19
NLNL 74.33±0.63 49.22±0.15 44.14±0.13 14.06± 0.18 5.47±0.21
DivideMix 84.17±0.05 68.78±0.24 51.22±0.28 48.96±0.38 15.59±0.32
APL 84.42±0.76 64.68±0.62 45.31±0.73 34.37±0.85 3.51±0.90
NCE+AGCE 84.11±0.11 64.84±0.44 48.05±0.12 30.07±0.17 1.95±0.19
ANL 83.79±0.70 65.62±0.48 46.09±0.42 34.37±0.58 9.37±0.73
Robust DivideMix 84.08±0.18 69.97±0.43 51.69±0.12 47.51±0.18 13.96±0.19
CLIPCleaner 78.26±0.04 65.17±0.18 61.42±0.95 50.80±0.13 23.50±0.28
NoiseGPT 83.19±0.52 66.46±0.44 62.39±0.68 54.72±0.32 25.32±0.24

Table 13: RQ3: Test Accuracy (mean±std) comparison for SLF and NLL methods for open-set
label noise on CIFAR80N-O dataset for ViT-B/16 backbone using MLP-K finetuning.

Method Sym Noise (η) Asym Noise (η)
0.2 0.8 0.4

CE 85.15±0.12 37.89±0.18 71.87±0.32
FL 82.03±0.08 39.06±0.48 67.57±0.73
GCE 87.89±0.18 80.85±0.11 66.79±0.21
SCE 82.42±0.17 46.87±0.24 63.67±0.05
NLNL 46.48±0.35 37.5±0.48 59.76±0.26
DivideMix 84.21±0.13 81.06±0.18 72.56±0.32
APL 87.89±0.24 80.85±0.52 77.73±0.62
NCE+AGCE 87.5±0.48 85.93±0.53 79.68±0.30
ANL 89.45±0.44 83.2±0.52 77.73±0.11
Robust DivideMix 84.03±0.07 81.5±0.11 70.76±0.05
CLIPCleaner 72.31±0.07 70.73±0.12 71.97±0.15
NoiseGPT 73.11±0.18 72.24±0.24 72.56±0.11
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Table 14: RQ4: Prediction Entropy Reduction breakdown for CIFAR80N-O across two standard
classification losses (SLF) and ten SOTA NLL methods using the ViT-B/16 backbone for open-set
noise settings.

Method Sym Noise (η) Asym Noise (η)
0.2 0.8 0.4

CE 0.485 0.266 0.561
FL 0.452 0.257 0.557
GCE 0.928 0.868 0.888
SCE 0.559 0.281 0.659
NLNL 0.232 0.012 0.474
DivideMix 0.513 0.516 0.428
APL 0.95 0.904 0.933
NCE+AGCE 0.949 0.905 0.939
ANL 0.991 0.98 0.987
Robust DivideMix 0.51 0.47 0.413
CLIPCleaner 0.799 0.736 0.74
NoiseGPT 0.769 0.746 0.752

Table 15: RQ5: Impact of entropy regularization on performance for CIFAR80N-O under open-set
noisy settings using ViT-B/16 backbone.

Method Sym Noise (η) Asym Noise (η)
0.2 0.8 0.4

CE 85.15 37.89 71.87
CE+H 88.28 75 72.26

↑3.13 ↑37.11 ↑0.39
FL 82.03 39.06 67.57
FL+H 87.89 77.34 73.04

↑5.86 ↑38.28 ↑5.47

Table 16: RQ3: Test Accuracy (mean±std) comparison for SLF and NLL methods for open-set
label noise on CIFAR80N-O dataset for ViT-L/16 backbone using MLP-K finetuning.

Method Sym Noise (η) Asym Noise (η)
0.2 0.8 0.4

CE 78.51±0.24 26.17±0.11 55.85±0.24
FL 81.64±0.10 27.34±0.23 58.2±0.53
GCE 87.11±0.15 76.95±0.19 59.76±0.44
SCE 82.42±0.32 28.12±0.45 57.81±0.09
NLNL 84.37±0.31 78.12±0.12 57.03±0.42
DivideMix 87.59±0.12 84.62±0.52 63.41±0.63
APL 87.1±0.85 75.39±0.44 62.5±0.38
NCE+AGCE 86.71±0.63 76.56±1.01 67.57±0.19
ANL 88.67±0.52 82.42±0.89 67.96±0.95
Robust DivideMix 87.3±0.18 84.81±0.15 66.36±0.29
CLIPCleaner 82.42±0.38 80.25±0.28 81.46±0.63
NoiseGPT 82.84±0.72 81.32±0.85 82.09±0.99
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Table 17: RQ4: Prediction Entropy Reduction breakdown for CIFAR80N-O across two standard
classification losses (SLF) and ten SOTA NLL methods using the ViT-L/16 backbone for open-set
noise settings.

Method Sym Noise (η) Asym Noise (η)
0.2 0.8 0.4

CE 0.63 0.467 0.571
FL 0.84 0.347 0.681
GCE 0.96 0.898 0.757
SCE 0.882 0.393 0.68
NLNL 0.596 0.738 0.685
DivideMix 0.861 0.855 0.759
APL 0.959 0.815 0.757
NCE+AGCE 0.958 0.816 0.958
ANL 0.993 0.985 0.993
Robust DivideMix 0.747 0.735 0.607
CLIPCleaner 0.841 0.825 0.839
NoiseGPT 0.781 0.74 0.719

Table 18: RQ5: Impact of entropy regularization on performance for CIFAR80N-O under open-set
noisy settings using ViT-L/16 backbone.

Method Sym Noise (η) Asym Noise (η)
0.2 0.8 0.4

CE 78.51 26.17 55.85
CE+H 87.89 79.29 66.41

↑9.38 ↑53.12 ↑10.56
FL 81.64 27.34 58.2
FL+H 87.5 77.73 66.02

↑5.86 ↑50.39 ↑7.82

Table 19: RQ3: Test Accuracy (mean±std) comparison for SLF and NLL methods on five real-
world noisy labels datasets for ViT-B/16 backbone using MLP-K finetuning.

Method CIFAR10N CIFAR100N WebVision Clothing1M Food101NAggregate Random1 Random2 Random3 Worst
CE 94.53±0.09 95.31±0.11 94.53±0.15 93.75±0.09 90.23±0.18 68.75±0.24 88.47±0.21 64.94±0.32 78.31±0.35
FL 94.53±0.44 95.31±0.32 94.14±0.28 94.14±0.19 90.23±0.31 67.58±0.73 88.67±0.66 62.21±1.21 74.71±0.84
GCE 95.31±0.34 94.14±0.10 94.53±0.09 94.53±0.55 91.41±0.97 67.58±0.70 76.75±0.18 65.42±0.04 72.16±0.52
SCE 94.92±0.11 95.31±0.15 93.75±0.31 94.14±0.72 89.45±0.63 73.05±0.44 87.4±0.32 62.21±0.18 72.94±0.85
NLNL 94.53±0.63 94.14±0.05 93.75±0.09 94.14±0.18 91.01±0.15 41.79±0.24 12.89±0.45 65.91±0.32 8.87±0.62
DivideMix 95.45±0.52 95.53±0.22 95.53±0.13 95.53±0.15 95.37±0.45 17.21±0.44 53.28±0.23 60.83±0.21 35.89±0.72
APL 94.92±0.12 95.7±0.12 93.75±0.08 94.92±0.12 91.01±0.14 74.61±0.11 88.57±0.25 65.52±0.22 74.9±0.44
NCE+AGCE 95.31±0.06 94.92±0.08 94.53±0.11 95.31±0.25 91.01±0.41 71.09±0.32 89.35±0.63 64.64±0.72 75.18±0.45
ANL 94.92±0.21 95.31±0.22 94.14±0.26 94.53±0.44 91.79±0.24 74.6±0.07 89.16±0.75 64.35±1.08 72.55±0.95
Robust DivideMix 93.94±0.11 94.92±0.24 95.27±0.25 95.15±0.18 94.21±0.32 76.99±0.42 81.84±0.34 61.9±0.45 70.87±1.01
CLIPCleaner 91.42±0.09 91.63±1.21 91.46±0.95 91.58±0.99 91.26±0.85 67.08±0.73 82.14±0.62 68.1±0.75 71.18±0.54
NoiseGPT 95.49±0.19 95.48±0.12 95.41±0.16 95.39±0.17 96.17±0.23 80.1±0.25 83.82±0.36 70.24±0.32 71.68±0.29

Table 20: RQ4: Entropy Reduction and Robustness (Accuracy) across two standard classification
losses and ten SOTA NLL methods using the ViT-B/16 backbone.

Method Closed-Set Noise Open-Set Noise Real-Wrold Noise
Acc. Entropy Reduction Acc. Entropy Reduction Acc. Entropy Reduction

CE 51.903 0.483 64.97 0.437 85.424 0.663
FL 52.895 0.465 62.887 0.422 84.613 0.608
GCE 63.454 0.861 78.51 0.895 83.537 0.874
SCE 54.55 0.675 64.32 0.5 84.797 0.729
NLNL 47.87 0.427 47.913 0.239 66.337 0.435
DivideMix 69.066 0.748 79.277 0.486 71.624 0.522
APL 64.997 0.913 82.157 0.929 85.989 0.856
NCE+AGCE 64.421 0.895 84.37 0.931 85.704 0.859
ANL 65.802 0.94 83.46 0.986 85.707 0.889
Robust DivideMix 69.074 0.764 78.763 0.464 85.01 0.637
CLIPCleaner 74.881 0.795 71.67 0.758 82.872 0.814
NoiseGPT 79.356 0.84 72.637 0.756 87.087 0.855
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Table 21: RQ4: Prediction Entropy Reduction breakdown for CIFAR-10 and CIFAR-100 across
two standard classification losses (SLF) and ten SOTA NLL methods using the ViT-B/16 backbone
for closed-set noise settings.

Method Symmetric Noise (η) Asymmetric Noise (η) IDN-C Noise (η) BadLabel Noise (η)
0.4 0.6 0.8 0.2 0.3 0.4 0.6 0.8 0.6 0.8

C
IF

A
R

-1
0

CE 0.272 0.185 0.097 0.666 0.635 0.613 0.525 0.504 0.56 0.532
FL 0.256 0.174 0.09 0.652 0.622 0.609 0.505 0.48 0.535 0.509
GCE 0.921 0.855 0.263 0.927 0.878 0.842 0.811 0.792 0.827 0.782
SCE 0.844 0.784 0.657 0.904 0.874 0.818 0.776 0.745 0.768 0.694
NLNL 0.652 0.512 0.292 0.667 0.647 0.652 0.535 0.423 0.358 0.295
DivideMix 0.891 0.886 0.875 0.893 0.873 0.859 0.743 0.632 0.691 0.43
APL 0.954 0.96 0.944 0.939 0.923 0.87 0.866 0.782 0.922 0.698
NCE+AGCE 0.957 0.957 0.948 0.946 0.914 0.787 0.828 0.79 0.779 0.608
ANL 0.991 0.989 0.966 0.991 0.989 0.983 0.951 0.853 0.882 0.824
Robust DivideMix 0.981 0.982 0.973 0.975 0.969 0.943 0.72 0.551 0.531 0.502
CLIPCleaner 0.937 0.931 0.917 0.927 0.915 0.913 0.919 0.858 0.942 0.887
NoiseGPT 0.973 0.964 0.934 0.961 0.937 0.922 0.935 0.84 0.948 0.862

C
IF

A
R

-1
00

CE 0.381 0.296 0.247 0.653 0.625 0.612 0.643 0.578 0.532 0.512
FL 0.347 0.284 0.228 0.626 0.615 0.611 0.604 0.545 0.529 0.486
GCE 0.947 0.93 0.887 0.955 0.947 0.926 0.955 0.943 0.925 0.905
SCE 0.439 0.343 0.259 0.73 0.706 0.699 0.707 0.643 0.615 0.493
NLNL 0.435 0.271 0.124 0.576 0.487 0.435 0.496 0.429 0.158 0.092
DivideMix 0.827 0.814 0.785 0.817 0.807 0.786 0.682 0.643 0.536 0.483
APL 0.953 0.94 0.911 0.961 0.953 0.942 0.962 0.948 0.929 0.903
NCE+AGCE 0.95 0.938 0.903 0.957 0.952 0.942 0.962 0.951 0.92 0.902
ANL 0.99 0.986 0.969 0.991 0.99 0.987 0.961 0.889 0.826 0.788
Robust DivideMix 0.854 0.845 0.824 0.847 0.843 0.806 0.741 0.625 0.436 0.328
CLIPCleaner 0.779 0.728 0.695 0.792 0.778 0.616 0.722 0.631 0.577 0.432
NoiseGPT 0.746 0.737 0.708 0.945 0.923 0.916 0.772 0.731 0.682 0.364

Table 22: RQ4: Prediction Entropy Reduction breakdown for five real-world noisy label datasets
across two standard classification losses (SLF) and ten SOTA NLL methods using the ViT-B/16
backbone.

Method CIFAR10N CIFAR100N WebVision Clothing1M Food101NAgg. Rand1 Rand2 Rand3 Worst
CE 0.674 0.696 0.68 0.681 0.614 0.654 0.741 0.564 0.659
FL 0.645 0.665 0.653 0.659 0.594 0.543 0.713 0.439 0.563
GCE 0.978 0.976 0.976 0.974 0.924 0.963 0.916 0.333 0.823
SCE 0.95 0.925 0.927 0.922 0.827 0.648 0.609 0.41 0.339
NLNL 0.776 0.651 0.625 0.632 0.378 0.248 0.017 0.584 0.004
DivideMix 0.633 0.634 0.636 0.633 0.563 0.364 0.338 0.522 0.377
APL 0.984 0.984 0.983 0.984 0.961 0.971 0.874 0.216 0.751
NCE+AGCE 0.985 0.984 0.985 0.984 0.964 0.97 0.886 0.192 0.779
ANL 0.919 0.917 0.918 0.917 0.894 0.913 0.983 0.635 0.907
Robust DivideMix 0.625 0.645 0.648 0.645 0.634 0.656 0.696 0.503 0.68
CLIPCleaner 0.927 0.913 0.927 0.925 0.933 0.707 0.736 0.597 0.659
NoiseGPT 0.963 0.962 0.957 0.956 0.954 0.867 0.753 0.615 0.667
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Table 23: RQ5: Impact of entropy regularization on performance for CIFAR-10 and CIFAR-100
under closed-set noisy settings using ViT-B/16 backbone.

Method Symmetric Noise (η) Asymmetric Noise (η) IDN-C Noise (η) BadLabel Noise (η)
0.4 0.6 0.8 0.2 0.3 0.4 0.6 0.8 0.6 0.8

C
IF

A
R

-1
0

CE 86.94 66.66 32.03 93.98 90.57 84.61 48.05 22.26 44.14 16.79
CE+H 95.87 94.35 92.96 95.12 94.66 94.18 74.22 37.69 45.31 21.87

↑8.93 ↑27.69 ↑60.93 ↑1.14 ↑4.09 ↑9.57 ↑26.17 ↑15.43 ↑1.17 ↑5.08
FL 88.64 70.81 33.47 95.27 93.39 88.2 50.00 17.59 40.23 18.35
FL+H 94.53 90.23 57.03 97.26 95.31 93.35 70.71 33.79 46.48 21.48

↑5.89 ↑19.42 ↑23.56 ↑1.99 ↑1.92 ↑5.15 ↑20.71 ↑16.2 ↑6.25 ↑3.13

C
IF

A
R

-1
00

CE 58.98 41.66 36.71 70.17 60.02 48.17 58.98 37.5 31.25 8.59
CE+H 82.68 80.33 70.04 82.89 80.33 73.43 68.94 52.93 38.67 12.89

↑23.7 ↑38.67 ↑33.33 ↑12.72 ↑20.31 ↑25.26 ↑9.96 ↑15.43 ↑7.42 ↑4.3
FL 69.80 42.44 22.78 71.34 62.23 52.08 59.76 39.84 34.37 7.31
FL+H 84.37 78.51 66.01 81.64 79.68 73.04 66.4 49.99 39.45 10.93

↑14.57 ↑36.07 ↑43.23 ↑10.3 ↑17.45 ↑20.96 ↑6.64 ↑10.15 ↑5.08 ↑3.62

Table 24: RQ5: Impact of entropy regularization on performance for real-world noisy label datasets
using ViT-B/16 backbone.

Method CIFAR10N CIFAR100N WebVision Clothing1M Food101NAgg. Rand1 Rand2 Rand3 Worst
CE 94.53 95.31 94.53 93.75 90.23 68.75 88.47 64.94 78.31
CE+H 95.31 96.09 95.31 95.31 92.97 74.22 89.35 66.53 78.83

↑0.78 ↑0.78 ↑0.78 ↑1.56 ↑2.74 ↑5.47 ↑0.88 ↑1.59 ↑0.52
FL 94.53 95.31 94.14 94.14 90.23 67.58 88.67 62.21 74.71
FL+H 95.31 96.09 94.92 94.92 93.36 72.26 89.16 67.48 75.1

↑0.78 ↑0.78 ↑0.78 ↑0.78 ↑3.13 ↑4.68 ↑0.49 ↑5.27 ↑0.39

C.5 RQ5 RESULTS

Tables 23, 15, and 24 present the performance improvements achieved by incorporating entropy
regularization into the CE and FL loss functions across closed-set, open-set, and real-world noise
categories. Across all settings, entropy regularization consistently enhances the robustness of ViTs
to label noise. These tables provide a detailed breakdown of the RQ5 results, extending the findings
summarized in Tables 2, 3, and 4.

C.5.1 THE EFFECT OF HYPERPARAMETER λ

The effect of the hyperparameter λ on performance was evaluated using ViT-B/16 on the CIFAR-
10 dataset, with MLP-K fine-tuning. The experiments were categorized into two approaches: 1)
keeping λ constant at values 0.01, 0.1, 0.2, and 2) linearly increasing λ from 0 to 0.3. Figure 6,
compares performance across these different λ values. A smaller constant λ may not fully exploit the
benefits of entropy regularization, while higher values could negatively impact the training process.
A more effective strategy involves gradually increasing λ from 0 to 0.3, resulting in significant
performance improvements across different noise levels and fine-tuning techniques. This approach
initially prioritizes the baseline loss for learning task-specific features and then gradually shifts focus
towards entropy regularization, leading to enhanced robustness in handling noisy labels.

D VIT-L/16 BACKBONE RESULTS

In this section, we present the results obtained using the ViT-L/16 backbone, organized by each
research question. While our primary analysis in the main paper focuses on the ViT-B/16 model, we
extend the evaluation to the larger ViT-L/16 variant to validate the consistency and scalability of our
findings across different ViT backbones.

D.1 RQ1 RESULTS

Tables 25, shows an averaged comparison of five ViT finetuning techniques on clean and noisy
datasets across three noise categories. Table 6, 26, 27, and 28, provide a detailed breakdown of
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Figure 6: Impact of varying λ on test accuracy for CIFAR-10 using CE+λH with ViT-
B/16+MLP-K under (a) symmetric noise and (b) asymmetric noise. The linear scheduling of
λ (Linear(0→0.3)) achieves the best performance across both noise types.

Table 25: RQ1: Average performance across clean and noisy settings for closed-set, open-set, and
real-world noise using five fine-tuning techniques. Paired t-test (t-values and p-values) reports the
significance of degradation.

Noise Dataset Full-FT AdaptFormer VPT MLP-K LP t-value p-value

Closed-Set Clean 95.81 91.37 94.77 92.25 91.34 5.235 0.006Noisy 39.63 64.46 63.18 64.44 71.33

Open-Set Clean 90.68 92.12 91.28 89.72 89.45 7.249 0.002Noisy 38.3 52.99 54.28 64.97 62.79

Real-World Clean 95.81 91.37 94.77 92.25 91.34 3.762 0.019Noisy 56.72 78.36 77.86 79.14 78.2

fine-tuning technique performance across various label noise settings. Specifically, Table 26 reports
results on clean data and six closed-set noise variants for CIFAR-10 and CIFAR-100. Table 27
presents results for the open-set noise setting using the CIFAR80N-O dataset. Tables 28 and 6
show performance under real-world label noise using the CIFAR-10N and CIFAR-100N datasets,
respectively.

D.2 RQ2 RESULTS

Table 29, 30, and 31 summarize the results for RQ2 along with t-value and p-value for the three
noise categories. Table 32 presents a detailed performance comparison between CNN and ViT-
B/16 architectures across four closed-set noise subcategories: symmetric, asymmetric, IDN-C, and
BadLabel. On average, ViT-B/16 demonstrates greater robustness, outperforming CNNs by 6.64%
on CIFAR-10 and 14.73% on CIFAR-100.

Table 26: RQ1: Performance breakdown for closed-set label noise across various fine-tuning tech-
niques on CIFAR-10 and CIFAR-100 using ViT-L/16.

Datasets Fine-tuning
Techniques Clean Symmetric noise rate (η) Asymmetric noise rate (η)

0.4 0.6 0.8 0.2 0.3 0.4

CIFAR-10

Full-FT 98.94 30.68 29.17 24.65 87.89 43.94 39.72
AdaptFormer 97.42 87.92 67.85 44.73 92.25 79.98 57.49
VPT 98.42 90.17 64.35 35.62 91.14 88.4 73.86
MLP-K 96.09 81.35 57.23 25.6 93.38 88.36 79.19
LP 96.87 94.14 89.84 58.59 93.75 92.18 83.98

CIFAR-100

Full-FT 92.68 49.18 30.42 26.63 50.02 33.11 30.19
AdaptFormer 85.32 68.46 58.63 51.07 63.55 58.11 43.5
VPT 91.12 72.65 52.09 26.98 69.72 50.14 43.05
MLP-K 88.4 67.05 51.94 27.86 77.21 67.83 56.24
LP 85.8 64.71 58.71 40.23 67.44 59.24 53.12
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Table 27: RQ1: Performance breakdown for open-set label noise across various fine-tuning tech-
niques on CIFAR80N-O using ViT-L/16.

Datasets Fine-tuning
Techniques Clean Sym noise rate (η) Asym noise rate(η)

0.2 0.8 0.4

CIFAR80N-O

Full-FT 90.68 50.96 27.05 36.89
AdaptFormer 92.12 73.14 33.74 52.09
VPT 91.28 75.14 35.12 52.58
MLP-K 89.72 85.15 37.89 71.87
LP 89.45 83.52 34.14 70.72

Table 28: RQ1: Performance breakdown for real-world label noise across fine-tuning techniques on
CIFAR-10N using ViT-L/16.

Datasets Fine-tuning
Techniques Clean Noise Subset

Aggregate Random1 Random2 Random3 Worst

CIFAR-10N

Full-FT 98.91 95.46 35.18 34.95 34.97 29.63
AdaptFormer 97.27 96.15 88.72 88.36 87.89 72.18
VPT 97.90 96.54 92.78 92.46 92.53 69.72
MLP-K 96.80 94.53 95.31 94.53 93.75 90.23
LP 96.55 94.14 93.75 94.14 93.75 89.84

Table 29: Comparisons on close-set label noise averaged on CIFAR-10 and CIFAR-100 using ViT-
L/16. Standard loss functions (SLF) performance is averaged over cross entropy and Focal loss.
Noisy label learning methods (NLL) performance is averaged over GCE, SCE, NLNL, DivideMix,
NCE+RCE, NCE+AGCE, ANL-CE, Robust DivideMix, CLIPCleaner, and NoiseGPT. H is the rec-
ommended entropy regularization.

Architecture Symmetric Asymmetric IDN-C BadLabel t-value p-value0.4 0.6 0.8 0.2 0.3 0.4 0.6 0.8 0.6 0.8
RQ2: Performance comparison of CNN and ViT with CE.

CNN+CE 49.46 30.87 13.32 70.63 64.23 57.61 52.39 34.25 26.36 8.81 3.484 0.007ViT-L/16+CE 74.2 54.59 26.73 85.29 78.09 67.72 50.86 28.83 34.37 14.06
RQ3: Performance comparison of ViTs+SLF and ViTs+NLL.

ViT-L/16+SLF 74.14 54.25 26.85 83.53 77.59 68.52 50.33 27.99 34.08 14.84 3.934 0.003ViT-L/16+NLL 89.34 86.09 76.87 89.58 86.46 80.13 63.88 39.51 46.79 22.91
RQ5: Performance comparison of ViT+SLF and ViT+SLF+H, the entropy regularization.

ViT-L/16+SLF 74.14 54.25 26.85 83.53 77.59 68.52 50.32 27.98 34.08 14.84 3.404 0.008ViT-L/16+SLF+H 87.69 81.84 74.9 89.45 83.79 77.44 65.92 38.78 39.55 19.33
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Figure 7: RQ3: a) Performance comparison of NLL-based methods under closed-set label noise on
CIFAR-10 and CIFAR-100 using the ViT-L/16 backbone. b) Detailed results across datasets and
noise settings.
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Figure 8: RQ3: a) Comparison of NLL-based methods using the ViT-L/16 backbone under open-
set noise (CIFAR80N-O) and real-world noisy datasets: CIFAR-10N, CIFAR-100N, WebVision,
Food101N, and Clothing1M. b) Detailed results across datasets and noise settings.

D.3 RQ3 RESULTS

Tables 33 and 34 and Figure 7 report the mean test accuracy and standard deviation over three runs
for symmetric, asymmetric, IDN-C, and BadLabel closed-set noise on the CIFAR-10 and CIFAR-
100 datasets, using the ViT-L/16 backbone fine-tuned with MLP-K. Similarly, Tables 16 and 35
and Figure 8 presents the results for open-set and real-world noisy label datasets for ViT-L/16 with
MLP-K fine-tuning.

Table 30: Average performance comparison on CIFAR80N-O under open-set label noise using ViT-
L/16. SLF performance is averaged over CE and FL. NLL performance is averaged over ten SOTA
methods.

Architecture Symmetric Asymmetric t-value p-value0.2 0.8 0.4
RQ2: Performance comparison of CNN and ViT with CE.

CNN+CE 29.37 4.20 22.25 4.434 0.047ViT-L/16+CE 78.51 26.17 55.85
RQ3: Performance comparison of ViTs+SLF and ViTs+NLL.

ViT-L/16+SLF 80.08 26.76 57.03 1.555 0.260ViT-L/16+NLL 85.65 74.87 66.59
RQ5: Performance comparison of ViT+SLF and ViT+SLF+H.

ViT-B/16+SLF 83.59 38.48 69.72

3.333 0.007ViT-B/16+SLF+H 88.09 76.17 72.65
ViT-L/16+SLF 80.08 26.76 57.03
ViT-L/16+SLF+H 87.70 78.51 66.22
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Table 31: Average performance comparison on CIFAR10N, CIFAR100N, WebVision, Clothing1M,
and Food101N real-world noisy label datasets using ViT-L/16. SLF performance is averaged over
CE and FL. NLL performance is averaged over ten SOTA methods.

Architecture CIFAR10N CIFAR100N WebVision Clothing1M Food101N t-value p-valueAggre Rand1 Rand2 Rand3 Worst
RQ2: Performance comparison of CNN and ViT with CE.

CNN+CE 87.77 85.02 86.46 85.16 77.69 55.50 61.20 69.21 84.51 1.973 0.083ViT-L/16+CE 94.14 90.62 92.57 91.41 75.00 69.53 86.81 66.13 81.34
RQ3: Performance comparison of ViTs+SLF and ViTs+NLL.

ViT-L/16+SLF 94.34 90.63 91.40 91.79 74.61 68.36 88.03 65.98 80.76 1.324 0.222ViT-L/16+NLL 96.06 96.02 95.85 95.99 92.78 77.41 86.12 66.49 70.23
RQ5: Performance comparison of ViT+SLF and ViT+SLF+H, the entropy regularization.

ViT-L/16+SLF 94.34 90.63 91.40 91.79 74.61 68.36 88.03 65.98 80.76 2.714 0.026ViT-L/16+SLF+H 95.31 95.7 95.12 94.53 91.99 74.8 89.16 69.18 81.89

Table 32: RQ2: Performance of CNN and ViT-L/16 backbones on CIFAR-10 and CIFAR-100 under
closed-set label noise.

Datasets Arch. Symmetric Asymmetric IDN-C BadLabel Avg.0.4 0.6 0.8 0.2 0.3 0.4 0.6 0.8 0.6 0.8

CIFAR-10 CNN 58.19 38.75 19.09 83 78.15 73.69 52.22 28.04 35.66 13.44 48.02
ViT-L/16 81.35 57.23 25.6 93.38 88.36 79.19 44.29 22.12 38.28 16.79 54.66

CIFAR-100 CNN 40.72 22.98 7.55 58.25 50.3 41.53 52.55 40.45 17.05 4.18 33.56
ViT-L/16 67.05 51.94 27.86 77.21 67.83 56.24 57.42 35.54 30.46 11.33 48.29

Table 33: RQ3: Test Accuracy (mean±std) comparison for SLF and NLL methods on CIFAR-10
and CIFAR-100 datasets for ViT-B/16 backbone using MLP-K finetuning. Performance is reported
for symmetric and asymmetric closed-set label noise for noise rate ηsym ∈ {0.4, 0.6, 0.8} and ηasym ∈
{0.2, 0.3, 0.4}.

Method Clean Sym Noise Rate (η) Asym Noise Rate (η)
0.4 0.6 0.8 0.2 0.3 0.4

C
IF

A
R

-1
0

CE 96.09±0.02 81.35±0.23 57.23±0.43 25.60±0.41 93.38±0.11 88.36±0.21 79.19±0.39
FL 95.70±0.01 82.68±0.27 58.48±0.59 26.32±0.55 89.84±0.09 87.89±0.30 81.24±0.24
GCE 95.70±0.08 94.92±0.01 94.53±0.04 71.87±0.64 95.31±0.03 91.79±0.13 83.59±0.98
SCE 95.31±0.06 94.53±0.19 84.37±0.25 39.77±0.35 94.14±0.01 89.45±0.17 83.59±0.48
NLNL 95.74±0.13 80.67±0.09 23.08±0.12 10.04±0.52 92.51±0.10 84.74±0.12 80.63±0.13
DivideMix 98.18±0.42 97.68±0.27 97.53±0.18 96.74±0.15 97.19±0.44 97.07±0.82 95.62±0.90
NCE+RCE 95.70±0.06 95.31±0.08 93.75±0.04 88.67±0.14 95.70±0.04 95.31±0.07 93.35±0.27
NCE+AGCE 94.53±0.05 93.75±0.06 93.70±0.10 90.62±0.46 96.09±0.09 96.09±0.07 94.99±0.41
ANL-CE 95.70±0.55 95.31±0.37 95.05±0.18 93.75±0.58 95.70±0.31 94.53±0.32 91.66±0.76
Robust DivideMix 98.09±0.19 97.56±0.41 97.43±0.63 96.55±0.36 97.23±0.29 97.19±0.98 95.68±0.75
CLIPCleaner 96.35±0.12 95.32±0.18 95.23±0.24 94.89±0.55 95.10±0.43 95.24±0.47 95.26±0.73
NoiseGPT 97.84±0.53 96.14±0.72 93.76±0.24 87.19±0.32 96.56±0.11 95.48±0.95 91.50±0.85

C
IF

A
R

-1
00

CE 88.40±0.12 67.05±0.81 51.94±0.40 27.86±1.31 77.21±0.60 67.83±0.57 56.24±1.27
FL 87.23±0.67 65.49±0.94 49.34±0.92 27.60±1.63 73.69±0.43 66.27±0.39 57.42±0.84
GCE 88.15±0.48 87.62±0.48 85.54±0.84 78.64±1.28 87.23±0.74 77.59±0.29 60.02±0.63
SCE 88.15±0.48 71.48±0.31 52.33±0.30 28.25±0.80 77.47±0.91 67.57±0.39 55.07±0.32
NLNL 82.24±0.03 65.69±0.14 10.38±0.02 10.01±0.05 76.47±0.23 67.88±0.24 51.16±1.02
DivideMix 87.12±0.32 80.54±0.09 72.59±0.18 55.54±0.23 86.66±0.27 85.64±0.42 80.12±0.85
NCE+RCE 87.75±0.49 87.10±0.32 85.93±0.09 79.16±0.48 86.58±0.12 78.77±0.55 61.97±0.73
NCE+AGCE 89.32±0.80 87.88±0.88 86.06±0.80 83.06±0.63 86.32±0.21 82.54±0.47 71.09±0.27
ANL-CE 88.67±0.31 88.40±0.75 85.15±0.22 83.85±0.91 87.49±0.39 85.41±0.50 73.82±1.15
Robust DivideMix 88.06±0.23 87.00±0.08 86.27±0.06 80.55±0.32 87.1±0.38 86.94±0.26 84.23±0.45
CLIPCleaner 84.23±0.11 80.48±0.19 79.65±0.32 79.21±0.25 80.22±0.16 80.18±0.73 79.98±0.52
NoiseGPT 82.79±0.10 78.87±0.12 71.75±0.54 64.25±0.73 80.56±0.85 79.87±0.39 79.18±0.22
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Table 34: RQ3: Test Accuracy (mean±std) comparison for SLF and NLL methods on CIFAR-10
and CIFAR-100 datasets for ViT-B/16 backbone using MLP-K finetuning. Performance is reported
for IDN-C and BadLabel noise for noise rate η∈{0.6, 0.8}.

Method Clean IDN-C Noise Rate (η) BadLabel Noise Rate (η)
0.6 0.8 0.6 0.8

C
IF

A
R

-1
0

CE 96.09±0.02 44.29±0.52 22.12±0.17 38.28±0.24 16.79±0.32
FL 95.70±0.01 44.92±0.44 18.35±0.18 39.06±0.63 16.79±0.72
GCE 95.70±0.08 51.56±0.09 24.21±0.15 40.23±0.17 18.36±0.25
SCE 95.31±0.06 46.87±0.13 20.7±0.32 39.45±0.45 16.41±0.11
NLNL 95.74±0.13 68.35±0.16 31.64±0.44 40.23±0.73 16.4±0.95
DivideMix 98.18±0.42 61.83±0.18 30.55±0.25 38.14±0.42 17.06±0.63
NCE+RCE 95.70±0.06 52.34±0.17 21.09±0.19 44.53±0.22 17.18±0.82
NCE+AGCE 94.53±0.05 54.29±0.45 19.92±0.19 46.09±0.24 16.79±0.32
ANL-CE 95.70±0.55 53.91±0.52 20.31±0.10 40.62±0.15 14.45±0.34
Robust DivideMix 98.09±0.19 60.89±0.72 28.26±0.85 41.85±0.09 17.72±0.22
CLIPCleaner 96.35±0.12 94.48±0.64 77.21±0.44 95.3±0.63 84.87±0.57
NoiseGPT 97.84±0.53 94.98±0.19 78.35±0.25 95.06±0.53 86.12±0.47

C
IF

A
R

-1
00

CE 88.40±0.12 57.42±0.19 35.54±0.21 30.46±0.27 11.33±0.25
FL 87.23±0.67 54.68±0.18 35.93±0.98 28.51±0.85 14.45±0.72
GCE 88.15±0.48 59.37±0.47 33.59±0.35 26.56±0.58 10.54±0.68
SCE 88.15±0.48 55.85±0.94 35.94±0.89 32.42±0.17 12.89±0.53
NLNL 82.24±0.03 55.46±0.42 43.36±0.33 39.45±0.72 8.98±0.18
DivideMix 87.12±0.32 62.42±0.22 39.42±0.16 39.89±0.15 18.01±0.14
NCE+RCE 87.75±0.49 62.89±0.32 39.84±0.44 35.54±0.21 10.54±0.54
NCE+AGCE 89.32±0.80 67.18±0.15 42.18±0.28 40.23±0.32 10.54±0.19
ANL-CE 88.67±0.31 62.5±0.11 42.11±0.73 35.93±0.55 5.85±0.48
Robust DivideMix 88.06±0.23 61.48±0.47 27.19±0.29 40.54±0.22 13.4±0.38
CLIPCleaner 84.23±0.11 74.29±0.17 67.11±0.25 61.85±0.47 30.21±0.32
NoiseGPT 82.79±0.10 76.64±0.63 67.28±0.95 61.96±0.85 31.84±1.09

Table 35: RQ3: Test Accuracy comparison for SLF and NLL methods on five real-world noisy
labels datasets for ViT-L/16 backbone using MLP-K finetuning.

Method CIFAR10N CIFAR100N WebVision Clothing1M Food101NAggregate Random1 Random2 Random3 Worst
CE 94.14 90.62 92.57 91.41 75 69.53 86.81 66.13 81.34
FL 94.53 90.63 90.23 92.18 74.22 67.19 89.25 65.82 80.17
GCE 96.09 96.48 96.09 96.09 89.06 73.44 84.76 65.62 80.07
SCE 95.7 96.09 92.96 96.09 82.42 67.58 88.18 64.94 76.46
NLNL 96.48 96.09 95.7 96.48 94.92 75 86.03 67.67 12.35
DivideMix 97.12 97.12 97.12 97.12 97.08 78.45 80.28 65.68 65.51
APL 95.48 94.92 95.7 95.7 90.62 78.13 88.57 65.42 80.85
NCE+AGCE 96.09 94.92 96.87 95.7 92.96 80.08 88.37 64.84 81.15
ANL 96.48 96.48 96.09 94.92 94.14 79.29 89.06 64.94 80.17
Robust DivideMix 96.17 96.84 96.8 96.71 95.07 82.17 86.12 64.57 77.58
CLIPCleaner 95.26 95.3 95.21 95.22 95.11 78.13 84.72 69.35 74.24
NoiseGPT 95.77 95.98 95.92 95.87 96.39 81.81 85.12 71.84 73.95
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Table 36: RQ4: Entropy Reduction and Robustness (Accuracy) across two standard classification
losses and ten SOTA NLL methods using the ViT-L/16 backbone.

Method Closed-Set Noise Open-Set Noise Real-Wrold Noise
Acc. Entropy Reduction Acc. Entropy Reduction Acc. Entropy Reduction

CE 51.474 0.618 53.51 0.556 83.061 0.726
FL 50.948 0.553 55.727 0.623 82.691 0.789
GCE 63.654 0.825 74.607 0.872 86.411 0.911
SCE 54.928 0.427 56.117 0.652 84.491 0.704
NLNL 62.408 0.712 73.173 0.673 80.08 0.574
DivideMix 67.512 0.73 78.54 0.825 86.164 0.858
APL 66.278 0.85 74.997 0.844 87.266 0.856
NCE+AGCE 68.071 0.872 76.947 0.911 87.887 0.861
ANL 67.29 0.924 79.683 0.99 87.952 0.949
Robust DivideMix 69.253 0.708 79.49 0.696 88.003 0.794
CLIPCleaner 81.804 0.836 81.377 0.835 86.949 0.826
NoiseGPT 80.367 0.811 82.083 0.747 88.072 0.809

Table 37: RQ4: Prediction Entropy Reduction breakdown for CIFAR-10 and CIFAR-100 across
two standard classification losses (SLF) and ten SOTA NLL methods using the ViT-L/16 backbone
for closed-set noise settings.

Method Symmetric Noise (η) Asymmetric Noise (η) IDN-C Noise (η) BadLabel Noise (η)
0.4 0.6 0.8 0.2 0.3 0.4 0.6 0.8 0.6 0.8

C
IF

A
R

-1
0

CE 0.757 0.621 0.492 0.846 0.827 0.812 0.568 0.357 0.423 0.378
FL 0.726 0.702 0.673 0.815 0.797 0.779 0.646 0.335 0.418 0.23
GCE 0.943 0.889 0.355 0.931 0.857 0.783 0.835 0.804 0.812 0.757
SCE 0.652 0.512 0.292 0.667 0.647 0.652 0.535 0.423 0.358 0.295
NLNL 0.779 0.644 0.718 0.918 0.875 0.85 0.724 0.495 0.574 0.343
DivideMix 0.957 0.949 0.936 0.946 0.914 0.882 0.591 0.479 0.533 0.362
APL 0.967 0.961 0.958 0.969 0.954 0.918 0.857 0.809 0.679 0.428
NCE+AGCE 0.964 0.962 0.959 0.966 0.96 0.932 0.885 0.832 0.746 0.443
ANL 0.99 0.99 0.982 0.989 0.986 0.98 0.97 0.964 0.954 0.943
Robust DivideMix 0.843 0.843 0.837 0.853 0.851 0.848 0.597 0.473 0.612 0.291
CLIPCleaner 0.933 0.926 0.923 0.917 0.902 0.909 0.916 0.819 0.928 0.885
NoiseGPT 0.797 0.767 0.786 0.843 0.821 0.794 0.825 0.673 0.814 0.54

C
IF

A
R

-1
00

CE 0.724 0.66 0.383 0.855 0.836 0.729 0.75 0.426 0.513 0.41
FL 0.721 0.571 0.362 0.737 0.619 0.509 0.527 0.402 0.301 0.191
GCE 0.976 0.962 0.929 0.984 0.977 0.979 0.983 0.47 0.951 0.328
SCE 0.435 0.271 0.124 0.576 0.487 0.435 0.496 0.429 0.158 0.092
NLNL 0.865 0.832 0.791 0.891 0.849 0.757 0.789 0.692 0.582 0.279
DivideMix 0.859 0.839 0.749 0.903 0.856 0.847 0.582 0.516 0.519 0.39
APL 0.973 0.96 0.928 0.981 0.976 0.973 0.882 0.57 0.948 0.305
NCE+AGCE 0.972 0.959 0.932 0.979 0.974 0.969 0.88 0.768 0.944 0.409
ANL 0.995 0.993 0.988 0.996 0.995 0.993 0.896 0.694 0.992 0.188
Robust DivideMix 0.854 0.842 0.839 0.886 0.85 0.8507 0.74 0.431 0.357 0.472
CLIPCleaner 0.843 0.826 0.813 0.844 0.841 0.839 0.821 0.731 0.646 0.455
NoiseGPT 0.964 0.935 0.921 0.945 0.923 0.916 0.872 0.831 0.782 0.463

D.4 RQ4 RESULTS

Table 36 reports the test accuracy and corresponding prediction entropy reduction for twelve bench-
marked methods across three noise categories: closed-set, open-set, and real-world label noise using
ViT-L/16. To provide a more granular analysis, Table 37 details the entropy reduction results for
closed-set noisy settings on the CIFAR-10 and CIFAR-100 datasets. Similarly, Table 17 shows the
entropy reduction for the CIFAR80N-O dataset under open-set noise. Lastly, Table 38 presents the
entropy reduction across all twelve methods on five real-world noisy datasets.

D.5 RQ5 RESULTS

Table 29, 30, and 31 provides average performance for ViT-L/16+SLF and ViT-L/16+SLF+H . Ta-
bles 39, 39, and 40 provide a detailed breakdown of the performance improvements achieved by
incorporating entropy regularization into the CE and FL loss functions across closed-set, open-set,
and real-world noise categories for ViT-L/16. Across all settings, entropy regularization consistently
enhances the robustness of ViTs to label noise.
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Table 38: RQ4: Prediction Entropy Reduction breakdown for five real-world noisy label datasets
across two standard classification losses (SLF) and ten SOTA NLL methods using the ViT-L/16
backbone.

Method CIFAR10N CIFAR100N WebVision Clothing1M Food101NAgg. Rand1 Rand2 Rand3 Worst
CE 0.811 0.754 0.746 0.749 0.711 0.719 0.807 0.64 0.601
FL 0.878 0.872 0.869 0.855 0.691 0.717 0.903 0.684 0.636
GCE 0.98 0.973 0.973 0.972 0.899 0.979 0.948 0.604 0.867
SCE 0.938 0.894 0.89 0.889 0.747 0.984 0.134 0.335 0.522
NLNL 0.807 0.665 0.656 0.662 0.402 0.631 0.665 0.667 0.007
DivideMix 0.966 0.961 0.971 0.967 0.959 0.87 0.743 0.635 0.647
APL 0.993 0.989 0.99 0.99 0.96 0.981 0.956 0.075 0.767
NCE+AGCE 0.992 0.991 0.989 0.99 0.964 0.981 0.964 0.092 0.785
ANL 0.996 0.995 0.995 0.996 0.992 0.997 0.986 0.611 0.972
Robust DivideMix 0.855 0.868 0.866 0.866 0.864 0.774 0.757 0.628 0.668
CLIPCleaner 0.921 0.924 0.924 0.928 0.919 0.723 0.78 0.668 0.648
NoiseGPT 0.818 0.839 0.837 0.835 0.85 0.985 0.71 0.698 0.709

Table 39: RQ5: Impact of entropy regularization on performance for CIFAR-10 and CIFAR-100
under closed-set noisy settings using ViT-L/16 backbone.

Method Symmetric Noise (η) Asymmetric Noise (η) IDN-C Noise (η) BadLabel Noise (η)
0.4 0.6 0.8 0.2 0.3 0.4 0.6 0.8 0.6 0.8

C
IF

A
R

-1
0

CE 81.35 57.23 25.6 93.38 88.36 79.19 44.29 22.12 38.28 16.79
CE+H 96.48 96.48 95.7 96.48 88.67 82.03 66.01 26.56 43.75 23.05

↑15.13 ↑39.25 ↑70.10 ↑3.10 ↑0.31 ↑2.84 ↑21.72 ↑4.44 ↑5.47 ↑6.26
FL 94.92 94.14 93.14 65.41 65.31 59.16 46.48 13.28 24.22 6.25
FL+H 97.26 96.89 96.09 96.87 97.66 95.7 66.79 28.17 44.92 21.48

↑14.58 ↑38.41 ↑69.77 ↑7.03 ↑9.77 ↑14.46 ↑21.87 ↑9.82 ↑5.86 ↑4.69

C
IF

A
R

-1
00

CE 67.05 51.94 27.86 77.21 67.83 56.24 57.42 35.54 30.46 11.33
CE+H 85.54 83.2 78.51 83.2 76.17 68.75 64.45 47.26 37.89 16.41

↑18.49 ↑31.26 ↑50.65 ↑5.99 ↑8.34 ↑12.51 ↑7.03 ↑11.72 ↑7.43 ↑5.08
FL 65.49 49.34 27.6 73.69 66.27 57.42 54.68 35.93 28.51 14.45
FL+H 71.48 50.78 29.3 81.25 72.65 63.28 66.41 53.12 31.64 16.41

↑5.99 ↑1.44 ↑1.70 ↑7.56 ↑6.38 ↑5.86 ↑11.73 ↑17.19 ↑3.13 ↑1.96

Table 40: RQ5: Impact of entropy regularization on performance for real-world noisy label datasets
using ViT-L/16 backbone.

Method CIFAR10N CIFAR100N WebVision Clothing1M Food101NAgg. Rand1 Rand2 Rand3 Worst
CE 94.14 90.62 92.57 91.41 75 69.53 86.81 66.13 81.34
CE+H 94.92 95.7 94.92 94.53 91.8 73.82 88.18 68.43 82.23

↑0.78 ↑1.95 ↑0.78 ↑0.78 ↑1.96 ↑11.32 ↑0.39 ↑2.3 ↑0.89
FL 94.53 90.63 90.23 92.18 74.22 67.19 89.25 65.82 80.17
FL+H 95.7 95.7 95.31 94.53 92.19 75.78 90.13 69.92 81.54

↑1.17 ↑1.95 ↑0.39 ↑0.78 ↑2.74 ↑13.67 ↑0.88 ↑4.1 ↑1.37
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E VIT-S/16 BACKBONE RESULTS

In this section, we present benchmarking results obtained with the ViT-S/16 backbone across two
standard loss functions and ten noisy-label learning methods. Figure 9 summarizes the results under
closed-set noise, including SLF+H . Results for open-set and real-world noise are provided in Figure
10.

Sym 0.4

Sym 0.6

Sym 0.8

Asy 0.2

Asy 0.3

Asy 0.4

IDN 0.6

IDN 0.8

Bad 0.6

Bad 0.8

0 20 40 60 80 100

SLF
NLL
SLF+H

Performance Comparison: Spider Plot Analysis

(a)

88.89 83.49 49.27 87.07 86.53 82.8 53.57 27.93 33.87 13.45 65.72 57.84 48.97 66.32 59.84 52.31 48.49 35.69 28.48 5.81

81.02 63.15 49.64 89.74 86 80.25 51.64 27.62 34.5 13.79 48.56 36.48 18.17 59.8 53.38 54.11 48.88 49.33 19.08 5.98

91.03 89.46 77.64 91.24 89.97 75.26 57.36 28.97 37.03 9.87 69.33 67.8 60.72 69.01 65.94 51.77 50.68 36.96 17.74 2.71

89.27 80.62 43.98 90.68 87.04 79.83 53.76 27.47 35.35 11.94 55.07 42.11 22.42 60.7 52.68 44.47 49.79 35.54 20.1 6.36

88.53 85.51 56.7 90.08 89.86 88.99 71.27 42.15 31.75 9.24 60.81 57.4 49.23 63.02 54.81 44.76 50.52 37.55 21.07 5.17

93.5 92.5 90.5 93.8 92.5 91.32 63.5 22.14 29.48 8.65 71.98 70.06 67.14 71.62 69.43 65.18 63.4 46.4 25.82 9.89

91.04 89.3 79.95 91.27 90.11 86.6 59.98 27.27 38.16 11.22 70.42 67.93 62.35 70.08 67.15 54.98 55.49 42.2 23.53 2.14

91.12 88.84 79.17 91.58 90.37 86.54 60.53 31.82 38.7 10.6 70.16 68.39 63.18 70.25 68.27 61.15 56.19 43.22 19.78 3.7

90.86 90.13 85.42 90.84 90.37 87.79 62.51 29.2 37.33 7.33 69.68 66.44 61.62 70.32 68.88 62.29 56.32 43.73 15.72 4.1

93.4 92.6 90.8 92.8 91.65 83.52 64.11 23.42 30.68 9.37 72.15 70.34 69.21 71.72 68.64 61.58 59.32 44.86 26.19 10.12

89.04 88.5 82.56 89.2 88.79 84.5 87.06 52.64 80.5 72.12 66.89 63.12 60.26 67.54 65.41 61.66 60.72 45.18 32.98 15.82

92.89 92.11 83.92 94.2 92.45 89.5 91.83 58.32 86.63 77.5 73.01 72.21 71.09 72.29 70.88 66.24 64.18 58.62 36.25 20.06

Sym 0.4 Sym 0.6 Sym 0.8 Asy 0.2 Asy 0.3 Asy 0.4 IDN 0.6 IDN 0.8 Bad 0.6 Bad 0.8 Sym 0.4 Sym 0.6 Sym 0.8 Asy 0.2 Asy 0.3 Asy 0.4 IDN 0.6 IDN 0.8 Bad 0.6 Bad 0.8

NoiseGPT

CLIPCleaner

R-DivideMix

ANL

NCE+AGCE

APL

DivideMix

NLNL

SCE

GCE

FL

CE

20

40

60

80

Score

Performance Across Noise Settings

CIFAR-10 CIFAR-100

SLF
N
LL

(b)

Figure 9: RQ3: a) Performance comparison of NLL-based methods under closed-set label noise
on CIFAR-10 and CIFAR-100 using the ViT-S/16 backbone. b) Detailed results across datasets and
noise settings.
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Figure 10: RQ3: a) Comparison of NLL-based methods using the ViT-S/16 backbone under open-
set noise (CIFAR80N-O) and real-world noisy datasets: CIFAR-10N, CIFAR-100N, WebVision,
Food101N, and Clothing1M. b) Detailed results across datasets and noise settings.

F RESNET-50 BACKBONE RESULTS

We evaluate the ResNeT-50 backbone using two standard loss functions and ten state-of-the-art
noisy-label learning methods. Figure 11 reports performance under closed-set noise, including re-
sults for SLF+H . Performance under open-set and real-world noise is summarized in Figure 12.

G IMPORTANCE OF RECOMMENDED ENTROPY REGULARIZATION IN NOISE
ROBUSTNESS

G.1 GRADIENT-BASED INTUITION

Cross-Entropy Gradient. Cross-Entropy (CE) is widely used for training deep classifiers, however
suffers from sensitivity to noisy labels. Given logits z = (z1, . . . , zk), the softmax probability for
class j is

pj =
ezj∑k
ℓ=1 e

zℓ
.
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Figure 11: RQ3: a) Performance comparison of NLL-based methods under closed-set label noise
on CIFAR-10 and CIFAR-100 using the ResNet-50 backbone. b) Detailed results across datasets
and noise settings.
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Figure 12: RQ3: a) Comparison of NLL-based methods using the ResNet-50 backbone under open-
set noise (CIFAR80N-O) and real-world noisy datasets: CIFAR-10N, CIFAR-100N, WebVision,
Food101N, and Clothing1M. b) Detailed results across datasets and noise settings.

For a training sample with true label y ∈ {1, . . . , k}, the cross-entropy loss is: LCE(z, y) = − log py .
The gradient with respect to the logits zm is

∂LCE

∂zm
= pm − δym,

where δym is the Kronecker delta:

δym =

{
1, if y = m,

0, if y ̸= m.

Equivalently, in vector form, ∇zjLCE(p, ỹ) = pj−1{j = ỹ}. For a mislabeled example where pỹ is
small, the gradient magnitude of CE is large and points towards fitting the wrong label. This makes
CE prone to overfitting noisy samples.

Entropy Regularizer Gradient. The (Shannon) entropy of the predictive distribution p is

H(p) = −
k∑

j=1

pj log pj .

For an entropy-regularized loss with weight λ, the gradient with respect to zm is

∇zm(λH) = λpm

(
k∑

j=1

pj(log pj + 1)− (log pm + 1)

)
.

Combined Loss. Thus, for a cross-entropy loss with entropy regularization,

LCE+H = LCE + λH,
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the gradient with respect to the logits is

∇zmLCE+H =
(
pm − δym

)
+ λpm

(
k∑

j=1

pj(log pj + 1)− (log pm + 1)

)
.

G.2 WORKED EXAMPLE ON CIFAR-10

We illustrate with a toy example on CIFAR-10 (k = 10 classes). Suppose the clean label is “cat”
but due to symmetric noise it is flipped to “dog”. The network predicts the following probabilities:

p = [0.05, 0.10, 0.05, 0.55, 0.05, 0.05, 0.05, 0.05, 0.00, 0.00],

where pcat = 0.55 and pdog = 0.05.

Case 1: CE. With noisy label ỹ = dog, the loss is:

LCE = − log pdog = − log(0.05) ≈ 3.00.

and Gradient is:

∇zdogLCE = 0.05− 1 = −0.95, ∇zcatLCE = 0.55− 0 = 0.55.

Although the model predicts the true class correctly, CE strongly pushes the network toward the
noisy label.

Case 2: CE+H. Entropy term (λ = 0.2):

∇zcatLCE+H = 0.55 + λ0.55

(
0.302− (−1.30 + 1)

)
= 1.071

∇zDogLCE+H = −0.95 + λ0.05

(
0.302− (−0.259 + 1)

)
= −0.637

The entropy regularization term has reduced magnitude of derivative of noisy label i.e. Dog from
0.95 to 0.637. while the magnitude of the derivative of clean but unknown label cat has increased
from 0.55 to 1.071. Therefore, when the noisy label pushes the model away from the clean label the
entropy regularizer act as a damping factor and pushes the model towards clean but unknown label.
As a result, mislabeled samples no longer produce extreme gradients, making the training dynamics
more robust under noise. Thus, CE+H has better robustness than CE alone and CE+H balances the
gradient updates.
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