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ABSTRACT

It is commonly believed that Message Passing Neural Networks (MPNNs) strug-
gle in link prediction settings due to limitations in their expressive power. Recent
work has focused on developing more expressive model classes, which are capa-
ble of learning link representations through techniques such as labeling tricks, the
inclusion of structural features, or the use of subgraph methods. These approaches
have yielded significant performance improvements across a range of benchmark
datasets. However, an interesting question remains: have we fully wrung out the
performance by optimizing the other aspects of the training process? In this work,
we present results that indicate that significant amounts of model performance
have been left on the table by the use of easy negative-samples during training.
We theoretically explore the generalization gap and excess risk to quantify the
performance loss caused by easy negatives. Motivated by this analysis, we intro-
duce Risk Aware Negative Sampling (RANS), which efficiently performs dynamic
hard-negative-mining. Empirical results show that a simple GCN augmented by
RANS realizes between 20% and 50% improvements in predictive accuracy when
compared with the same model trained with standard negative samples.

1 INTRODUCTION

Link prediction is an important machine learning task that aims to predict unobserved edges connect-
ing two vertices. Link prediction traditionally operates on graph-structured data, which is ubiquitous
in industrial settings as it provides a natural way to represent entities and complex relationships be-
tween them (Chamberlain et al., 2023). For example, predicting new friendship relationships or
post engagements can be framed as link prediction tasks (El-Kishky et al., 2022; Cai et al., 2023) in
social media companies. This is accomplished by constructing an unsupervised set of positive sam-
ples, such as existing links, and learning a representation that reliably predicts those relationships to
exist with higher probability than a set of negatives (Kumar et al., 2020; Yang et al., 2024).

Given its importance, link prediction has received broad interest both industrially and academically,
with significant work dedicated to improving modeling modalities. The simplest approaches are
heuristic methods, which provide structural measures for link similarity (Zhou et al., 2009; Adamic
& Adar, 2003). Another class of popular methods aims to compute unsupervised node embeddings
that minimize graph reconstruction error (Bordes et al., 2013; Kazemi & Poole, 2018; Rossi et al.,
2021; Lerer et al., 2019). In recent years, this focus has shifted to modeling graphs using Message
Passing Neural Networks (MPNNs)(Kipf & Welling, 2016; Hamilton et al., 2017). However, unlike
node or graph-level tasks, MPNNs often struggle with link-level tasks. This is commonly attributed
to two reasons: (1) MPNNs are unable to count triangles(Chen et al., 2020) because they are equiv-
alent to the 1-WL test (Xu et al., 2018), and (2) MPNNs learn structural node representations when
structural edge representations are required for link prediction (Srinivasan & Ribeiro, 2019).

These insights have inspired the development of more expressive MPNNs through the use of label-
ing tricks (Zhang et al., 2021), conversion from link prediction to subgraph classification (Zhang
& Chen, 2018a; Wang & Zhang, 2021; Yin et al., 2023), or the inclusion of graph structural fea-
tures (Chamberlain et al., 2023; Yun et al., 2021). While these advances have led to complicated
models and impressive performance gains, an open question remains: are we extracting maximum
performance from a given model, even if it’s not maximally expressive? This question is particularly
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important because more complicated models are often difficult to scale in industrial settings (Ma
et al., 2022; Zheng et al., 2022; Borisyuk et al., 2024).

Due to the unsupervised nature of link prediction, there are only a few core components to the
problem: the model, additional feature engineering (through labeling tricks or structural features),
and the selection of negative samples. While both feature engineering and modeling techniques have
received significant research attention, negative sampling has been comparatively less explored in
the context of link prediction. The quality of negatives, however, is intuitively quite important.
Consider the case of a friendship graph on a site like Facebook, where the task is to recommend
potential friends whom users might know. A model will almost certainly be better informed about
user relationships when trained with negatives that are close to their social location (e.g., the town
where they live) rather than with uniform random sampling, which would likely generate trivial
negative examples.

Previous graph-related work has found that the selection of hard negatives through either feature
similarity (Pancha et al., 2022) or graph-structure sampling (Yang et al., 2020) leads to performance
improvements in some graph learning settings. Beyond graphs and link prediction, hard negative
mining has received significant attention from the computer vision (Xuan et al., 2020; Jin et al.,
2018; Sun et al., 2019) and NLP communities (Zhang & Stratos, 2021; Dasgupta & Ng, 2009).

Based on our understanding of the importance of hard negatives, as well as the attention from other
communities, we address the question: “Can we learn better link prediction models by improving
negative sampling methods?” We answer this question first through the analysis of link prediction
using the empirical risk minimization framework, which allows us to develop clear bounds for both
the generalization gap and the excess risk in terms of the unsampled negatives. These theoretical
insights inspire a simple negative resampling method that we term Risk Aware Negative Sampling
(RANS), which is highly flexible and applicable to any MPNN. To validate this method and our
analysis, we evaluate the performance of RANS on a range of datasets and present our results in
Section 7.

2 RELATED WORK

Initial work in link prediction often used random negative sampling, where negative samples were
drawn from non-existent edges in the graph. This approach treats the problem as a binary classi-
fication task, distinguishing true links (positive samples) from non-links (negative samples)(Zhang
& Chen, 2018b). However, randomly chosen negatives tend to be easy to classify, which can lead
to suboptimal models that fail to generalize well, especially in large and sparse graphs(Wang et al.,
2017b). More recent approaches have moved toward dynamic negative sampling and hard neg-
ative mining to address these limitations. Hard negatives are edges that are not present in the
graph but share structural or feature similarities with positive edges. Studies have shown that select-
ing harder negative samples during training forces the model to learn more discriminative features,
improving its ability to predict challenging or ambiguous links (Grover & Leskovec, 2016). Tech-
niques such as self-contrastive learning have also been used to approximate the full negative set
by leveraging negative edges dynamically during training, significantly enhancing performance in
large-scale graphs (Wu & Zhu, 2019).

A parallel line of research has focused on using labeling tricks and incorporating structural fea-
tures to address inherent limitations in graph-based models, such as automorphic node symmetry,
where structurally similar nodes receive identical embeddings (Zhang et al., 2021; Zhu et al., 2021;
Chamberlain et al., 2023). These methods, which explicitly add structural information, help models
break symmetry and distinguish between nodes that may otherwise appear similar in purely topo-
logical terms (Chen & Liu, 2017). Negative sampling plays an important role in this context—when
negatives are sampled from structurally similar nodes, the model is better trained to capture nuanced
structural differences, thus improving link prediction performance.

Active Learning represents another related research direction, as it seeks to select a set of data for
further labeling (Ren et al., 2021). RANS can be connected to active learning if we consider the
special case where f (i) represents both the data-labeling and training models (Ren et al., 2021).
Selecting the highest scoring elements of D̂n′

under f (i) amounts to an Expected Error Reduction
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process (Mussmann et al., 2022). However, RANS differs from active learning because it does not
select datapoints for further labeling, as these labels are available trivially.

Another emerging area involves utilizing Generative Adversarial Networks (GANs) (Goodfellow
et al., 2014) for hard-negative mining. Cai & Wang (2018) applies adversarial learning to improve
the quality of negative sampling on knowledge graph embeddings. A separate knowledge graph
embedding model (the generator) that produces hard negatives is trained alongside a model (the
discriminator) that learns to distinguish between true and false triples on the graph. A similar ap-
proach is evaluated for information retrieval by Wang et al. (2017a), where the generator feeds
relevant documents for a given query into the discriminator. Additionally, Yu et al. (2018) proposes
a general framework for using GANs in graph representation learning tasks. While using the GANs
framework for negative sampling allows for iterative learning of sampling and classification during
training, promising high-quality negatives, the iterative nature can cause training instability and in-
creased computational complexity. Diffusion-model based methods also provide a promising path
forward towards improving the quality of the generated negative samples, but are computationally
expensive (Nguyen & Fang, 2024). RANS can be viewed as a GAN without the minimax game,
offering flexibility in when new samples are generated.

Several studies have indicated that the overall quality of negative sampling can significantly impact
the expressiveness of link prediction models (Yang et al., 2020; Li et al., 2023; Yang et al., 2024).
For instance, while Graph Neural Networks (GNNs) are often employed for their ability to learn
rich node representations, their performance can be substantially enhanced by carefully curating
negative samples during training (Zhang & Chen, 2016). Hard-negative sampling techniques have
been shown to eliminate problems such as oversmoothing in GNNs, where node embeddings become
too similar, by encouraging the model to differentiate between subtle structural or feature-based
patterns (Yang et al., 2016a).

In conclusion, while much of the link prediction research has focused on improving model archi-
tectures, recent work highlights the critical role of negative sampling strategies. By shifting from
random to more informed, structure-aware sampling methods, researchers have demonstrated sub-
stantial improvements in predictive accuracy. This paper extends these insights by investigating the
impact of negative sampling on model performance and proposing a refined dynamic hard-negative
sampling approach to optimize link prediction tasks.

3 BACKGROUND

Graphs. A graph G = (V, E ,X) is a mathematical object where vertices V represent entities, and
edges E capture the relationships between these entities. The vertex set V contains N vertices, and
the feature matrix X ∈ RN×d0 represents d0-dimensional features for each vertex. The graph can
also be described by an adjacency matrix A ∈ RN×N , where Aij = 1 if there is an edge between
vertices i and j. Given A, the combinatorial Laplacian L is defined as L = D− 1

2 ÃD− 1
2 , where

Ã = I−A and D is the diagonal degree matrix of Ã.

Message Passing Neural Networks (MPNNs). MPNNs generalize the concept of spatial convo-
lution to graphs, allowing hidden representations of vertices to be computed by aggregating fea-
tures over multiple graph layers. Starting with a graph G with node features X, following the
framework of Gilmer et al. (2017), an MPNN updates a vertex’s hidden representation through
a message function and an update function denoted by ψl(·) and ϕl(·), respectively. The mes-
sage function ψl : Rdin

l → Rdout
l transforms messages between vertices, while the update function

ϕl : Rdin
l × Rdout

l → Rdin
l+1 combines the current vertex state and aggregated messages to compute

the next layer’s representation. The hidden representation for vertex i at layer l + 1 is given by:

hl+1
i = ϕl

hli,∑
j

Tijψl

(
hli, h

l
j

) , (1)

where T is the transition matrix, which generalizes the adjacency matrix A to account for potential
graph rewiring during training (Topping et al., 2021; Markovich, 2023; Gasteiger et al., 2019). In
principle, there are many choices for both ϕl (·) and ψl (·), a common practice is to employ a learn-
able Multi-layer Perceptron (MLP) with shared weights across all vertices. After message passing,
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the hidden representations are passed through a task-specific readout function, which may include
residual connections (Zhu et al., 2020).

Link Prediction. Link prediction aims to learn a function f(hi,hj) that predicts the likelihood
of an edge between vertices i and j based on their node representations hi and hj . Typically,
node representations are obtained using an MPNN, i.e. MPNN(i,G) = hi,∀i ∈ V . Putting it
all together, link prediction seeks to learn a readout function f(MPNN(i,G),MPNN(j,G)) → R,
treating it as a binary classification task (Hasan & Zaki, 2011). Popular choices for f include dot
product (Trouillon et al., 2016), Hadamard product (Wang et al., 2022; Chamberlain et al., 2023),
or MLP (Chamberlain et al., 2023). Since link prediction is framed as a binary classification task,
both positive and negative samples are required for training. Positive samples correspond to existing
edges, while negative samples are drawn from non-existent edges. Since the number of possible
negative edges (O(N2)) far exceeds the number of actual edges (O(|E|)), it is necessary to sample
a subset of negative edges to maintain dataset balance and computational efficiency (Bordes et al.,
2013).

4 MECHANISMS OF NEGATIVE SAMPLING

Negative Sampling and Self-Contrastive Methods. Let V ′ = V \ {k : (i, k) ∈ E} denote the set
of nodes that node i ∈ V has no connection with. From a self-contrastive perspective, the goal in
link prediction is to learn a function parameterized by θ, modeling the conditional probability of an
edge between vertices vi and vj as follows:

p(vi|vj ; θ) =
efθ(vi)·fθ(vj)∑

k∈V′ efθ(vi)·fθ(vk)
. (2)

This objective is intractable for large datasets, but following Mikolov et al. (2013), it can be approx-
imated as:

argmax
θ

∑
(vi,vj)∈E

lnσ(fθ(vi) · fθ(vj)) +
∑

(vi,vk)∈E′

lnσ(−fθ(vi) · fθ(vk)), (3)

where E ′ is a set of sampled negative edges. Minimizing this simplified objective yields a model that
approximates the joint distribution of (vi, vj), rather than the conditional probability. This approach
is self-contrastive because all edges absent in the adjacency matrix are treated as negatives.

Limitations of MPNNs for Link Prediction. MPNNs, which are equivalent to the Weisfeiler-
Leman isomorphism test, face two key limitations in link prediction. First, they cannot count trian-
gles, a critical structural feature (Tolmachev et al., 2021; Chen et al., 2020). Second, MPNNs suffer
from the automorphic node problem, where they assign equivalent representations to vertices in the
same graph orbit (i.e., under graph automorphisms) (Srinivasan & Ribeiro, 2019). This leads to two
issues: (1) f(vi, vj) = f(vi, vk) for vertices vj and vk in the same orbit, regardless of distance; and
(2) when the MPNN suffers from oversmoothing, it produces overly similar vertex representations,
making the link predictor too optimistic.

Negative Sampling and Structural Representations. To improve link prediction performance,
researchers often employ techniques such as labeling tricks and explicit structural features (Zhang
et al., 2021; Zhu et al., 2021; Chamberlain et al., 2023). These methods help break automorphic node
symmetry by enabling the edge-wise decoder to learn how to incorporate these additional sources
of information. Consider the naphthalene molecule shown in Figure 1, which contains five sets of
structurally isomorphic vertices. Given that vertices v9 and v17 are isomorphic, any link predic-
tor based purely on structural node representations will yield equivalent representations for edges
(v1, v9) and (v1, v17). The scenario becomes more nuanced when incorporating additional features,
such as the number of valence electrons assigned to vertices (atoms) in the graph (molecule). In
naphthalene, atoms in the central rings possess four valence electrons, while those on the periphery
have one valence electron.

To address these issues, we can define a link predictor that incorporates both structural node rep-
resentations and the distance between node pairs. While this approach can break symmetry, it is
effective only when negative samples during training include pairs of structurally isomorphic ver-
tices. For instance, if negatives are chosen solely from vertices that differ significantly in feature
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Figure 1: Naphthalene molecule as a graph. Structurally isomorphic atoms are coloured same,
central ring atoms are represented larger than outer atoms in vertex size.

space, the model will experience weak optimization pressure to emphasize distance or other struc-
tural information, as feature information alone suffices to discriminate between positive and negative
edges (Srinivasan & Ribeiro, 2019; Zhang et al., 2021). Conversely, when negatives with similar
feature representations are chosen during training, the model experiences the necessary optimization
pressure to focus on distance-based features. Thus, the quality of the link predictor depends not only
on model expressivity but also on the negative samples observed during training (Yang et al., 2020;
2024). Importantly, negative sampling does not alter the expressivity of the hypothesis space; rather,
it helps identify the optimal model within that space (Zhang et al., 2023).

We can formalize this argument by analyzing an analytically tractable model. Consider a 2-layer
linearized GCN, where the functional form f(vi, vj) is given by:

fGCN(vi, vj) = (TΘ2TΘ1X) [:, i] · (TΘ2TΘ1X) [:, j], (4)

where Θ1 ∈ Rd0×d1 and Θ2 ∈ Rd1×d2 denote the parameters at update layer l. This formulation
yields two key observations. First, graph connectivity is accounted for only in T2, with second-order
sums being independent, causing the model to estimate high scores for edges with endpoints from
disparate graph neighborhoods but similar feature distributions. This proves problematic for GNNs
prone to oversmoothing, as node embeddings converge to similar values, making their dot products
approach 1. Consequently, any two vertices with fGCN(vi;G) = fGCN(vj ;G) will be labeled as
structurally isomorphic, leading to identical results for edge queries. Second, this formulation con-
strains the link representation to a limited field of l, meaning higher-order graph structures such as
triangle closures cannot be captured unless explicitly added through the readout function.

5 ANALYZING NEGATIVE SAMPLING AND EMPIRICAL RISK

An important question to explore is: “How does the quality of negative samples affect the general-
ization performance of link prediction models?”. To answer this, we can frame the link prediction
task as a binary classification problem and analyze it using the tools of empirical risk minimiza-
tion. We start by defining the risk R(f) of a classifier f as:

R(f) ≜ EXEY |X [ℓ(Y, f(X))], (5)

where p(Y |X) represents the ground truth distribution of an edge’s existence (Y = 1) given some
features (such as node features, node identity, or edge features).

Assume that the model f : RD → [0, 1] belongs to a class of models F , and each f is parameterized
by θ, representing a distinct model within F . The loss function ℓ(f(xij), yij) : RD → R+ quantifies
prediction error.

Given access to samples from p(Y |X), we construct the empirical risk based on a dataset D =

{xk, yk}Kk=1, under the assumption of D iid∼ p(Y,X). In this particular setting of edge prediction,
observing a given graph can be viewed as such an iid dataset. For a sampled graph, the empirical
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risk is defined as:

R̃(f) ≜
1

|D|

|D|∑
k=1

ℓ(yk, f(xk)) with xk, yk ∼ p(X,Y ). (6)

As it is a proper empirical risk, R̃ enjoys the usual guarantees and bounds with respect to the true
risk R(f). However, calculating the full empirical risk is computationally expensive, as it involves
iterating through all possible node pairs. Instead, we rely on a subset of samples D̂ ⊂ D to compute
an approximate empirical risk:

R̂(f) ≜
1

|D̂|

∑
(xk,yk)∈D̂

ℓ(fθ(xk), yk). (7)

We aim to minimize the true risk R(f), but since we only work with sampled data, we instead
minimize the empirical risks:

f∗ ≜ argmin
f∈F

R(f), f̃∗ ≜ argmin
f∈F

R̃(f), f̂∗ ≜ argmin
f∈F

R̂(f). (8)

Let Dp and D̂p (Dn and D̂n) denote the positives (negatives) in D and D̂, respectively and define
the sum of losses over positive and negative samples for a given classifier f as follows:

ℓ+f =
∑

(xk,yk)∈Dp

ℓ(yk, f(xk)), ℓ−f =
∑

(xk,yk)∈Dn

ℓ(yk, f(xk)), (9)

ℓ̂+f =
∑

(xk,yk)∈D̂p

ℓ(yk, f(xk)), ℓ̂−f =
∑

(xk,yk)∈D̂n

ℓ(yk, f(xk)). (10)

Now, let’s examine the gap between the risks R̃ and R̂ for a classifier f .

|R̃(f)− R̂(f)| =

∣∣∣∣∣ℓ
+
f + ℓ−f
|D|

−
ℓ̂+f + ℓ̂−f

|D̂|

∣∣∣∣∣ . (11)

Assuming that the set of positives is the same Dp ≈ D̂p, and defining m−
f as the risk associated

with negative edges in D/D̂, yields ℓ−f = m−
f + ℓ̂−f , and we arrive at Theorem 5.1.

Theorem 5.1 (Link Prediction Generalization Gap). Using the definitions for ℓ± and m−
f above,

the generalization gap is:

|R̃f − R̂f | =
1

|D|

∣∣∣∣∣
(
1− |D|

|D̂|

)
R̂f +m−

f

∣∣∣∣∣ . (12)

The term m−
f can be interpreted as the contribution from the missing negative edges from D̂, and is

always positive. The term
(
1− |D|

|D̂|

)
R̂f is the empirical risk on the subset D̂ scaled by the factor(

1− |D|
|D̂|

)
, which is always negative as |D| > |D̂|. Many real world graphs are sparse, meaning that

|D̂p,n| ≈ N , which allows us to further simplify the first term to (1−N) R̂f .

While the generalization gap is interesting for any element of F , we are usually interested in f̂∗,
which is found through some training procedure like Stochastic Gradient Descent (SGD) (Robbins
& Monro, 1951). Given that f̂∗ is the minimizer of R̂, the first term should take its minimum value
as well. The m−

f term, however, is not minimized by f̂∗. Furthermore, while the samples that
comprise D̂ are drawn uniformly, the distribution of our loss values will not be similarly uniform.
Given that R̂f∗ is at its minimum, the minimum generalization gap occurs when R̂f∗ = m−

f∗ , but
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we note that if there are N terms on the left, there are N2 terms on the right side of equation.
This naturally implies that shrinking our generalization gap requires carefully choosing the hardest
negative edges for f̂∗ given D̂. Thus, we must carefully provide a representative sample of the loss
distribution. This problem is particularly pernicious when we perform our minimization with SGD,
because SGD minimizes the loss, and even hard edges for model f̂n will become easier for model
f̂n+1, where the superscripts indicate the SGD step index. Even though R̂fn > R̂fn+1 , we have no
guarantee thatm−

fn > m−
fn+1 . As a result, minimization of R̂ provides an overly optimistic estimate

for the performance of f̂∗ unless negatives are chosen carefully.

With the generalization gap in hand, it is next interesting to bound the excess risk that f incurs when
compared to f∗, which we do through application of Theorem 5.1

Theorem 5.2 (Link Prediction Excess Risk). Excess risk for our empirical risk minimizer, f̂∗, is
equal to:

E(f̂∗) =
∣∣∣R̃f̃∗ − R̂f̂∗

∣∣∣ ≤ 2
1

|D|
sup
f∈F

∣∣∣m−
f

∣∣∣ . (13)

The proof of this theorem is given in Appendix 10.1.

Traditionally, excess risk characterizes the discrepancy between a model f̂ and f̃∗ over F . In this
view, increasing the expressivity of F can lead to an overall reduction in excess risk by enabling
better data representations. We propose an alternative perspective: instead of modifying F , we can
reduce excess risk by exploring different data splitting strategies while holding F constant. If we
construct Dn to contain only difficult edges under the model f̃∗, the second term will shrink because
the remaining edges are ”easy.” Consequently, the selection of negative samples can significantly
influence our choice of f̂∗, thereby reducing both our uniform error bound and excess risk.

6 RISK AWARE NEGATIVE SAMPLING

We now develop a negative sampling algorithm that leverages these insights to generate better nega-
tive samples during training. Direct application of Theorem 5.2 would require both enumeration of
all possible negative samples and access to f̃∗. However, if we had access to f̃∗, training would be
unnecessary since we would already possess the optimal link predictor. In such a case, the optimal
algorithm would simply return f̃∗.

Algorithm 1 Risk Aware Negative Sampling

Input: f , D̂, δ, η
1: Z = MPNN(G,X)

2: p = f(D̂,Z) ▷ Score all training edges
3: Neasy =

∑
negs I(p < δ)

4: if Neasy > η|D̂n| then
5: D̂n′ ∼ q(G) s.t. |D̂n′ | = kNeasy ▷ Sample new negatives from the base distribution, q.
6: p = f(D̂n′

,Z) ▷ Score all new negative edges
7: D̂n

easy = D̂n′

hardest
8: end if

To circumvent this problem, we make several key observations. First, at the ith epoch, our most
principled estimate of f̃∗ is f (i). Second, our generalization gap is governed by both R̂, which we
actively minimize, and m−

f , which remains unknown. Third, we retain the freedom to reconstruct D̂
as needed. These observations lead to a straightforward conclusion: at epoch i, we should replace
”easy” negatives with harder ones.

We accomplish this by sampling a set of new negatives according to a base distribution q, such
that D̂n′

= {e ∼ q(G)}. This approach leads to our method, Risk Aware Negative Sampling
(RANS), defined in Algorithm 1. RANS first tests for the percentage of edges that the current model
finds “easy.” When this percentage exceeds a prescribed threshold, RANS randomly samples new
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Table 1: Principal comparison. The prediction performance of GCN combined with different
sampling techniques across different datasets. PNS results are omitted for OGBL-DDI because this
dataset has no node features.

CORA CITESEER PUBMED CHAMELEON SQUIRREL OGBL-DDI OGBL-COLLAB
Metric HR@10 HR@10 HR@100 HR@10 HR@100 HR@20 HR@50
UNS-S 26.28 ± 4.52 25.54 ± 5.49 18.74 ± 1.48 20.56 ± 7.04 46.70 ± 2.66 36.82 ± 4.23 42.10 ± 2.06

USNS-S 36.75 ± 4.21 28.07 ± 5.64 22.83 ± 3.77 27.42 ± 5.45 41.72 ± 2.17 36.97 ± 5.71 42.10 ± 1.55

RWNS-S 40.01 ± 6.78 48.92 ± 2.02 27.37 ± 3.68 14.34 ± 9.37 1.38 ± 1.06 33.07 ± 6.27 42.26 ± 1.62

PNS-S 22.33 ± 6.78 9.89 ± 3.35 15.88 ± 4.32 18.28 ± 6.15 33.16 ± 1.98 - OOM
UNS-D 43.22 ± 4.80 54.22 ± 4.21 27.80 ± 2.13 21.64 ± 7.62 47.71 ± 3.05 41.08 ± 7.48 44.75 ± 1.07

USNS-D 47.72 ± 4.21 58.07 ± 5.88 27.56 ± 2.51 12.52 ± 6.27 21.38 ± 6.36 23.56 ± 3.97 41.24 ± 1.79

RWNS-D 45.93 ± 6.52 47.34 ± 4.04 24.40 ± 0.95 8.96 ± 4.99 22.70 ± 1.31 19.53 ± 4.08 38.10 ± 0.78

MCNS-D 49.40 ± 4.14 55.98 ± 3.30 28.26 ± 2.37 7.89 ± 1.94 18.42 ± 3.88 36.40 ± 6.57 43.06 ± 1.30

RANS 51.36 ± 3.64 61.01 ± 1.21 33.17 ± 3.38 35.50 ± 6.16 45.81 ± 3.44 47.96 ± 5.12 47.47 ± 1.10

negatives according to base distribution q and scores them using the current model. It then replaces
the easiest negatives in the current dataset with the hardest new negatives. Our algorithm depends
on three hyperparameters: δ, η, and k. Here, δ defines the threshold for considering a negative edge
“easy,” η specifies the proportion of edges that must be easy before regeneration, and k determines
the oversampling ratio. In our experiments, we set δ = 0.1p̄p, where p̄p is the average score of
positive edges; η = 0.95; and k = 10, though k = 2 suffices for OGBL datasets. RANS also
requires a base distribution q from which we can efficiently generate many samples. In practice,
we sample from the uniform distribution for computational efficiency, though any base distribution
would suffice. Notably, the number of negatives is controllable, providing a convenient way to
balance computational expense and negative mining.

7 EXPERIMENTS

In this section, we first describe for the experimental setup and we present an evaluation of our
proposed negative sampling technique, comparing its performance against a range of established
methods across multiple datasets. Next, we explore the generalization gap, model complexity, and
robustness of different sampling techniques under varying conditions through a set of sensitivity
analysis.

7.1 PRINCIPAL COMPARISON

Setup. To isolate the effects of negative sampling on model performance, we maintain a controlled
experimental setup with fixed model architecture and hyperparameters. We employ a GCN as our
base model for learning vertex embeddings. These embeddings are combined using the Hadamard
product and passed through an MLP. Hyperparameters for both the encoder and edge predictor are
detailed in Table 10.2 in the appendix. All experiments were conducted using PYTORCH GEOMET-
RIC 2.6.0 and PYTORCH 2.4 on an NVIDIA DGX A100 system with 128 AMD ROME 7742 cores
and 8 NVIDIA A100 GPUs.

Datasets. We evaluate our method on seven datasets: CORA, CITESEER, and PUBMED from the
Planetoid datasets (Yang et al., 2016b); CHAMELEON and SQUIRREL from the WebKB dataset (Pei
et al., 2020); and OGBL-DDI and OGBL-COLLAB (Hu et al., 2020). For the Planetoid and WebKB
datasets, we generate five different splits used across all experiments. For the OGBL datasets, we
perform ten repetitions following the default experimental setup provided by the OGBL team. Results
are averaged over all splits, with both mean and standard deviation reported.

Metrics. We use hit rate (HR) as our evaluation metric, a standard measure in link prediction tasks.
HR measures the proportion of true positive edges ranked within the top k predictions, defined as:

HR@k =
Number of true positives in top k

Total number of true positives
, (14)

where k is a user-defined threshold, and a ”hit” occurs when a true positive edge (i.e., a correct link
between two nodes) ranks among the top k predicted links. We evaluate prediction performance
using HR@10, HR@20, HR@50, and HR@100, specifying the metric used in each case.
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Baselines. We compare our proposed negative sampling method against several established tech-
niques:

- UNS: Uniform Negative Sampling selects negative samples uniformly at random from all possible
edges. This is the default negative sampling technique in PyTorch Geometric and does not con-
sider structural or feature-based information when selecting negatives (Bordes et al., 2013; Fey &
Lenssen, 2019).

- USNS: Uniform Structural Negative Sampling samples negatives uniformly from nodes sharing
structural similarity. This approach generates more challenging negative samples compared to
UNS by focusing on structurally similar nodes (Wang et al., 2014; Fey & Lenssen, 2019).

- RWNS: Random Walk Weighted Negative Sampling selects negative samples based on random
walks over the graph. Selection probability is weighted by node frequency in random walks,
reflecting connectivity and structural importance (Hamilton et al., 2017).

- PNS: Personalized Negative Sampling selects negative samples based on node feature similarity,
with selection probability increasing as feature similarity increases (Pal et al., 2020).

- MCNS: Monte Carlo Negative Sampling employs Monte Carlo methods for negative sampling,
repeatedly sampling possible negatives and estimating their loss contribution using probabilistic
techniques (Yang et al., 2020).

These methods operate in either static or dynamic settings. In static settings, negative training edges
are generated once and used throughout all epochs. In dynamic settings, edges are regenerated every
K epochs, where K is a tuned hyperparameter. UNS, USNS, and RWNS support both settings,
denoted by -S (static) or -D (dynamic) suffixes. PNS is limited to static settings due to computational
constraints, while MCNS is inherently dynamic. We omit PNS for OGBL-DDI due to the absence of
features and for OGBL-COLLAB due to memory constraints.

Table 6 presents our experimental results. RANS consistently improves the accuracy of our base
GCN across all datasets compared to other negative sampling techniques, validating our hypoth-
esis that risk-aware sampling advances the performance of graph learning methods. We provide
a table comparing per-epoch average run-times in Table 5, and observe only modest increases in
computation expense with RANS when compared with the baselines. In Figure 3 we report the hy-
perparameter sensitivity to δ and η, and observe that there is a large region where RANS improves
performance. This leads us to conclude that RANS is robust to these hyperparameters, and that
extensive tuning is not warranted.

Generalization Gap. A common observation in link prediction tasks is that training accuracy con-
verges faster than validation and test accuracy, empirically demonstrating the generalization gap.
Theorem 5.1 and our subsequent analysis indicate that minimizing m−

f can reduce this gap. As
shown in Figure 2, RANS delays the saturation of training accuracy by introducing challenging
new negatives that temporarily decrease training accuracy. This approach results in a significantly
smaller train-test generalization gap for GCN with RANS compared to UNS-S, the standard negative
sampling strategy in link prediction training.

Table 2: Distribution-swap on negatives. The predictive performance (HR@20) of different con-
figurations for the distribution of negative sampling on train and test split. All experiments were run
on the Cora dataset.

Train
Test UNS USNS PNS

UNS-S 50.2 ± 4.8 41.8 ± 3.7 13.0 ± 2.8

USNS-S 39.5 ± 4.1 40.2 ± 3.2 13.6 ± 3.1

PNS 35.0 ± 3.2 31.4 ± 3.6 21.5 ± 1.9

RANS 59.3 ± 2.6 69.8 ± 4.3 22.7 ± 2.6

Generalization Gap Across Distributions. Another approach to exploring the generalization gap
is to examine settings where train and test negatives are drawn from different distributions. This sce-
nario corresponds to industrial applications with nonstationary negative distributions (Zhang et al.,
2016; Ma et al., 2007) or cold-start settings (Wei et al., 2021; Du et al., 2022). Theorem 5.1 in-
dicates that for a model f̂∗ that minimizes R̂, generalization performance is largely governed by
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Figure 2: Generalization gap. Comparison of predictive performance (HR@20) between GCN
with RANS (left) and GCN with uniform negative sampling (UNS) (right) across epochs on training,
validation, and test splits.

m−
f . To empirically validate this effect, we designed experiments where models were trained us-

ing one negative sampling strategy and tested using negatives generated by a different strategy. All
experiments maintained consistent model architecture and were averaged over five data splits, with
identical splits used across experiments. Table 2 presents the results of these distribution-swap on
negatives experiments. Models trained with fixed negative sampling strategies perform poorly on
test sets with substantially different negative distributions, a trend consistent across all standard neg-
ative sampling approaches. In contrast, RANS achieves superior generalization performance across
all test sets.
Table 3: SOTA Comparison. The predictive performance of different models in comparison to
GCN+RANS.

CORA CITESEER
Metric HR@100 HR@100
Neo-GNN 80.42 ± 1.31 84.67 ± 2.16

SEAL 81.12 ± 1.84 86.32 ± 1.59

ELPH 87.72 ± 2.13 93.44 ± 0.53

BUDDY 88.00 ± 0.44 92.93 ± 0.27

GCN+UNS 66.79 ± 1.65 67.08 ± 2.94

GCN+RANS 80.06 ± 2.38 88.16 ± 3.03

HLGNN+UNS 88.96 ± 2.17 93.01 ± 2.71

HLGNN+RANS 89.63 ± 2.10 95.21 ± 1.35

Model Complexity vs. Negative Quality Following insights from Theorem 5.2, we investigate how
a simple model like our GCN, when augmented with RANS, compares to state-of-the-art models.
This investigation is significant because model underperformance has traditionally been attributed
to limited hypothesis space expressiveness. In Table 3, we compare the performance of our untuned
GCN+RANS against leading methods including Neo-GNN (Yun et al., 2021), SEAL (Zhang &
Chen, 2018b), and BUDDY (Chamberlain et al., 2023). GCN+RANS achieves comparable perfor-
mance to both SEAL and Neo-GNN despite operating in a significantly less expressive hypothesis
space. While BUDDY maintains superior performance, RANS substantially narrows this perfor-
mance gap. All performance numbers, except for GCN+RANS reported in Table 3 are taken from
the literaure (Chamberlain et al., 2023), so as to capture optimal performance after extensive hy-
perparameter tuning so as not to unfairly privilege RANS. Importantly, RANS serves as a training
augmentation applicable to any model, suggesting potential performance improvements across all
link prediction models when combined with this approach.

8 CONCLUSION

In conclusion, we have presented a new technique for generating negative samples dynamically that
leads to higher quality models. This approach is inspired by an analysis of the excess risk in link pre-
diction, and we show both theoretically and empirically that our method reduces the generalization
gap, and leads to better model performance. This work is limited to static link prediction contexts,
but future work will explore temporal graphs.
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9 APPENDIX

10 PROOFS

10.1 PROOF OF THEOREM 4.2

To complete this proof, we first need to compute the uniform error bound.

ϵ = sup
f∈F

∣∣∣R̂f − R̃f

∣∣∣ (15)

ϵ = sup
f∈F

∣∣∣∣∣∣ ℓ̂
+
f + ℓ̂−f∣∣∣D̂∣∣∣ −

ℓ+f + ℓ−f
|D|

∣∣∣∣∣∣ (16)

ϵ = sup
f∈F

∣∣∣∣∣∣ ℓ̂
+
f + ℓ̂−f∣∣∣D̂∣∣∣ −

ℓ̂+f + ℓ̂−f +m−
f

|D|

∣∣∣∣∣∣ (17)

ϵ = sup
f∈F

∣∣∣∣∣∣ R̂f∣∣∣D̂∣∣∣ − F̂f

|D|
−
m−

f

|D|

∣∣∣∣∣∣ (18)

ϵ = sup
f∈F

1

|D|

∣∣∣∣∣∣R̂f

 |D|∣∣∣D̂∣∣∣ − 1

−m−
f

∣∣∣∣∣∣ (19)

Supremum occurs when R̂f is minimized whilem−
f is maximized, becausem−

f hasN2 terms while
R̂ only has N .

ϵ ≤ sup
f∈F

1

|D|

∣∣∣m−
f

∣∣∣ (20)

with this in hand, we want to estimate

E(f̂∗) = R̃(f̂∗)− (̃R)(f̃∗) (21)

First,

R̂(f̂∗) ≤ R̂(f) ∀f ∈ F , (22)

then, using the uniform error bound,
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∣∣∣R̂(f̂∗)− R̃(f̂∗)
∣∣∣ ≤ ϵ (23)

and ∣∣∣R̂(f̃∗)− R̃(f̃∗)
∣∣∣ ≤ ϵ (24)

implies that

R(f̂∗) ≤ R̂(f̂∗) + ϵ (25)
and

R(f̃∗) ≤ R̂(f̃∗) + ϵ. (26)

Starting from:
R(f̂∗) ≤ R̂(f̂∗) + ϵ (27)

we can use the fact that R̂(f̂∗) ≤ R̂(f̃∗) to get

R(f̂∗) ≤ R̂(f̃∗) + ϵ. (28)

Using that R(f̃∗) ≤ R̂(f̃∗) + ϵ, we find that

R(f̂∗) ≤
(
R(f̃∗) ≤ R̂(f̃∗) + ϵ

)
+ ϵ (29)

which yields:
R(f̂∗) ≤ R(f̃∗) ≤ R̂(f̃∗) + 2ϵ (30)

R(f̂∗) ≤ R(f̃∗)− R̂(f̃∗) ≤ 2ϵ (31)

Returning to our excess risk definition:

E(f̂∗) = R̃(f̂∗)− (̃R)(f̃∗) (32)
We find that:

E(f̂∗) ≤ 2ϵ ≤ 2
1

|D|
sup
f∈F

∣∣∣m−
f

∣∣∣ (33)

10.2 ENCODER AND DECODER PARAMETERS

Parameter Value
Encoder Number of Layers 2
Encoder Hidden Dimension 256
Encoder Output Dimension 256
Encoder Dropout 0.2
Decoder Num Layers 2
Decoder Hidden Dimension 256
Decoder Output Dimension 256
Decoder Dropout 0.3
Learning Rate 1.13× 10−4

Weight Decay 8.6× 10−4

Table 4: Model Parameters

10.3 RUN TIME COMPARISONS

10.4 HYPERPARAMETER SENSITIVITY

10.5 PRINCIPAL COMPARISON - HLGNN
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CORA CITESEER PUBMED CHAMELEON SQUIRREL OGBL-DDI OGBL-COLLAB
UNS-S 56s 38s 95s 56s 284s 5442s 5295s
USNS-S 56s 56s 531s 163s 272s 1482s 5308s
RWNS-S 35s 34s 157s 95s 313s 1469s 5729s
PNS-S 93s 93s 170s 987s 192s - OOM
UNS-D 30s 29s 101s 46s 290s 5289s 6563s
USNS-D 31s 29s 99s 57s 284s 72553s 6142s
RWNS-D 35s 33s 156s 94s 321s 36939s 5491s
MCNS-D 31s 29s 99s 57s 287s 18611s 9876s
RANS 31s 31s 100s 62s 288s 27791s 11502s

Table 5: Observed model runtimes.
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Figure 3: Hyperparameter Sensitivity The hyperparameter sensitivity for GCN+RANS on the
Cora dataset. We have computed the HR@10 of GCN+RANS for η and δ and plot the surface. We
observe that there is a broad region of reasoanble performance corresponding to the red basin.
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Table 6: Principal comparison. The prediction performance of HLGNN combined with different
sampling techniques across different datasets.

CORA CITESEER PUBMED CHAMELEON SQUIRREL OGBL-COLLAB
Metric HR@10 HR@10 HR@100 HR@10 HR@10 HR@50
UNS-S 64.67 ± 6.34 75.69 ± 1.54 86.86 ± 0.86 49.98 ± 6.76 81.53 ± 0.96 47.31 ± 1.92

USNS-S 67.40 ± 3.51 73.10 ± 3.88 84.94 ± 0.95 49.62 ± 9.83 71.71 ± 3.30 47.20 ± 2.78

RWNS-S 67.97 ± 3.57 77.58 ± 1.65 84.17 ± 1.09 27.40 ± 4.61 18.73 ± 1.85 41.56 ± 1.20

UNS-D 63.23 ± 6.52 75.30 ± 3.52 86.87 ± 0.79 58.49 ± 8.42 83.08 ± 2.66 49.45 ± 2.29

USNS-D 63.07 ± 2.74 75.30 ± 3.51 84.73 ± 0.76 62.12 ± 3.63 81.53 ± 0.96 48.70 ± 0.80

RWNS-D 64.52 ± 1.85 75.91 ± 1.31 84.81 ± 0.72 31.84 ± 9.24 38.46 ± 10.06 41.84 ± 1.22

MCNS-D 59.35 ± 3.67 76.00 ± 2.03 85.14 ± 0.75 44.27 ± 9.74 75.51 ± 1.95 47.77 ± 1.69

RANS 68.81 ± 2.36 77.93 ± 1.43 87.96 ± 0.78 63.54 ± 6.66 81.65 ± 2.62 52.05 ± 0.75
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