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ABSTRACT

The Lipschitz bandit problem extends stochastic bandits to a continuous action
set defined over a metric space, where the expected reward function satisfies a
Lipschitz condition. In this work, we introduce a new problem of Lipschitz bandit
in the presence of stochastic delayed feedback, where the rewards are not observed
immediately but after a random delay. We consider both bounded and unbounded
stochastic delays, and design algorithms that attain sublinear regret guarantees in
each setting. For bounded delays, we propose a delay-aware zooming algorithm
that retains the optimal performance of the delay-free setting up to an additional
term that scales with the maximal delay τmax. For unbounded delays, we propose
a novel phased learning strategy that accumulates reliable feedback over carefully
scheduled intervals, and establish a regret lower bound showing that our method is
nearly optimal up to logarithmic factors. Finally, we present experimental results
to demonstrate the efficiency of our algorithms under various delay scenarios.

1 INTRODUCTION

Multi-armed Bandit (MAB) (Auer et al., 2002) is a foundational framework for sequential decision-
making under uncertainty, with widespread applications in clinical studies (Villar et al., 2015), online
recommendation (Li et al., 2010), and hyperparameter tuning (Ding et al., 2022). In the standard multi-
armed bandit formulation, the learner repeatedly selects an arm and immediately observes a stochastic
reward drawn from an unknown distribution, using this feedback to update their policy in real time to
maximize the overall cumulative reward. However, in many real-world applications, the reward signal
is not always available immediately. For example, in online advertising, user engagement data such
as clicks or conversions may come back to the engine minutes or even hours after an item is shown; in
clinical trials, the effect of a treatment on a patient’s health may be delayed and take weeks to observe.
This motivates the study of bandit problems with delayed feedback, where the learner must make
decisions without knowing when past rewards will arrive, introducing additional uncertainty not only
in the stochastic reward values but also in the timing of their observations. To deal with this real-world
challenge, recent progress has extended classical bandit algorithms to accommodate stochastic delays
under multiple bandit frameworks, including MABs (Joulani et al., 2013; Vernade et al., 2017), linear
bandits (Vernade et al., 2020) and kernelized bandits (Vakili et al., 2023). These approaches often
rely on modifying confidence intervals or restructuring update schedules to compensate for missing
feedback, and they yield robust performance under various stochastic delay models.

While delayed feedback has been extensively studied in the context of stochastic bandit problems,
most existing literature focuses on simpler settings with discrete action spaces, such as the traditional
MABs and contextual linear bandits. In contrast, there is little understanding of how to mitigate the
effects of delayed observations in the more challenging Lipschitz bandit framework (Kleinberg et al.,
2008), where the action space is a continuous metric space and the expected reward function satisfies
a Lipschitz condition. Lipschitz bandits provide a more flexible and expressive framework for a wide
range of real-world applications, including hyperparameter optimization (Kang et al., 2024), dynamic
pricing, and auction design (Slivkins et al., 2019). State-of-the-art algorithms for Lipschitz bandits,
such as the Zooming algorithm (Kleinberg et al., 2019), leverage adaptive partitioning and activation
schemes to concentrate exploration on more promising regions, achieving optimal regret bounds in the
delay-free setting. However, these methods fundamentally rely on prompt reward feedback to refine
partitions and update confidence estimates. In the presence of stochastic delays, they may struggle to
accurately track arm performance and quality, leading to degraded performance both theoretically
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and empirically. Moreover, the continuous nature of the arm space amplifies the impact of missing or
stale feedback, as each sampled point represents a neighborhood region whose estimation depends on
delayed observations. To the best of our knowledge, the Lipschitz bandit problem with stochastic
delayed feedback has not been previously explored, and poses distinct challenges that require novel
algorithmic designs due to the dual complexity of delayed observations and continuous action spaces.

We take the first step toward understanding Lipschitz bandit problem in the presence of stochastic
delayed feedback, and our contributions can be summarized as follows:

• For bounded delays, we extend the classic zooming algorithm in Kleinberg et al. (2008) to a
delay-aware setting and attains Õ

(
T

dz+1
dz+2 + τmaxT

dz
dz+2

)
regret bound, recovering the optimal

regret bound of Lipschitz bandit (Kleinberg et al., 2019), with an additional term scales with the
maximal delay τmax.

• For unbounded delays, we propose a novel phased learning algorithm named Delayed Lipschitz
Phased Pruning (DLPP) that accumulates reliable feedback over carefully designed intervals, and
we show that the algorithm enjoys the same regret rate compared to their delay-free version, with
an additive dependence on the quantiles of the delay distribution. To complement our upper bounds,
we also establish the instance-dependent lower bounds in the general unbounded-delay setting,
showing that our regret bound is nearly optimal up to logarithmic factors.

• We validate our theoretical findings with empirical results, showing that our methods retain the
sublinear regret rate and are highly efficient under various reward functions and delay settings.

2 RELATED WORK

Lipschitz Bandits The Lipschitz bandit problem, also known as continuum-armed bandits, was
first introduced in Agrawal (1995). The problem was then extended to the general metric space
in Kleinberg et al. (2008). A common approach to solving Lipschitz bandit problems is to discretize
the continuous arm spac, either uniformly or adaptively, and then apply standard finite-armed bandit
algorithms to deal with the exploration-exploitation tradeoff. This reduction enables the use of
strategies such as the Upper Confidence Bound (UCB) method (Kleinberg et al., 2019), Thompson
Sampling (TS) (Vernade et al., 2020) and elimination-based techniques (Feng et al., 2022). Beyond
the standard stochastic setting, Kang et al. (2024); Nguyen et al. (2025) studied the non-stationary
Lipschitz bandit problem, and Podimata & Slivkins (2021) adapted the discretization-based framework
to handle adversarial rewards case. Moreover, Kang et al. (2023) investigated the Lipschitz bandits
with adversarial corruptions to bridge the gap between purely stochastic and fully adversarial regimes.
In addition, several extensions of the Lipschitz bandit framework have also been explored. For
instance, bandits with heavy-tailed rewards are studied in Lu et al. (2019), while contextual Lipschitz
bandits have been addressed in Slivkins et al. (2019); Krishnamurthy et al. (2020), and quantum
variants of Lipschitz bandits have been recently investigated in Yi et al. (2025).

Bandits with Delayed Feedback The stochastic multi-armed bandit (MAB) problem with random-
ized delays has been extensively studied in the literature. Joulani et al. (2013) analyzed how delays
affect regret in online learning through BOLD and QPM-D settings and present a direct modification
of the UCB1 algorithm, showing that delays lead to multiplicative regret increases in adversarial
settings and additive increases in stochastic ones. Vernade et al. (2017) investigated delayed con-
versions in stochastic MABs, allowing for censored feedback under the assumption of known delay
distributions. Variants involving delayed, aggregated, and anonymous feedback were addressed
in Pike-Burke et al. (2018), where a phase-based elimination algorithm based on the Improved
UCB algorithm by Auer & Ortner (2010) was proposed. Unrestricted and potentially unbounded
delay distributions have been explored in both reward-independent and reward-dependent settings
in Lancewicki et al. (2021) by adapting quantile function of the delay distribution into the regret
bound. Recent work have extended delayed feedback setting to a variety of bandit problems, such as
linear bandits (Vernade et al., 2020), contextual MAB (Arya & Yang, 2020), generalized (contextual)
linear bandits (Zhou et al., 2019; Howson et al., 2023), kernel bandits (Vakili et al., 2023), Bayesian
optimization (Verma et al., 2022), dueling bandits (Yi et al., 2024), adversarial bandits (Zimmert &
Seldin, 2020) and best-of-both-worlds algorithms (Masoudian et al., 2024). However, the study of
Lipschitz bandits under delayed feedback remains an unaddressed open problem due to the unique
challenges posed by the continuous arm space, where existing methods for handling delay fail.
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3 PROBLEM SETTINGS AND PRELIMINARIES

We study the problem of Lipschitz bandit with delayed feedback. Formally, a Lipschitz bandit
problem is defined on a triplet (A,D, µ), where the action space A is a compact doubling metric
space equipped with metric D, both known to the agent. The unknown expected reward function
µ : A → [0, 1] is a 1-Lipschitz function defined on A w.r.t. the metric D, i.e. |µ(x1) − µ(x2)| ≤
D(x1, x2), ∀x1, x2 ∈ A. We refer to the triple (A,D, µ) as an instance of the Lipschitz bandit
problem. And without loss of generality, we assume that the diameter of (A,D) is bounded by 1,
which is a standard assumption as in Kleinberg et al. (2019).

At each time round t ∈ [T ] := {1, 2, . . . , T}, the agent pulls an arm xt ∈ A and a stochastic reward
sample yt = µ(xt) + ϵt is generated, where ϵt is a sub-Gaussian i.i.d. white noise with sub-Gaussian
parameter σ conditional on filtration H0

t = {(xs, ys) | s ∈ [T − 1]}. Without loss of generality, we
assume that σ = 1 throughout the remainder of the analysis for simplicity. In the classical setting, the
agent observes the full feedback immediately after each round, so the available information at the
beginning of round t is captured by the filtration H0

t , which includes all past actions and rewards up
to round t− 1. In contrast, under stochastic delayed feedback, the agent does not observe the reward
yt at the end of round t, but only after a random delay τt where τt is a nonnegative integer drawn
from an unknown delay distribution fτ . The agent receives delayed feedback in the form of the pair
(xt, yt), without access to the original round index t or the delay value τt, making it impossible to
directly associate the feedback with the round in which the action was taken. The delay is supported
in N∪ {∞}, where the infinite delay corresponds to the case where the reward is never observed (i.e.,
missing feedback). We assume that delays are independent of both the chosen arm and the realized
reward. Now we define the observed filtration Ht as

Ht = {(xs, ys) | s+ τs ≤ t− 1} ∪ {(xs, ys) | s ≤ t− 1, s+ τs ≥ t},

and Ht is the information available at the beginning of round t to the agent.

Let Q : [0, 1] → N denote the quantile function of the delay distribution, that is,

Q(p) = min{n ∈ N | P (τ ≤ n) ≥ p}.

where τ is the random delay. Note that we only take integer value as the function values, since we
assume the delay is supported in N ∪ {∞}. Similar to most bandit learning problems, the goal of the
agent is to minimize the cumulative regret, defined as

R(T ) =

T∑
t=1

(µ∗ − µ(xt)) = µ∗ · T −
T∑

t=1

µ(xt), where µ∗ = max
x∈A

µ(x).

The loss (optimality gap) of arm x is defined as ∆(x) = µ∗ − µ(x) for x ∈ A. Notably, we consider
the cumulative regret of all generated rewards rather than the rewards observed by time horizon T .

An important pair of concepts in Lipschitz bandits for a problem instance (A,D, µ) are the covering
dimension d and zooming dimension dz (Kleinberg et al., 2008). Let B(x, r) := {x′ ∈ A :
D(x, x′) ≤ r} denote a closed ball centered at x with radius r in (A,D). Let S be a subset of A,
then a subset C of A is a r-covering of S if S ⊆

⋃
x∈C B(x, r). The r-covering number Nc(r) of

metric space (A,D) is defined as the least number of balls with radius no more than r required to
completely cover (A,D), with possible overlaps between the balls. The c-covering dimension d is
defined as the smallest d such that for every r > 0 we require only O(r−d) balls with radius no more
than r to cover the metric space (A,D):

d = inf
{
n ≥ 0 : ∃c > 0,∀r > 0, Nc(r) ≤ cr−n

}
.

On the other hand, the r-zooming number Nz(r) and the zooming dimension dz depend not only on
the metric space (A,D) but also on the underlying payoff function µ. Define the r-optimal region
as {x ∈ A : ∆(x) ≤ r}, where ∆(x) = µ∗ − µ(x) denotes the suboptimality gap at point x. The
r-zooming number Nz(r) is the minimal number of balls of radius at most r/16 required to cover
the r-optimal region. The c-zooming dimension dz is the smallest value d such that, for all r ∈ (0, 1],
the r-optimal region can be covered by O(r−d) balls of radius at most r/16:

dz = inf
{
n ≥ 0 : ∃c > 0,∀r ∈ (0, 1], Nz(r) ≤ cr−n

}
.
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Covering dimension characterized the benignness of a metric space, in terms of the least number of
balls required to cover the entire space to get information, while the zooming dimension captures the
difficulty of a specific problem instance, reflecting how easily the optimal arm can be distinguished
from suboptimal ones. It is obvious that 0 ≤ dz ≤ d since the r-optimal region is a subset of A.
Also, dz can be significantly smaller than d in benign cases. For example, let ([0, 1]n, ℓ2), n ≥ 1, and
µ ∈ C2([0, 1]n) with a unique x∗ and is strongly concave in a neighborhood of x∗. Then dz = n/2,
whereas d = n. Therefore, it can greatly reduce the regret bound when the problem instance is
benign. However, dz is not revealed to the agent since it depends on the unknown payoff function µ,
and hence it would be difficult to design algorithms without the knowledge of dz while the regret
bound depends on dz .

4 DELAY WITH BOUNDED SUPPORT: DELAYED ZOOMING ALGORITHM

We first consider the case of bounded delays. Specifically, we assume there exists a positive integer
τmax such that the delay τt is supported on {0, 1, . . . , τmax}. This implies that feedback is always
eventually observed and never missing, with a maximum delay of τmax rounds. To address this setting,
we propose a delay-aware variant of the zooming algorithm, called the Delayed Zooming algorithm,
which maintains the optimal regret rate of the delay-free setting up to an additive term that scales
with the maximal delay. The algorithm achieves a regret bound of order Õ

(
T

dz+1
dz+2 + τmaxT

dz
dz+2

)
.

We now introduce some additional notations used in the algorithm. At the beginning of each round
t, for any arm x ∈ A, nt(x) is the number of times arm x has been pulled, vt(x) is the number
of times that rewards generated by arm x has been observed, and wt(x) is the number of missing
observations of arm x up to time t. By definition, we have nt(x) = vt(x) + wt(x). Let µt(x) be
the sample average reward using the observed samples at time round t, and rt(x) be the confidence
radius such that with high probability µt(x) concentrates around its expectation µ(x) with radius
rt(x), i.e. |µ(x)− µt(x)| ≤ rt(x), and Bt(x) = B(x, rt(x)) be the confidence ball of arm x.

Similar to the classic zooming algorithm, our delayed variant leverages the UCB principle and
adaptive discretization (Slivkins et al., 2019). It maintains an active set of arms such that all arms in
A are covered by the confidence balls of active arms. If an arm is not covered, it is activated. This
mechanism allows the algorithm to adaptively focus on high-reward regions. In each round, the agent
selects the active arm with the highest index It(x) = µt(x) + 2rt(x) (breaking ties arbitrarily) and
pulls it. The confidence radius rt(x) is defined below based on the confidence level δ.

rt(x) =

√
4 log T + 2 log(2/δ)

1 + vt(x)
.

In the classic zooming algorithm, the agent updates the empirical mean reward and the corresponding
confidence radius immediately after pulling an arm. However, in the presence of delay, these updates
cannot be performed in real time, as the agent lacks access to both unobserved rewards and the
number of pending pulls for each arm. Inspired by the idea of Delayed-UCB1 (Joulani et al., 2013),
we modify the classic zooming algorithm by replacing nt(x), defined as the number of times arm x
has been pulled, with vt(x), the number of observed rewards from arm x, and compute the empirical
mean using only the available feedback. While this modification appears direct and natural given the
prior literature on bandits with delayed feedback (Vernade et al., 2017), we highlight that the analysis
is far from trivial and significantly different from that of multi-armed bandit with delays and the
classic zooming algorithm. Specifically, the regret analysis of the classic zooming algorithm relies on
a key result that bounds the sub-optimality gap by the confidence radius, i.e. ∆(x) ≤ 3rt(x), which
ensures that suboptimal arms are not pulled too frequently. This bound holds in the delay-free setting
because rt(x) only changes when arm x is played. Under delayed feedback, however, rt(x) can
shrink over time even when the arm is not being pulled, due to the arrival of delayed observations.
This can cause the confidence radius to decrease too rapidly. In contrast, the extension from UCB1 to
Delayed-UCB1 does not have this complication since its analysis on MAB is simpler and does not
depend on such a suboptimality gap inequality. To address this challenge, we develop a “lazy update”
mechanism showing that, under bounded delays, a similar guarantee still holds: the sub-optimality
gap is bounded by 6rt(x). Establishing this result is not a straightforward extension of the original
proof and requires careful treatment of the delayed information flow, yet it notably preserves the
theoretical guarantee of the classic zooming algorithm up to a constant factor.
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Algorithm 1 Delayed Zooming Algorithm
Input: Arm metric space (A,D); time horizon T ; probability rate δ.
Initialization: Active set A = ∅.

1: for t = 1, . . . , T do
2: for any incoming scheduled feedback (xt, yt) do
3: if vt(x) + 1 ≤ 4vs(x) then
4: Update µt(xt), rt(xt) and vt(xt).
5: else #Lazy Update
6: push (xt, yt) into cache Q[x].
7: end if
8: end for
9: if some arm is not covered then #Activation

10: pick any such arm xt and add it to A .
11: else #Selection
12: select any arm from A such that xt ∈ argmaxx∈A It(x).
13: end if
14: Pull arm xt, and schedule its reward yt at round t+ τt. Record vs(xt) = vt(xt).
15: if Cache Q[xt] is not empty then
16: Use all feedback in Q[xt] to update µt(xt), rt(xt) and vt(xt). Clear Q[xt].
17: end if
18: Set t = t+ 1.
19: end for

Lazy Update Mechanism: We introduce a “lazy update” mechanism here to address the issue of
decreasing confidence radius caused by delayed feedback when an active arm has not been pulled.
For each active arm x, we maintain a cache queue Q[x] to store excessive delayed feedback from
arm x, and record vs(x), where s < t is the last time the agent pulls arm x and t is the current round.
The cache Q[x] is cleared immediately when the agent pulls arm x again, thereby reactivating the
suboptimality gap bound for arm x. The caches for other active arms remain unchanged. Specifically,
suppose at time s the agent pulls arm x, then at any time t > s while updating v(x) and µ(x),
if vt(x) + 1 ≤ 4vs(x), the algorithm fetch scheduled feedback and update µ(x) and r(x); if
vt(x) + 1 > 4vs(x), the algorithm cache any incoming feedback of x and do not update for arm x,
until the arm x is pulled again. This lazy update rule ensures that the confidence radius associated
with arm x does not fall below half of its value from the last time the arm was pulled. This mechanism
is critical for establishing the suboptimality gap bound lemma 8.

The complete description is given in Algorithm 1. As in the classic zooming algorithm, our delayed
zooming algorithm also requires a covering oracle (i.e. line 5 of Algorithm 1) which takes a finite
collection of closed balls and either declares that they cover all arms in the metric space or outputs an
uncovered arm to apply the activation rule (Kleinberg et al., 2019). Note that if the delays are zero,
this algorithm reduces to the original zooming algorithm.

In the following Theorem 1, we show that the Algorithm 1 enjoys the same regret rate compared to
its non-delayed version, with an additive penalty depending on the expected delay.
Theorem 1 (Regret Bound for Delayed Zooming algorithm). Consider an instance (A,D, µ) of the
delayed Lipschitz Bandits problem with time horizon T and a delay distribution fτ with bounded
support such that P (τ ≤ τmax) = 1. For any given problem instance, with probability at least 1− δ,
the delayed zooming algorithm attains regret

R(T ) ≤ O

(
T

dz+1
dz+2

(
c log

T

δ

) 1
dz+2

+ cτmax ·
(

T

log T

) dz
dz+2

)
= Õ

(
T

dz+1
dz+2 + τmaxT

dz
dz+2

)
,

(1)
where dz is the c-zooming dimension of (A,D, µ).

Remark 2. When there is no delay, i.e. τmax = 0, the regret bound reduces to Õ
(
T

dz+1
dz+2

)
, which

is exactly the regret bound of Lipschitz bandits. When the action space is finite, i.e. dz = 0, the
regret bound reduces to O(

√
cT log T + cτmax), with c being the number of arms, which is the regret

bound of c-armed bandits with bounded delays in Joulani et al. (2013).
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Algorithm 2 Delayed Lipschitz Phased Pruning (DLPP)
Input: Arm metric space (A,D); time horizon T ; probability rate δ.
Initialization: Timer t = 1; Phase counter m = 1; Radius sequence rm = 2−m; C1: a 1/2-covering

of A; B1 := {B(x, rm) | x ∈ C1}.
1: while t ≤ T do
2: Set B+

m = Bm. For each ball B ∈ B+
m, set v(B) = 0, µ̂m(B) = 0.

3: while B+
m ̸= ∅ and t ≤ T do

4: for B ∈ B+
m do #Uniform Round-Robin Sampling

5: Sample an arm x ∈ B and play it. Schedule the reward to be observed at time t+ τt.
6: for any incoming scheduled reward (C, yC) do
7: Update µ̂m(C) = (µ̂m(C) · v(C) + yC)/(v(C) + 1) and v(C) = v(C) + 1.
8: If v(C) ≥ vm = (4 log T + 2 log(2/δ))/r2m, remove C from B+

m.
9: end for

10: Set t = t+ 1. If t > T , break.
11: end for
12: end while
13: Let µ̂∗

m = maxB∈Bm
µ̂m(B). For each ball B ∈ Bm, remove B from Bm if µ̂∗

m − µ̂m(B) ≥
4rm. Let B∗

m be the set of balls not eliminated. #Elimination
14: For each ball in B ∈ B∗

m, find a rm/2-covering C, and set Cm+1 = C
⋃

Cm+1. Set Bm+1 =
{B(x, rm+1) | x ∈ Cm+1}. #Discretization

15: Set m = m+ 1.
16: end while

The detailed proof is provided in Appendix A. For technical reasons, our analysis assumes bounded
delays, though the algorithm also performs well under unbounded delays in our experiments (Sec-
tion 7). However, in practice, the delays can be unbounded or even result in missing feedback. To
handle the more general settings of unbounded delay, we propose a novel phased learning strategy in
the next Section 5.

5 DELAY WITH UNBOUNDED SUPPORT: DELAYED LIPSCHITZ PHASED
PRUNING

In practice, the bounded delay assumption may not always hold, as feedback can be missing or
censored, corresponding to an infinite delay. To address this challenge, and inspired by the success of
elimination-based methods in Lipschitz bandits (Feng et al., 2022; Kang et al., 2023), we propose a
novel phased learning algorithm called Delayed Lipschitz Phased Pruning (DLPP). DLPP accumulates
reliable feedback over carefully scheduled intervals and achieves a regret bound that is nearly optimal
up to logarithmic factors, as supported by our lower bound analysis. While BLiN (Feng et al., 2022)
is the first elimination-based algorithm for Lipschitz bandits, our approach is fundamentally different
in both methodology and analysis. The differences in DLPP from BLiN are summarized as below:

• We do not assume a batched communication constraint; we consider individual reward delays.

• Our method applies to any compact doubling metric space (A,D) whereas their approach is limited
to ([0, 1]d, ∥ · ∥∞) and partitions the space using axis-aligned cubes.

• DLPP samples uniformly from all remaining balls, while their method repeatedly samples the same
cube a fixed number of times before moving to the next.

Compared to Algorithm 1, our algorithm requires a different covering oracle which takes a subset
of A and returns a r-covering of the input set to further zoom in on regions with higher empirical
average rewards. The full description of the algorithm is found in Algorithm 2. We initialize with C1
as a r1-covering of the action space A, and let B1 = {B(x, r1) | x ∈ C1} be the collection of closed
balls centered in the r1-covering, and rm = 2−m the radius sequence. Note that B1 covers the action
space A, and the two core steps are introduced as follows:

Uniform Round-Robin Sampling: In each phase m, our algorithm proceeds as follows. Let Bm be
the set of currect active balls, and set the active set B+

m = Bm. For each ball B ∈ B+
m, we sample an

6
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arm x ∈ B uniformly and play it, schedule the reward to be observed at time t+ τt. Then we observe
any incoming scheduled reward (C, yC) and update the corresponding empirical average reward µ̂(C)
and number of observed times v(C) of C. If v(C) ≥ vm = (4 log T +2 log(2/δ))/r2m, we remove C
from the active set B+

m, and do not play it anymore in this phase (i.e. line 6 of Algorithm 2). Increment
the timer t = t + 1 and exit the algorithm if t > T . The number vm is carefully designed such
that the empirical average reward over a ball concentrated over its true mean with high probability.
We assume that tuple (C, yC) is observed as feedback. It is necessary to know which ball an arm
x belongs to, as the balls may overlap; however, identifying the specific arm within a ball is not
required, since all arms in a ball are treated uniformly to represent the ball and sampled at random.
The procedure proceeds in a Round-Robin fashion such that we eliminate the balls with low empirical
average reward in the next step.

Active Region Pruning and Discretization: When we have sufficient feedback for each active
ball, the algorithm performs pruning on the current active region. Let µ̂∗

m = maxB∈Bm µ̂m(B)
denote the highest current empirical average reward. We eliminate any ball B ∈ Bm whose empirical
mean deviates significantly from µ̂∗

m according to the following pruning rule: a ball B ∈ Am is
eliminated (removed from Bm) if µ̂∗

m − µ̂m(B) ≥ 4rm (i.e. line 9 of Algorithm 2). As the algorithm
progresses, the radius rm shrinks exponentially, making the pruning criterion increasingly stringent in
later phases. This ensures that, with high probability, only balls containing near-optimal arms survive.
Let B∗

m denote the set of surviving balls after pruning. We denote the set of surviving balls as B∗
m.

Following pruning, we refine the surviving regions by further discretizing each promising ball in B∗
m.

Specifically, for each B ∈ B∗
m, we compute a rm/2-covering and add the centers to the new covering

set Cm+1. We then construct the next collection of active balls as Bm+1 = {B(x, rm+1) | x ∈ Cm+1}
(see line 10 of Algorithm 2), and proceed to the next phase m+ 1.

In the following Theorem 3, we show that the Algorithm 2 enjoys the same regret rate compared to
their non-delayed version, with an additive dependence on the quantiles of the delay distribution.

Theorem 3 (Regret Bound of Delayed Lipschitz Phased Pruning). Consider an instance (A,D, µ)
of the delayed Lipschitz Bandit problems with time horizon T and a delay distribution with quantile
function Q(p), with probability at least 1− δ, the Algorithm 2 attains regret

R(T ) ≲ min
p∈(0,1]

{
1

p
T

dz+1
dz+2

(
c log

T

δ

) 1
dz+2

+Q(p).

}
, (2)

where dz is the zooming dimension of (A,D, µ).

The proof of Theorem 3 is highly non-trivial and consists of several core steps. The detailed proof is
provided in Appendix B.
Remark 4. The claimed bound is achieved minimizing over a single quantile p ∈ (0, 1], in the sense
that it reaches the smallest order. When there is no delay, i.e. τmax = 0, the regret bound reduces to
Õ
(
T

dz+1
dz+2

)
, which is exactly the regret bound of Lipschitz bandits; this is the same as in Theorem 1.

The increase in regret due to delays in the claimed bound does not scale with the underlying zooming
dimension dz . Take p = 0.5, since τmed = Q(0.5) denotes the median of the delays, the bound
becomes Õ

(
T

dz+1
dz+2 + τmed

)
, which is essentially the same with the order of Theorem 1. This

quantile-based bound provides a flexible characterization of the delay distribution’s effect on regret,
allowing the algorithm to adapt to the effective central mas of delays rather than worst-case outliers.
To see why the increase in regret due to delays should scale with a certain quantile, one can simulate
a black box algorithm for the rounds that delay is smaller than τmed, and take the last action of the
black box algorithm for the rest rounds (approximately half of the rounds). Since the rewards are
stochastic and independent of both time and delay, the regret incurred on rounds with delays greater
than τmed is comparable to the regret of the black-box algorithm on the remaining rounds, as a result,
the total regret is essentially twice that of the black-box algorithm (Lancewicki et al., 2021).

6 LOWER BOUND

Next, we present an instance-dependent lower bound for Lipschitz bandits with stochastic delays.

7
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Theorem 5. Consider the delayed Lipschitz Bandit problem with a delay distribution with quantile
function Q(·). Fix an arbitrary time horizon T , there exists at least one instance such that the regret
on that instance satisfies:

R(T ) ≳
T

dz+1
dz+2 (c log T )

1
dz+2

p log T
− 1

p
+ ∆̄ ·Q(p) (3)

for sufficiently large T , where ∆̄ =
∫
A ∆(x)/

∫
A 1. 1

The lower bound is proved using a specified delay distribution such that the delay is a fixed value τ0
with probability p, and ∞ otherwise (missing feedback). The first term in Eq. (3) retains the optimal
regret rate of Lipschitz bandits, up to logarithmic factors, scaling with the delay quantiles. The first
term also matches the existing lower bound, proved through a reduction from the non-delayed lower
bound for Lipschitz bandits (Kleinberg et al., 2019; Slivkins, 2011). The core idea is to simulate
a delayed variant of a Lipschitz bandit algorithm by introducing a Bernoulli sampling mechanism
with parameter p. At each round, a Bernoulli random variable is sampled; if its outcome is 1, the
original Lipschitz bandit algorithm selects the action, thereby mirroring the behavior of its delayed
counterpart. Otherwise, only the delayed version takes an action. This probabilistic coupling ensures
that the original and delayed algorithms align with probability p, enabling a controlled simulation of
delay effects. Compared to the upper bound in Theorem 3, there is an additional term. Specifically,
the last term in Eq. (3) arises from the fact that the algorithm receives no feedback during the first
τ0 = Q(p) rounds. As a result, the learner is unable to distinguish between arms in this initial
period, and there exists at least one problem instance in which the learner incurs a regret of τ0∆̄
where ∆̄ =

∫
A ∆(x)/

∫
A 1 per round over the first τ0 rounds. This demonstrates that the lower

bound essentially matches the upper bound, implying that our regret bound is nearly optimal up to
logarithmic factors. A more detailed discussion and complete proof are provided in Appendix C.

7 EXPERIMENTS

In this section, we present simulation results to demonstrate the performance of our proposed
algorithms under various delay conditions. To the best of our knowledge, there are no existing
algorithms that directly address the Lipschitz bandit problem with stochastic delayed feedback.
Although the BLiN algorithm proposed in Feng et al. (2022) shares some structural similarities with
our DLPP algorithm, it is not applicable in our setting. In particular, BLiN relies on immediate
or batched feedback, whereas in our model, the presence of additional delays and the absence of a
batched communication constraint render region-level reward estimates unreliable.

To thoroughly validate the robustness of our proposed methods, we employ three types of expected
reward functions under both bounded and unbounded delay conditions, each with varying average
delays. We first consider the metric space ([0, 1], | · |) with two expected reward functions that behave
differently around their maxima, including a triangle function µ(x) = 0.8− 0.9 · |x− 0.4|, and a sine
wave function µ(x) = 2

3

∣∣sin ( 5π3 x
)∣∣ with two different maximum point (x = 0.3, 0.9). We further

consider the more complicated arm metric space ([0, 1]2, ∥ · ∥∞), and the expected reward function
is a two dimensional function µ(x) = 1 − 0.7 ∥x− x1∥2 − 0.4 ∥x− x2∥2 , where x1 = (0.7, 0.8)
and x2 = (0, 0.1), with µ∗ = µ(x1). We set with time horizon T = 60, 000 and false probability
rate δ = 0.01, and we repeat the experiment over independent trials B = 30 and take the average
cumulative regret. We evaluate the algorithms with different delay distributions. In the first case,
we consider the uniform distribution for the bounded delay distributions, whereas in the second
case, we implement the geometric distribution for the unbounded delays. As in the empirical study
done by Chapelle (2014), delays are empirically shown to have an exponential decay. We consider
both cases with different mean that E[τ ] ∈ {20, 50}. Since there is no existing delayed Lipschitz
bandit algorithm, we also include the result of the delay-free setting as the baseline to compare the
performance. The graphic regret curves are reported in Figure 1.

As shown in Figure 1, both of our proposed algorithms exhibit sublinear cumulative regret under
both bounded and unbounded delay settings. Compared to the regret curves in the non-delayed
case, the regret under delayed feedback remains on the same scale, which is consistent with the

1∆̄ is well-defined since A is a compact doubling metric space and therefore it is a measure space that
supports a doubling measure.

8
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Figure 1: Plots of cumulative regrets of Delayed Zooming algorithm (solid line) and DLPP (dashed
line) under different settings with three levels of average delay: no delay (red), E[τ ] = 20 (green)
and E[τ ] = 50 (blue). The first row corresponds to uniform distribution for the bounded delays, and
the second row corresponds to geometric distribution for the unbounded delays. The three columns
correspond to the triangle, sine, and two-dimensional reward function (from left to right).

theoretical regret bounds that larger expected delays lead to higher cumulative regret. While the regret
of Delayed Zooming algorithm is lower for one dim reward functions, it is higher for the two dim
reward functions. Also, for the two dim reward functions, DLPP is more efficient than the Delayed
Zooming due to its pruning and discretization strategy. It is worth noting that although we show that
the Delayed Zooming algorithm works for bounded delays in Section 4, our empirical results show
that it also works for unbounded delays, leaving a compelling open problem to extend the Delayed
Zooming algorithm to unbounded delays. Additionally, unlike the Delayed Zooming algorithm, the
regret curve of DLPP appears approximately piecewise linear. This behavior arises because DLPP
samples arms uniformly from each surviving ball within a given phase while the surviving active
balls are those with promising rewards, resulting in phase-wise regret accumulation. Due to space
constraints, we defer additional experimental results to Appendix D.

8 CONCLUSION

In this work, we introduce the problem of Lipschitz bandits under stochastic delayed feedback
and propose two algorithms that address bounded and unbounded delays, respectively, supported
by comprehensive theoretical analysis. For the bounded-delay setting, we propose a delay-aware
zooming algorithm called Delayed Zooming Algorithm that matches the optimal performance of the
delay-free case (Kleinberg et al., 2008) up to an additive term that scales with the maximal delay. For
unbounded delays, we propose Delayed Lipschitz Phased Pruning (DLPP) that novelly accumulates
reliable feedback over carefully scheduled intervals and achieves near-optimal regret bounds, with
an additional term that depends on quantiles of the delay distribution. We further establish a lower
bound that nearly matches our deduced upper bounds up to logarithmic factors, demonstrating that
the regret bound of DLPP is nearly optimal. The effectiveness of our proposed algorithms is finally
validated through numerical experiments.

Limitation: Our delayed zooming algorithm requires bounded delays to recovers the optimal regret
bound up to an additional term, and extending it to the unbounded delay case without additional
assumptions on the delay distribution remains an open and challenging problem.
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A ANALYSIS OF DELAYED ZOOMING ALGORITHM

Proof sketch. The theorem is proved via the lemma that bounds the sub-optimality gap by the
confidence radius, i.e. ∆(x) ≤ 6rt(x). This lemma essentially shows that the agent will not play the
bad arm too much, hence bound vt(x). On the other hand, the lemma estabilish another lemma, such
that the agent does not activate too many arms In other words, by utilizing the Lipschitzness, for any
two active arms, their distance is lower bounded, allowing us to discretize the metric space.

A.1 SOME USEFUL LEMMAS

Definition 6. For each arm x, define the clean event as

Ex = {∀t ∈ [T ], |µt(x)− µ(x)| ≤ rt(x)} .

Lemma 7. The probability of the clean event E =
⋂

x∈A
Ex is at least 1− δ.

Proof. For each time t, fix some arm x that is active by the end of time t. Recall that each time the
algorithm plays arm x, the reward is sampled i.i.d. from some unknown distribution Px with mean
µ(x). Define random variable Zx,s for 1 ≤ s ≤ vt(x) as follows: for s ≤ vt(x), Zx,s is the observed
reward from the s-th time arm x is played, and for s > v(x) it is an independent sample from Px.
For each k ≤ T , by Hoeffding Inequality,

Pr

(∣∣∣∣∣µ(x)− 1

k

k∑
s=1

Zx,s

∣∣∣∣∣ ≤
√

4 log T + 2 log(2/δ)

1 + k

)
≥ 1− δT−2.

For any x ∈ A and j ≤ T , the event {x = xj} is independent of the random variables Zx,s. Taking
the union bound over all k ≤ T , it follows that

Pr (∀t, |µt(x)− µ(x)| ≤ rt(x) | x = xj) ≥ 1− δT−1.

Integrating over all arms x we obtain

Pr[Ex] = Pr (∀t, |µt(xj)− µ(xj)| ≤ rt(xj)) ≥ 1− δT−1.

Now, taking the union bound over all j ≤ T concludes the proof.

For what follows in this subsection, we assume clean event unless specified.

Lemma 8. For each arm x and each round t, we have ∆(x) ≤ 6rt(x) .

Proof. Suppose that arm x is played in this round. By the covering invariant, the best arm x∗ was
covered by the confidence ball of some active arm y, i.e. x∗ ∈ Bt(y). By selection rule, it follows
that

It(x) ≥ It(y) = µt(y) + rt(y) + rt(y) ≥ µ(y) + rt(y) ≥ µ(x∗) = µ∗.

The last inequality holds because of the Lipschitz condition. On the other hand,

It(x) = µt(x) + 2rt(x) ≤ µ(x) + rt(x) + 2rt(x) = µ(x) + 3rt(x).

Therefore, we have
∆(x) = µ∗ − µ(x) ≤ 3rt(x).

Now suppose arm x is not played in round t. If it has never been played before round t, then rt(x) > 1
since the diameter is at most 1 and the lemma follows trivially. Otherwise, let s be the round that arm
x was played last time. By the “lazy update” trick, vt(x) ≤ 4vs(x), and plug in the definition of the
confidence radius we have rt(x) ≥ 2rs(x). Since at time s, arm x was played by selection rule, it
follows that

∆(x) ≤ 3rs(x) ≤ 6rt(x).

Hence for each arm x and each round t, we have ∆(x) ≤ 6rt(x), as desired.

Corollary 9. For any two active arms x, y, we have D(x, y) > 1
6 min(∆(x),∆(y)).
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Proof. Without loss of generality, assume x has been activated before y. Let t be the time when y has
been activated. Then by the activation rule, D(x, y) > rt(x) and by Lemma 8, rt(x) > 1

6∆(x) ≥
1
6 min(∆(x),∆(y)).

Corollary 10. For each arm x, we have vT (x) ≤ O(log T
δ )∆

−2(x).

Proof. Use Lemma 8 for t = T and plug in the definition of the confidence radius rt(x).

A.2 PROOF OF THEOREM 1

We follow the proof idea of Kleinberg et al. (2019) and Joulani et al. (2013). Fix round t, let Vt be
the set of all arms that are active at time t, and let

A(i,t) =

{
x ∈ Vt : 2

i ≤ 1

∆(x)
< 2i+1

}
=
{
x ∈ Vt : 2

−i−1 < ∆(x) ≤ 2−i
}
.

Recall that by Corollary 10 for each x ∈ A(i,t), we have vt(x) ≤ O(log t
δ )∆

−2(x). Therefore,∑
x∈A(i,t)

∆(x)vt(x) ≤ O(log
t

δ
)
∑

x∈A(i,t)

1

∆(x)
≤ O(2i log

t

δ
)|A(i,t)|.

Let ri = 2−i, note that by Corollary 9, any set of radius less than ri/16 contains at most one arm
from A(i,t). It follows that |A(i,t)| ≤ Nz(ri) ≤ cr−dz

i . Hence,∑
x∈A(i,t)

∆(x)vt(x) ≤ O(log
t

δ
)
1

ri
·Nz(ri) ≤ O(log

t

δ
)cr−dz−1

i .

For any ρ ∈ (0, 1), we have∑
x∈Vt

∆(x)nt(x) =
∑

x∈Vt:∆(x)≤ρ

∆(x)nt(x) +
∑

x∈Vt:∆(x)>ρ

∆(x)nt(x)

≤ ρt+
∑

x∈Vt:∆(x)>ρ

∆(x)(vt(x) + wt(x))

≤ ρt+
∑

i<log2(1/ρ)

∑
x∈A(i,t)

∆(x)(vt(x) + w∗
t (x)), (4)

where w∗
t (x) = maxs≤t ws(x). For the first part of the sum sequence,∑

i<log2(1/ρ)

∑
x∈A(i,t)

∆(x)vt(x) ≤
∑

i<log2(1/ρ)

O(log
t

δ
)cr−dz−1

i ≤ O(c log
t

δ
)

(
1

ρ

)dz+1

.

Since the delay is bounded, we have w∗
t (x) ≤ τmax, and hence∑

i<log2(1/ρ)

∑
x∈A(i,t)

∆(x)w∗
t (x) ≤

∑
i<log2(1/ρ)

τmax · cr−dz
i ≤ τmax · c

(
1

ρ

)dz

.

Therefore, take expectation on both sides of Eq 4 and set t = T , we have

R(T ) ≲ ρT + c log
T

δ

(
1

ρ

)dz+1

+ τmax · c
(
1

ρ

)dz

,

where ≲ denotes “less in order”. Since it holds for any ρ ∈ (0, 1), hence by taking ρ =
(

log T
T

) 1
dz+2

,
we have

R(T ) ≤ O

(
T

dz+1
dz+2

(
c log

T

δ

) 1
dz+2

+ cτmax ·
(

T

log T

) dz
dz+2

)
= Õ

(
T

dz+1
dz+2 + τmaxT

dz
dz+2

)
.

This completes the proof.
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B ANALYSIS OF DELAYED LIPSCHITZ PHASED PRUNING

Proof sketch.

• With high probability, for any arm x ∈ B and any surviving active ball B in of phase m, the
empirical average reward µ̂m(B) concentrates around the underlying µ(x). This concentration
result can guarantee that regions with unfavorable rewards will be adaptively eliminated. Denote
this event as E1.

• With high probability, nt(B) can be upper bounded by vt+Q(p)(B) with some factor of quantile p.
This connection allows us to upper bound the pseduo regret. Denote this event as E2.

• Under event E = E1 ∩E2, the optimal arm x∗ = argmaxx∈A µ(x) is not eliminated after phase m.
This shows that the optimal arm survives all eliminations with high probability thus we are pruning
the unfavorable regions correctly.

• Under event E , the suboptimality gap is bounded by the radius, i.e. ∆(x) ≤ 8rm−1, thus the
surviving active balls are those with promising rewards.

B.1 SOME USEFUL LEMMAS

Lemma 11. For phase m that is complete (entered Pruning, line 13 of algorithm 2), define tm as the
last round of it and let t0 = 0, clearly tm ≤ T . Let m∗ be the last complete phase such that tm∗ ≤ T .
Define the following events:

E1 :=

|µ̂m(B)− µ(x)| ≤ rm +

√
4 log T + 2 log(2/δ)

vm
, ∀x ∈ B, ∀B ∈ Bm, ∀1 ≤ m ≤ m∗

 ,

where µ̂m(B) is calculated when B is removed from B+
m. It holds that Pr[E1] ≥ 1− δ.

Proof. For a fixed ball B ∈ Bm that is removed from B+
m, there are vm = (4 log T +2 log(2/δ))/r2m

observations from B has been observed, thus the empirical average reward of B and its expectation is

µ̂m(B) =
1

vm

vm∑
i=1

yB,i, and E[µ̂m(B)] =
1

vm

vm∑
i=1

µ(xB,i),

where (xB,i, yB,i) denote the i-th arm-reward pair from ball B.

By the assumption of white noise, µ̂m(B)−E[µ̂m(B)] is sub-Gaussian with parameter
√

1
vm

. Hence
by Hoeffding inequality,

Pr

|µ̂m(B)− E[µ̂m(B)]| ≥

√
4 log T + 2 log(2/δ)

vm


≤ 2 · exp

(
−vm

2
· 4 log T + 2 log(2/δ)

vm

)
≤ δ

T 2
.

By Lipschitzness condition, for any x ∈ B we have

|E[µ̂m(B)]− µ(x)| =

∣∣∣∣∣ 1

vm

vm∑
i=1

(µ(xB,i)− µ(x))

∣∣∣∣∣ ≤ rm.

Therefore,

Pr

|µ̂m(B)− µ(x)| ≤ rm +

√
4 log T + 2 log(2/δ)

vm
, ∀x ∈ B

 ≥ 1− δ

T 2
.

Now for any Bm that a phase m is complete, each ball B ∈ Bm is played at least once, thus |Bm| ≤ T .
Take the union bound over all B ∈ Bm yields

Pr

|µ̂m(B)− µ(x)| ≤ rm +

√
4 log T + 2 log(2/δ)

vm
, ∀x ∈ B, ∀B ∈ Bm

 ≥ 1− δ

T
.

14
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Now since the number of finished phase is no more than time horizon T , take another union bound
over all finished phase 1 ≤ m ≤ m∗ yields

Pr[E1] ≥ 1− δ,

as desired.

Lemma 12. Suppose time round t is in phase m. For any ball B ∈ Bm and quantile p ∈ (0, 1], we
have

Pr
(
vt+Q(p)(B) ≤ p

2
nt(B)

)
≤ exp

(
−p

8
nt(B)

)
,

where vt(B) denote the number of times of rewards from ball B observed at the end of round t− 1,
and nt(B) denote the number of times the agent plays ball B.

Proof. Let I{·} denote the indicator function. By definiton of quantile funciton, E[I{τs ≤ Q(p)}] =
Pr[τs ≤ Q(p)] ≥ p. Let St(B) := {s | tm−1 < s ≤ t, xs ∈ B} be a set of time round for which the
agent plays ball B, note that nt(B) = |St(B)|, and thus we have

Pr
(
vt+Q(p)(B) ≤ p

2
nt(B)

)
≤ Pr

 ∑
s∈St(B)

I{s+ τs ≤ t+Q(p)} ≤ p

2
nt(B)


≤ Pr

 ∑
s∈St(B)

I {τs ≤ Q(p)} ≤ p

2
nt(B)


≤ Pr

 ∑
s∈St(B)

I {τs ≤ Q(p)} ≤ 1

2

∑
s∈St(B)

E[I{τs ≤ Q(p)}]


(i)
≤ exp

−1

8

∑
s∈St(B)

E[I{τs ≤ Q(p)}]


≤ exp

(
−p

8
nt(B)

)
,

where the inequality (i) follows from the multiplicative Chernoff bound.

Lemma 13. Define the following event:

E2 :=

{
nt(B) <

24 log T + 8 log(1/δ)

p
or vt+Q(p)(B) ≥ p

2
nt(B),

∀t ∈ Stm(B), ∀B ∈ Bm, ∀1 ≤ m ≤ m∗
}

It holds that Pr[E2] ≥ 1− δ.

Proof. It suffices to show that for the complementary event, Pr[Ec
2 ] ≤ δ. By Lemma 12 and applying

union bound, we have

Pr[Ec
2 ] = Pr

[
∃m,B ∈ Bm, t ∈ Stm(B) :

nt(B) ≥ 24 log T + 8 log(1/δ)

p
, vt+Q(p)(B) <

p

2
nt(B)

]
≤
∑
m

∑
B∈Bm

∑
t∈Stm (B),

nt(B)≥ 24 log T+8 log(1/δ)
p

Pr
(
vt+Q(p)(B) <

p

2
nt(B)

)

≤
∑
m

∑
B∈Bm

∑
t∈Stm (B),

nt(B)≥ 24 log T+8 log(1/δ)
p

exp
(
−p

8
nt(B)

)
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(ii)
≤ T 3 · exp

(
−p

8
· 24 log T + 8 log(1/δ)

p

)
≤ δ,

where the inequality (ii) uses the union bound trick in Lemma 11. This concludes the proof.

Corollary 14. Define the clean event E = E1 ∩ E2. By union bound, it holds that Pr[E ] ≥ 1− 2δ.
Lemma 15. Under event E , the optimal arm x∗ = argmaxµ(x) is not pruned after the first m∗

phases.

Proof. Let B∗ ∈ Bm denote the ball that contains x∗ in phase m. It suffices to show that B∗ is not
pruned. Under event E1, for any ball B ∈ Bm and x ∈ B, we have

µ̂m(B)− µ(x) ≤ rm +

√
4 log T + 2 log(2/δ)

vm
,

and

µ(x∗)− µ̂m(B∗) ≤ rm +

√
4 log T + 2 log(2/δ)

vm
.

Now, use the definition of vm and the fact that µ(x∗) ≥ µ(x), taking the sum of the previous two
inequality yields

µ̂m(B)− µ̂m(B∗) ≤ 4rm.

Therefore, by the pruning rule, B∗ is not pruned.

Lemma 16. Under event E , for any phase 1 ≤ m ≤ m∗ + 1, any B ∈ Bm and any x ∈ B, it holds
that

∆(x) ≤ 8rm−1.

Proof. For m = 1, it hold trivially that 8rm−1 = 8 > 1 ≥ ∆(x). For 2 ≤ m ≤ m∗ +1, we consider
the previous complete phase m− 1 so that the lemma also holds for the incomplete phase m∗ + 1.
Suppose for any ball B ∈ Bm and x ∈ B, x∗ ∈ B∗

m, in phase m− 1, x ∈ B0 ∈ Bm−1, where B0 is
the parent ball of B such that it contains x in phase m− 1, and let x∗ ∈ B∗

m−1 ∈ Bm−1 since the
optimal arm is not pruned. By Lemma 11, for any B ∈ Bm and any x ∈ B

∆(x) = µ∗ − µ(x) ≤ µ̂m−1(B
∗
m−1)− µ̂m−1(B0) + 2rm−1 + 2

√
4 log T + 2 log(2/δ)

vm−1
.

Now, use the definition of vm−1, we have

∆(x) ≤ µ̂m−1(B
∗
m−1)− µ̂m−1(B0) + 4rm−1.

By pruning rule, since B0 is not pruned, we have

µ̂m−1(B
∗
m−1)− µ̂m−1(B0) ≤ µ̂∗

m−1 − µ̂m−1(B0) ≤ 4rm−1.

It follows that ∆(x) ≤ 8rm−1.

B.2 PROOF OF THEOREM 3

We modify the proof in Feng et al. (2022) by relating nm and vm using previous lemmas to show that
the addtional term in the regret bound incurred by the delays scales with quantiles.

Proof. Fix p ∈ (0, 1], and define E = E1 ∩ E2 as in Lemma 12, 13, it holds that Pr[E ] ≥ 1 − 2δ.
For any phase m and any ball B ∈ Bm, let sB be the last time that ball B is played, thus we have
vsB−1(B) < vm = (4 log T + 2 log(2/δ))/r2m. Under the clean event E2, at least one of the two
following event is true:

nsB−Q(p)−1(B) ≤ 2

p
vsB−1(B) ≤ 8 log T + 4 log(2/δ)

pr2m
,

or

nsB−Q(p)−1(B) ≤ 24 log T + 8 log(1/δ)

p
≤ 24 log T + 8 log(2/δ)

pr2m
.
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Therefore, the total number ball B is played can be bounded as

nsB (B) = nsB−Q(p)−1(B) + (nsB (B)− nsB−Q(p)−1(B))

≤ 24 log T + 8 log(2/δ)

pr2m
+

∑
t∈[sB−Q(p),sB ]

I{xt ∈ B}

Let um(B) be the number of balls in the round-robin process of phase m at time min{sB , tm}, since
the algorithm runs over um(B) balls in a round-robin fashion, it follows that∑

t∈[sB−Q(p),sB ]

I{xt ∈ B} ≤ Q(p) + 1

um(B)
.

Also, we have that∑
B∈Bm

1

um(B)
≤ 1

|Bm|
+

1

|Bm| − 1
+ ·+ 1

2
+ 1 ≤ log |Bm|+ 1.

Now, fix the total number of phases M . Any arm played after phase M attains a regret bounded
by 16rM , since the balls played after phase M have radius no larger than rM . By Lemma 16 and
definition of zooming number, it follows that

|Bm| ≤ Nz(rm) ≤ cr−dz
m ≤ c · 2dzm.

The regret R(T ) can be bounded by

R(T ) ≤ 16rMT +

M∑
m=1

∑
B∈Bm

nsB
(B)∑

i=1

∆(xB,i)

≤ 16rMT + 16

M∑
m=1

∑
B∈Bm

rm · nsB (B)

≤ 16rMT + 16

M∑
m=1

∑
B∈Bm

24 log T + 8 log(2/δ)

prm
+ rm

∑
t∈[sB−Q(p),sB ]

I{xt ∈ B}


≤ 16rMT + 16

M∑
m=1

[
|Bm| · 24 log T + 8 log(2/δ)

p · 2−m
+ 2−m(Q(p) + 1)(log |Bm|+ 1)

]

≤ 16rMT + 16

M∑
m=1

[
c · 2(dz+1)m · 24 log T + 8 log(2/δ)

p
+ 2−m(Q(p) + 1)(dzm+ 1)

]
≤ 16 · 2−M · T + 32 · 2(dz+1)M · c · 24 log T + 8 log(2/δ)

p
+ 16(Q(p) + 1)(3dz + 1)

≲ 2−M · T + 2(dz+1)M · c · log(T/δ)
p

+Q(p),

where ≲ denotes “less in order”.

Since the inequality holds for any M , hence by taking M =
log T

c log T

dz+2 , we have

R(T ) ≲
1

p
T

dz+1
dz+2

(
c log

T

δ

) 1
dz+2

+Q(p).

This holds for any p ∈ (0, 1], thus we further minimize over p to obtain the desired lowest possible
upper bound as stated in the theorem.

C ANALYSIS OF LOWER BOUND

We will the following lower bound for Lipschitz bandtis from Theorem 7 of Slivkins (2011).
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Theorem 17. Consider the Lipschitz Bandit problem on a metric space (A,D). Define

Rc(T ) = C0 inf
r0∈(0,1)

r0T + log T
∑

r=2−i:i∈N,r0≤r≤1

1

r
Nc(r)


where Nc(r) is the r-covering number of (A,D), and C0 = O(1). Fix a time horizon T and a
positive number R ≤ Rc(T ), then there exists a distribution I over problem instances on (A,D)
such that

(a) For each problem instance I ∈ I, we have Rz(T ) ≤ O(R), where

Rz(T ) = C0 inf
r0∈(0,1)

r0T + log T
∑

r=2−i:i∈N,r0≤r≤1

1

r
Nz(r)

 ,

and Nz(r) is the r-zooming number of (A,D, µ), and C0 = O(1).

(b) For any algorithm M, there exists at least one problem instance I ∈ I on which the expected
regret of M satisfies R(T ) ≥ Ω(R/ log T ).

Now we will adapt this lower bound to a delay-presence version using a reduction techinique
introduced in Lancewicki et al. (2021).

proof of Theorem 5. We consider a specified delay distribution such that the delay is 0 with probability
p, and ∞ otherwise (missing feedback). Let M be any delayed Lipschitz bandits algorithm, and
we use the reduction techinique to build an algorithm M0 that simulates M and interacts with a
non-delayed environment for pT

4 rounds. In each round t, a Bernoulli variable Zt with success
probability p is sampled. If Zt = 1, M0 choose the same action as M and receive its feedback.
Otherwise, only M playes this round and skip M0. It is with high probability that M0 has played for
pT
4 rounds after (1− p/4)T rounds, otherwise for the rest of the round let M0 follow M’s actions

and receive feedback with probability p. Define the failure event as

F =

 ∑
t<(1−p/4)T

Zt <
pT

4

 .

Since (1− p/4)T ≤ T/2, By the multiplicative Chernoff bound,

Pr[F ] ≤ Pr

 ∑
t<=T/2

Zt <
pT

4

 ≤ exp

(
−pT

16

)
.

By Theorem 17, there exists a universal constant C0 such that for any Lipschitz Bandit algorithm
M0,

RM0
(T ) ≥ C0R

log T
.

On the other hand, let VT be the active set of M, it must contains the active set of M0. Therefore,

RM0

(
1

4
pT

)
≤ E

 ∑
t<(1−p/4)T

I{Zt = 1}
∑
x∈VT

I{xt = x}∆(x)


+ E

I{F}
∑

t≥(1−p/4)T

∑
x∈VT

I{xt = x}∆(x)


≤

∑
t<(1−p/4)T

E[I{Zt = 1}]E

[∑
x∈VT

I{xt = x}∆(x)

]
+

pT

4
Pr[F ]

≤ pE

[
T∑

t=1

∑
x∈VT

I{xt = x}∆(x)

]
+

pT

4
exp

(
−pT

16

)
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≤ pRM(T ) + 4

Therefore,

RM(T ) ≥ C0R

p log
(
1
4pT

) − 4

p
(5)

Consider a specified delay distribution such that the delay is a fixed value τ0 with probability p,
and ∞ otherwise (missing feedback). Under this delay distribution, the algorithm does not get any
feedback in the first τ0 = Q(p) rounds, and the agent is unable to distinguish between arms in this
initial period, so any algorithm in this period is no better than a uniform random play on A. Therefore,
for a fixed problem instance (A,D, µ) (and hence the suboptimality gaps are fixed), the expected
regret of any algorithm will in this initial period be at least τ0∆̄, where ∆̄ =

∫
A ∆(x)/

∫
A 1 is the

average suboptimality gaps on A, denotes the average regret. The regret in this initial period, along
with Eq 5, yields

RM(T ) ≳
R

p log T
− 1

p
+ ∆̄ ·Q(p).

This completes the proof.

D ADDITIONAL EXPERIMENTAL DETAILS

In the analysis and algorithms of our main paper we assume the sub-Gaussian parameter of white
noise is σ = 1. In reality, if the value or an upper bound of σ is known or can be estimated, we could
easily modify the components in our proposed algorithms.

• Delayed Zooming Algorithm 1: we can modify the confidence radius by multiplying σ:

rt(x) = σ

√
4 log T + 2 log(2/δ)

1 + vt(x)
.

• Delayed Lipschitz Phased Pruning 2: we can modify the required number of observations for each
ball in each phase by multiplying σ2:

vm = σ2 · 4 log T + 2 log(2/δ)

r2m
.

Indeed, a larger sub-Gaussian parameter indicates greater variability in the noise distribution, leading
to increased uncertainty in the reward estimates. Consequently, the algorithms must either enlarge
the confidence radius or increase the number of observations required for each ball in each phase to
ensure sufficient exploration under higher noise conditions.

The numerical results of the final cumulative regrets (at T = 60000) in our simulations in Section 7
(Figure 1) are displayed in Table 1.

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used the Large Language Model (LLM) sparingly for minor writing tasks such as grammar
and spell-checking. All research, deduction, data analysis, and the core content of this paper were
developed independently by the authors without assistance from an LLM.
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Triangle reward function

Algorithm E[τ ] Uniform Geometric

Delayed Zooming
0 138.97 138.97
20 154.55 159.30
50 171.07 152.98

DLPP
0 304.60 304.60
20 314.87 312.44
50 326.71 325.74

Sine reward function

Algorithm E[τ ] Uniform Geometric

Delayed Zooming
0 130.64 130.64
20 137.31 132.88
50 148.69 144.08

DLPP
0 178.05 178.05
20 195.35 186.28
50 209.97 208.80

Two dim reward function

Algorithm E[τ ] Uniform Geometric

Delayed Zooming
0 1445.86 1445.86
20 1843.05 1463.38
50 1858.45 1828.15

DLPP
0 1120.64 1120.64
20 1159.85 1120.63
50 1136.46 1142.55

Table 1: Numerical values of final cumulative regrets of different algorithms under the experimental
settings used in Figure 1 in Section 7
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