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ABSTRACT

Open-vocabulary semantic segmentation is a challenging task that assigns seen or
unseen class labels to individual pixels. While recent works with vision-language
models (VLMs) have shown promising results in zero-shot semantic segmentation,
they still struggle to accurately localize class-related objects. In this work, we
argue that CLIP-based prior works yield patch-wise noisy class predictions while
having highly correlated class distributions for each object. Then, we propose
Class Distribution-induced Attention Map, dubbed CDAM, that is generated by the
Jensen-Shannon divergence between class distributions of two patches that belong
to the same (class) object. This CDAM can be used for open-vocabulary semantic
segmentation by integrating it into the final layer of CLIP to enhance the capability
to accurately localize desired classes. Our class distribution-induced attention
scheme can easily work with multi-scale image patches as well as augmented text
prompts for further enhancing attention maps. By exploiting class distribution, we
also propose robust entropy-based background thresholding for the inference of
semantic segmentation. Interestingly, the core idea of our proposed method does
not conflict with other prior arts in zero-shot semantic segmentation, thus can be
synergetically used together, yielding substantial improvements in performance
across popular semantic segmentation benchmarks.

1 INTRODUCTION

Open-vocabulary semantic segmentation aims to assign correct semantic labels in an open set of
classes to each pixel of a given image. Classical semantic segmentation that assigns labels in a
closed set of pre-defined classes and is trained in a supervised manner has achieved remarkable
progress (Long et al., 2015; Noh et al., 2015; Chen et al., 2017; 2018; Xie et al., 2021; Yuan et al.,
2020; Zhao et al., 2017b). However, the limited number of classes and laborious pixel-level human
annotation have restricted the model’s ability to recognize numerous seen and unseen classes in
real-world settings. Open-vocabulary semantic segmentation is emerging as a promising approach
for real-world applications since it allows the segmentation model to assign novel class labels at
inference (Ghiasi et al., 2022; Ding et al., 2022; Xian et al., 2019; Bucher et al., 2019; Gu et al., 2020;
Li et al., 2021; Liu et al., 2022; Zhao et al., 2017a; Xu et al., 2022b; Zhou et al., 2022; Cha et al.,
2023; Xu et al., 2022a; Luo et al., 2023; Shin et al., 2022; Ren et al., 2023; Ranasinghe et al., 2023).

Recent advances of vision-language models (VLMs) such as ALIGN (Jia et al., 2021) and CLIP (Rad-
ford et al., 2021) have shed light on the problem of zero-shot open-vocabulary semantic segmentation
for novel classes. Prior arts aimed to enhance the localization capabilities of pre-trained CLIP models
for achieving great performance by 1) enhancing local alignment of VLMs between region visual
and textual features with contrastive learning (Xu et al., 2022a; Luo et al., 2023; Cha et al., 2023), 2)
modifying the last attention layer of CLIP without retraining (Zhou et al., 2022), or 3) leveraging
self-self attention mechanisms such as query-query or key-key feature interactions within the attention
map (Li et al., 2023; Bousselham et al., 2024; Wang et al., 2023; Lan et al., 2024). However, despite
these advancements, prior arts still struggle with accurately localizing target objects within images.

In this work, we argue that CLIP-based prior works yield patch-wise noisy class predictions while
having highly correlated class distributions for each object. Then, based on these observations,
we propose Class Distribution-induced Attention Map, dubbed CDAM, that is generated by the
Jensen-Shannon (JS) divergence between class distributions of two patches that belong to the same
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(class) object for the last attention layer of CLIP. Specifically, starting from the noisy class predictions,
we measure the similarity of class distributions between each patch and all other patches in the image.
Since patches belonging to the same object class exhibit highly correlated class distributions, these
similarities are high for same-class patches and low for different-class patches. By exploiting this
property, these similarity scores are used to construct an attention map that refines the attention
mechanism in CLIP’s final layer, ensuring that attention is focused more effectively on relevant
regions. Since attention map implies the significance of relevant features across different patches
in the self-attention mechanism of vision transformer (ViT) (Dosovitskiy et al., 2020), our CDAM
assigns high attention weights to the patches belonging to the same object class while allocating low
attention weights to the patches from different object classes. This CDAM can be used for zero-shot
semantic segmentation by integrating the semantic information of class-relevant patches into the
final layer of CLIP to enhance the capability to accurately localize desired classes without requiring
additional training or dense annotations.

Moreover, our CDAM can easily work with multi-scale image patches, augmented text prompts and
entropy-based background thresholding for further enhancing semantic segmentation. CDAM with
multi-scale image patches generates multiple CDAMs at various spatial scales and merges them
to achieve improved spatial consistency of attention maps. CDAM with augmented text prompts
such as attribute classes of common objects (e.g., color and super-category) can strengthen the class
distribution similarity between patches belonging to the same target class by leveraging a wider
range of features to expand text class categories for enhancing attention maps. Lastly, by exploiting
class distribution, we propose robust entropy-based background thresholding technique to effectively
extract foreground classes from background for the inference of semantic segmentation.

Interestingly, the core idea of our proposed method does not conflict with other prior arts in zero-
shot semantic segmentation and thus can be synergetically and seamlessly integrated into them
for further enhanced performance. Our proposed CDAM substantially outperformed prior arts in
zero-shot average mIoU (mean Intersection-over-Union) across several widely used benchmarks. The
contributions of our work are summarized as:

• Proposing class distribution-induced attention map (CDAM) that yields higher weights to
class-relevant patches to enhance localization capability by exploiting robust class distribu-
tion over noisy class prediction for the patches of each object class.

• Proposing CDAM with multi-scale image patches, augmented text prompts, and entropy-
based background thresholding for further improving the CDAM.

• Demonstrating that our CDAM remarkably outperformed prior arts on CLIP-based training-
free zero-shot semantic segmentation over diverse benchmark datasets.

2 RELATED WORKS

2.1 OPEN-VOCABULARY SEMANTIC SEGMENTATION WITH VISION-LANGUAGE MODEL

Due to the recent success of large-scale vision-language models, researchers have shown a growing
interest in open-vocabulary semantic segmentation. Prior works can be broadly categorized into
two approaches: First approaches leverage annotated datasets containing examples of the seen
classes (Ghiasi et al., 2022; Xian et al., 2019; Bucher et al., 2019; Gu et al., 2020; Li et al., 2021; Liu
et al., 2022; Xu et al., 2022b; 2023b; Jiao et al., 2023; Ge et al., 2025), and evaluates performance
using mIoU for both seen and unseen classes. While some recent works (Xu et al., 2023b; Jiao
et al., 2023; Ge et al., 2025) also utilize frozen CLIP features, they differ from our approach as they
rely on supervised training. Specifically, they train additional mask proposal networks for object
segmentation and to improve the classification of generated mask proposals. Second approaches
attempt segmentation without any class-specific annotations and measures mIoU exclusively for
unseen classes. These approaches train the vision-language models with image-text paired datasets
based on weak supervision. GroupViT (Xu et al., 2022a) constructs the hierarchical grouping structure
of transformer for localing the image regions. TCL (Cha et al., 2023) addresses suffering the train-test
discrepancy for region-text alignment through training grounded mask decoder. SegCLIP (Luo et al.,
2023) proposed semantic group module with several weakly-supervised losses. Recent training-free
methods, like CLIPSurgery (Li et al., 2023), SCLIP (Wang et al., 2023) and GEM (Bousselham et al.,
2024), use self-self attention mechanisms, specifically query-query, key-key or value-value attention,
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Figure 1: The overall pipeline of our proposed CDAM. During inference, the class distribution-
induced attention map (CDAM) is constructed by measuring the distance between the class distribu-
tions of each patch in the initial similarity map S. The CDAM is then integrated with the last attention
layer of CLIP, highlighting the class-specific regions in the input image. CDAM with multi-scale
image patches and augmented text prompts can further enhance the quality of attention map. Next,
we dynamically adjust the threshold value for foreground-background regions based on the entropy.

to capture similar characteristic patches in the attention map. In contrast, our CDAM generates
an attention map based on image-text feature similarity from class distribution. Consequently, our
CDAM originates from the initial noisy predictions of existing methods, and our approach can be
easily integrated into other training-free methods to enhance their localization capabilities.

2.2 BACKGROUND SUBTRACTION

In image processing, separating foreground objects from the background is crucial for many applica-
tions. Thresholding provides a simple and effective technique to achieve this by classifying pixels
with intensity values below a chosen threshold as background and those above as foreground. In
grayscale images, various thresholding approaches are categorized based on the type of information
they use, including: histogram shape information (Rosenfeld & De La Torre, 1983), measurement
space clustering (Otsu et al., 1975; Sezan, 1990; Olivo, 1994), histogram entropy information (Li &
Lee, 1993; Pal, 1996), image attribute information (Tsai, 1985), spatial information (Pal & Pal, 1989),
and local characteristics (Sauvola & Pietikäinen, 2000). However, in open-vocabulary semantic
segmentation, the background class is considered “unknown” and distinct from the foreground classes
with specific labels. This makes background subtraction more challenging compared to traditional
image processing methods. In this paper, we dynamically adjust the threshold value for discrimination
of the background region considering the entropy of the class distribution.

3 METHODS

The key contribution of our proposed method is to enhance the localization ability of large-scale
vision-language models for open-vocabulary semantic segmentation without additional training
and annotations. Starting with an initial, potentially inaccurate prediction, we introduce the Class
Distribution-induced Attention Map (CDAM), an approach that emphasizes the attention weight on
patch regions relevant to specific classes within the attention map of last attention layer. Additionally,
we propose a entropy-based background thresholding technique that adaptively distinguishes between
foreground and background regions. The overall pipeline of our CDAM is illustrated in Fig. 1.

3.1 LIMITATION OF SEMANTIC SEGMENTATION WITH VISION-LANGUAGE MODEL

CLIP (Radford et al., 2021) is a pre-trained VLM with 400 million curated image-text paired dataset.
In the self-attention mechanism of its transformer-based image encoder, the attention map reflects the

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

P2

P3

P1

Ground Truth

Noisy Class prediction Highly Correlated Class Distribution

P2

P3

P1

P1

P2

P3
MaskCLIP result

𝑫𝑱𝑺(𝑺𝑷𝟐||𝑺𝑷𝟑) = 𝟎. 𝟎𝟔𝟐𝟏

chair sofa

→ Same class!

→ Different class!

𝒂𝒓𝒈𝒎𝒂𝒙 𝑺𝑷𝟏 	
= sofa

𝒂𝒓𝒈𝒎𝒂𝒙 𝑺𝑷𝟐
= chair

𝒂𝒓𝒈𝒎𝒂𝒙 𝑺𝑷𝟑
= sofa

𝑫𝑱𝑺(𝑺𝑷𝟏||𝑺𝑷𝟐) = 𝟎. 𝟎𝟏𝟓𝟑𝑺𝑷𝟏	

: Sofa

𝑺𝑷𝟐	

𝑺𝑷𝟑

𝑫𝑱𝑺(𝑺𝑷𝟏||𝑺𝑷𝟑) = 𝟎. 𝟎𝟓𝟕𝟔
→ Different class!

P1,P2,P3: Patches

Figure 2: Similarity of class distributions between patches. From the noisy prediction of
MaskCLIP (Zhou et al., 2022), we explore the similarity of class distributions between patches.
SPi represents the class distribution at the position of patch Pi within the similarity map S. Although
the segmented classes differ, the similarity of the class distribution of patches between true positive
(P1) and false negative (P2) is more similar than between true positive (P1) and false positive (P3).
The distance of class distribution is measured by JS divergence, DJS(p||q).

relationships among visual tokens. The attention weight is computed using the similarity between
pairs of query and key embeddings within each attention layer. Taking the flatten feature map
x ∈ RN×D where N denotes the number of tokens and D refers to the embedding dimension, the
attention map is formulated as

Attn(Q,K) = Softmax(QKT /
√
D) ∈ RN×N (1)

where the query and key embeddings, Q = xWq and K = xWk, are obtained using the projec-
tion matrices Wq and Wk ∈ RD×D, respectively. Thus, the output of the self-attention will be
Attn(Q,K)V where V = xWv and Wv ∈ RD×D. The attention map, the output of Attn(·, ·), is
crucial for capturing long-range semantic dependencies between patch tokens in image recognition.
However, due to image-level texts for pre-training, CLIP is not usually applicable for dense prediction
tasks like semantic segmentation where precise localization of target classes is essential.

To mitigate the limitation of CLIP, the attention map should be adjusted to weigh more on class-
relevant region for each patch token. MaskCLIP (Zhou et al., 2022) extends the pre-trained CLIP
model to perform dense predictions by minimally modifying the last layer of the image encoder.
Specifically, the original attention map is replaced by the identity matrix I ∈ RN×N , removing
the query and key embedding layers in the self-attention of the last layer and thus the output of
the self-attention in the last layer is V . However, using the identity matrix as the last attention
map may overly emphasize the patch embedding itself and neglects information from class-relevant
neighboring patches, thus leading to inaccurate segmentation quality.

3.2 CLASS DISTRIBUTION-INDUCED ATTENTION MAP

Our approach aims to enhance the quality of the attention map of the last layer of CLIP in Eq. (1) for
CLIP-based open-vocabulary semantic segmentation methods.

3.2.1 HIGHLY CORRELATED CLASS DISTRIBUTIONS VS. NOISY CLASS PREDICTIONS

The class distribution learned by the pre-trained model includes rich information about recognition
patterns (Hinton et al., 2015). We conjecture that the pre-trained CLIP model implicitly captures
knowledge about target classes through its class distribution. We chose a prior art on CLIP based
semantic segmentation, MaskCLIP (Zhou et al., 2022), and carefully observed the output of it for a
toy example with ‘sofa’ by selecting two patches (P1, P2) that belong to it and one patch (P3) that
does not as illustrated in Fig. 2. MaskCLIP yielded locally noisy ‘sofa’ output with the maximum
likelihood class prediction per patch (P2, P3), but surprisingly also yielded highly correlated class
distributions between the same class patches (P1, P2) and somewhat uncorrelated across the different
class patches (P1, P3), thus confirming our conjecture. To support these observation, we use several
CLIP-based training-free methods as baseline model and extend the analysis with benchmark datasets.
For a given image, one patch Ptarget was randomly selected and then two patches Pin and Pout

were randomly selected from the target class region and the rest of the region, respectively. Then,
we measure (1) the probability that class prediction in Ptarget is correct and (2) the probability
that distribution similarity between Ptarget and Pin is higher than distribution similarity between
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Ptarget and Pout. The results show that while CLIP-based baseline methods exhibit relatively low
accuracy in class predictions for Ptarget (e.g., 67.0% and 70.8% on VOC21, and 33.6% and 37.5%
on COCO-Obj for SCLIP (Wang et al., 2023) and GEM (Bousselham et al., 2024), respectively),
they perform significantly better in identifying class distribution similarity between patches of the
same object class (e.g., 78.9% and 79.4% on VOC21, and 75.4% and 74.2% on COCO-Obj). More
detailed results are available in the supplementary materials. These similarity and dissimilarity can be
measured by the Jensen-Shannon (JS) divergence and thus can be incorporated potentially for more
precise attention weights for the patches belonging to the same object.

3.2.2 CLASS DISTRIBUTION-INDUCED ATTENTION MAP

Here we propose class distribution-induced attention map, dubbed CDAM, that utilizes the class
distributions from most CLIP-based semantic segmentation methods with dense predictions. Firstly,
the dense visual features and text features are extracted for the input image zI and the text prompts
for each class name of the target objects zT,cls using the image and text encoders EI and ET as
fI = EI(zI) ∈ R(N−1)×d and fT,cls = ET (zT,cls) ∈ RC×d, respectively, where C and d refer
to the number of target classes and the projected output space dimension, respectively. Then, we
proposed to measure the distance between class distributions using the JS divergence DJS(·||·), a
finite and symmetric metric. Min-max normalization was applied before and after softmax operation,
but was omitted for simplicity. Thus, our class distribution-induced attention map is formulated as:

AttnCDAM = Softmax({1−DJS(S||ST )}/τ) (2)

where S = Softmax(ρ(fI ,fT )/τ) ∈ R(N−1)×C is the similarity map between dense visual features
and text features, ρ denotes the cosine similarity and the temperature τ controls the softness of
attention such as

√
D in the original self-attention layer, Eq. (1). Our CDAM was designed to weigh

more on class-relevant patches with the source patch.

3.2.3 REFINEMENTS OF CLASS DISTRIBUTION-INDUCED ATTENTION MAP

CDAM with multi-scale image patches. Our class distribution conjecture is valid over different
space scales. Thus, we propose the multi-scale structure of CDAMs by constructing CDAMs with
downsampling-upsampling at different scales in the set of scaling factors M and aggregating them as:

AttnMS =
1

|M |
∑
m∈M

AttnCDAM,m (3)

where AttnCDAM,m = Upm[Softmax({1 − DJS(Dnm[S]||Dnm[S]T )}/τ)] and Upm[·] and Dnm[·]
denote the upsampling and downsampling operations at the scale m, respectively. This multi-scale
CDAM AttnMS helped to refine CDAMs with enhanced spatial consistency.

CDAM with augmented text prompts. We propose to incorporate the names of attributes
classes (e.g., yellow, fabric, striped) and super-category (e.g., animal, indoor, food) of common
objects, dubbed augmented text prompts (ATP), to enrich the representation of implicit knowl-
edge within class distribution. PACO (Ramanathan et al., 2023) provides 59 attribute classes for
common objects, encompassing properties like color, pattern, material and transparency. Addi-
tionally, COCO-Stuff (Caesar et al., 2018) and MSCOCO (Lin et al., 2014) offer 12 and 15
super-categories, respectively. We filtered out the overlapping classes and removed vague terms
like ‘others’. Then, we used 80 augmented text prompts, zT,ATP , and add them to the origi-
nal target class text prompts. Therefore, we extract the text features of augmented text prompts
fT = [fT,cls;fT,ATP ] = [ET (zT,cls); ET (zT,ATP )] ∈ R(C+80)×d only for constructing CDAM,
not for inferencing with it. These additional classes in text prompts contribute to enhancing the
similarity of class distributions among class-relevant patches.

3.2.4 OPEN-VOCABULARY SEMANTIC SEGMENTATION WITH CDAM

The overall inference process is visualized in Fig. 1. First, we generate the initial similarity map S
from dense prediction of existing methods using CLIP, such as MaskCLIP (Zhou et al., 2022) and
SCLIP (Wang et al., 2023). The CLIP consists of L attention layers. Second, we construct the CDAM
with multi-scale image patches AttnMS by measuring the similarity of class distribution within the

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

initial similarity map S. Finally, we incorporate this localized attention map, AttnMS, into the last
attention layer of CLIP to compute the final similarity map S. We reuse the latent features from the
L− 1th attention layer of CLIP, x(L−1), as value features. Note that augmented text prompts are not
used for computing final similarity map S. The visualized examples of class distribution-induced
attention maps are shown in the supplementary materials.

3.3 ENTROPY-BASED BACKGROUND THRESHOLDING

For segmenting the background class that excludes all target classes, a class probability thresholding
approach has been commonly used in class prediction with the probability to be 1 for foreground
patches and 0 for background patches with the default threshold value Thrdefault = 0.5. In real
cases, however, one must adjust the threshold value by scaling α in the optimal threshold αThrdefault
considering the uncertainty for belonging to the both foreground and background. However, it is
challenging to finding an optimal α for the whole image. Our proposed CDAM allows us to exploit
class distribution per patch by information-theoretic measures.

Here we propose an entropy-based background thresholding method that dynamically adjusts thresh-
old values. For the similarity map S, the entropy of it is H(S) = −

∑C
i=1 S

ilogSi where Si is
the probability of the ith class. Then, we can conjecture that the foreground that belongs to an
object class yields low entropy due to high confidence while the background yield high entropy due
to high uncertainty. Then, we define the center entropy value H(S)center that is the average of the
maximum and minimum values of H(S) over all image patches. Thus, our entropy-based background
thresholding is formulated as

Thrent-bg = αThrdefault/H(S)center (4)

where Thrent-bg represents the entropy-based background threshold value and α refers to a hy-
perparameter. Highly correlated class distribution also helps to determine a stable threshold over
existing methods based on noisy class prediction. We empirically verified the effectiveness of our
entropy-based background thresholding by comparing it with existing thresholding methods in image
processing in the supplementary material.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate our CDAM method on the three widely used benchmark datasets that include
a background class: PASCAL VOC (Everingham et al., 2010), PASCAL Context (Mottaghi et al.,
2014) and COCO-Object (Lin et al., 2014). All three datasets include a background class, which
is separate from the foreground classes. These datasets have 20, 59, and 80 foreground classes,
respectively. The validation sets contain 1449, 5105, and 5000 images, respectively. We also use
three additional benchmark datasets that do not include a background class: CityScapes (Cordts et al.,
2016), ADE20K (Zhou et al., 2017), and COCO-Stuff (Lin et al., 2014), which have 19, 150, and 171
classes, respectively.

Unified evaluation protocol. We follow the unified evaluation protocol by TCL (Cha et al., 2023)
in open-vocabulary semantic segmentation. This protocol ensures no access to target data before
evaluation. It prohibits dataset-specific hyperparameter tuning or tricks like expanding or rephrasing
class names. We fixed the background thresholding hyperparameters across datasets. To ensure a fair
comparison, we reproduced existing CLIP-based training-free methods, including MaskCLIP (Zhou
et al., 2022), SCLIP (Wang et al., 2023), CaR (Sun et al., 2024), GEM (Bousselham et al., 2024) and
ClearCLIP (Lan et al., 2024), following the unified protocol and eliminating renaming tricks. The
reproduction details are described in supplementary material.

Implementation details. In our CDAM model, we utilize the CLIP ViT/B-16 model from Open-
CLIP (Radford et al., 2021), trained on the LAION dataset (Schuhmann et al., 2022). The input
image is resized to 224 x 224 pixels, and the patch size is set to 16 x 16 pixels. Following the
experimental settings of GroupViT (Xu et al., 2022a), we resize input images to have the shorter
side of 448 pixels and employ the mean Intersection-over-Union (mIoU) metric, which is generally
used for evaluating semantic segmentation performance. To ensure a fair comparison, Pixel-Adaptive

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Comparison with state-of-the-art methods on benchmark datasets with background
class. We evaluate the open-vocabulary semantic segmentation methods on VOC21 (Everingham
et al., 2010), Context60 (Mottaghi et al., 2014) and COCO-Obj (Lin et al., 2014). SD stands for
Stable Diffusion (Rombach et al., 2022) and we marked † for the reproduced methods by following
the unified evaluation protocol (Cha et al., 2023) and removing renaming tricks. For each dataset, we
highlighted the best performance in bold and underlined the second-best performance. Performance
improvements by CDAM are indicated in parentheses. The evaluation is based on mIoU (%).

Method Pre-trained
Model

Extra
Training VOC21 Context60 COCO-Obj Avg.

weakly-supervised methods with additional training dataset
GroupViT (Xu et al., 2022a) Scratch ✓ 50.4 18.7 27.5 32.2
CLIPpy (Ranasinghe et al., 2023) CLIP ✓ 52.2 - 32.0 -
ViewCo (Ren et al., 2023) Scratch ✓ 52.4 23.0 23.5 33.0
SegCLIP (Luo et al., 2023) CLIP ✓ 52.6 24.7 26.5 34.6
OVsegmentor (Xu et al., 2023a) DINO ✓ 53.8 20.4 25.1 33.1
TCL (Cha et al., 2023) CLIP ✓ 51.2 24.3 30.4 35.3
PACL (Mukhoti et al., 2023) CLIP ✓ 72.3 50.1 - -
visual prototype generation methods for each concept

OVDiff (Karazija et al., 2023) CLIP
+SD+DINO ✗ 67.1 30.1 34.8 44.0

FreeDA (Barsellotti et al., 2024) CLIP
+SD+DINO ✗ 55.4 38.3 37.4 43.7

CLIP-based training-free methods
CLIPSurgery (Li et al., 2023) CLIP ✗ - 29.3 - -
CLIP-DIY (Wysoczańska et al., 2024) CLIP+DINO ✗ 59.0 - 30.4 -
CaR† (Sun et al., 2024) CLIP ✗ 59.4 25.0 33.2 39.2
MaskCLIP† (Zhou et al., 2022) CLIP ✗ 33.1 23.3 24.8 27.1
MaskCLIP+CDAM CLIP ✗ 55.9 (+22.8) 30.5 (+7.2) 34.3 (+9.5) 40.2 (+13.1)
SCLIP† (Wang et al., 2023) CLIP ✗ 50.5 25.8 31.3 35.9
SCLIP+CDAM CLIP ✗ 59.0 (+8.5) 30.4 (+4.5) 34.5 (+3.0) 41.3 (+5.4)
ClearCLIP† (Lan et al., 2024) CLIP ✗ 50.7 27.8 33.0 37.2
ClearCLIP+CDAM CLIP ✗ 57.6 (+6.9) 29.8 (+2.0) 34.5 (+1.5) 40.6 (+3.4)
GEM† (Bousselham et al., 2024) CLIP ✗ 52.1 28.1 33.8 38.0
GEM+CDAM CLIP ✗ 58.7 (+6.6) 30.6 (+2.5) 35.2 (+1.4) 41.5 (+3.5)

Mask Refinement (PAMR) (Araslanov & Roth, 2020) as post-processing were not applied to any of
the evaluated methods. The temperature τ and the modulation of entropy α are set to 0.1 and 2.5,
respectively. The set of scaling factor M is {0.25, 0.37, 0.5, 0.63, 0.75, 0.87, 1.0}.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

Datasets with background class. As shown in the Table 1, we compare our CDAM with existing
open-vocabulary semantic segmentation methods on VOC21, Context60 and COCO-Obj, including
background class. First, weakly-supervised methods requires large-scale image-text paired training
datasets such as CC12M (Changpinyo et al., 2021) and YFCC (Thomee et al., 2016). Additionally, the
results of specific methods, including OVsegmentor (Xu et al., 2023a), SegCLIP (Luo et al., 2023), and
ViewCo (Ren et al., 2023), were obtained by tuning dataset-specific hyperparameters for background
thresholding, significantly improving the segmentation performance. In contrast, our CDAM enhances
the localization ability of existing methods using a pre-trained CLIP model during inference and
adaptively adjusts the thresholding value. As a result, our method, even when incorporated with
MaskCLIP (Zhou et al., 2022), outperforms weakly-supervised methods on all benchmark datasets
except for PACL (Mukhoti et al., 2023). Second, we compare our proposed method with training-free
methods. Our CDAM effectively enhances the localization ability of existing methods, significantly
achieving a performance improvement over VOC21, Context60, and COCO-Obj. Using a single
model CLIP, our method with GEM (Bousselham et al., 2024) performs better than visual prototype
generation methods that use three large-scale foundation models, specifically OVDiff (Karazija
et al., 2023) on Context60 and COCO-Obj, and FreeDA (Barsellotti et al., 2024) on VOC21. While
CaR (Sun et al., 2024) requires high computational costs and CLIP-DIY (Wysoczańska et al., 2024)
employs an additional pre-trained background extractor, FOUND (Siméoni et al., 2023), we surpass
them in averaged zero-shot performance without additional pre-trained models and with minimal
computational costs. Notably, prior works such as CaR (Sun et al., 2024) or CLIP-DIY (Wysoczańska
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Table 2: Comparison with state-of-the-art methods on benchmark datasets without background
class. We evaluate the open-vocabulary semantic segmentation methods on COCO-Stuff (Lin et al.,
2014), CityScapes (Cordts et al., 2016) and ADE20K (Zhou et al., 2017). We marked † for the
reproduced methods. For each dataset, we highlighted the best performance in bold and underlined
the second-best performance. Performance improvements by CDAM are indicated in parentheses.
The evaluation is based on mIoU (%).

Method Pre-trained
Model

Extra
Training COCO-Stf CityScapes ADE20K Avg.

weakly-supervised methods with additional training dataset
GroupViT (Xu et al., 2022a) Scratch ✓ 15.3 11.1 9.2 11.9
CLIPpy (Ranasinghe et al., 2023) CLIP ✓ - - 13.5 -
SegCLIP (Luo et al., 2023) CLIP ✓ - 11.0 8.7 -
TCL (Cha et al., 2023) CLIP ✓ 19.6 23.1 14.9 19.2
PACL (Mukhoti et al., 2023) CLIP ✓ 38.8 - 31.4 -
visual prototype generation methods for each concept

FreeDA (Barsellotti et al., 2024) CLIP
+SD+DINO ✗ 27.8 36.7 22.4 29.0

CLIP-based training-free methods
MaskCLIP† (Zhou et al., 2022) CLIP ✗ 16.5 23.8 12.2 17.5
MaskCLIP+CDAM CLIP ✗ 24.5 (+8.0) 27.6 (+3.8) 17.8 (+5.6) 23.3 (+5.8)
SCLIP† (Wang et al., 2023) CLIP ✗ 21.1 19.7 14.6 18.5
SCLIP+CDAM CLIP ✗ 24.5 (+3.4) 24.6 (+4.9) 17.2 (+2.6) 22.1 (+3.6)
ClearCLIP† (Lan et al., 2024) CLIP ✗ 23.9 20.8 16.6 20.4
ClearCLIP+CDAM CLIP ✗ 24.6 (+0.7) 21.7 (+0.9) 17.1 (+0.5) 21.1 (+0.7)
GEM† (Bousselham et al., 2024) CLIP ✗ 23.7 21.2 15.7 20.2
GEM+CDAM CLIP ✗ 24.8 (+1.1) 23.7(+1.5) 17.2 (+1.5) 21.9 (+1.7)

et al., 2024) are structurally incompatible with our CDAM, as they classify regions using CLS tokens,
whereas CDAM relies on local visual tokens.

Datasets without background class. We further evaluate the effectiveness of our CDAM by incor-
porating it with existing methods on 3 benchmark datasets that do not include a background class.
Entropy-based background thresholding, a component of CDAM, was originally designed to handle
real-world scenarios with background classes. To evaluate performance without backgrounds, we
disable the entropy-based background thresholding in CDAM. In Table 2, we demonstrated that our
CDAM synergetically and consistently enhance the performance of existing CLIP-based training-free
methods. Notably, MaskCLIP (Zhou et al., 2022) with CDAM outperformed weakly-supervised and
training-free methods, except for PACL (Mukhoti et al., 2023) that requires substantially large-scale
training datasets, and FreeDA (Barsellotti et al., 2024) that employs 3 large foundation models.
Without the background class, evaluation focuses solely on target classes, minimizing the impact of
background prediction errors. Our method reduces false positives in both target and background re-
gions, with entropy-based thresholding improving results when the background is evaluated. However,
these gains are less impactful, observed in smaller improvements in Table 2, compared to Table 1.

4.3 ABLATION STUDY AND ANALYSIS

To validate the importance of each component in our CDAM model, we conducted ablation studies.
We employed MaskCLIP (Zhou et al., 2022), SCLIP (Wang et al., 2023), ClearCLIP (Lan et al.,
2024), and GEM (Bousselham et al., 2024) as baseline models. Our novel components of CDAM
effectively enhance zero-shot semantic segmentation performance based on the initial inaccurate
predictions of several baseline models.

Class distribution-induced attention map (AttnCDAM and AttnMS). We first investigate the effec-
tiveness of a class distribution-induced attention map for open-vocabulary semantic segmentation.
Applying our proposed AttnCDAM significantly improves performance across all datasets. Notably,
AttnCDAM achieves this improvement without any additional training and annotations. Moreover,
considering the sptial consistency based on CDAM with multi-scale image patches, AttnMS, it leads
to a substantial performance boost.
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Table 3: Ablation study on components of our CDAM. The proposed components of our CDAM
consistently improve the semantic segmentation performance on VOC21 (Everingham et al., 2010)
dataset. ATP refers to the augmented text prompts. The evaluation is based on mIoU(%).

Baseline AttnCDAM AttnMS ATP Thrent-bg MaskCLIP SCLIP ClearCLIP GEM
✓ 33.1 50.5 50.7 52.1
✓ ✓ 50.1 55.0 52.1 54.7
✓ ✓ ✓ 53.7 56.9 55.8 56.5
✓ ✓ ✓ ✓ 54.7 57.2 56.0 56.9
✓ ✓ ✓ ✓ ✓ 55.9 59.0 57.6 58.7

Augmented text prompts (ATP). Next, we leverage the 80 augmented text prompts to enrich the
representation of the class distribution, leading to consistent performance improvement. Incorporating
augmented text prompts leads to a higher similarity between the class distributions of class-relevant
patches and enhances the localized class distribution-induced attention map. This suggests that our
CDAM can effectively integrate the text information of the target class and additional context into the
attention process.

Entropy-based background thresholding (Thrent-bg). Finally, we apply the entropy-based back-
ground thresholding which adjusts threshold based on the entropy. Without dataset-specific hyper-
parameter tuning, Thrent-bg significantly improves the performance with several baseline methods.
It suggests that even though Thrent-bg is developed through the empirical experiments, it affects
performance improvement over all datasets.

To analyze (1) inference time as computation costs and (2) the metrics for measuring similarity of
class distribution for our CDAM, we conducted additional experiments.

Inference time. As shown in Table 5 and Table 6, our CDAM exhibits minimal computational
overhead, with an increase of at most 34 ms, which remains suitable for real-time applications.
Notably, CDAM achieves approximately 200 times faster inference compared to CaR (Sun et al.,
2024) on the COCO-Obj dataset. Furthermore, the AttnMS and ATP modules account for the majority
of the increase in inference time. The detailed results and analysis in the supplementary materials.

Correlation metric. We compared the performance with JS divergence compared to other metrics,
such as KL divergence and Wasserstein Distance (WS), as shown in the Table 8. The results demon-
strate that JS divergence consistently achieved the best performance across several baseline methods.
Based on these observations, we selected JS divergence for constructing our CDAM.

4.4 QUALITATIVE RESULTS

Effect of CDAM components. In Fig. 3, we qualitatively visualize examples of segmentation
results by adding components of CDAM. Without relying on annotations or training, our proposed
(AttnCDAM) can effectively reduce the noisy class prediction of baseline model (MaskCLIP (Zhou
et al., 2022)) and localize the target classes within an image. The quality of the segmentation results
is further enhanced by two factors: (1) improved spatial consistency achieved through CDAM with
multi-scale image patches, and (2) enhanced similarity of class distributions between class-relevant
patches by incorporating the augmented text prompts (ATP).

Qualitative segmentation results. As shown in Fig. 4, we qualitatively demonstrate the improvements
in localizing the target object using the proposed CDAM with AttnMS. Compared to the initial
predictions from existing CLIP-based training-free methods, integrating our approach reduces noisy
predictions, resulting in smoother and more accurate outcomes. Remarkably, as we observed in
Fig. 2, our method is able to generate clean and accurate attention maps even from noisy predictions.
Our generated CDAM effectively highlights patches within same objects class like trains and sheep,
significantly enhancing segmentation quality by making predictions more precise and less noisy.
Notably, we observed that our attention map can capture highly detailed features. For example, it can
distinguish elements such as the train’s doors or the fence in front of the sheep in the input images.
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Image Ground Truth Baseline CDAM (Ours)w/ Attn!"w/ Attn#$%!

aeroplane

car

car

motorbike

grass

teddy 
bear

keyboard

Figure 3: Qualitative effectiveness of CDAM components. Each component of CDAM consistently
improves the quality of the semantic segmentation, leading to less noisy predictions and improved
localization accuracy. We use MaskCLIP (Zhou et al., 2022) as baseline model.

MaskCLIP MaskCLIP

SCLIP SCLIP

ClearCLIP ClearCLIP

GEM GEM

Input image Input image

MaskCLIP + CDAM

SCLIP + CDAM

ClearCLIP + CDAM

GEM + CDAM

MaskCLIP + CDAM

SCLIP + CDAM

ClearCLIP + CDAM

GEM + CDAM

Figure 4: Qualitative segmentation results of CDAM from inaccurate initial predictions. Our
proposed CDAM demonstrated its ability to generate high-quality attention maps (AttnMS) even when
starting from inaccurate predictions provided by prior methods. This capability led to significantly
reduced noise in the final predictions of CDAM. Notably, our CDAM captures fine-grained details
present within images, such as doors in a train and fence in front of sheep.

5 CONCLUSION

This paper proposes CDAM, a training-free approach for open-vocabulary semantic segmentation.
We exploit the observation of highly correlated class distribution between class-relevant patches,
even when the object within an image are inaccurately segmented. Based on this, we construct
a localized, class distribution-induced attention map during inference. This map allocates higher
attention weights to patches likely to belong to the same object class. Furthermore, the proposed
entropy-based background thresholding adjusts the threshold value dynamically, thereby improving
discrimination for foreground and background patches. CDAM can be seamlessly integrated into
other training-free methods using CLIP, and we demonstrate its effectiveness through evaluations on
benchmark datasets, achieving substantial improvements in semantic segmentation.
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A DETAILS OF AUGMENTED TEXT PROMPTS

We utilize augmented text prompts, including attribute classes and supercategories of common objects.
From PACO (Ramanathan et al., 2023), we obtained the 59 attribute classes, which consist of color
(31 classes), pattern (8 classes), material (16 classes), and transparency (4 classes). For general
text prompts, we filtered out the four vague classes: “others(color)”, “others(pattern marking)”,
“others(material)” and “others(transparency)”. Next, from COCO-Stuff (Caesar et al., 2018) and
MSCOCO (Lin et al., 2014), we obtain the 12 and 15 supercategories, respectively. We remove the
overlapped class “furniture” and “food”. Thus, we utilize the 80 augmented text prompts (55 attribute
classes and 25 supercategories) and the list of augmented text prompts is described in Table. 4.

Table 4: List of augmented text prompts. We list the 80 augmented text prompts used in CDAM,
including attribute classes and supercategories.

Source List of class names

Attribute class PACO

black, light blue, blue, dark blue, light brown, brown, dark brown, light green,
green, dark green, light grey, grey, dark grey, light orange, orange, dark orange,
light pink, pink, dark pink, light purple, purple, dark purple, light red, red, dark red,
white, light yellow, yellow, dark yellow, plain, striped, dotted, checkered, woven,
studded, perforated, floral, logo, text, stone, wood, rattan, fabric, crochet, wool,
leather, velvet, metal, paper, plastic, glass, ceramic, opaque, translucent, transparent

Supercategory COCO-Stuff
MSCOCO

person, vehicle, outdoor, animal, accessory, sports, kitchen, food, furniture, elec-
tronic, appliance, indoor, water, ground, solid, sky, structural, building, textile,
window, floor, ceiling, wall, rawmaterial, plant

B DETAILS OF COMPUTATIONAL COSTS

Analysis of inference time for CDAM. We analyzed the computational complexity of our CDAM by
measuring its inference time (in seconds per image). Specifically, we conducted two experiments: (1)
a comparison of inference time with several baseline methods in Table 5 and (2) an analysis of the
inference time for each component of our CDAM in Table 6. All measurements were performed on
an NVIDIA A100 GPU. Note that, due to the shared GPU server environment, the reported inference
costs may be higher than those observed on a dedicated local GPU setup.

As shown in Table 5, our proposed CDAM introduces an increase in inference time, approximately
0.026 seconds per image for VOC21, 0.032 seconds per image for Context60, and 0.034 seconds per
image for COCO-Obj compared to baseline methods. While CDAM requires additional computational
cost, it remains feasible for real-time applications. For example, the inference time of our method (e.g.,
0.051 seconds for COCO-Obj with MaskCLIP+CDAM) is significantly lower than other methods like
CaR (12.270 seconds for COCO-Obj) and CLIP-DIY (0.559 seconds for COCO-Obj). These results
demonstrate that our approach achieves a balance between computational efficiency and enhanced
functionality.

As shown in Table 6, the majority of the additional computational cost in CDAM arises from its
multi-scale image patches (AttnMS) and augmented text prompts (ATP). The computational overhead
increases with the number of scales (m) for AttnMS and the number of classes for ATP, primarily due to
the increased computational burden of calculating the Jensen-Shannon (JS) divergence. Nevertheless,
the overall inference time remains within a feasible range, ensuring that CDAM is still practical for
real-time applications.

C VISUALIZATION OF CLASS DISTRIBUTION-INDUCED ATTENTION MAP

Fig. 5 visualizes examples of class distribution-induced attention maps, highlighting how the attention
weight is emphasized on the class-relevant patch for each source patch.
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Table 5: Inference time comparison (in seconds per image) of baseline methods with our
CDAM. Despite introducing minimal computational overhead, CDAM remains feasible for real-
time applications, especially when compared to computationally intensive methods like CaR and
CLIP-DIY.

Methods VOC21 Context60 COCO-Obj
CaR (Sun et al., 2024) 3.497 9.340 12.270
CLIP-DIY (Wysoczańska et al., 2024) 0.520 - 0.559
MaskCLIP (Zhou et al., 2022) 0.017 0.017 0.017
MaskCLIP+CDAM 0.043 (+0.026) 0.049 (+0.032) 0.051 (+0.034)
SCLIP (Wang et al., 2023) 0.018 0.018 0.018
SCLIP+CDAM 0.044 (+0.026) 0.050 (+0.032) 0.052 (+0.034)
ClearCLIP (Lan et al., 2024) 0.017 0.018 0.018
ClearCLIP+CDAM 0.044 (+0.027) 0.050 (+0.032) 0.051 (+0.033)
GEM (Bousselham et al., 2024) 0.026 0.026 0.026 sec
GEM+CDAM 0.052 (+0.026) 0.059 (+0.033) 0.060 (+0.034)

Table 6: Inference time (in seconds per image) for each component of CDAM.The baseline model
is set as MaskCLIP, as the additional overhead introduced by CDAM is consistent across other
baseline methods.

Baseline AttnCDAM AttnMS ATP Thrent-bg VOC21 Context60 COCO-Obj
✓ 0.017 0.017 0.017
✓ ✓ 0.020 0.022 0.024
✓ ✓ ✓ 0.032 0.038 0.040
✓ ✓ ✓ ✓ 0.043 0.049 0.051
✓ ✓ ✓ ✓ ✓ 0.043 0.049 0.051
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Figure 5: We visualized examples of class distribution-induced attention maps (CDAM) from several
source patches. This demonstrates that our proposed CDAM can localize regions of the target class
within the attention map.

D MODEL DETAILS OF COMPARISON METHODS

For a fair comparison, we provide detailed architectural information and an additional training dataset
for all methods, as detailed in Table 7. Importantly, our proposed CDAM can be seamlessly integrated
with existing CLIP-based training-free methods, utilizing their CLIP encoder without the need for
retraining.
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Table 7: Detailed information on comparison methods for open-vocabulary semantic segmen-
tation. We provide detailed information regarding (1) visual encoder architecture, (2) pre-trained
model, and (3) additional training datasets.

Method Encoder Model Additional training dataset
weakly-supervised methods with additional training dataset
GroupViT (Xu et al., 2022a) ViT/S-16 Scratch CC15M+RedCaps12M
CLIPpy (Ranasinghe et al., 2023) ViT/B-16 CLIP HQITP-134M
ViewCo (Ren et al., 2023) ViT/S-16 Scratch CC12M+YFCC15M
SegCLIP (Luo et al., 2023) ViT/B-16 CLIP CC3M+COCO400K
OVsegmentor (Xu et al., 2023a) ViT/B-16 DINO CC4M
TCL (Cha et al., 2023) ViT/B-16 CLIP CC15M
PACL (Mukhoti et al., 2023) ViT/B-16 CLIP CC3M+CC12M+YFCC15M
visual prototype generation methods for each concept
OVDiff (Karazija et al., 2023) ViT/B-16 CLIP+SD+DINO ✗

FreeDA (Barsellotti et al., 2024) ViT/L-14 CLIP+SD+DINO ✗
CLIP-based training-free methods
CLIPSurgery (Li et al., 2023) ViT/B-16 CLIP ✗

CLIP-DIY (Wysoczańska et al., 2024) ViT/B-16 CLIP+DINO ✗

CaR† (Sun et al., 2024) ViT/L-14 CLIP ✗

MaskCLIP† (Zhou et al., 2022) ViT/B-16 CLIP ✗

SCLIP† (Wang et al., 2023) ViT/B-16 CLIP ✗

ClearCLIP† (Lan et al., 2024) ViT/B-16 CLIP ✗

GEM† (Bousselham et al., 2024) ViT/B-16 CLIP ✗

E ADDITIONAL EXPERIMENTS

Effectiveness of JS divergence. To assess the effectiveness of JS divergence relative to other metrics
like KL divergence and Wasserstein distance (WS), we conducted an ablation study using several
baseline methods, as presented in Table 8. The results demonstrate that JS divergence performs
comparably to KL divergence, consistently achieving equal or slightly better performance.

Table 8: Ablation study of similarity metrics for measuring the distance of class distributions
over patches. WS refers to the Wasserstein distance. The evaluation is based on mIoU (%).

Methods Metric VOC21 Context60 COCO-Obj Avg.
MaskCLIP (Zhou et al., 2022)+CDAM KL div. 55.7 30.4 34.3 40.1

JS div. 55.9 30.5 34.3 40.2
WS 53.0 26.7 28.5 36.1

SCLIP (Wang et al., 2023)+CDAM KL div. 58.8 30.4 34.6 41.3
JS div. 59.0 30.4 34.5 41.3
WS 57.2 29.0 31.4 39.2

ClearCLIP (Lan et al., 2024)+CDAM KL div. 57.4 29.5 34.3 40.4
JS div. 57.6 29.8 34.5 40.6
WS 56.9 28.6 33.4 39.6

GEM (Bousselham et al., 2024)+CDAM KL div. 58.9 30.5 35.1 41.5
JS div. 58.7 30.6 35.2 41.5
WS 58.4 29.5 34.0 40.6

Analysis of CDAM. As shown in Table 9, we verified the effectiveness of our AttnMS on VOC21 (Ev-
eringham et al., 2010), Context60 (Mottaghi et al., 2014) and COCO-Obj (Lin et al., 2014) datasets.
Low uncertainty of segmentation for both foreground and background regions corresponds to low and
high entropy of the class distribution, respectively. Compared to other types of attention maps, our
proposed AttnMS effectively reduce the uncertainty by widening the gap between Hback and Hfore.
This significantly affects the segmentation performance and demonstrates the enhanced localization
ability of our AttnMS.
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Table 9: Uncertainty in foreground-background regions. By varying the types of attention maps
in the last layer, we compute the mean entropy of the class distribution in the foreground region
(Hfore), and background region (Hback), respectively. DiffH refers to the absolute difference between
Hback and Hfore (Hback −Hfore). Reducing uncertainty (DiffH ↑) of our proposed CDAM with
multi-scale image patches leads to significantly improved segmentation performance.

VOC21 Context60 COCO-Obj
Attn. Map DiffH ↑ mIoU ↑ DiffH ↑ mIoU ↑ DiffH ↑ mIoU ↑
Random -0.11 8.5 -0.10 4.7 -0.01 4.82
Identity 0.40 33.1 0.00 23.3 0.35 24.8
AttnMS (ours) 1.02 54.7 0.25 27.5 1.06 34.2

Reproduction details of existing methods. For a fair comparison among training-free CLIP based
methods, we reproduced the prior works, MaskCLIP (Zhou et al., 2022), SCLIP (Wang et al., 2023),
CaR (Sun et al., 2024), GEM (Bousselham et al., 2024) and ClearCLIP (Lan et al., 2024), by following
the unified evaluation protocol and eliminating the renaming tricks. We remove the expanded the
target class names (e.g., “person in shirt”, “human” for “person” class ). Then, we selected the results
demonstrating the highest overall performance from among those obtained using various background
threshold values (0.1, 0.2, 0.3, 0.4, 0.5). An example of the reproduced results is provided in Table 10.
Based on the results in Table 10, we set the Thrdefault value of SCLIP (Wang et al., 2023) to 0.2 for all
benchmark datasets to avoid dataset-specific parameters. For all benchmark datasets, inference was
conducted with a sliding window size of 448 and a stride of 224.

Table 10: Reproduced results of SCLIP (Wang et al., 2023) with varying background threshold
values. We evaluated the performance of SCLIP (Wang et al., 2023) with background threshold
values ranging from 0.1 to 0.5. The best overall performance was achieved with Thrdefault set to 0.2,
and we therefore selected the results obtained at this threshold for the unified evaluatino protocol (Cha
et al., 2023). The evaluation is based on mIoU (%).

Thrdefault VOC21 Context60 COCO-Obj Avg.
0.1 37.8 30.5 29.9 32.7
0.2 50.5 25.8 31.3 35.9
0.3 54.4 20.3 28.1 34.3
0.4 51.8 15.7 23.4 30.3
0.5 46.6 11.7 18.4 25.6

Analysis of entropy-based background threholsding. Before implementing the entropy-based
background thresholding method, we aim to demonstrate its effectiveness. We achieve this by
comparing various thresholding strategies with respect to the optimal threshold value that maximizes
the mIoU score for a given dataset. To achieve this, we first employ the Pocket algorithm to identify the
threshold that maximizes the mIoU value for each image. We then calculate the Pearson correlation
coefficient between this optimal threshold and the results obtained using different thresholding
techniques. Since Pearson correlation measures the strength of the linear relationship between two
variables, we can evaluate which method produces a threshold value most closely aligned with the
optimal threshold. The results are presented in Table 11. As evident from the table, our proposed
method consistently demonstrates high correlation value with the optimal threshold across most
datasets. This indicates that there are strong agreement between the optimal threshold and the
thresholds generated by our method.

Conversely, other thresholding techniques exhibit either weak or inconsistent correlation with the
optimal threshold. Moreover, some techniques might show high correlation on specific datasets, they
show downgraded performance in different datasets. In contrast, our method delivers consistently high
correlation, highlighting its suitability for this task. This superior performance likely stems from the
inherent differences between the target tasks addressed by various methods. Traditional thresholding
techniques are primarily designed for grayscale images, which often contain well-defined foreground
objects and have higher dimensionality (e.g., 512x512 pixels). Our task, however, presents a greater
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challenge: thresholding the maximum probability value in images with significantly smaller size
(e.g., 28x28 pixels) and uncertain object boundaries. Due to these distinct characteristics, traditional
grayscale image thresholding methods are not well-suited for determining the optimal threshold in
our specific scenario.

Table 11: Correlation between optimal threshold and thresholding techniques. At first, we
searched the optimal threshold that maximizes the mIoU score using ground truth. Subsequently, we
compare the Pearson correlation coefficient between this optimal threshold and the results obtained
using different thresholding strategies. As a result, our proposed method achieves the highest average
correlation with the optimal threshold over three benchmark datasets.

Method VOC21 Context60 COCO-Obj Avg.
Otsu (Otsu et al., 1975) 0.397 0.203 0.189 0.263
Lloyd (Rosenfeld & De La Torre, 1983) 0.393 0.206 0.189 0.262
Kittler (Sezan, 1990) 0.235 0.135 0.025 0.129
Li (Li & Lee, 1993) 0.280 0.207 0.055 0.181
Kapur (Kapur et al., 1985) 0.047 -0.026 0.117 0.046
Pal (Pal, 1996) 0.051 -0.023 0.119 0.049
Brink (Brink & Pendock, 1996) 0.147 0.058 -0.129 0.025
Huang (Huang & Wang, 1995) 0.230 0.239 0.049 0.172
Thrent-bg (Ours) 0.477 0.175 0.321 0.325

Tuning of background thresholding value Thrdefault for each dataset. For each benchmark dataset,
we fine-tuned the background thresholding value, Thrdefault, and disabled entropy-based background
thresholding in our CDAM. As shown in Table 12 , tuning the background thresholding value
substantially improves performance compared to the fixed Thrdefault used in the main paper. While
existing training-free methods achieve high performance through tuning Thrdefault, our proposed
CDAM further enhances performance improvements. Notably, our CDAM with MaskCLIP (Zhou
et al., 2022) surpasses all existing methods when tuning Thrdefault

Table 12: Tuning background thresholding value Thrdefault for CLIP-based training-free methods
with CDAM. We measured the performance of existing training-free methods by varying Thrdefault
from 0.1 to 0.6. Then, we report the highest performance of all methods on three benchmark datasets.
We marked † for the reproduced methods. Performance improvements by CDAM are indicated in
parentheses. The evaluation is based on mIoU (%).

Methods VOC21 Context60 COCO-Obj Avg.
MaskCLIP† (Zhou et al., 2022) 42.9 23.3 24.8 30.3
MaskCLIP+CDAM 55.0 (+12.1) 33.6 (+10.3) 34.4 (+9.6) 41.0 (+8.3)
SCLIP† (Wang et al., 2023) 54.4 30.5 31.3 38.7
SCLIP+CDAM 57.5 (+3.1) 33.5 (+3.0) 34.9 (+3.6) 42.0 (+3.3)
ClearCLIP† (Lan et al., 2024) 51.8 32.3 33.1 39.1
ClearCLIP+CDAM 56.3 (+4.5) 33.0 (+0.7) 34.6 (+1.5) 41.3 (+2.2)
GEM† (Bousselham et al., 2024) 53.8 32.4 34.1 40.1
GEM+CDAM 57.3 (+3.5) 33.6 (+1.2) 35.6 (+1.5) 42.2 (+2.1)

Ablation studies for hyperparameter of CDAM. For the temperature τ , the modulation of entropy
α and the set of scaling factor M , we conducted an ablation study by varying their values. The
baseline model is MaskCLIP (Zhou et al., 2022), and we applied our proposed CDAM with various
hyperparameters.Based on the results shown in Table 13, 14, 15, we set τ , α and M to 0.1, 2.5 and
(0.25, 0.37, 0.5, 0.63, 0.75, 0.87, 1.0), respectively.

Ablation studies for different patch size. To explore the impact of different patch sizes on our
proposed CDAM, we conducted benchmark experiments using CLIP ViT/B-32, which has a patch
size of 32. Note that the results presented in the main paper used CLIP ViT/B-16. As shown in the
Table 16, these results demonstrate that our proposed CDAM effectively enhances the performance
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Table 13: Ablation study on temperature τ for generating the class distribution-induced attention
map.

τ VOC21 Context60 COCO-Obj Avg.
0.05 53.3 29.6 33.0 38.6
0.10 (Ours) 55.9 30.5 34.3 40.2
0.15 55.6 29.7 33.6 39.6
0.20 52.5 28.1 31.1 37.2

Table 14: Ablation study on modulation parameter α for entropy-based background threshold-
ing.

α VOC21 Context60 COCO-Obj Avg.
1.0 44.1 33.5 28.6 35.4
1.5 50.5 33.3 31.8 38.5
2.5 (Ours) 55.9 30.5 34.3 40.2
3.5 48.3 25.2 34.0 35.8

Table 15: Ablation study on set of scaling factor M for the CDAM with multi-scale image
patches.

Set of scaling factor M VOC21 Context60 COCO-Obj Avg.
(0.25,0.37,0.50,0.63,0.75,0.87,1.00) (Ours) 55.9 30.5 34.3 40.2
(0.50,0.63,0.75,0.87,1.00) 55.8 30.4 34.4 40.2
(0.75,0.87,1.00) 55.5 30.2 34.2 40.0
(1.00) 53.1 27.7 32.1 37.6
(0.25,0.50,0.75,1.00) 55.7 30.4 34.1 40.1

of CLIP-based training-free methods, even when using CLIP models with different patch sizes. In
this experiment, the modulation of entropy, α, is set to 2.0.

Table 16: Ablation study with CLIP ViT/B-32 for exploring different patch sizes. We evaluated
the open-vocabulary semantic segmentation performance of existing training-free methods. We
marked † for the reproduced methods. Performance improvements achieved by CDAM are indicated
in parentheses. The evaluation metric used is mIoU (%).

Methods VOC21 Context60 COCO-Obj Avg.
MaskCLIP† (Zhou et al., 2022) 29.5 8.1 11.5 16.4
MaskCLIP+CDAM 50.1 (+20.6) 27.6 (+19.5) 27.8 (+16.3) 35.2 (+18.8)
SCLIP† (Wang et al., 2023) 38.0 24.1 25.1 29.1
SCLIP+CDAM 51.6 (+13.6) 25.7 (+1.6) 27.6 (+2.5) 35.0 (+5.9)
ClearCLIP† (Lan et al., 2024) 47.6 23.3 27.3 32.7
ClearCLIP+CDAM 51.4 (+3.8) 27.5 (+4.2) 28.4 (+1.1) 35.8 (+3.1)
GEM† (Bousselham et al., 2024) 52.1 28.1 33.8 38.0
GEM+CDAM 55.9 (+3.8) 32.4 (+4.3) 34.4 (+0.6) 40.9 (+2.9)

Supporting our motivation with several baseline methods. As mentioned in Section 3.2.1, Table 17
provides statistical evidence to support our claim ”CLIP-based prior works yield patch-wise noisy
class predictions while having highly correlated class distributions for each object”.
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Table 17: Accuracy comparison of class predictions and similarity of class distributions with
several CLIP-based training-free methods across datasets. Similarity of class distribution is
measured using JS divergence.

Baseline VOC21 Context60 COCO-Obj Avg.
MaskCLIP (Zhou et al., 2022) Class Prediction 56.1 ± 1.17 38.4 ± 0.23 27.4 ± 0.46 43.0

Sim of Class Dist 70.9 ± 0.44 73.1 ± 0.34 69.8 ± 0.42 71.0
SCLIP (Wang et al., 2023) Class Prediction 67.0 ± 0.49 41.8 ± 0.31 33.6 ± 0.23 47.4

Sim of Class Dist 78.9 ± 0.26 72.0 ± 0.30 75.4 ± 0.55 75.5
ClearCLIP (Lan et al., 2024) Class Prediction 70.3 ± 0.51 42.7 ± 0.23 36.4 ± 0.19 49.9

Sim of Class Dist 76.0 ± 0.58 70.5 ± 0.58 71.7 ± 0.48 72.3
GEM (Bousselham et al., 2024) Class Prediction 70.8 ± 1.12 42.4 ± 0.38 37.5 ± 0.45 50.0

Sim of Class Dist 79.4 ± 0.89 71.2 ± 0.34 74.2 ± 0.20 74.8

F QUALITATIVE RESULTS

We visualize additional qualitative segmentation results in Fig. 6. It demonstrates that accurate
localization ability of our CDAM for semantic segmentation. Furthermore, in Fig. 7, we present
more examples of class distribution-induced attention maps. It indicates that without the necessity of
training and annotation, we can construct the well-localized attention map based on the similarity of
class distribution between patches within an image.

G LIMITATIONS

Leveraging the knowledge of pre-trained vision-language models, we construct a class distribution-
induced attention map based on class distribution of target classes. However, the quality of the
localized attention map is dependent on the diversity and number of target classes used. This
dependence can limit the representation of CLIP’s implicit knowledge within the class distribution.
Additionally, because entropy-based background thresholding is empirically designed, it may struggle
with complex and challenging cases encountered in test images.
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Figure 6: Qualitative results of open-vocabulary semantic segmentation using our CDAM with
MaskCLIP.
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Figure 7: Additional examples of class distribution-induced attention maps (CDAM) from the
initial prediction of MaskCLIP.
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