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Abstract

Face parsing underpins tasks like identity verification, fa-
cial editing, and image synthesis, but current models of-
ten yield biased segmentations and fail under noise, oc-
clusion, or domain shifts hurting downstream synthesis.
We introduce a homotopy-based multi-objective U-Net that
dynamically balances accuracy, fairness, and robustness
during training. Plugged into GAN-based face synthesis
pipelines (Pix2PixHD) and structured conditioning model
for diffusion-based synthesis (ControlNet) pipelines, our
approach boosts photorealism, demographic consistency,
and resilience to perturbations, producing higher-quality
generative outputs.

1. Introduction

Face parsing, the segmentation of fine-grained components
like eyes, nose, mouth, and hair, is a fundamental task
in computer vision, supporting face recognition [18], aug-
mented reality [11], and facial expression analysis [3].
While segmentation accuracy has improved [2, 12], existing
models often neglect key concerns: (1) fairness across de-
mographic groups, (2) robustness to noise, occlusion, and
domain shifts, and (3) the impact on downstream genera-
tive models. Face parsers may perform well on clean data
but degrade for underrepresented demographics [1, 7, 14]
or in real-world conditions [5, 8], propagating biases into
generative synthesis tasks.

Prior work explored multi-objective optimization [9, 16]
and fairness-aware facial analysis [13], but no unified strat-
egy addresses accuracy, fairness, and robustness together.
Moreover, both GAN-based [6] and diffusion-based [19]
generative models heavily depend on segmentation qual-
ity [15], making fairness in parsing crucial to avoid prop-
agating biases [4, 17].

We propose a homotopy-based multi-objective learn-

ing framework that dynamically balances accuracy, fair-
ness, and robustness during training. Our method improves
segmentation across demographic groups and enhances re-
silience to noise, occlusion, and domain shifts, benefiting
downstream GAN- and diffusion-based face synthesis.

To validate our approach, we integrate multi-objective
and single-objective U-Net models into a GAN-based face
synthesis pipeline (Pix2PixHD) and conduct preliminary
experiments with ControlNet. We evaluate segmentation
quality (mIoU, fairness variance) and generative quality
(FID, LPIPS) under real-world perturbations. Our key con-
tributions include: proposing a multi-objective framework
for fairness-aware and robust face parsing; systematically
evaluating fairness via mIoU variance and robustness un-
der perturbations; demonstrating that improved segmen-
tation fairness leads to better GAN-based face synthesis
with lower FID and enhanced photorealism; and conduct-
ing a preliminary analysis of segmentation quality effects
on diffusion-based synthesis with ControlNet. These find-
ings highlight the importance of fair and robust face parsing
for bias-aware generative AI.

2. Proposed Method
We propose a homotopy-based multi-objective framework
for face parsing that optimizes accuracy, fairness, and ro-
bustness. Given images xi and masks yi annotated with
demographic attributes a, we train a segmentation model
fθ(xi) minimizing:

Ltotal = α(t)Lacc + β(t)Lrob + γ(t)Lfair,

where Lacc is the generalized Dice loss over all 19 classes
(measuring overlap between prediction and ground truth),
Lrob penalizes the average drop in mIoU under a prede-
fined set of input perturbations via max

(
0, mIoUclean −

mIoUperturbed

)
, and Lfair is a demographic fairness loss,

computed either as the variance or the range (max–min)
of per-group mIoU across attributes to promote equitable
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Figure 1. Overview of Our Multi-Objective Face Parsing and Synthesis Framework. Our proposed homotopy-based multi-objective
learning framework optimizes accuracy (Lacc), robustness (Lrob), and fairness (Lfair). This framework produces fairness-aware and
robust segmentation maps, which are used to train two generative pipelines: (1) a GAN-based synthesis model (Pix2PixHD), where
improved segmentation enhances photorealism and demographic consistency, and (2) a diffusion-based synthesis model (ControlNet),
where structured parsing maps guide semantic alignment and editability. The improved segmentation quality enhances photorealism,
fairness, and robustness in generative models. Key improvements include reduced bias in GAN-generated faces and more stable semantic
conditioning in diffusion synthesis.

segmentation quality. Homotopy scheduling dynamically
adjusts α(t), β(t), and γ(t) during training using Linear,
Sigmoid, or Piecewise strategies, initially emphasizing ac-
curacy before shifting towards fairness and robustness.

To assess downstream effects, we integrate the trained
U-Nets into a GAN-based synthesis pipeline (Pix2PixHD)
and a diffusion-based synthesis pipeline (ControlNet), us-
ing segmentation maps as structured conditioning. We
train on CelebAMask-HQ [10], resizing images to 256 ×
256. Segmentation performance is evaluated using mean
Intersection-over-Union (mIoU) and fairness variance; syn-
thesis outputs are assessed using Fréchet Inception Distance
(FID) and LPIPS similarity. All models are implemented in
PyTorch and trained with Adam optimizer on NVIDIA A10
GPUs; ControlNet is fine-tuned for one epoch.

3. Results & Discussion
We comprehensively evaluate our segmentation models
across fairness, robustness, and generative quality. Our re-
sults demonstrate that fairness- and robustness-aware train-
ing improves face parsing and has direct positive down-
stream effects on face generation tasks.

Multi-objective U-Nets achieve comparable or slightly
improved segmentation performance, maintaining mIoU
parity despite optimizing for additional objectives (Table 1).
Notably, the multi-objective models achieve slightly higher
Dice scores, indicating that the addition of fairness and

robustness constraints does not significantly compromise
pixel-level segmentation fidelity.

Table 1. Comparison of Segmentation Objectives on U-
Net. Quantitative results comparing single-objective and multi-
objective models.

Objective mIoU (%) Dice (%)

Single Objective 73.87 94.46
Multi-Objective (Linear) 74.21 94.28
Multi-Objective (Sigmoid) 73.50 94.35
Multi-Objective (Piecewise) 73.80 94.47
Multi-Objective (Alt. Fairness) 73.81 94.49

Robustness analysis shows that multi-objective models
yield lower mIoU degradation under perturbations such as
Gaussian noise, blur, and occlusion (Figure 2), and generate
more stable segmentations under noise (Figure 3). These
results highlight the advantage of explicitly optimizing for
robustness during training.

Quantitative robustness results under perturbations are
summarized in Table 2. We observe that linear and piece-
wise homotopy models achieve notably lower FID and
LPIPS scores compared to single-objective training, espe-
cially under blur and lighting shifts, indicating better gener-
alization to noisy conditions.

In terms of fairness, class-wise mIoU comparisons (Ta-
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Table 2. Robustness of U-Net Variants under Perturbations. Lower FID and LPIPS indicate more robust synthesis under noise, blur,
brightness, and darkness.

Model Gaussian Noise Blur Brightness Darkness Notes

FID ↓ LPIPS ↓ FID ↓ LPIPS ↓ FID ↓ LPIPS ↓ FID ↓ LPIPS ↓

Single-Objective 363.06 0.435 259.12 0.403 319.57 0.407 367.75 0.431 Baseline
Multi-Objective (Linear) 322.23 0.434 236.44 0.386 313.02 0.433 285.24 0.425 Linear Homotopy
Multi-Objective (Piecewise) 307.16 0.435 216.98 0.384 330.10 0.439 326.82 0.430 Piecewise Homotopy
Multi-Objective (Sigmoid) 349.30 0.437 208.30 0.412 286.38 0.444 331.36 0.456 Sigmoid Homotopy
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Figure 2. mIoU under Perturbations. Multi-objective models
better withstand noise, blur, and occlusion.

ble 3) show that multi-objective models consistently out-
perform single-objective baselines across all facial classes,
even for small or visually subtle components. Figure 4 il-
lustrates that multi-objective training leads to more equi-
table segmentation across demographic attributes, reducing
fairness gaps.

In downstream GAN-based face synthesis (Pix2PixHD),
segmentation maps from multi-objective models lead to vis-
ibly cleaner and more realistic faces (Figure 5). Quanti-
tatively, Table 4 shows that multi-objective training low-
ers FID and LPIPS compared to single-objective baselines,
demonstrating that improved segmentation fairness and ro-
bustness translate to better generative outputs.

Finally, in diffusion-based synthesis using ControlNet,
segmentation maps from multi-objective models enable
cleaner, sharper face generations (Figure 6), further validat-
ing the benefits of fairness- and robustness-aware parsing in
structured generative pipelines.

Figure 3. Qualitative Comparison under Perturbations. Multi-
objective models preserve facial structure better than single-
objective baselines.

4. Limitations and Future Directions

Despite notable improvements in fairness, robustness, and
segmentation quality, several challenges remain, presenting
opportunities for further research. First, the CelebAMask-
HQ dataset, while diverse, remains imbalanced across de-
mographic groups, which may limit generalization. Ad-
dressing this requires more strategic data augmentation,
active reweighting, or leveraging larger, demographically-
balanced datasets to further mitigate bias and enhance equi-
table performance. Second, our current framework treats
GANs as passive consumers of segmentation maps. In-
corporating bi-directional optimization, where segmenta-
tion feedback influences GAN training, could improve both
parsing fidelity and generative realism. Such an approach
could be extended to diffusion models, where structured
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Table 3. Class-wise Mean mIoU Comparison. Multi-objective models achieve higher per-class accuracy.

Model 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Single Objective 73.87 73.87 73.87 73.87 73.87 73.87 75.02 73.89 73.88 73.71 73.87 73.87 73.87 73.87 73.87 73.21 73.89 73.87 75.17
Multi-Objective (Alt. Fairness) 74.21 74.21 74.21 74.21 74.21 74.21 75.06 74.23 74.22 74.09 74.21 74.18 74.21 74.21 74.21 73.49 74.23 74.21 75.24
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Figure 4. Fairness Loss Strategies Comparison. Multi-objective training reduces demographic disparities in segmentation performance.

Figure 5. Impact of Segmentation on GAN Synthesis. Multi-
objective maps yield more realistic and coherent faces.

Table 4. Face Synthesis Results: GAN and Diffusion. Lower
FID and LPIPS indicate higher realism.

GAN-Based Face Synthesis

Segmentation Source FID ↓ LPIPS ↓

Single-Objective U-Net 117.93 0.4419
Multi-Objective (Linear) 99.93 0.4269
Multi-Objective (Piecewise) 98.87 0.4222

Diffusion-Based Face Synthesis (ControlNet)

Single-Objective U-Net 261.01 0.7867
Multi-Objective U-Net (Linear) 257.18 0.7848

conditioning remains underexplored in fairness-aware syn-
thesis. Additionally, while our method is broadly appli-
cable beyond facial segmentation, extending it to domains
such as medical imaging, autonomous perception, or video-
based synthesis may require task-specific adaptations. Fu-
ture research should explore domain-aware multi-objective
formulations that account for context-specific biases and ro-

Figure 6. Impact on Diffusion-Based Synthesis. Multi-objective
segmentation improves ControlNet face generation.

bustness challenges. Finally, while homotopy scheduling
improves optimization efficiency, fairness-aware training
introduces additional computational overhead due to sub-
group evaluations. Exploring adaptive sampling strategies
or efficient approximations could make large-scale deploy-
ments more feasible, especially for real-time applications.

Our findings underscore that multi-objective training
does not impose rigid trade-offs, adaptive optimization can
integrate fairness and robustness without sacrificing accu-
racy. By extending these ideas to broader datasets, gen-
erative frameworks, and real-world applications, future re-
search can drive the development of more equitable and
resilient vision models for AI-driven image synthesis and
recognition.
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