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 a b s t r a c t

Class-incremental learning (CIL) aims to learn new classes while retaining previous knowledge. Although pre-
trained model (PTM) based approaches show strong performance, directly fine-tuning PTMs on incremental task 
streams often causes renewed catastrophic forgetting. This paper proposes a Dual-Prototype Network with Task-
wise Adaptation (DPTA) for PTM-based CIL. For each incremental learning task, an adapter module is built to 
fine-tune the PTM, where the center-adapt loss forces the representation to be more centrally clustered and class 
separable. The dual prototype network improves the prediction process by enabling test-time adapter selection, 
where the raw prototypes deduce several possible task indexes of test samples to select suitable adapter modules 
for PTM, and the augmented prototypes that could separate confusable classes are utilized to determine the final 
result. Experiments on multiple benchmarks show that DPTA consistently surpasses recent methods by 1–5%. 
Notably, on the VTAB dataset, it achieves approximately 3% improvement over state-of-the-art methods. The 
implementation is available at https://github.com/Yorkxzm/DPTA.

1.  Introduction

With the rapid developments of deep learning, deep models have 
achieved remarkable performances in many scenarios (Bahi et al., 2024; 
Chen et al., 2022; Liu et al., 2015; Ye et al., 2019). Most of them train 
models on independently and identically distributed (i.i.d.) data. In real-
world settings, however, data often arrives as streams with shifting dis-
tributions (Gomes et al., 2017). Training deep models on such non-i.i.d. 
streams causes previously learned knowledge to be overwritten by new 
information, a phenomenon known as catastrophic forgetting (French, 
1999). This challenge highlights the need for stable incremental learn-
ing systems in practical applications.

Among various forms of incremental (continual) learning (De Lange 
et al., 2021; Roy et al., 2020), class-incremental learning (CIL) receives 
the most attention due to its closer alignment with real-world applica-
tions (Wang et al., 2024; Zhou et al., 2024d). Specifically, CIL builds 
a model to continually learn new classes from data streams. Previous 
CIL works are primarily based on sample replay (Rebuffi et al., 2017; 
Wang et al., 2025), regularization (Nguyen et al., 2017), and distilla-
tion (Rolnick et al., 2019). These methods rely on additional replay 

∗ Corresponding authors.
 E-mail addresses: york_z_xu@smail.nju.edu.cn (Z. Xu), sryang@smail.nju.edu.cn (S. Yang), xubaile@nju.edu.cn (B. Xu), frshen@nju.edu.cn (F. Shen), 
jianzhao@nju.edu.cn (J. Zhao).

samples and more trainable parameters to achieve strong performance. 
More recently, methods based on Pre-Trained Models (PTMs) (Zhou 
et al., 2024b) have achieved significant progress by leveraging mod-
els pre-trained on large-scale corpora (Radford et al., 2021) or image 
datasets (Barbu et al., 2019; Deng et al., 2009). These approaches keep 
PTM weights frozen during CIL training, preserving knowledge from 
pre-training and substantially mitigating catastrophic forgetting.

Despite surpassing previous approaches, massive patterns in down-
stream incremental tasks are unexposed to PTMs during pre-training. 
To enhance the model’s performance, fine-tuning the PTM with training 
samples is typically employed. Given that CIL tasks arrive as a continu-
ous stream, sequentially updating the PTM on task streams risks reintro-
ducing catastrophic forgetting. Recently, some approaches (Smith et al., 
2023; Zhou et al., 2024a,c) suggest the task adaptation strategy for PTM-
based methods, which assigns several free-loading and lightweight fine-
tuning modules for incremental tasks, such as scale & shift (Lian et al., 
2022), adapter (Houlsby et al., 2019), or Visual Prompt Tuning (VPT) 
(Jia et al., 2022), then load the appropriate module trained in the cor-
responding task for PTM to extract representations. However, because 
task identities are unavailable at test time, selecting the correct module 
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becomes challenging. Existing solutions rely on complex query match-
ing (Wang et al., 2022d), module combinations (Smith et al., 2023), 
or ensembles (Zhou et al., 2024c), but these approaches are often lim-
ited: key-value matching is unreliable, and ensembling or combining 
modules does not guarantee that the correct task-specific representation 
dominates, thereby introducing noise.

Most PTM-based CIL approaches also classify samples by comparing 
their representations to class prototypes (Bezdek & Kuncheva, 2001). 
Yet the losses commonly used to fine-tune PTMs are not tailored to 
prototype-based classification. For example, cross-entropy loss encour-
ages clear decision boundaries but often yields large intra-class varia-
tion, causing many samples to become more similar to incorrect proto-
types and thus degrading classification accuracy.

To address these challenges, we propose DPTA, a Dual-Prototype 
Network with task-wise adaptation for PTM-based CIL. We introduce 
a center-adapt loss that encourages adapted representations to cluster 
around class centers while enlarging inter-class margins. Similar to ex-
isting adaptation strategies (Zhou et al., 2024a,c), each task is equipped 
with an adapter to fine-tune the PTM. We observe that top-K predic-
tions derived from prototypes remain reliable during CIL, offering valu-
able cues for selecting appropriate adapters. Building on this insight, 
DPTA decomposes prediction into two subproblems: top-K candidate la-
bel inference and K-class classification. Raw prototypes, derived from 
the frozen or first-task adapted PTM, estimate the top-K possible labels 
of a sample, from which task indices and the corresponding adapters 
are inferred. Augmented prototypes, computed from the task-adapted 
PTM, are then used to determine the final predicted label. The main 
contributions of our work are summarized as follows:

• We introduce a center-adapt loss tailored for prototype-based clas-
sification, producing more compact and discriminative augmented 
prototypes.

• We propose the Dual Prototype Network, where raw prototypes es-
timate top-K candidate labels and augmented prototypes refine the 
prediction to the top-1 result.

• We conduct extensive experiments across multiple incremental 
benchmarks, demonstrating that DPTA achieves state-of-the-art per-
formance.

The remainder of the paper is organized as follows. Section 2 reviews 
related work. Section 3 discusses PTM-based CIL and prototype classi-
fiers. Section 4 presents the proposed method. Section 5 reports exper-
imental results, and Section 6 concludes with discussions on strengths, 
limitations, and future directions.

2.  Related works

2.1.  Class-incremental learning and previous methods

A CIL model must continually absorb new class knowledge from se-
quential tasks during training and make predictions without access to 
task identities at test time. Existing approaches can be broadly grouped 
into the following types: Replay-based methods (De Lange & Tuytelaars, 
2021; Rolnick et al., 2019; Wang et al., 2025) deposit typical samples 
into a buffer as exemplars for subsequent training to recover old class 
knowledge. For instance, iCaRL (Rebuffi et al., 2017) selects exemplars 
near the class mean representation. Regularization-based methods (Ahn 
et al., 2019; Zeno et al., 2018) protect the knowledge obtained on the 
old task by adding regularization to limit the model parameters’ updat-
ing on the new task. However, they tend to restrict the model’s updates 
on new tasks. To address this limitation, recent flatness-based meth-
ods, such as C-flat (Bian et al., 2024) and C-flat++ (Li et al., 2025), 
mitigate this limitation by encouraging convergence to flatter loss re-
gions. Distillation-based methods (Simon et al., 2021) transfer knowl-
edge from the old model to the new one through feature-level (Zhu 
et al., 2021), logit-level (Zhao et al., 2020), or correlation-based distilla-
tion (Gao et al., 2025c). However, distillation may interfere with learn-

ing new classes. For example, logit distillation can conflict with cross-
entropy optimization. Gao et al. (2025a) address this by introducing 
semantic-invariant matching and intra-class distillation. Parameter iso-
lation methods like DER (Yan et al., 2021) and MEMO (Zhou et al., 2022) 
assign separate parameters to different tasks to prevent forgetting. Ad-
ditionally, there exist several plug-and-play logit calibration techniques 
that effectively enhance the model’s accuracy in few-shot scenarios (Liu 
et al., 2024) or mitigate the class imbalance issue induced by the re-
play buffer (Wang et al., 2022a). These methods typically require extra 
training of a large neural network.

2.2.  Class-incremental learning with pre-trained models

The strong generalization ability of Pre-Trained Models (PTMs) has 
motivated their adoption in CIL (Tan et al., 2024; Zhang et al., 2023). 
These methods typically freeze PTM backbones and use them as fea-
ture extractors, which naturally encourages the use of prototype-based 
classifiers (Zhu et al., 2025a,b). SimpleCIL (Zhou et al., 2024a) demon-
strates that excellent CIL classification accuracy can be achieved by 
only building prototypes with raw PTMs. A basic adaptation strategy 
is first-task adaptation, as in APER (Zhou et al., 2024a), which fine-
tunes a PTM on the first task using an adapter, then constructs proto-
types with the adapted model. Prompt-based approaches (Smith et al., 
2023; Wang et al., 2022b,c,d) maintain a pool of prompts trained 
across tasks, making prompt selection at test time a key challenge. L2P 
(Wang et al., 2022d) adopts key-query matching; DualPrompt (Wang 
et al., 2022c) introduces layer-wise prompts divided into expert and 
shared groups; CODA-Prompt (Smith et al., 2023) applies attention to 
form weighted prompt combinations. Adapter-based methods have also 
emerged. EASE (Zhou et al., 2024c) trains a separate adapter for each 
task and performs subspace prototype ensembling. MOS (Sun et al., 
2025) proposes training-free adapter retrieval for efficiency. MoAL (Gao 
et al., 2025b) performs momentum-based adapter interpolation and in-
troduces a knowledge-rumination mechanism to reinforce old knowl-
edge. In addition, several works have been proposed to accelerate in-
ference speed, like ACmap (Fukuda et al., 2025) with adapter merging 
and MINGLE (Qiu et al., 2025) for LoRA mixture. Following the struc-
ture of prior surveys such as (Bahi et al., 2024), Table 1 summarizes 
representative PTM-based CIL methods developed in recent years.

3.  Preliminaries

In this section, we provide a introduction to PTM-based CIL and in-
troduce prototype-based classification, one of the most prevalent classi-
fiers in CIL .

3.1.  Class-incremental learning with PTMs

In class-incremental learning (CIL), a model learns from a sequence 
of tasks, each introducing new classes, and must make predictions with-
out access to task identities (Wang et al., 2024). Assume that there are 
𝑇  tasks, their training sets are denoted as 𝐷1, 𝐷2,… , 𝐷𝑡, where 𝐷𝑡 =
{(𝒙𝒊, 𝑦𝑖)}

𝑛𝑡
𝑖=1 is the 𝑡th training set that has 𝑛𝑡 samples and 𝐷1, 𝐷2,… , 𝐷𝑡

are non-i.i.d. In the 𝑡th task, only 𝐷𝑡 can be accessed for training. The 
learning system is trained to obtain an optimal model 𝑓 ∗(𝒙) ∶  ←←→  that 
minimizes the expected risk for all classes in 𝐷1 ∪… ∪𝐷𝑡. The objective 
function is represented in Eq. (1):
𝑓 ∗(𝒙) = argmin

𝑓∈
𝔼(𝒙,𝑦)∈𝐷1∪…∪𝐷𝑡

[𝕀(𝑓 (𝒙) ≠ 𝑦)]. (1)

where 𝕀 is the indicator function and  denotes the hypothesis space of 
model 𝑓 .

A widely adopted strategy in CIL is leveraging pre-trained models 
(PTMs) such as Vision Transformers (Dosovitskiy, 2020) as feature ex-
tractors (Zhou et al., 2024b). The decision model of PTM-based methods 
can be expressed as 𝑓 (𝒙) = 𝑊 T𝜙(𝒙), where the 𝜙(⋅) ∶ ℝ𝑑 ←←→ ℝℎ is the PTM 
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Table 1 
A summary of representative PTM-based class-incremental learning methods.
 Approach  Year Method description  Avantages
 L2P (Wang et al., 2022d)  2022 Several learnable prompts on sequential tasks and 

dynamically selecting task-relevant prompts.
 Few trainable parameters.

 CODA-prompt (Smith et al., 2023)  2023 Use attention mechanism on prompt building and 
create a weighted combination of prompts.

 Do not choose prompts, which can reduce the error.

 SimpleCIL (Zhou et al., 2024a)  2023 Only use the original PTM and prototype classifier.  Simple, fast inference speed, short training time.
 APER (Zhou et al., 2024a)  2023 Use the fine-tune module to adapt the SimpleCIL on 

the first task.
 Higher but limited accuracy, fast inference speed.

 EASE (Zhou et al., 2024c)  2024 Train task-specific adapters with a subspace ensem-
ble process.

 Integrated information from all adapters for prediction.

 MOS (Sun et al., 2025)  2025 Train task-specific adapters with a training-free 
self-refined adapter retrieval mechanism.

 Less inference time and higher accuracy than EASE.

 MoAL (Gao et al., 2025b)  2025 A momentum-updated analytic learner with knowl-
edge rumination mechanism.

 High accuracy, fast inference speed, and few adapters.

feature extractor, and 𝑊  is a customized classifier. Since PTMs encode 
rich prior knowledge, the extracted representations have both general-
izability and adaptivity (Zhou et al., 2024a). Freezing the PTM during 
incremental training further prevents catastrophic forgetting.

3.2.  Prototype classifier in CIL

Although fully connected classifiers with softmax activation 
(Krizhevsky et al., 2012) are common in deep learning, their need for 
full re-training makes them less suited for the growing label space in 
CIL. A widely used classifier in CIL is the prototype-based Nearest Class 
Mean (NCM) (Xu et al., 2020). For a new class 𝑘 with 𝑀𝑘 training sam-
ples, its prototype 𝒑𝒌 is computed in Eq. (2):

𝒑𝒌 = 1
𝑀𝑘

𝑀𝑘
∑

𝑗=1
𝕀(𝑦𝑖 = 𝑘)𝜙(𝒙𝒊), (2)

where 𝑦𝑖 is the label corresponding to sample 𝒙𝑖. During inference, the 
similarity between a test representation and each prototype is measured 
using cosine similarity (Yang et al., 2018). With 𝑁 learned classes, the 
prediction is denoted in Eq. (3):
𝑦̂𝑖 = argmax

𝑘=1,2,…𝑁
(𝑆𝑖𝑚(𝜙(𝒙𝒊),𝒑𝒌)cos). (3)

Unlike linear classifiers, prototypes can be updated through simple class-
wise additions without retraining, making them highly suitable for CIL.

4.  Methodology

Freezing PTMs and using one prototype per class often fails to sepa-
rate many classes in downstream tasks, while incrementally fine-tuning 
PTMs typically causes catastrophic forgetting. As illustrated in Fig. 1, 
we address this by assigning a lightweight adapter to each task and con-
structing dual prototypes for each class. During inference, we adopt a 
two-step procedure. First, we obtain top-K candidate labels from raw 
prototypes and infer the underlying task index. Then we load the corre-
sponding task adapters and obtain the final prediction from augmented 
prototypes.

In the following, we first introduce task adaptation with the pro-
posed Center-Adapt loss, which improves the separability of PTM rep-
resentations for prototype-based classification. Then, present the dual 
prototype network (DPN), which defines the classifier of DPTA. Finally, 
we describe the inference process.

4.1.  Task adaptation with center-adapt loss

Fig. 2(a) and (b) show that training with standard cross-entropy (CE) 
loss enforces decision boundaries between classes but still produces re-
gions where different classes overlap in the feature space. In such re-
gions, samples of one class can be close to the centroid of another class. 
This is problematic for prototype-based classification, which relies on 

distances or similarities in the feature space. Large intra-class disper-
sion and overlapping clusters lead to ambiguous prototype boundaries 
and reduced accuracy.

To mitigate this, we propose the Center-Adapt (CA) loss to fine-tune 
the PTM. Specifically, we adopt Center Loss (CL) (Wen et al., 2016) as 
an auxiliary objective that pulls samples of the same class towards their 
class prototype. Formally, the CL is defined in Eq. (4):

𝐶 = 1
2

𝑀
∑

𝑖=1
||𝒙(𝒌)𝒊 − 𝒑𝒌||22, (4)

where the 𝒙(𝒌)𝒊  is the 𝑖th training sample of class 𝑘, 𝒑𝒌 is the prototype of 
class 𝑘. This objective encourages representations of each class to con-
tract towards their prototype, thereby reducing similarity to prototypes 
of other classes. Since the feature representation changes as the adapter 
parameters are updated, the centers 𝒑𝒌 must be refreshed at each train-
ing step.

However, prototype-based methods depend on well-separated class 
centers. When the objective includes only attractive forces, such as CL, 
all samples of a class will be pulled toward a single point. Consequently, 
prototypes from different classes may drift in similar directions, result-
ing in prototype mode collapse. It could weaken the discriminative struc-
ture of the embedding space. To mitigate this effect, we combine CL with 
the repulsive influence of Cross-Entropy (CE) (Zhang & Sabuncu, 2018), 
whose classification objective naturally pushes class logits apart. The 
two components are complementary. CE preserves inter-class margins, 
while CL tightens intra-class clusters. The resulting CA loss is defined in 
Eq.  (5).
𝐶𝐴 = 𝐶𝐸 + 𝜆𝐶 , (5)

where 𝜆 is a constant scalar weight. As shown in Fig. 2(c), fine-
tuning with CA loss yields compact, approximately isotropic clusters 
around class prototypes and clearly enlarged inter-cluster margins. This 
improves prototype-based classification by reducing overlap between 
classes in the embedding space.

Following prior work (Zhou et al., 2024a,c), we use the adapter 
(Houlsby et al., 2019) as the fine-tuning module due to its strong 
accuracy-efficiency trade-off. Each adapter inserts a bottleneck struc-
ture in every Transformer block, as denoted in Eq. (6): 
𝒛′𝒊 = 𝒛𝒊 + 𝑅𝑒𝐿𝑈 (𝒛𝒊𝑊𝑑𝑝)𝑊𝑢𝑝, (6)

where 𝒛𝒊 and 𝒛′𝒊 are feature vectors of input and output respectively. 
When task 𝑡 arrives, we attach a temporary linear classification head, 
fine-tune only the adapter 𝑡 using CA loss on 𝐷𝑡. The PTM and those 
adapters from other tasks are frozen. This preserves PTM knowledge 
while enabling task-specific specialization.

4.2.  Dual prototype network

Prototype-based classification with cosine similarity often misclas-
sifies ambiguous samples. However, our analysis reveals that top-K
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Fig. 1. Overview of the proposed DPTA. Left: Training. When a new task 𝑖 arrives, a task-specific adapter is fine-tuned and saved. Then, using the raw and task-
adapted PTM to construct raw and augmented prototypes. Right: Test. Raw prototypes produce top-K candidate labels, from which the relevant task adapters are 
identified. The augmented prototypes of the selected adapters then predict the final label.

Fig. 2. t-SNE (Van der Maaten & Hinton, 2008) visualizations of original space and task-adapted subspace trained with CE loss and CA loss.
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Fig. 3. The comparison of NCM top-1 and top-5 predictions accuracy, where the 
accuracy of the top-5 group ranged from 98% to 100%. The prototypes were 
built with a pre-trained VIT-B/16-IN21K without fine-tuning.

predictions using raw PTM features remain highly stable, even when 
top-1 accuracy drops. As shown in Fig. 3, top-5 accuracy stays near 
100%. This suggests that top-K raw predictions can reliably identify 
a small candidate label set, which carries useful task and class informa-
tion.

We therefore introduce the Dual Prototype Network, which main-
tains two prototype sets per class. The first set, raw prototypes, is com-
puted using Eq.  (2) with the original PTM (or the first-task-adapted 
PTM) and is used to produce reliable top-K candidate labels for each test 
sample. These labels further reveal up to 𝐾 possible task indices when 
the task label correspondence established during training is preserved. 
The second set arises from representations extracted by the CA-adapted 
PTM, which exhibit enhanced inter-class separability and are therefore 
better suited for prototype-based prediction. These features are referred 
to as augmented representations, and their corresponding class means 
form the augmented prototypes, computed as in Eq.  (7).

𝒑𝒂𝒖𝒈𝒌 = 1
𝑀𝑘

𝑀
∑

𝑗=1
𝕀(𝑦𝑗 = 𝑘)𝜙𝐴𝑡𝑘 (𝒙𝒋). (7)

where the 𝜙𝐴𝑡𝑘  is the PTM loaded with 𝑘th adapter. The augmented 
prototype leverages the sample’s augmented representations, assisted 
by complementary information provided by the raw prototype, to infer 
the sample’s true class label.

After completing task adaptation on 𝐷𝑖, the classes’ raw and aug-
mented prototypes in task 𝑖 are computed using Eqs. (2) and (7), respec-
tively. Once all 𝑛 tasks have been learned, the model retains 𝑛 adapters, 
∑𝑛

𝑖=1 𝑁𝑖 raw prototypes and augmented prototypes, where 𝑁𝑖 denotes 
the number of classes in task 𝑖.

4.3.  Prediction process of DPTA

Augmented prototypes cannot be directly used because the task ID 
is unknown during inference. One naive solution is to load all adapters 
and compute similarities in every subspace, but this induces large com-
putational overhead and noise from irrelevant subspaces.

Neural networks generally assume independently and identically 
distributed inputs, which makes them sensitive to out-of-distribution 
(OOD) data. For transformers, the attention matrix 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇

√

𝑑
) as-

signs low weights to features that deviate from the learned distribution. 
As a result, the representations produced by a PTM equipped with an 
incorrect adapter tend to fall far from the corresponding task’s feature 
region. This property allows augmented prototypes to naturally distin-
guish representations generated under mismatched adapters.

Fig. 4 illustrates this effect. For a given task 𝑡𝑛, samples from other 
tasks do not participate in its adaptation, so their augmented represen-
tations are projected away from all class clusters of 𝑡𝑛 (light blue ‘x’ 
markers). Since prototypes act as class centroids, these representations 
show consistently lower similarity to all augmented prototypes of task 

Fig. 4. t-SNE visualizations in a task-adapted subspace trained with CA loss.

𝑡𝑛, so it has:
𝑆𝑖𝑚(𝜙𝐴𝑡𝑛 (𝒙𝒋),𝒑

𝒂𝒖𝒈
𝒌 )cos < 𝑆𝑖𝑚(𝜙𝐴𝑡𝑛 (𝒙𝒊),𝒑

𝒂𝒖𝒈
𝒌 )cos. (8)

Meanwhile, if a sample 𝒙𝒊 from 𝑡𝑛 is processed with a wrong adapter, its 
representation is projected into a different subspace (gray ‘v’ markers), 
yielding:

𝑆𝑖𝑚(𝜙𝐴𝑡≠𝐴𝑡𝑛 (𝒙𝒊),𝒑
𝒂𝒖𝒈
𝒌 )cos < 𝑆𝑖𝑚(𝜙𝐴𝑡𝑛 (𝒙𝒊),𝒑

𝒂𝒖𝒈
𝒌 )cos. (9)

Analogously, samples of 𝑡𝑛 behave as OOD inputs for other tasks:
𝑆𝑖𝑚(𝜙𝐴𝑡(𝑣) (𝒙𝒊),𝒑

𝒂𝒖𝒈
𝒗 )cos < 𝑆𝑖𝑚(𝜙𝐴𝑡𝑛 (𝒙𝒊),𝒑

𝒂𝒖𝒈
𝒌 )cos, (10)

where 𝑣 represents classes from other tasks, 𝑡(𝑣) denotes the task ID of 
the class 𝑣. The relationships in Eqs.  (8)–(10) indicate that augmented 
representations generated with an incorrect adapter become clear out-
liers. They lie far from every augmented prototype and exhibit consis-
tently lower similarity, which could be naturally suppressed. In other 
words, the augmented prototypes could implicitly filter out mismatched 
tasks and perform automatic cross-task inference.

However, directly loading all adapters to compute augmented repre-
sentations in inference is computationally prohibitive. Therefore, DPTA 
uses raw prototypes to obtain a small candidate set of labels and tasks, 
which only requires K times adapter loading. More importantly, the raw 
prototypes offer an additional source of robustness. Task-specific fine-
tuning may introduce overfitting, which can cause the augmented pro-
totypes to yield incorrect predictions. In contrast, the raw prototypes 
rely on representations from the original PTM, which retain stronger 
generalization. The resulting high-accuracy top-K predictions effectively 
eliminate most incorrect classes and tasks before augmented prototypes.

The prediction process of DPTA can be divided into two steps. First, 
raw prototypes are utilized to predict the top-K class labels, as repre-
sented in Eq.  (11):
𝑌 𝑡𝑜𝑝𝐾
𝑖 = 𝐾- argmax

𝑘=1,2,…𝑁
(𝑆𝑖𝑚(𝜙(𝒙𝒊),𝒑𝒓𝒂𝒘𝒌 )cos), (11)

then the corresponding task IDs are obtained based on the top-K labels. 
If the preset 𝐾 exceeds the number of raw prototypes 𝑛, it can be tem-
porarily set to 𝑛 until sufficient raw prototypes are attained. The final 
label is determined by augmented prototypes, as denoted in Eq.  (12):
𝑦̂𝑖 = argmax

𝑘∈𝑌 𝑡𝑜𝑝𝐾
𝑖

(𝑆𝑖𝑚(𝜙𝐴𝑡(𝑘) (𝒙𝒊),𝒑
𝒂𝒖𝒈
𝒌 )cos). (12)

In summary, the raw prototypes contribute robust class & task localiza-
tion, while the augmented prototypes complete the final classification. 
We summarize the training and testing pipeline of DPTA in Algorithms 1 
and 2. 

The expected performance of DPN follows from conditional proba-
bility, as denoted in Eq. (13): 

𝔼
𝒙𝒊∈ ,𝑦𝑖∈

[𝕀(𝑦𝑖 = 𝑓 (𝒙𝒊))] =𝔼[𝕀(𝑦𝑖 = 𝑦̂𝑖)|𝕀(𝑦𝑖 ∈ 𝑌 𝑡𝑜𝑝𝐾
𝑖 )] ∗ 𝔼[𝕀(𝑦𝑖 ∈ 𝑌 𝑡𝑜𝑝𝐾

𝑖 )].

(13)

It shows that DPN improves when both prototype sets become more 
accurate. Since raw top-K accuracy is inherently high, the augmented 
prototypes govern the achievable performance ceiling.
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Algorithm 1 Training process of DPTA.
Input: Incremental datasets: {1,2,… ,𝑇 }. Pre-trained embedding: 

𝜙(𝐱). 
1: for 𝑡 = 1, 2,… , 𝑇  do

2: Get the incremental training set 𝑡 of 𝑡−th task 
3: Initialize a new fine-tune module 𝑡
4: Train 𝑡 in 𝑡 via Eq. (5)
5: Construct the raw and augmented prototypes in task 𝑡 via Eq. (2) 
and Eq. (7)

6: end for
Output: Trained modules {1,2,… ,𝑇 }. Raw and augmented proto-

types 𝒑𝒓𝒂𝒘, 𝒑𝒂𝒖𝒈.

Algorithm 2 Inference process of DPTA.
Input: Test dataset: 𝑡𝑒𝑠𝑡 with 𝑁 samples. Class-task query 𝑞(⋅). Pre-

trained embedding: 𝜙(𝐱). Trained modules: {1,2,… ,𝑇 }. Raw 
and augmented prototypes 𝒑𝒓𝒂𝒘, 𝒑𝒂𝒖𝒈.

1: for 𝑖 = 1, 2,… , 𝑁 do
2: Get the sample 𝑖 in 𝑡𝑒𝑠𝑡
3: Using 𝒑𝒓𝒂𝒘 to predict the top-K labels 𝑌 𝑡𝑜𝑝𝐾

𝑖  via Eq. (11)
4: Using 𝑞(⋅) to predict the task indexes corresponding to 𝑌 𝑡𝑜𝑝𝐾

𝑖
5: Using 𝒑𝒂𝒖𝒈, task indexes and {1,2,… ,𝑇 } to predict 𝑦̂𝑖 via 
Eq. (12)

6: end for
Output: Predicted labels 𝒚̂𝑡𝑒𝑠𝑡 of 𝑡𝑒𝑠𝑡

4.4.  Complexity analysis

This subsection will analyze the inference and storage complexity 
of dual prototypes. Let 𝑇  denote the number of tasks, 𝑁𝑡 the number of 
classes introduced at task 𝑡, and 𝐶 =

∑𝑇
𝑡=1 𝑁𝑡 the total number of classes. 

We denote the feature space dimensionality of the prototypes as 𝑑, and 
by 𝐹  the computational cost of a single forward pass through the PTM 
equipped with one task-specific adapter. Methods like EASE maintain 
a complete prototype set in each task-specific subspace. As new tasks 
arrive, the prototype set in the subspace in task 𝑡 must cover all classes 
observed, i.e., ∑𝑡

𝑖=1 𝑁𝑖 classes. Therefore, the total number of stored pro-
totypes in EASE is ∑𝑇

𝑡=1
(
∑𝑡

𝑖=1 𝑁𝑖
)

. Under the common assumption that 
each tasks introduce an equal number of classes (𝑁𝑡 = 𝐶∕𝑇 ), it scales as 
(𝑇𝐶). Consequently, the overall storage complexity is:
(𝑇𝐶𝑑). (14)

In contrast, each class in DPTA is associated with a raw and aug-
mented prototype, so the number of stored prototypes is 2𝐶. The storage 
complexity is :
(𝐶𝑑), (15)

where the cost is independent of the task number 𝑇 .
In inference, EASE will load all adapters to perform 𝑇  forward passes 

through the PTM, yielding a computational cost of (𝑇𝐹 ). In each sub-
space, the sample representation is compared against the corresponding 
prototype set to compute similarities and obtain an ensemble prediction. 
If each subspace maintains prototypes for all 𝐶 classes, the total number 
of similarity computations per sample is on the order of 𝑇𝐶, leading to 
an additional cost of (𝑇𝐶𝑑). Overall, the per-sample inference com-
plexity of EASE is:
(𝑇𝐹 + 𝑇𝐶𝑑), (16)

which scales linearly with the number of tasks, both in terms of forward 
passes and similarity evaluations.

In DPTA, inference is decomposed into two stages. In the first stage, a 
single forward pass through the shared PTM (without loading any task-
specific adapter beyond the base or first-task configuration) produces an 
embedding in the raw prototype space. This embedding is compared to 

all raw prototypes to obtain top-𝐾 candidate class labels. The cost of this 
stage is(𝐹 + 𝐶𝑑), where (𝐹 ) accounts for the forward pass and (𝐶𝑑)
for computing cosine similarities to the 𝐶 raw prototypes. In the sec-
ond stage, the top-𝐾 labels are mapped to their corresponding task IDs. 
Only the adapters associated with these candidate tasks are then loaded, 
leading to at most 𝐾 additional forward passes through the PTM, with 
cost (𝐾𝐹 ). The augmented representations are compared against the 
augmented prototypes of these top-𝐾 candidate classes, requiring (𝐾𝑑)
similarity computations. Overall, the inference complexity of DPTA per 
sample is:


(

𝐹 + 𝐶𝑑 +𝐾𝐹 +𝐾𝑑
)

= 
(

𝐾𝐹 + (𝐾 + 𝐶)𝑑
)

, (17)

where 𝐾 is a constant and typically set to 5. It generally satisfies 𝐾 ≪ 𝑇 , 
so the complexity of Eq.  (17) can be further simplified to (𝐹 + 𝐶𝑑

)

.
Overall, DPTA achieves lower prototype storage and inference com-

plexity. Both scale linearly with class numbers rather than tasks, making 
DPTA substantially more efficient in continual learning scenarios.

5.  Experiments

This section empirically evaluates the proposed DPTA framework by 
addressing three key questions: [RQ1] Does DPTA outperform state-of-
the-art (SOTA) methods on benchmark datasets? [RQ2] How much do 
the dual-prototype mechanism and the center-adapt loss contribute to 
the final performance? and [RQ3] How do the key hyperparameters 
influence DPTA’s behavior?

5.1.  Implementation details

Dataset and split. Most PTM-based CIL methods use ViT-B/16-IN21K 
(Dosovitskiy, 2020). Because it is pre-trained on ImageNet-21K, we se-
lect benchmark datasets with notable domain gaps, including CIFAR-
100 (Krizhevsky et al., 2009), Stanford Cars (Kramberger & Potočnik, 
2020), ImageNet-A (Hendrycks et al., 2021b), ImageNet-R (Hendrycks 
et al., 2021a), and VTAB (Zhai et al., 2019). Following the “B/Base-m, 
Inc-n” rule protocol (Zhou et al., 2024a), datasets are split into CIFAR 
B0 Inc10, CARS B16 Inc10, ImageNet-A B0 Inc20, ImageNet-R B0 Inc20, 
and VTAB B0 Inc10, consistent with (Zhou et al., 2024c). Here, 𝑚 is the 
number of classes in the first task and 𝑛 is that of each subsequent task;. 
𝑚 = 0 indicates uniform division. All competing methods use identical 
training/testing splits.

Baselines. We compare DPTA with a wide range of baseline and SOTA 
approaches, including SDC (Yu et al., 2020), L2P (Wang et al., 2022d), 
Dual-Prompt (Wang et al., 2022c), CODA-Prompt (Smith et al., 2023), 
SimpleCIL and APER (Zhou et al., 2024a), EASE (Zhou et al., 2024c), 
MOS (Sun et al., 2025), and MoAL (Gao et al., 2025b). For reference, 
we also report sequential finetuning (Finetune). All PTM-based baselines 
adopt ViT-B/16-IN21K to ensure fairness.

Programming and hyperparameters. All experiments are implemented in 
PyTorch 2.4.1 and conducted on NVIDIA A4000 GPUs. DPTA is imple-
mented using the Pilot toolbox (Sun et al., 2023). Baseline settings fol-
low the recommended configurations in their original papers or Pilot. 
Learning rates use cosine annealing. For DPTA, the 𝐾 value is fixed at 
five. The combined loss weight 𝜆 is set to 0.001 on the VTAB dataset and 
0.0001 on the other datasets. All methods are trained under the same 
random seed.

Evaluation metrics. Following Rebuffi et al. (2017), we use 𝐴𝑏 to denote 
the 𝑏-stage accuracy after learning tasks 𝐷𝑏, 𝐴 = 1

𝑇
∑𝑇

𝑏=1 𝐴𝑏 is average 
stage accuracy over 𝑇  tasks, and 𝐴𝐹  is the final accuracy on the overall 
test set.
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Table 2 
The comparison of average accuracy 𝐴 and final accuracy 𝐴𝐹  results on benchmark datasets, where the best 
results achieved on all benchmarks are in bold. All methods used here are exemplar-free methods in which no 
replay samples are required.

Methods
 CIFAR  CARS  ImageNet-A  ImageNet-R  VTAB
𝐴 𝐴𝐹 𝐴 𝐴𝐹 𝐴 𝐴𝐹 𝐴 𝐴𝐹 𝐴 𝐴𝐹

 Finetune  63.51  52.10  42.12  40.64  46.42  42.20  48.56  47.28  50.72  49.65
 SDC  68.45  64.02  42.12  40.64  29.23  27.72  53.18  50.05  48.03  26.21
 L2P  85.95  79.96  47.95  43.21  47.12  38.49  69.51  75.46  69.77  77.05
 DualPrompt  87.89  81.17  52.72  47.62  53.75  41.64  73.10  67.18  83.23  81.20
 CODA-Prompt  89.15  81.94  55.95  48.27  53.56  42.92  77.97  72.27  83.95  83.01
 SimpleCIL  87.57  81.26  65.54  54.78  59.77  48.91  62.55  54.52  86.01  84.43
 APER(Adapter)  90.55  85.10  66.76  56.25  60.49  49.75  75.82  67.95  86.04  84.46
 APER(VPT-S)  90.52  85.21  66.73  56.22  59.43  47.62  68.83  62.03  87.25  85.37
 EASE  92.45  87.05  78.45  67.01  65.35  55.04  81.73  76.17  93.62  93.54
 MOS  93.29  89.25  79.58  68.56  67.07  56.22  82.75  77.83  92.62  92.79
 MoAL  94.10  90.09  80.65  70.23  69.45  58.44  83.88  78.00  92.02  91.10
 DPTA(ours)  92.90  88.60  81.64  71.02  69.56  58.67  84.90  78.20  94.52  94.09

Table 3 
The comparison of accuracy with SOTA replay-based methods. All 
methods use ViT-B/16-IN21K.

Methods
 CIFAR  ImageNet-A  ImageNet-R
𝐴 𝐴𝐹 𝐴 𝐴𝐹 𝐴 𝐴𝐹

 iCaRL  82.36  73.67  29.13  16.15  72.35  60.54
 DER  86.11  77.52  33.72  22.13  80.36  74.26
 FOSTER  89.76  84.54  34.55  23.34  81.24  74.43
 MEMO  84.33  75.56  36.54  24.43  74.12  66.45
 DPTA(ours)  92.90  88.60  69.56  58.67  84.90  78.20

Fig. 5. The comparison of accuracy and trainable parameter sizes on the 
ImageNet-R dataset.

5.2.  Benchmark comparison

We first evaluate DPTA against baseline and SOTA methods on the 
selected datasets, with results summarized in Table 2. DPTA achieves 
the highest classification accuracy on most datasets and consistently sur-
passes previous SOTA approaches.

To further assess its competitiveness, we compare DPTA with sev-
eral milestone exemplar-based methods, including iCaRL (Rebuffi et al., 
2017), DER (Yan et al., 2021), FOSTER (Wang et al., 2022a), and MEMO 
(Zhou et al., 2022), as shown in Table 3. All of them using ViT-B/16-
IN21K with a fixed 2000 exemplar size. DPTA remains highly competi-
tive without exemplars and achieves the best accuracy among all com-
pared methods.

We also analyze the parameter-accuracy trade-off in Fig. 5. DPTA at-
tains the best accuracy with a parameter scale similar to other exemplar-
free methods. To quantify efficiency, we report average inference time 
𝑡inf of representative methods for 10,000 samples in Fig. 6. DPTA demon-
strates moderate latency, while EASE incurs the highest cost due to load-
ing all adapters and integrating prototypes across tasks.

Fig. 6. The comparison of average inference time.

5.3.  Ablation study

An ablation study is proposed to investigate the effectiveness of the 
DPTA’s components. The accuracy 𝐴𝑏 of the control group is reported in 
Fig. 7. Adapter-CA and Adapter-EA remove the dual-prototype network 
(DPN), making it impossible to identify tasks; thus, only the first-task 
adapter can be used, corresponding to first-task adaptation. Adapter-
CA uses the center-adapt loss (Eq. (5)), while Adapter-EA uses cross-
entropy loss. DPTA significantly outperforms Adapter-CA, confirming 
the effectiveness of DPN. Comparing Adapter-CA and Adapter-EA shows 
that the center-adapt loss improves prototype classification.

To assess whether the CA loss causes collapse of augmented proto-
types, we measure the average inter-class cosine similarity 𝑆inter, the 
maximum pairwise similarity 𝑆max, and the concentration ratio 𝑅, de-
noted as follows:
𝑆inter =

1
𝐾(𝐾 − 1)

∑

𝑖≠𝑗
𝑠𝑖𝑚(𝐩𝑎𝑢𝑔𝑖 ,𝐩𝑎𝑢𝑔𝑗 )cos, (18)

𝑆max = max
𝑖≠𝑗

𝑠𝑖𝑚(𝐩𝑎𝑢𝑔𝑖 ,𝐩𝑎𝑢𝑔𝑗 )cos, (19)

𝑅 =
‖

‖

‖

‖

‖

‖

1
𝐾

𝐾
∑

𝑖=1
𝐩𝑎𝑢𝑔𝑖

‖

‖

‖

‖

‖

‖2

. (20)

where high values of 𝑆inter or 𝑆max mean that prototypes belonging to 
different classes are similar to each other, which indicates prototype 
collapse, while a higher 𝑅 shows that the prototypes become aligned in 
a similar direction, revealing a global prototype mode collapse.

We evaluate three configurations: (i) CE-only, (ii) Center-only, and 
(iii) Ours (CA loss). As shown in Table 4, Center-only training produces 
high 𝑆inter, 𝑆max and 𝑅, confirming severe prototype collapse. In con-
trast, our method produces much lower values, which are close to or 
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Fig. 7. Ablation study results on benchmark datasets. The green annotation indicates the decrease in the final accuracy 𝐴𝐹  of DPTA over top-K prediction. The black 
annotation denotes the improvement of DPTA over Adapter-CA.

Table 4 
Prototype dispersion metrics comparison on ImageNet-A and 
VTAB.

Loss
 ImageNet-A  VTAB
𝑆inter 𝑆max 𝑅 𝑆inter 𝑆max 𝑅

 CE only  0.34  0.90  0.59  0.14  0.83  0.42
 Center only  0.33  0.99  0.58  0.32  0.99  0.57
 Ours  0.12  0.82  0.35  0.18  0.77  0.45

smaller than CE-only. These findings show that our CA loss produces 
prototype structures that are as stable as CE. In some cases, such as on 
ImageNet-A, the prototypes are even more robust, since all three metrics 
are significantly lower than those of CE-only.

5.4.  Hyperparameter setting study

We study the effect of the two key hyperparameters, 𝜆 and 𝐾
of DPTA, as shown in Fig. 8. For 𝜆, performance degrades when its 
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Fig. 8. The relationship of hyperparameters 𝜆 and 𝐾value with the 𝐴𝐹  on IN-A dataset.

Table 5 
The comparison of DPTA accuracy with different fine-tune modules.

Methods
 CIFAR  ImageNet-R  VTAB
𝐴 𝐴𝐹 𝐴 𝐴𝐹 𝐴 𝐴𝐹

 DPTA(VPT)  91.88  87.55  82.06  77.95  94.81  94.20
 DPTA(SSF)  91.50  86.34  81.27  77.57  93.68  92.86
 DPTA  92.90  88.60  84.90  78.20  94.52  94.09
Table 6 
The comparison of DPTA accuracy with different PTM 
backbones.

PTM backbones  ImageNet-A  VTAB
𝐴 𝐴𝐹 𝐴 𝐴𝐹

 ViT-B/16-IN21K  69.56  58.67  94.52  94.09
 ViT-B/16-IN1K  68.36  58.20  93.72  93.50
 ViT-B/16-IN21K-ft1K  72.82  64.40  94.30  93.62
 VIT-MoCo-v3  72.02  63.01  94.01  93.51

value departs from an appropriate range. Excessively high 𝜆 overem-
phasizes the center loss, hindering the model’s ability to learn class-
discriminative features. Conversely, an insufficiently low 𝜆 fails to acti-
vate the center-adapt loss effectively, causing the model to degenerate 
into the case trained solely with cross-entropy loss. For 𝐾, increasing 
the top-K range substantially improves top-K prediction accuracy. Ex-
panding 𝑘 from 3 to 7 yields roughly a 3% gain in 𝐴𝐹 . Larger 𝐾 values 
offer no further improvement because the resulting top-𝐾 set already 
covers the most ambiguous classes.

5.5.  Generalization ability and plug-and-play flexibility of DPTA

The center-adapt loss and dual-prototype mechanism in DPTA are 
not tied to adapters. They can be combined with other parameter-
efficient tuning modules. Table 5 summarizes the results of integrating 
DPTA with VPT and SSF. DPTA preserves strong performance across all 
datasets. This confirms that the dual-prototype mechanism and center-
adapt loss function operate effectively in different modular configura-
tions.

Moreover, since the task adaptation-based CIL methods rely on the 
knowledge embedded in the PTM, we further evaluate DPTA using dif-
ferent ViT backbones trained under diverse procedures, including super-
vised ImageNet-21K, ImageNet-1K, ImageNet-21K with extra ImageNet-
1K fine-tuning, and ViT with MoCo-v3. As shown in Table 6, DPTA de-
livers excellent performance across all backbones. These results indicate 
that DPTA is robust to changes in backbone training strategy and does 
not rely on a specific type of PTM backbone.

In summary, DPTA demonstrates broad generalization in both di-
mensions: flexibility across fine-tuning modules and stability across het-
erogeneous pre-trained backbones, supporting its plug-and-play applica-
bility in PTM adaptation.

Fig. 9. Three types of accuracy results on CIFAR-100 and VTAB dataset.

5.6.  Further result interpretation

We now provide deeper insight into the empirical behaviors of DPTA. 
In Section 5.2, compared with L2P, Dual-Prompt, CODA-Prompt, and 
EASE, DPTA’s task-wise adaptation yields more reliable task identifica-
tion than prompt matching, weighted prompt combinations, or proto-
type ensembling. While MOS and MoAL are strong competitors, DPTA 
achieves better accuracy on most datasets, especially VTAB, whose tasks 
contain severely (even fewer than 10 samples in fifth task) imbalanced 
and small-sample training sets. These results demonstrate DPTA’s ro-
bustness in constrained or imbalanced training data regimes. However, 
DPTA underperforms MOS and MoAL on CIFAR-100. To investigate this, 
we examine three metrics on both CIFAR-100 and VTAB: 𝐴𝐹 , final task 
prediction accuracy (Task 𝐴𝐹 ), and final in-task prediction accuracy, 
defined as accuracy conditioned on correct task identification (In-Task 
𝐴𝐹 ). The results are illustrated in Fig. 9. In CIFAR-100, In-Task 𝐴𝐹  is 
nearly 100%, while Task 𝐴𝐹  closely matches 𝐴𝐹 , indicating that the 
performance bottleneck lies in cross-task reasoning rather than in-task 
classification.

This limitation stems from the characteristics of CIFAR-100: images 
are originally 32×32 and must be upsampled to 224×224 for ViT, intro-
ducing interpolation artifacts and blurred details. These artifacts reduce 
inter-task feature disparities, making tasks more visually homogeneous. 
Since the dual-prototype mechanism relies on natural task-level distri-
bution differences to support cross-task prediction, reduced inter-task 
separability makes the mechanism less effective, thus lowering accu-
racy. In contrast, datasets such as VTAB contain high-resolution images 
with larger inter-task variation, enabling DPTA to achieve high task pre-
diction accuracy and 𝐴𝐹 . Despite this limitation, DPTA still surpasses 
most baselines on CIFAR-100, demonstrating competitive performance 
even in low-resolution scenarios.
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In summary, while DPTA provides strong accuracy, it has two limita-
tions. First, although it uses fewer adapters and prototypes than EASE, 
loading multiple adapters during inference introduces higher latency 
than single-adapter methods such as MoAL. Second, the dual-prototype 
mechanism depends on inter-task feature disparities, but these dispar-
ities are weak on low-resolution or highly homogeneous datasets. This 
suggests that future work may benefit from additional training objec-
tives that explicitly enlarge feature-space separation between tasks.

6.  Conclusion

In real-world applications, we expect machine learning models to 
learn from streaming data without forgetting. This work introduces 
DPTA, a dual-prototype framework with task-wise adaptation for PTM-
based CIL. Task-specific adapters are trained with a center-adapt loss 
to produce more discriminative representations. During inference, raw 
prototypes identify suitable adapters for each test sample, and task-wise 
augmented prototypes further refine prediction. Extensive experiments 
verify the effectiveness of DPTA. Nevertheless, DPTA depends on intrin-
sic inter-task distribution differences; its performance lags behind state-
of-the-art methods on low-resolution datasets such as CIFAR-100. Future 
work will explore improved training objectives that enhance intra-class 
compactness and inter-class separability.
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