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Efficient neural codes naturally emerge
through gradient descent learning

Ari S. Benjamin 1 , Ling-Qi Zhang 2, Cheng Qiu2, Alan A. Stocker 2 &
Konrad P. Kording1,3

Human sensory systems are more sensitive to common features in the envir-
onment than uncommon features. For example, small deviations from the
more frequently encountered horizontal orientations can be more easily
detected than small deviations from the less frequent diagonal ones. Here we
find that artificial neural networks trained to recognize objects also have
patterns of sensitivity that match the statistics of features in images. To
interpret these findings, we show mathematically that learning with gradient
descent in neural networks preferentially creates representations that are
more sensitive to common features, a hallmark of efficient coding. This effect
occurs in systems with otherwise unconstrained coding resources, and addi-
tionally when learning towards both supervised and unsupervised objectives.
This result demonstrates that efficient codes can naturally emerge from
gradient-like learning.

Careful psychophysical studies of perceptionhave revealed that neural
representations do not encode all aspects of stimuli with equal
sensitivity1. The ability to detect a small change in a stimulus, for
instance, depends systematically on stimulus value. A classic example
of this is the so-called ‘oblique effect’ in which changes in visual
orientation are easier to detect near vertical or horizontal than oblique
orientations2. The fact that these sensitivity patterns are ubiquitous
andwidely shared between animalsmotivates us to study the potential
underlying reasons why they exist.

The efficient coding hypothesis has become a standard explana-
tion for the emergence of these non-homogeneous sensitivity
patterns3. It predicts that sensory systems should preferentially
encode more common aspects of the world at the expense of less
common aspects, as this is the most efficient way (in the information-
theoretical sense) to make use of limited coding resources. Indeed,
perceptual sensitivity typically reflects the statistics of the visual
environment4–9. Whilemuch is known about efficient neural codes and
their link to the stimulus statistics and perceptual behavior, the
mechanisms that give rise to such codes remain unknown.

Brains are not born with fully developed sensory representations.
Many developmental studies of perception in infants and young chil-
dren have shown that visual sensitivities improve with age and visual

experience even until adolescence10–13. Much of the improvement
depends on visual experience and is due to neural changes down-
stream of the retina14–18. This suggests that perceptual sensitivity
depends on the neural representation of sensory information and how
these representations change with experience during development.

We hypothesize that general, task-oriented learning rules
provide a sufficient mechanism to produce efficient sensory
representations in the brain. Notably, we hypothesize this is sepa-
rate from and does not depend upon explicit efficient coding
objectives or explicit coding constraints like noise. Driving our
hypothesis is the idea that any gradual learning process can only
learn somuch at a time. An effective learning algorithm should thus
prioritize learning more important aspects before less important
ones. Conveniently, features that are more common are also easier
to learn froma limited exposure to theworld, in a learning-theoretic
sense. These ideas are broadly equivalent to the notion that learn-
ing algorithms provide a second, implicit constraint on neural
coding in addition to the explicit constraint imposed by the limited
neural resources. Together, this inspiration from learning theory
points to the possibility that effective learning algorithms will
naturally produce better representations for common features,
even if coding resources are otherwise unconstrained.
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Our hypothesis directly predicts that we should find forms of
efficient coding not just in biological neural networks but also in other
learning systems. Especially, we expect that artificial neural networks
trained to perform visual tasks to exhibit efficient neural representa-
tions similar to those found in the visual cortex despite their many
differences in their local structural properties (e.g. noise) and con-
nectivity. Since our hypothesis is general to the task, this should be
observed for both supervised andunsupervised objectives, and should
not require the explicit minimization of traditional efficient coding
objectives like mutual information or reconstruction loss.

A study of the consequences of effective yet gradual learning on
sensory representations must begin from a specific learning rule. One
canonical learning rule is gradient descent, which proposes that neural
updates improve behavior asmuch as possible for a given (very small)
change in the overall weights. Though the brain may use more com-
plicated learning rules, gradient descent is arguably the simplest rule
that is effective for general learning and thus a baseline for theorizing
about learning in the brain. If gradient descent produces efficient
codes, this would provide a strong proof of principle that efficient
codes can emerge from general-purpose learning algorithms.

To show that efficient coding emerges from gradient descent
requires a formal understanding of how learningwith gradient descent
biases what is represented about the stimulus. This parallels an active
effort in the study of deep learning. It is now recognized that what
neural networks learn about their inputs is constrained implicitly by
their learning algorithm, rather than by the architecture alone, as evi-
denced by their ability to memorize pure noise19. Many potential
implicit constraints have been proposed to explain why large neural
networks work well on unseen data (i.e. generalize)20–23. One promi-
nent theory is gradient descent in a multilayer network supplies key
biases about what is learned first24–28. This raises the possibility that
such ideas could also demonstrate whether gradient descent learning
is biased towards efficient codes.

In this paper, we describe how learning with gradient descent
biases feature learning towards common input features, thus repro-
ducing the relationship between stimulus statistics and perceptual
sensitivity (Fig. 1). First, reproducing and extending previous results
(see29,30), we show that deep artificial networks trained on natural
image classification show similar patterns of sensitivity as humans.
Then, to understand this effect, we mathematically describe how
gradient descent causes learned representations to reflect the input
statistics in linear systems. This effect occurs even in noiseless and
overparameterized networks as well as for multiple learning objec-
tives, including supervised objectives. To demonstrate that this fra-
mework can be applied to explain development, we also show that
changes in sensitivity resembling changes in visual acuity in human
children can be reproduced in a simple model trained with gradient
descent on natural images. Our results show how learning dynamics
provide a natural mechanism for the emergence of a non-uniform
sensory sensitivity that matches input statistics.

Results
Humans and animals show sensitivity that depends on the orientation
of stimuli. In humans, the sensitivity of internal representations can be
inferred from psychophysical data on discrimination thresholds6 or
from the empirical distribution of tuning curves in V118,31 (Fig. 2a). In
many animals, internal representations are most sensitive at near
vertical and horizontal orientations2. Since these orientations are also
those that occur most often, this pattern of sensitivity can be seen as
reflecting an efficient code for the natural world7.

To ask if neural networks would show a similar phenomenon, we
first obtained a set of relevant networks and measured their response
to artificial stimuli. We chose to investigate deep neural networks
trained on the ImageNet task32 as such networks show a number of
other similarities to human ventral stream visual processing33–35. We
analyzed a range of architectures, including two large convolutional
neural networks (CNNs), VGG16 and Resnet18, and Vision Transfor-
mers,whichoperate largelywithout convolution36–38. Then, tomeasure
sensitivity, we measured the squared magnitude of the change in
network activations given a change in the angle of oriented Gabor
stimuli (Fig 2b; seeMethods). For all three networks, we found that the
internal representations were most sensitive to changes near cardinal
orientations (Fig. 2c). These findings were robust to choices in the
parameterization of Gabor stimuli (SI Fig. 3). The effect was more
pronounced deeper in each network. The coarse pattern of sensitivity
of ImageNet-trained deep networks to orientation is thus similar to
that of animals and reflects the statistics of natural images.

We next investigated whether this pattern was due to factors
inherent in the network or due to the statistics of the inputs onwhich it
was trained. When set with random initial weights, the network
architectures shown in Fig. 2 do not show this pattern, and shuffling
theweights after training destroys the pattern (SI Fig. 1a). Changing the
image statistics also changes sensitivity: when trained on a version of
ImageNet in which all images are rotated by 45∘, the networks lose
sensitivity to cardinals and gain sensitivity to oblique angles (SI Fig. 1b).
This finding recapitulates our preliminary findings and concurrent
work of colleagues, and points to an origin in image statistics29,30.
However, we also found that this effect is also partially learning-
independent and due to architecture. Networks trained on rotated
images do not simply rotate their pattern of sensitivity by 45∘ but
instead partially retain increased sensitivity at cardinal orientations (SI
Fig. 1b). In investigating the cause of this learning-independent com-
ponent, we found that the use of spatial pooling with overlapping
receptive fields (such as in AlexNet39) involves oversampling a rec-
tangular grid and that this produces a significant cardinal sensitivity (SI
Fig 1c). These analyses indicate that the pattern of orientation sensi-
tivity is thus both a product of the input statistics and inherent factors
like architecture.

To separate effects related to architecture and learning, we next
examined the sensitivity of trained networks to changes in hue, as this
is unlikely to be affected by rectangular convolutional processing. We

Fig. 1 | Reasons for efficient coding. aOne consequence of efficient coding is that
perceptual sensitivity reflects the empirical frequency of perceptual variables.
b Efficient coding can be justified normatively as themost effective way to allocate

finite neural resources to encode a stimulus ensemble. In this work we describe a
mechanism for efficient coding due to learning components of the inputs at dif-
ferent rates dependent on their frequency.
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found that hue sensitivity was indeed related to the empirical fre-
quency of hues in ImageNet (Fig. 3c) measured in HSV color space.
Furthermore, the location of the peaks of network sensitivity roughly
matched the peaks of human sensitivity to the hue axis of HSV color
space (Fig. 3b). To test if this pattern is causally related to the input
statistics, we trained a Resnet18 network on a version of ImageNet in
which the hue of all pixels was shifted by 90∘. We observed a corre-
sponding shift in the hue sensitivity (Fig. 3d). This suggests that in
general the frequency of low-level visual features determines the
sensitivity of artificial neural networks trained on object classification.

What is the origin of this phenomenon? In psychophysics, one
leading explanation proposes that there is some constraint that limits
the amount of information a neural population can contain about its

inputs. These constraints may be noise, a finite number of neurons, or
a penalty upon their activity. Due to this constraint, an optimal code
will allocate more resources (and be more sensitive) to inputs that
occur frequently6,40. However, deepnetworks canencode anextremely
large amount of information; for example, they are capable of mem-
orizing millions of examples of random noise19. Also note that these
networks above are noiseless during evaluation and are over-
parameterized, in the sense that internal layers contain a greater
number of nodes than there are input pixels.While typical networks do
regularize their weights, this regularization is small and does not alone
explain their ability to generalize to unseen examples19. These reasons
suggest another effect may be at play besides inherent and unresol-
vable architectural constraints.

Fig. 2 | Artificial neural networks trained to classify naturalistic images show
similar patterns of sensitivity as humans. a Discrimination thresholds for
orientation vary systematically in humans. The sensitivity of the underlying inter-
nal representations, as the Fisher Information, can be inferred as the inverse square
of the threshold6,9. Data from ref. 44.bWemeasured the sensitivity of each layer in

an artificial network as the change in layer’s response due to a given change in
orientation, i.e. the squared norm of the gradient with respect to orientation.
c Relative (normalized) sensitivity to orientation for three networks trained on
ImageNet, plotted for various layers in each network.

Fig. 3 | The sensitivity of ANNs to hue alsomatches image statistics. a The color
of a uniform image is varied; in HSV color space, saturation and value are held fixed
and thehue is varied. Results are averagedover possible saturations andvalues.b In
humans, the sensitivity to the H axis can be inferred by the perceptual distance
between uniformly spaced H values (calculated using the approximately

perceptually uniform color space CIELAB) at S=V=1. c The sensitivity to hue in each
layer in a trained ResNet18 tracks the empirical frequency of hues in the ImageNet
dataset. d Training ResNet18 on a version of ImageNet in which hues are rotated
results in a corresponding shift in hue sensitivity.
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An alternative possibility is that incremental learning via gradient
descent naturally leads to a frequency/sensitivity correspondence.
This would allow this effect to occur in systems with otherwise
unconstrained coding resources. This hypothesis relates to the idea
from connectionist models of development that the most general
aspects of a problem are often learned first41. To investigate this pos-
sibility, we analyzed a category of artificial neural networks amenable
to mathematical study: deep linear networks. Deep linear networks
contain no nonlinearities and are equivalent to sequential matrix
multiplication. Despite their simplicity, deep linear networks show
many of the same learning phenomena as nonlinear networks24,28 and
humans42,43. Moreover, this simplified setting allows us to separate the
effects of gradient descent from those of network nonlinearity.

This linear setting allows us to characterize the dynamics of
learning and the emergence of preferential sensitivity. At a high level,
the network becomes responsive to features earlier when those fea-
tures are more common (Fig. 4). When learning ends due to finite
training time, finite data, or saturating performance, there is a residual
higher sensitivity for common features. This can be seen mathemati-
cally, as we describe below and in two levels of increasing formality in
the Methods and Supplementary Methods. Overall, the link between
learning rate and input frequency, combined with finite training time,
is an additional inductive bias beyond what features are useful for the
task andmeans that trained networks will tend to bemore sensitive to
frequent features.

To concretely demonstrate this phenomenonwewill focus on the
task of reconstructing natural images with a linear network (Fig. 5).
This simple unsupervised task is useful to guide intuition, but we
emphasize that this theory also applies to supervised tasks (see below).
This network can be as shallow as a single layer, in which case the
reconstructed images are given by the matrix multiplication X̂ =WX .
Importantly, this problem can be solved exactly with the solution that
the weight matrix W is the identity matrix I. This is thus an uncon-
strained encoding problem; if there is any non-uniformity in the sen-
sitivity of the output X̂ to changes in X it must be due to the implicit
constraints posed during learning. Analyzing the output sensitivity in
this simple model will help to better understand the implicit pre-
ferences of learning with gradient descent.

In our demonstrative task we will examine the sensitivity of the
output X̂ to themagnitude of each principal component thatmakes up
an image (as provided by PCA on the inputs, Fig. 5b) and describe
why and how it tracks the input statistics. The mathematical analysis
for this feature is much simpler than, say, for orientation. In this case
also we have some expectation as to what pattern of sensitivity the
efficient coding framework predicts because the principal compo-
nents (PCs) are ordered by their variance. An efficient code in the
presence of independent internal noise should be more sensitive to
higher-variance PCs. Indeed, earlier PCs are composed of lower spatial
frequencies, and humans are better at detecting changes in lower

spatial frequencies (Fig. 5e). If gradient descent provides a similar
effect, we should find that the output X̂ becomes sensitive to lower
PCs first.

In a linear model it is possible to describe analytically how the
sensitivity changes due to gradient descent. We first decompose the
weights W via singular value decomposition (SVD), W =USVT =P

iσiuiv
T
i , as a product of unit-length singular vectors (u, v) and their

corresponding singular values σi. The evolution of these components
under gradient descent is known as long as certain basic conditions are
met, such as a very small weight initialization24,28. One key previous
finding is that the singular vectors vof theweightmatrix rotate to align
with the PCs of the inputs (see Theorem 2 in the Supplementary
Methods)24. Due to this alignment, we find that the sensitivity of the
output X̂ to the ith PC is controlled by the size of the corresponding
singular value in the weights, σi. This is more formally derived in
Methods. For example, if σi remains near its initialization close to zero,
then the projection of data upon the ith PC will be filtered out and the
output will not be sensitive to the corresponding PC. The sensitivity of
X̂ to each PC and how it changes with learning can be understood
entirely by the growth of the singular values of W.

Having linked sensitivity to the weight matrixW, all that remains
is to show how the input statistics affect the growth of the singular
values of the weight matrix. The result from the theory of gradient
descent learning in linear networks says that each σi grows at a dif-
ferent rate. Specifically, for this objective of reconstruction, the
growth rate of σi is proportional to the standard deviation of the
corresponding ith PC in the data (see Methods). These standard
deviations decay as a power law for natural images and are shown in
the spectrum in Fig. 5b. As a result, the network output will become
sensitive first to the first (largest-variance) PCs and later to the later
PCs. This is verified empirically in Fig. 5c. Only at infinite training
times does the weight matrix encode all PCs equally and recover the
exact solution W = I. At any finite learning time, the output of the
linear network will bemore sensitive to the earlier PCs. Note that this
non-uniformity in sensitivity emerges despite the lack of any con-
straints on W other than learning.

Having introduced this model to explain our findings in artificial
networks, we next wondered how it would compare to human beha-
vioral data. We first examined the sensitivity of the linearmodel to the
spatial frequency of a sinusoidal grating (Fig. 5e). In adult humans, the
detection threshold to changes in frequency increases linearly with
frequency (Fig. 5g)44. To compare to human data, we can plot the
“detection threshold” of an artificial network as the inverse squared
sensitivity of the network output to frequency. This is proportional to
the error rate of an optimal read-out of frequency given injected
Gaussian noise45. At several snapshots during training, we observed
that the spatial frequency threshold increased linearly with frequency
above a certain cutoff frequency, belowwhich the threshold saturated
at a low value (Fig. 5f). Remarkably, even a single matrix trained to

Fig. 4 | Schematic of how the learning dynamics of linear networks causes a
correspondence between network sensitivity and input statistics. The learning
problem is broken into components, each of which learns at a specific rate. The
frequency or variance of a feature of the input data (e.g. the color red) in part

determines the learning rate of the components that encode it. Thismeans that the
network becomes sensitive to frequent features first. Training may end before all
features are fully encoded.
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reconstruct images reproduces human-like sensitivity to spatial fre-
quency when trained with gradient descent.

If the human perceptual system is also implicitly constrained by
learning dynamics, this would be apparent in psychophysical stu-
dies of young children. Indeed, the highest observable frequency of
a sinusoidal grating continues to improve with age even up to
adolescence (Fig. 5i)12,46. This is experience-dependent; when sight
is restored in young children by the removal of cataracts their
spatial acuity gradually improves15. These effects can be reproduced
in our model of linear image reconstructions. Defining the net-
work’s spatial acuity as the highest spatial frequency whose simu-
lated detection threshold (inverse squared sensitivity) was below a
fixed cutoff, we found we could reproduce a linear increase of
spatial acuity with experience (Fig. 5h). Learning with gradient
descent reproduces not only an efficient encoding of spatial

frequency but also the way in which visual acuity increases linearly
with age.

The theory of learning in deep networks makes several further
predictions for human perceptual learning, many of which have been
explored previously47,48. A central feature of this framework is a char-
acteristic sigmoidal curve for perceptual learning tasks (Fig. 5c). Such
sigmoidal learning curves are observable in humans on perceptual
learning tasks that are sufficiently difficult (Fig. 5d)49. This curve is
sigmoidal because the rate of improvement depends upon the current
level of sensitivity as well as the difference from asymptotic sensitivity
(see Methods). This causes sensitivity to rise exponentially at first but
eventually converge exponentially towards an asymptote. In human
perceptual learning experiments, the learning curve is indeed better
described as an exponential thanother functional forms such aspower
laws50. Althoughgradient descent in linear systems is a simplemodel, it

Fig. 5 | The effect of input statistics on network sensitivity can be understood
with linear network models. Despite their simplicity, these show human-like
learning phenomena. aWe trained linear networks to reconstruct black and white
patches of natural images. b The statistics of natural images can be analyzed with
Principal Components Analysis (PCA); the variance of each successive PC decrea-
ses with a characteristic power law decay. cWhen learning with gradient descent,
the weight matrix W learns each PC separately and in order of their variance. The
sharpness of the sigmoidal learning curve is controlled by the network depth (SI
Fig. 2) d Human perceptual learning curves are also sigmoidal, and increasing task
difficulty delays learning dynamics. Data replotted from ref. 49; subjects trained to
detect the orientation of a line, and the difficulty of the task was controlled by a

masking stimulus. e–i Paradigm for measuring the sensitivity to spatial fre-
quency of W. f Every 50 learning steps we plotted the inverse square root of the
sensitivity to spatial frequency, which is a proxy for detection thresholds. At each
step note the linear increase above an elbow frequency. g Human data on spatial
frequency thresholds, replotted from ref. 44. h An artificial spatial ‘acuity’ grows
nearly linearly with training; ‘acuity’ is defined as the maximum spatial frequency
forwhich the artificial threshold is belowa value of 0.1. i In infants and children, the
spatial acuity - the highest spatial frequency observable for high-contrast gratings -
also increases linearly with age. Replotted from ref. 12, with error bars represent-
ing ± SEM over n = 4–10 subjects (varying per point, exact number not reported).
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accurately captures the functional form of how perception improves
with experience.

It is important to note the mathematical reason why gradient
descent learns frequent inputs first also applies to supervised learning.
The learning rate for a feature is proportional to both its correlation
with the outputs and to its input variance. Thus, for two features with
equal correlation with the output labels but different variance in the
inputs, the network will learn to use the higher-variance feature first
(seeMethods for derivation). Note that if a feature is orthogonal to the
task, it is still not learned by the network. Due to this additional pres-
sure on feature learning beyond task usefulness, networks trained on a
wide range of objectives will show greater sensitivity for frequent
features, as long as this differential pressure is not outweighed by a
greater differential in task usefulness. Thus, if finite-learning and
implicit biases indeed underlie human perceptual sensitivity patterns
as we suggest, the objective function learning of perception may be
different than efficient coding per se.

The emergence of efficient coding in supervised tasks can be
verified with a simple task in which the frequency and usefulness of
input features are varied independently (Fig. 6). This task also

demonstrates that the frequency-dependence of sensitivity is inde-
pendent from variations in the utility for solving the task. We trained a
nonlinear 3-layer neural network to decode the orientation of a sinu-
soidal grating appearing with a set probability distribution. We also
applied noise to the output labels to control the information in each
stimulus about the labels. As expected, both the input frequency and
output noise separately affect the sensitivity of learned representa-
tions (Fig. 6b,c). To demonstrate that gradient descent introduces an
additional bias beyond task usefulness, defined as the total informa-
tion in the input dataset about each label, we next adjusted the mag-
nitude of the noise such that the total information is uniform across
labels. This requires applying a greater level of noise onto the labels
that aremore common, balancing their effects on information. Even in
this case, a higher sensitivity to input orientation emerges for more
common orientations (Fig. 6d). Note that label information is still
crucial; if a feature has no information about labels, it is not learned
even if it is frequent. This now provides a deeper intuition of our
findings earlier that networks trained on object recognition are more
sensitive to frequent features. The preference for frequent features is a
general feature of learning with gradient descent and is separate from
frequency’s effect on the information about labels.

Discussion
Here we found that the internal representations of artificial neural
networks trained on ImageNet are more sensitive to basic visual fea-
tures that are more common, which is a hallmark feature of efficient
coding. We show that this hallmark naturally emerges from gradient-
based learning. Even a minimal model of gradient-based learning -
linear image reconstruction - reproducedhumanpatterns of sensitivity
to sensory variables and how these change over development. In this
minimal model the dynamics of learning can be understood analyti-
cally. The correspondence of sensitivity and statistics emerges due to
an implicit bias of gradient descent for common, high-variance aspects
of the input data.

Our result provides a proof of principle that patterns of percep-
tual sensitivity in animals could be explainedby a similarphenomenon.
If plasticity in the brain approximates the gradient of some task,
whether by reinforced Hebbian rules or some other algorithm, neural
populations will preferentially encode the strongest dimensions in
their inputs. Note that this is an alternative, or perhaps com-
plementary, mechanism for efficient coding as compared to the many
local and unsupervised objectives that have previously been con-
sidered as hypotheses51–61. Any general algorithm approximating gra-
dient descentmay produce similar codes when learning towardsmany
objectives.

It is important to note that our mathematical analysis of linear
networks is highly simplified and may not accurately describe how
learning affects sensitivity in general. A number of considerations
complicate a generalization to nonlinear artificial neural networks,
let alone brains. Nonlinearity makes linear decompositions inaccurate,
and as a result we cannot say the precise features that gradient descent
prefers to learn before others in nonlinear networks. New techniques
from this emerging field may soon allow a more complete character-
ization of the dynamics of learning (e.g.62). However, despite these
caveats, we find that this model is useful to explain why efficient codes
emerge in nonlinear artificial networks. It is remarkable that such a
simple model of learning also captures qualitative features of human
perceptual learning, as well. Learning in linear systems provides a
valuable source of intuition for the effects of learning inmore complex
systems.

Whilewe have shownonemechanism for how learning can induce
a statistics/sensitivity correspondence, it is not the onlymechanism by
which it could do so. Theories of deep learning often distinguish
between the “rich” (feature learning) and “lazy” (kernel) regimes pos-
sible in network learning63. Ourmodels reside in the rich regime, which

Fig. 6 | Dissociating the effect of frequency and information in supervised
learning tasks. a We trained 3-layer nonlinear neural networks to classify the
orientation of sinusoidal gratings into 3∘ bins, varying either input frequency or
output noise. b We controlled the informativeness of input orientations by
injecting noise into the labels as a function of orientation (specifically, the binary
labels are multiplied by a Bernoulli dropout with a rate that depends on orienta-
tion). The sensitivity of the first layer to input orientation is shown over learning.
With uniform statistics, the more informative features are preferentially learned.
c The effect of varying input frequency without applying label noise. In this case,
the more frequent features are preferentially learned. d We then balanced noise
and frequency such that the total information in the input dataset about each
output label is uniform (see Methods). Learning with gradient descent still prefers
common angles.
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involves learning new intermediate representations and assumes a
small weight initialization. In the alternative, lazy regime, intermediate
representations change little over learning and only a readout function
is learned20. Interestingly, networks in the “lazy” (kernel) regime evolve
under gradient descent as if they were linear in their parameters64, and
furthermore have the inductive bias of successively fitting higher
modes of the input/output function asmore data is presented65,66. The
modes are defineddifferently, however, via the kernel similaritymatrix
rather than the direct input covariance. An additional potential source
of efficient codes is stochasticity present in training that are not pre-
sent during evaluation. Dropout is one such potential source67, but of
the networks analyzed only the VGG16 model was trained with drop-
out. Alternatively, it has been proposed that the stochasticity due to
selecting training data in batches provides an implicit constraint,
despite it not affecting processing itself22,23,68,69 but see refs. 70, 71. It
would be interesting to investigate the extent to which batch size
affects an anisotropy of sensitivity. These possibilities are com-
plementary to our linear network analysis, and suggest that a statistics/
sensitivity correspondence could be derived for other network
regimes.

Our broadest finding – that task-oriented learning can be a
mechanism of producing efficient codes – is relevant to the discussion
in psychophysics of the nature of the constraints implied by percep-
tual sensitivity patterns. It has long been recognized that these pat-
terns imply some limitation upon coding capacity. Here, we make the
distinction between implicit limitations due to (a lack of) learning and
explicit limitations upon the maximum achievable code quality after
learning, such as noise, metabolism, or a limited number of neurons.
Although these categories limit perceptionwith differentmechanisms,
they produce similar patterns of perceptual sensitivity. However, they
have distinct implications for what happens during perceptual learn-
ing. Previously, perceptual improvements during development have
been interpreted as a reduction in internal noise accompanied by a
continuous maintenance of optimally efficient codes72,73. In our fra-
mework, there is no need to invoke a reduction in noise to explain
improvements since learning naturally creates codes that reflect
environmental statistics at all stages of learning. Supporting this
viewpoint is evidence thatperceptual learning involves increases in the
signal-to-noise ratio through neuronal changes that enhance the signal
strength17,18. To be sure, the nervous system is indeed constrained by
hard ceilings such as noise and metabolism. The implicit constraints
due to learning are complementary to these and their relative con-
tribution decreases with age and experience. However, note that the
learning rate of some attributes may slow because other attributes
have been learned sufficiently well to complete the task74. Thus, even
to the controversial extent that adults have ceased perceptual learn-
ing, their non-uniformity of sensitivity might still be due to finite-
learning effects.

Onwhich timescales of learning in humans is this frameworkmost
relevant? The most direct comparison is likely to be learning on
developmental timescales. However, given that the modeled learning
curves are also similar those observed in humans on the timescale of
hours and days (Fig. 5d49), it is also possible that such principles are
active on that timescale. On yet shorter timescales, it may also be of
interest to examine the dynamics of perceptual adaption. It has been
argued that sensory adaptation is a form of efficient coding, optimally
re-allocating sensory encoding resources according to recent stimulus
history75, although note that whether improvements in sensitivity
accompany adaptation is controversial76–78. Thus sensory adaptation
and its dynamics might also be explained and predicted by the global
objective of a task-dependent learning rule (gradient descent) in a
continually updating (i.e., adapting) sensory processing systemsuchas
the brain.

Several further predictions can be made using the model system
of gradient descent in linear systems. In this model, the rate of

perceptual learning can be quantitatively modeled as a function of
input statistics, importance, and current performance. These predic-
tions could be verified in experiments that separably vary label noise
and input statistics in supervised perceptual learning problems.
Additionally, learning in the rich domain predicts that the learning
system should represent the outside world in a low-dimensional way,
with additional dimensions being added over time according to their
variance and importance. As such, these learning dynamics naturally
give rise to low-dimensional neural representations79. Such learning
dynamics may thus underlie the popular idea in neuroscience of low-
dimensional neural manifolds (see ref. 80).

A learning framework for perception points to a different sort of
normative analysis of why we perceive the way that we do. Optimality
can be defined in two ways. It can characterize the maximum achiev-
able code quality, in an information-theoretic sense, given some
number of neurons and their biological limitations. Alternatively, one
might also describe responses that are optimal given the limited
experience by which to learn the statistics of the world. Even ideal
observers must learn from limited data, and successful learning from
limited data must be constrained81. Appropriate learning constraints
would be selected for by evolution. Future research may help to
unravel these optimal learning algorithms and characterize their sen-
sory consequences.

Methods
Stimuli and calculation of network sensitivity
In all networks, we defined the sensitivity of a particular layer to a
sensory variable as the squared magnitude of the gradient. For a layer
with N nodes and vector of activations y, the sensitivity with respect to
a sensory variable θ is:

Dðy;θÞ=
XN
i

∂yi
∂θ

2

: ð1Þ

This definition of sensitivity can be related to the Fisher Infor-
mation about a sensory variable θ in an artificial stimuli set. This is
relevant for comparisons to human psychophysical data as the notion
of sensitivity inferred from discrimination thresholds is the Fisher
Information. In particular, our definition of sensitivity can be inter-
preted as the Fisher Information of systems with internal Gaussian
noise of unit variance, and furthermore for the orientation of stimuli
within an artificial stimulus ensemble with one stimulus per value of θ.
A derivation of this connection can be found in the Mathema-
tical Supplementary Methods.

The sensitivity can be calculated through backpropagation or by
the method of finite differences. We created differentiable generators
of stimuli in the automatic differentiation framework of Pytorch. This
allowed calculating the sensitivity directly via in-built backpropagation
methods.

For the figures in the text, we used Gabor stimuli with a spatial
frequency of 2 cycles per 100 pixels, a contrast so that pixels span the
range of [-1,1] in intensity in units of z-scored ImageNet image inten-
sities, and a Gaussian envelope with σ = 50 pixels. We marginalized
over thephaseof theGabor by averaging the sensitivity calculatedwith
10 linearly spaced spatial phases tiling the interval [−π,π]. The sinu-
soidal stimuli input to the linear network varied in spatial frequency,
and we similarly averaged sensitivity over spatial phase. Finally, for the
hue stimuli, wegenerated images of a uniformcolor inHSV color space
and converted pixel values to RGB. Results weremarginalized over the
S and V axes in the range [0.5, 1] which corresponds to the calculation
of hue histograms on ImageNet (see below),which necessarily involves
binning S and V.
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Deep nonlinear network experiments
To measure the sensitivity of pretrained networks, we first down-
loaded pretrained ResNet18 and VGG16 (with batch normalization)
networks from the Torchvision python package (v0.11) distributed
with Pytorch. For the vision transformer, we used a distribution in
Python available at https://github.com/lukemelas/PyTorch-Pretrained-
ViT. For each layer in these networks, we calculated sensitivity to
orientation and hue with the stimuli generators described above. The
‘layers’ are defined differently for each network. For ResNet, layers are
what in this architecture are called residual blocks (each of which
contain multiple linear-nonlinear operations). For VGG, layers are the
activations following each linear or pooling layer. Layers within the
vision transformer are what are called transformer blocks.

We implemented a number of controls to determine the extent
to which the observed patterns of sensitivity related to image sta-
tistics. We first ran the sensitivity analysis on untrained networks;
we used the Pytorch default initialization. To ensure that the
architectures do not show inherent patterns only in a certain regime
of weight sizes, we calculated sensitivity on a copy of the networks
in which the weights were shuffled. We wanted to preserve weight
sizes in a layer-specific manner, and so shuffled the weights only
within each tensor.

As further control on the effect of image statistics we retrained
certain models on a version of ImageNet in which all images were
rotated by 45°, or as well in which the hue of images were rotated by
90°. The transformer model was not retrained due to its expense.
Image modifications were performed with Torchvision’s in-built rota-
tion and hue adjusting image transformations.

We trained all networks using a training procedure identical to
that used in official distributions. The algorithm used was stochastic
gradient descentwith an initial learning rate of0.1, decayingby a factor
of 10 every 30 epochs, as well as a momentum value of 0.9, ridge
regularization (‘weight decay’) of size 10−4, and a batch size of 256
images. The networks were trained for 90 epochs. To match the ori-
ginal training setup, we augmented the image dataset with random
horizontal reflections and random crops of a size reduction factor
varying from 0.08 to 1. Note that the random horizontal reflections
change the statistics of orientations so as to be symmetric around the
vertical axis. After training, the sensitivity was calculated as above.

ImageNet hue statistics
We wrote a custom script to extract the hue histogram of all pixels in
all images in the ImageNet training set. We binned hues with a reso-
lution of 1°, and binned hues over the S and V range [0.5, 1] to focus on
strongly colored pixels. The exact range is arbitrary, but importantly
matches the range used when calculating network sensitivity.

Linear network experiments
Wefirst constructed adatabase of 32x32 images of natural scene image
portions. These image portionswere extracted from ImageNet32,made
greyscale, and cropped to size. Our constructed dataset contained
over 100,000 examples of image portions.We then performed PCAon
this dataset using the PCA method in Scikit-Learn82, and displayed the
singular values of the top 1,000 components in Fig. 5.

Our task consisted of reconstructing these image portions using a
single- or multilayer fully-connected linear neural network. To ensure
no architectural bottleneck exists, the internal (hidden) dimension of
the multilayer network remained at 322, the same as the input and
output. The initial parameter values of the networks were scaled down
by a factor of 100 from the default Pytorch initialization to ensure rich-
regime learning. Networkswere trained tominimize themean-squared
error of reconstruction using stochastic gradient descent, a learning
rate of 1.0, and a batch size of 16,384, the largest that would fit in
memory. The large batch size minimizes effects relating to batch
stochasticity.

During learning, we calculated the sensitivity to spatial frequency as
well as the projection of the learned weight matrix upon the PCA basis
vectors of the inputs. The projection upon each PCA vector is given by
uT
i Wui, where W is the product matrix corresponding to the linear

network and ui is the ith PCA component. The sensitivity to spatial
frequency was calculated by constructing a sinusoidal plane wave test
stimulus with parameterized frequency and phase and using Pytorch’s
automatic differentiation capability to obtain the derivative of network
output with respect to frequency. The sensitivity was calculated for 64
equally-spaced phase offsets and the result averaged over phase.

Supervised label noise experiment (Fig. 6)
In this experiment we trained a 3-layer neural network with ReLU
nonlinearities to decode the orientation of 64x64 pixel image of a
sinusoidal grating. The period of the sinusoid was 12.8 pixels, and in
each stimulus the sinusoid carried a randomphase offset. The random
phase and orientation ensured that no image was repeated. In each
image the orientation was sampled in the interval [0,π] from a speci-
fied probability distribution (either a uniform distribution or 2�cosð2xÞ

2π ).
The objective was the categorization of images into 60 bins of orien-
tations, with success quantified via a cross-entropy loss function.

The addition of noise to the output labels was calibrated such
that, on average over a dataset, any orientation θ is as informative as
any other despite a potentially nonuniform orientation distribution
p(θ). Since the total information in a dataset about a (potentially
noised) label yθ scales linearly with how often it appears, all else held
equal, the variation in per-example information must exactly balance
the change in frequency. That is, for any two orientations θi and θj and
their corresponding (noised) labels yθi and yθj , it must be that
pðθiÞI½yθi ∣θi�=pðθjÞI½yθj ∣θj�. Here I[ ⋅ ] represents the information gained
about a label having observed an input, i.e. the change in entropy over
yθ from the uniform distribution. This proportionality is satisfied if
I½yθj ∣θj�= a

pðθÞ for some constant a.
Our approach thus requires applying label noise of a known

entropy that varies with orientation. Because we optimize a cross-
entropy objective, rather than e.g. a mean-squared-error objective,
there are no interactions between neighboring bins. We applied noise
by treating the nonzero element of each label vector, which are indi-
cator (1-hot) vectors, as a Bernoulli variable with rate σ(θ). σ = 1 cor-
responds to the zero-noise condition, and with rate 1 − σ(θ), a label is
dropped out. For this noise, the information about each label is
I[yθ∣xθ] = 1 −Hb(σ(θ)), where Hb(σ) is the binary entropy function.

Together, the rate of Bernoulli noise is given by σðθÞ=H�1
b 1� a

pðθÞ

� �
.

We approximated the inverse binary entropy function with a table
lookup and assuming σ ≥ 0.5.

Sensitivity analysis of linear networks
In this section we will analyze the sensitivity of a linear multilayer
neural network in which theweights of layer i are parameterized byWi.
The output of such a network with N layers is:

Y =WNWN�1 . . .W 2W 1X ð2Þ

The product matrix is simplyW, such that Y =WX.
Throughout this analysis we will make heavy use of the singular

value decomposition of theweightmatrix, whichdefinesmatricesU, S,
and V such that W =USVT. The matrix S is diagonal, and the diagonal
elements are called the singular values σi. The U and V matrices are
orthonormal.

Our analysis describes how learning dynamics in this system acts
to link output sensitivity to input statistics. Note that the derivation
here is for arbitrary objectives; the instance of a reconstruction loss
discussed in themain text is a special case. The analysis is organized in
three stages: 1) how the sensitivity depends on the singular values σi of
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W, 2) how σi change with learning, and 3) how σi correspond to the
image statistics.

Sensitivity depends on the singular values of W
We wish to derive the sensitivity of a linear network to arbitrary input
features.Wewillfirst examine the caseofdetermining the sensitivity of
the network for the following feature: how much the data aligns with
each jth singular vector of W. This is a weight-dependent feature.
Specifically, let the feature θjbe the dot product of the datawith the jth
right singular vector of the weight product matrix, θj =V

T
j x. This fea-

ture is important as it can be used to analyze the sensitivity to arbitrary
features.

For this feature, we find the sensitivity of the network is
DðY ;θjÞ= σ2

j . This result is intuitive, as σ2
j describes how much data

lying along the vector vj is amplified when multiplied with W. A deri-
vation can be found in the Supplementary Methods. Thus, when
θj =V

T
j x, the sensitivity D(Y; θj) is constant and is the square of the

associated singular value.
The sensitivity to more general θ can be understood using this

result. This is because the key derivative can be decomposed into the

derivativeswith respect to right singular vectors:
∂yμ
∂θ =

∂yμ
∂VTx

T
∂VTx
∂θ . In this

case, we find thatDðy; θÞ=Pjσ
2
j
∂VT

j x
∂θ

2

(see Supplementary Methods for

derivation). Thus, for arbitrary θ, the sensitivity depends on how VT
j x

depends on θ times the size of the associated singular value, summed
over components j.

The behavior of the singular values
Previous literature describes how the weight matrix changes due to
gradient descent24,28. More information about these results can be
found in the Supplementary Methods.

We first define a (potentially data-dependent) cost function:

‘ðWNWN�1 . . .W 2W 1Þ ð3Þ

As described by ref. 24, under certain conditions on the weight initi-
alization thedirectionof theunit vectorsu andv rotatewith learning in
a specific way. Note that they remain unit length during learning. This
result, quoted in the Mathematical Supplementary Methods as Theo-
rem 2, states that the vectors are static when they align with the sin-
gular vectors of the gradient of the loss,∇ ℓ(W).More specifically, if the
singular vectors are static thenUT∇ ℓ(W)V is diagonal. Thiswill become
an important condition for tying the input statistics to the singular
values of W.

Another important result from previous literature describes how
singular values of the product matrixW evolve as a function of time t:

_σiðtÞ= � NσiðtÞ
2ðN�1Þ

N h∇W ‘ðW ðtÞÞ,uiðtÞvT
i ðtÞi ð4Þ

= � NσiðtÞ
2ðN�1Þ

N uT
i ðtÞ∇W ‘ðW ðtÞÞviðtÞ ð5Þ

Thus, each singular value evolves as a product of a function its current
size and the network depth (NσiðtÞ

2ðN�1Þ
N ) multiplied by how much the

gradient correlates with the corresponding singular vectors. This
formalism assumes continuous learning dynamics; see25 for a treat-
ment of finite step sizes.

Relation of frequency to sensitivity
In this section we wish to show how the input statistics affect the
singular vectors and values of W. Our approach is to show that fre-
quency p(θ) reflects in the covariance of θ. The covariance affects the
rate of learning of the singular values of the weight matrix W.

Frequency vs. variance
In our analysis of how the statistics of data affect sensitivity, we focus
on the variance of features. Since previous literature in psychophysics
focuses on frequency as defined by the vector p(θ) with a scalar value
for each orientation p(θ = θj) (e.g.

8), it is appropriate to discuss their
relation. Our analysis focuses on variance in part because attributes
like orientation can occur with a real-valued strength in each image
patch when measured by e.g. Gabor filters or Fourier decomposition.
Thus a description of p(θ) in natural imagesmight bemore completely
characterized with a two-dimensional matrix with dimensions for
angle and intensity. Variance summarizes the intensity axis and char-
acterizes how unpredictable each orientation is within each image
patch. The second reason we work with variance is that it cleanly
relates to the speed of learning.

When features are binary and either present or not, variance and
frequency are closely related. Modeling presence as a Bernoulli vari-
able, the frequency is the probability p(θj) and the variance is
σ(θj) = p(θj)(1 − p(θj)). Note that at very small values of p(θj), σ(θj) ~ p(θj).
However, features that are nearly always present (p(θj) near 1) have a
very low variance. It is interesting to note that this behavior aligns with
the expectation that efficient sensory systems should dedicate more
resources to features whose presence is uncertain (p(θj) = 0.5) than to
those whose presence is guaranteed (p(θj) = 1). Variance is thus very
similar to absolute frequency for rare Bernoulli variables and in general
may be a more intuitive measure of feature importance in regards to
what determines efficient patterns of sensitivity.

What W learns: autoencoding objective
Further describing the growth of singular values requires a choice of
objective. The base case of our study is the autoencoding objective
defined for a set of inputs X:

‘ðW Þ= 1
N

XN
i

ðxi �WxiÞT ðxi �WxiÞ ð6Þ

Our goal is to determine howW evolves for this cost function. We
will examine both the singular vectors and the singular values.

During learning, the singular vectors rotate (recall they are unit
length and orthogonal) until they reach a fixed point. For this cost
function, it is easy to verify that a fixed point of dynamics is when the
singular vectors are equal to the principal components of the inputs
(see Supplementary Methods for proof). That is, the vectors are static
when Σxx =VΛVT andW =VSVT for the sameVbut potentially differentΛ
and S. This alignment is especially relevant given the expression for
network sensitivity derived above. With the vectors aligned, the sen-
sitivity to each corresponding principal component of the inputs is
given by σ2

i , the squared singular value of W.
The evolution of sensitivity is thus governed by the evolution of

singular values. The rate of change of σi is complicated to calculate
because the singular vectors can potentially rotate. However, for the
sakeof analysis one can examine the casewhen the singular vectors are
initialized at the fixed point mentioned above, as in previous
literature28. In this set of initial conditions, the time-evolution of each
singular value of W is given by refs. 24, 28:

_σiðtÞ=NλiσiðtÞ
2ðN�1Þ

N ð1� σiðtÞÞ ð7Þ

Note that the rate of learning is controlled by λi, the standard
deviationof the ith principal component of the inputs. The termon the
right causes σi(t) to converge to 1 asymptotically, as is expected as the
solution of the full-rank reconstruction problem is W = I. For deeper
networks (N ≥ 2), the growth is sigmoidal and approaches a step
function as N→∞ (see ref. 25). Thus, in this axis-aligned initialization,
the singular values σi(t) are learned in order of the variance of the
associated principal components of the inputs.
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Together, these results mean that the sensitivity of a linear net-
work’s output to the principal components of the inputs evolve in
order of variancewhen trained on input reconstruction. This is exactly
the case for the axis-aligned initialization and approximately true for
small initializations. For the single-matrix network displayed in the
figure in the main text, the sensitivity to the jth PC thus evolves over
time t as:

_DðY ;PCjÞðtÞ=2λj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðY ;PCjÞðtÞ

q
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðY ;PCjÞðtÞ

q� �
ð8Þ

What W learns: supervised learning
We can also determine how input statistics affect the sensitivity for the
more general class of objective functions whenWx is trained to match
some target y by minimizing the mean-squared error:

‘ðW Þ=
X
j

ðyj �WxjÞ2 ð9Þ

As before, we can gain intuition about W by beginning from an
initialization that is axis-aligned with the final solution. For the
supervised case, these initializations share the singular vectors of
the data/labels, but can differ in the singular values. Given Σxx = VΛVT

and Σxy =UTVT, we set W(0) =USVT for the same U and V. See
the Supplementary Methods for proof that this is a fixed point of
singular vector dynamics.

This initialization allows us to understand how the singular values
of the weight matrix change. As derived in the Supplementary Meth-
ods, the time evolution of σi is given by:

_σiðtÞ= � NσiðtÞ
2ðN�1Þ

N ðσiðtÞλi � tiÞ ð10Þ

= λiNσiðtÞ
2N�1
N

ti
λi
� σiðtÞ

� �
ð11Þ

As in the case for input reconstruction, the ith singular value
approaches a target. Instead of 1, this value is ti

λi
, the ratio of the

importance of this component (the input/output singular value ti) and
the standard deviation of that component in the inputs λi. The growth
rate is controlled by the distance from this asymptote (right term) and
aswell ason the input statistics λi. Thus, even for the case of supervised
learning the input statistics affect what is learned first via gradient
descent directly through Σxx via λi, and not just through the input/label
covariance Σxy.

Statistics and reproducibility
All neural network experiments are somewhat stochastic in their
results due to a random initialization and a random subselection of
training data used in any network update step. Nevertheless the figures
are shownwith a single network, due in part to the expense of training
multiple networks on ImageNet and because we did not compute
statistics of network characteristics. No data were excluded from the
analyses, and the Investigators were not blinded to outcome
assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All image datasets associated with this study are available as dis-
tributed with Torchvision v0.10.0.

Code availability
All code used to create the figures is available at https://github.com/
KordingLab/ANN_psychophysics. This code is citable separately
(https://doi.org/10.5281/zenodo.7387922).
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