
Speciesist Language and Nonhuman Animal Bias
in English Masked Language Models

Anonymous ACL submission

Abstract

Warning: This paper contains examples of of-001
fensive language, including insulting or objec-002
tifying expressions.003

Various existing studies have analyzed what004
social biases are inherited by NLP models.005
These biases may directly or indirectly harm006
people, therefore previous studies have fo-007
cused only on human attributes. If the so-008
cial biases in NLP models can be indirectly009
harmful to humans involved, then the mod-010
els can also indirectly harm nonhuman an-011
imals. However, no research on social bi-012
ases in NLP regarding nonhumans exists. In013
this paper, we analyze biases to nonhuman014
animals, i.e. speciesist bias, inherent in En-015
glish Masked Language Models. We ana-016
lyze this bias using template-based and corpus-017
extracted sentences which contain speciesist018
(or non-speciesist) language, to show that019
these models tend to associate harmful words020
with nonhuman animals. Our code for repro-021
ducing the experiments will be made available022
on GitHub.023

1 Introduction024

Recently, in the field of Natural Language Pro-025

cessing (NLP), Masked Language Models (MLMs)026

using Transformers (Vaswani et al., 2017), such027

as BERT (Devlin et al., 2019) and RoBERTa (Liu028

et al., 2019), widely contributed to the state-of-the-029

art methods in downstream tasks. However, exist-030

ing studies suggest that these models inherit social031

biases (Sun et al., 2019; Blodgett et al., 2020). Such032

biases cause differences in accuracy between ma-033

jority and minority attributes (e.g. Romanov et al.,034

2019) and negative generalizations, e.g. in text gen-035

eration (Liu et al., 2020; Sheng et al., 2019, 2021;036

Garimella et al., 2021).037

The studies of social bias in NLP target gender038

(e.g. Bolukbasi et al., 2016; Caliskan et al., 2017),039

race (e.g. Manzini et al., 2019), religion and eth-040

nicity (e.g. Li et al., 2020) and so on, all of which041

assume human attributes. However, to the best of 042

the authors’ knowledge, there are no similar bias 043

studies on nonhuman animals. 044

In this paper, we use templates, corpus-extracted 045

sentences and pre-trained MLMs to investigate if 046

the bias regarding nonhuman, i.e. speciesist bias, 047

is inherent in MLMs trained on English corpora. 048

The bias we investigate in this paper is the rep- 049

resentational bias, following the classification of 050

Sun et al. (2019) and Blodgett et al. (2020). Cur- 051

rently, nonhuman animals do not use the NLP sys- 052

tem directly, so we do not need to consider the 053

idea of, e.g. “performance against the social group 054

of nonhuman animals”. On the other hand, we 055

think that we should respect nonhuman animals for 056

their own sake, not for the sake of humans (cf. 057

Owe and Baum, 2021), for the reasons described 058

below, and therefore we should study, for example, 059

insulting associations with nonhuman animals and 060

negative stereotyping against them. 061

1.1 Ethical Discussion: Nonhumans and NLP 062

There may be more possible criticisms of the re- 063

search objectives of this paper. The first criticism is 064

that there is no ethical problem with the existence 065

of harmful bias to nonhuman animals. 066

However, we should give equal consideration to 067

interests and should not discriminate based on who 068

has the interests (Singer, 2015). Even if one does 069

not accept this idea, most people would agree that 070

nonhuman animals deserve some moral considera- 071

tion (Owe and Baum, 2021). If this is true, then it 072

is important to study the biases that are harmful to 073

nonhuman animals. 074

The second potential criticism is that even if non- 075

human animals deserve some moral consideration, 076

NLP models with speciesist bias do not harm them 077

because they do not use it directly. However, we 078

think it is important to study the speciesist bias of 079

NLP models for three following reasons. 080

First, if NLP systems with a speciesist bias are 081
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popularized in our society, the bias of the NLP082

system may affect us and thereby indirectly harm083

animals (in human animal cases, see Bender et al.,084

2021) 1. For example, if an NLP system generates085

speciesist sentences, the speciesist bias may prop-086

agate to readers who read the sentences, and they087

may acquire an implicit discriminatory bias against088

nonhuman animals. As we discuss in Section 2.2,089

we are already discriminatory against nonhuman090

animals, but we think this phenomenon should not091

be reinforced.092

Second, the representational speciesist bias093

should be considered unwarranted in itself, even if094

it does no direct harm (Blodgett et al., 2020). The095

use of language that is insulting to or demeaning096

nonhuman animals, as described in Section 2.2, is097

wrong in itself (cf. Hellman, 2008), even if nonhu-098

man animals never recognize the expression.099

Third, the biases inherent in word embeddings100

reflect social biases which exist in our cognition,101

beliefs and social structures (Caliskan et al., 2017;102

Garg et al., 2018; Joseph and Morgan, 2020).103

Therefore, analyzing the speciesist bias in word104

embeddings and corpora can contribute to research105

about the influence of this bias on our cognition106

and society.107

For these reasons, we think that it is important108

to study the speciesist bias in NLP.109

2 Related Work110

2.1 Social Bias in Language Models111

Existing studies (Bolukbasi et al., 2016; Caliskan112

et al., 2017; Manzini et al., 2019) have shown that113

social biases are inherent in word embeddings such114

as Word2Vec (Mikolov et al., 2013) and GloVe115

(Pennington et al., 2014). Moreover, some other116

studies have found that also Masked Language117

Models such as BERT (Devlin et al., 2019) and118

RoBERTa (Liu et al., 2019) inherit social biases. In119

these studies, social biases of contextualized word120

embedding have been intrinsically assessed using121

template sentences (Bartl et al., 2020; Hutchin-122

son et al., 2020; Kurita et al., 2019; May et al.,123

2019; Tan and Celis, 2019; Webster et al., 2020;124

Silva et al., 2021), corpus sentences (Basta et al.,125

2019; Guo and Caliskan, 2020; Zhao et al., 2019)126

and manually generated paired sentences (Nadeem127

et al., 2021; Nangia et al., 2020).128

1“Stochastic parrots” in the title of Bender et al. (2021) is
an example of specisist language use.

2.2 Speciesism and Language 129

Speciesism is “the unjustified comparatively worse 130

consideration or treatment of those who do not be- 131

long to a certain species.” (Horta and Albersmeier, 132

2020, p.3). Nonhuman animals, as sentient beings, 133

deserve equal consideration with human animals 134

(Singer, 2015, p.40), and we should not discrimi- 135

nate against nonhuman animals. However, we do 136

so, for example by eating their flesh or conducting 137

experiments on them (Singer, 2015, ch.2, 3). 138

We also treat nonhuman animals as inferior be- 139

ings or objects in our language use. For instance, 140

“terming a woman a ‘dog”’ insults all women indi- 141

rectly and also insults all dogs directly (Dunayer, 142

1995, p.12). Usual referring to nonhuman animals 143

as “it” or “something,” or using “that” or “which” 144

as relative pronouns to indicate nonhuman animals 145

are examples of treating nonhuman animals as ob- 146

jects (Dunayer, 2001, 2003). Dunayer (2001, ch.9) 147

also states that, in the process of slaughtering, peo- 148

ple use words such as “harvest”, “package” and 149

“process” to hide cruelty. 150

In addition to research conducted in Animal 151

Ethics field, there are also studies in Corpus Lin- 152

guistics that analyzed language use regarding non- 153

human animals. Jepson (2008) performed dis- 154

course analysis on various texts and spoken con- 155

versations showing that the word “slaughter” in 156

human context collocates strongly with negative 157

emotions, but lacks such sentiment when used in 158

the context of nonhuman animals. Franklin (2020) 159

also analyzed the use of “killing” terms, such as 160

“kill” and “slaughter”, in “People, Products, Pests 161

and Pets” (PPPP)2 which is an English corpus that 162

contains texts referring to nonhuman animals ex- 163

tracted from various domains such as food-related 164

websites and news articles (Sealey and Pak, 2018). 165

Existing studies have reported that stylistic bi- 166

ases are reflected in NLP models (Tan et al., 2020; 167

Hovy et al., 2020). Therefore, since the above- 168

mentioned speciesist language and biases in En- 169

glish may be reflected in MLMs, we investigate a 170

possibility of speciesist bias in English MLMs. 171

3 Experimental setup 172

The MLMs used in this paper are 173

BERTLARGE-cased
3, RoBERTaLARGE

4, 174

2https://animaldiscourse.wordpress.com/
3https://huggingface.co/bert-large-cased
4https://huggingface.co/roberta-large
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DistilBERTbase-cased
5 (Sanh et al., 2019) and175

ALBERTlarge-v2
6 (Lan et al., 2020), which are176

widely used in current NLP. We determine animals177

we focus on in this paper as follows:178

1. We collect animal names from “All Animals179

A-Z List.”7 We focus on only one-term names.180

2. We limited the number of animals for this re-181

search by choosing only these which names182

appear on English Wikipedia8 more than183

20,000 times, resulting in 46 animal names184

in total.185

Our hypothesis is that if MLMs recognize different186

animals by categorizing them, then similar bias will187

be found for animals in similar contexts. In this188

paper, we categorize animals who live in farms to189

be utilized as flesh marking them in , nonhuman190

companions in , and other animals in colors,191

respectively. In Table 1, we show all animal names192

under investigation, their corresponding colors, and193

their frequencies in Wikipedia.194

4 Bias Analysis by Speciesist and195

Non-Speciesist Language196

In this section, we explain how we evaluate197

the speciesist bias inherent in MLMs using (1)198

template-based and (2) corpus-based approaches.199

The template-based approach is commonly used200

in bias analysis of NLP models. However, the201

template-based approach may limit aspects of bi-202

ases that can be evaluated, depending on the tem-203

plate (Guo and Caliskan, 2020). Therefore, we con-204

duct bias evaluation also by using raw sentences205

extracted from a corpus.206

4.1 Template-based Experiment207

The basic template sentence we utilize is “[PRO-208

NOUN] is a [ANIMAL] [REL-PRONOUN] is209

[MASK].”, where [PRONOUN] slot indicates a210

pronoun, [ANIMAL] is an animal name, and [REL-211

PRONOUN] stands for a relative pronoun.212

We evaluate bias toward [ANIMAL] by observ-213

ing the change of predicted probability of words at214

the [MASK] token by replacing [PRONOUN] and215

[REL-PRONOUN]. We use the following combi-216

nations of [PRONOUN] and [REL-PRONOUN]:217
5https://huggingface.co/distilbert-base-cased
6https://huggingface.co/albert-large-v2
7https://a-z-animals.com/animals/
8We use the Wikipedia dataset downloaded on 01/05/2020

from https://huggingface.co/datasets/wikipedia.
9Following Crameri et al. (2020), in this paper we use

scientific color map (Crameri, 2021) to include people with
diverse color vision.

Table 1: Animal names used in this research and their
frequencies in English Wikipedia. The coloring of ani-
mal names was done by the authors: refers to “farm”
animals, represents popular nonhuman companions
and addresses all remaining species.9

Animal
name

Frequency Animal name Frequency

horse 194,363 deer 43,130
turkey 187,079 seal 42,533
fox 176,569 snake 42,323
human 173,145 persian 39,764
fish 142,508 duck 36,828
dog 127,775 swan 36,556
bird 124,463 sheep 34,433
moth 93,670 chicken 34,231
buffalo 91,392 snail 33,725
robin 89,168 bombay 32,819
cat 83,038 frog 31,922
wolf 78,795 crane 31,328
eagle 78,126 penguin 30,769
bear 69,029 rat 28,851
lion 67,774 monkey 28,144
tiger 60,709 falcon 27,843
beetle 54,887 rabbit 27,039
bat 49,445 beaver 26,421
mouse 48,866 pike 25,392
fly 45,411 pig 25,273

new-
foundland

44,353 elephant 24,817

tang 44,245 cow 22,563
butterfly 44,096 molly 21,353

• human-describing sentences (hereinafter re- 218

ferred to as “human sentences”) 219

– She is a [ANIMAL] who is [MASK]. 220

– He is a [ANIMAL] who is [MASK]. 221

• object-describing sentences (hereinafter re- 222

ferred to as “object sentences”) 223

– This is a [ANIMAL] which is [MASK]. 224

– That is a [ANIMAL] which is [MASK]. 225

– It is a [ANIMAL] which is [MASK]. 226

– This is a [ANIMAL] that is [MASK]. 227

– That is a [ANIMAL] that is [MASK]. 228

– It is a [ANIMAL] that is [MASK]. 229

In human sentences, we use “she”, “he”, and 230

“who”, which generally refer to humans. In object 231

sentences, we use “this”, “that”, “it”, and “which”, 232

which are generally used for nonhumans. Since 233

pronouns in object sentences are only in the third 234

person equivalently, only the third person pronouns 235

“she” and “he” are used in human sentences. 236

Our hypothesis here is that the characteristics of 237

the words that are filled in “[MASK]” will change 238

among animals that are often referred to in the 239

speciesist language and others that are not. For 240
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example, not only humans, but also dogs and cats241

could be referred to by the non-speciesist language,242

while “farm animals” (e.g. cow and pig) would be243

addressed by the speciesist language.244

4.1.1 Bias Evaluation by Word Probability245

Differences246

We evaluate the bias against animal names using247

words with a large change rate of average predicted248

probability between human and object sentences.249

It is done by averaging predicted probability of the250

word filled into the [MASK] token in the template251

sentences. We also investigate the relationship be-252

tween animals by clustering them using the agree-253

ment rate of words with large probability changes.254

We perform this experiment as follows:255

1. Calculating mean probability pwi
meano

(name)256

and pwi
meanh

(name) in object and human sen-257

tences, respectively, where name is an animal258

name and wi is a token in vocabulary V of the259

MLM (i.e. wi ∈ V )260

2. Calculating how much this probability261

changes by log
p
wi
meano

p
wi
meanh

262

3. Ignoring words wi if (a) both pwi
meano

and263

pwi
meano

< 1
|V | , or (b) |z-score| of log p

wi
meano

p
wi
meanh

264

for each MLM lower threshold10265

4. Calculating Token-Match-Rate (TMR) among266

animal names267

5. Clustering all animals based on TMR with UP-268

GMA algorithm (Michener and Sokal, 1957).269

In step 1, we calculate pwi
meano,h

as follows:270
271

pwi
mean(name) =272

1

|T |

|T |∑
s∈T

p(wi = “[MASK]”|s(name)) (1)273

where T is the set of object or human template274

sentences described above, s(name) is a template275

sentence filled with an animal name. In step 4,276

where S(i) and S(j) are the obtained sets of words277

for the i, j-th animal names after step 3, we cal-278

culate TMR(i, j) between both sets (cf. Webster279

et al., 2020; Lauscher et al., 2021):280

TMR(i, j) =
|S(i) ∩ S(j)|

min(|S(i)|, |S(j)|)
(2)281

In step 5, we cluster animal names by using 1 −282

TMR(i, j) as distance between i, j-th names.283

10In these experiments we ignore words with |z-score|
lower than 1.96. We set this point experimentally in order
to obtain significant words.

4.1.2 Bias Evaluation by Sentiment Analysis 284

In this experiment, we use VADER (Hutto and 285

Gilbert, 2014) for evaluating the sentiment of all 286

words which we obtain from the experiment de- 287

scribed in Section 4.1.1. This approach does not 288

take into account context when evaluating senti- 289

ment of the words, but we decided to analyze the 290

sentiment of the words themselves, considering the 291

possibility of (non-)speciesist bias in the animal 292

names. 293

Our hypothesis is that when animals are regarded 294

as objects, they are treated negatively, and therefore 295

more negative words will appear under MASKs in 296

object sentences. 297

4.2 Corpus-based Experiment 298

In this section, we explain how the bias is measured 299

in the corpus-based evaluation method. The corpus 300

used in this paper is Books3 (Presser, 2020, see also 301

(Gao et al., 2020)) which totals about 100GB of 302

text and is built only from published books. Thus, it 303

is unlikely to overlap with BookCorpus (Zhu et al., 304

2015), which contains unpublished books used for 305

the pre-training of MLMs. 306

To experiment with corpus-based method, we 307

extract object and human sentences from a given 308

corpus. For the purpose of this research, we extract 309

all corpus sentences that contain relative pronouns 310

referring to animals. We use five relative pronouns: 311

“that”, “which”, “who”, “whose” and “whom”. Our 312

assumption is that these relative pronouns can be 313

used to determine whether (non)human animals are 314

treated as objects or humans in the given sentence. 315

CoreNLP (Manning et al., 2014) is used to ex- 316

tract sentences containing relative pronouns which 317

refer to an animal name. If the speciesist bias ex- 318

ists in CoreNLP, then there may be a difference 319

in referring precision between human and object 320

sentences. Therefore, we asked a native speaker of 321

English to check whether relative pronouns are cor- 322

rectly referred to an animal name in ten sentences 323

(for each pronoun) randomly extracted from Book3. 324

As a result, one sentence containing “who”, and 325

two with “whom” have been marked as incorrect, 326

and all remaining 47 sentences have been judged 327

as having correct references. It suggests that the 328

precision of the parser for this task is relatively 329

high. 330

For the corpus-based bias evaluation, we replace 331

relative pronouns referring to animal names with 332

[MASK] tokens in extracted sentences. Then, we 333
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(b) RoBERTa
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(d) ALBERT

Figure 1: Results of hierarchical clustering based on the agreement rate of words whose predicted probability
of filling the [MASK] token changed significantly between template sentences. Each leaf is colored using SciPy
library (Virtanen et al., 2020), with the default color threshold.

use MLMs to calculate probabilities of relative pro-334

nouns at the [MASK] token. We compare the prob-335

abilities for both sets and evaluate the bias as fol-336

lows:337

bias =
1

|H|

|H|∑
si∈H

1[pobject|si > phuman|si ]

− 1

|O|

|O|∑
sj∈O

1[phuman|sj > pobject|sj ]

(3)338

where H and O are the sets of human and object339

sentences extracted from Books3, and si,j is a given340

sentence. 1[·] returns 1 if its condition is true and 0341

otherwise. pobject|si and phuman|si are represented342

as follows:343

pobject|si = max(pthat|si , pwhich|si)

phuman|si = max(pwho|si , pwhose|si , pwhom|si)
344

Variables pthat|si , pwhich|si , pwho|si , pwhose|si , and345

pwhom|si are the probabilities of each relative pro-346

noun substituting [MASK] in a given sentence. If347

the value of the first term in the Equation 3 is closer 348

to 1, MLMs incorrectly predict higher probability 349

of “which” or “that”, and if the second term ap- 350

proaches 1, MLMs incorrectly predict higher prob- 351

ability of “who”, “whose” or “whom”. In other 352

words, when the bias is close to 1, models tend to 353

regard animals as objects; and if it is close to -1, 354

they tend to treat them as humans. 355

To investigate the relationship between the bias 356

represented in Equation 3 and the frequency bias 357

in the corpora, we also calculate the correlation be- 358

tween the bias and the frequency of object-related 359

pronouns (“that” and “which”) referring to each 360

animal name in Wikipedia and BookCorpus. 361

5 Experimental Results 362

5.1 Template-based Evaluation 363

5.1.1 Probability Differences 364

The experimental results of probability differences 365

between human and object sentences are presented 366
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Figure 2: Results of sentiment analysis for each language model. Vertical axis shows the ratio of words assigned to
a certain sentiment. For each sentiment, the darker bars indicate the percentage of words that have a higher mean
probability in the object sentences, and the light-colored ones show the ratio of words that have a higher mean
probability in the human sentences.

Table 2: Sets of five predicted words with the highest
change rate in BERT. Possibly harmful biased words
are shown in bold font.

Animal name Words with high
probability change
in object sentences

Words with high
probability change
in human sentences

cat f**ked, f**king, re-
produced, violated,
ripe

sarcastic, mute,
Ninja, clumsy,
unnamed

dog f**ked, f**king,
struck, violated,
committed

sarcastic, Ninja,
mute, bisexual,
unnamed

chicken slaughtered,
f**ked, stamped,
reproduced, ripe

clumsy, mute, sar-
castic, psychic, su-
perhero

pig f**ked, stamped,
slaughtered, repro-
duced, sin

clumsy, sarcastic,
mute, cheerful,
blonde

turkey stamped, slaugh-
tered, beef, ripe,
viable

mute, clumsy, psy-
chic, sarcastic, deaf

fish endemic, predatory,
widespread, peren-
nial, barred

heroine, sarcastic,
Cinderella, princess,
cheerful

fox f**ked, happening,
waking, calling, ours

mute, sarcastic,
blonde, bisexual,
clumsy

horse f**ked, sin, vi-
olated, stamped,
ripe

unnamed, pink, sar-
castic, blonde, Ariel

human ourselves, worth,
ours, yours, our

bisexual, Ninja, sar-
castic, blonde, les-
bian

in Figure 1, and Figures 4, 5, 7, 6 in Appendix A.367

From Figure 1 it can be observed that the names368

of animals colored with the same color belong to369

roughly the same clusters. Especially in the results370

of BERT and RoBERTa, the names of animals who371

are often kept at farms were clustered closely in372

most cases (see Figures 1a and 1b). In the results of373

DistilBERT and ALBERT, the animal names with374

the same color were not grouped together, but some375

belonged to the same cluster, indicating that they376

were not completely disjointed.377

In Tables 2 and 3, we show sets of top five words378

with the largest probability change for each animal.379

Table 3: Sets of five predicted words with the high-
est change rate in RoBERTa. Possibly harmful biased
words are shown in bold font.

Animal name Words with high
probability change
in object sentences

Words with high
probability change
in human sentences

cat terrestrial, armoured,
netted, scaled, preda-
tory

foster, deaf, Trans-
gender, Blind, Polish

dog terrestrial, itself,
predatory, defined,
armoured

deaf, transsexual,
foster, Homeless,
lesbian

chicken dried, freshwater,
semen, polled,
harvested

optimistic, sar-
castic, romantic,
pessimistic, Psychic

pig polled, dried, har-
vested, yielded,
peeled

romantic, selfish, op-
timistic, jealous, ar-
rogant

turkey dried, processed,
ground, slaugh-
tered, cached,

deaf, listening, jeal-
ous, optimistic, psy-
chic

fish freshwater, reef,
widespread, polled,
aggregate

swearing, jealous,
witty, superhuman,
sixteen

fox polled, invasive,
Madagascar, pic-
tured, extant

pessimistic, sarcas-
tic, mercenary, ro-
mantic, compassion-
ate

horse clicking, enough,
beat, it, right

Transgender, lesbian,
deaf, transgender,
transsexual

human extant, extinct, ours,
yours, edible

bartender, nineteen,
seventeen, sixteen,
eighteen

For these tables we chose the five most frequent 380

animal names in Wikipedia, and added the most 381

popular animals living in farms and at homes, as 382

they are one of the focal interest of our investiga- 383

tion: “cat”, “dog”, “chicken” and “pig”. In these ta- 384

bles, we show the results for BERT and RoBERTa, 385

while the results of the remaining models are given 386

in Appendix A. 387

For “chicken”, “pig” and “turkey”, words with 388

high probability change in object sentences in- 389

cluded “slaughtered”, “reproduced”, “ripe” (see 390

Table 2), also “dried” and “harvested” (see Table 391
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Table 4: Frequency of relative pronouns referring to
animal names in each corpus (references determined by
CoreNLP).

Corpus that which who whose whom
Books3 104,244

(103,361)
28,552
(28,231)

44,607
(39,593)

4,115
(4,012)

2,006
(1,690)

Books-
Corpus

5,111
(4,949)

1,470
(1,419)

3,925
(2,988)

183
(171)

66
(50)

Wikipedia
(EN)

9,341
(9,265)

6,642
(6,586)

7,182
(6,648)

411
(396)

289
(274)

Table 5: Pearson correlation coefficient (r) between the
bias represented in Equation 3 and frequency of object-
related pronouns in Wikipedia and BookCorpus.

BERT RoBERTa DistilBERT ALBERT
r 0.77 0.55 0.81 0.74

3). Also, in BERT, “f**k”-rooted words were as-392

sociated with many animals. On the other hand, in393

human sentences, associated words express person-394

ality and gender-related attributes, such as “clumsy”395

or “bisexual”. There are also many words that rep-396

resent personality traits that can be interpreted as397

negative, for example “sarcastic”. However, “hu-398

man” does not exhibit many such characteristics.399

5.1.2 Sentiment Analysis400

Next, we report the results of the sentiment anal-401

ysis performed on each cluster obtained in the ex-402

periment described in 4.1.2 (see Figure 2). The403

vertical axis of the figure shows the percentage of404

the number of words assigned to each sentiment.405

The horizontal one shows the sentiment and the406

names of the models.407

We found that VADER assigned 0 (i.e. neutral408

sentiment) to the majority of the words, and that409

object sentences contained more neutral words than410

human sentences in all models. Contrary to our411

hypothesis, the ratio of negative words was found412

to be larger in human sentences for all three models413

except BERT. Within each model, the distribution414

of assigned sentiment was generally the same.415

5.2 Corpus-based Evaluation416

Here, we present the results of the corpus-based ex-417

periment. First, we look at the sentences extracted418

from the corpora. In Table 4 we show the total419

number of relative pronouns referring to animal420

names in each corpus. The number in brackets421

indicates the total number minus the number of422

relative pronouns referring to “human”. The total423

number for each animal is shown in Figures 8, 9424

and 10. Comparing the total number of “that” and425

“which” with the total number of “who”, “whose” 426

and “whom”, we found that the former is about 427

twice more common. This indicates that the cor- 428

pus as a whole tends to treat nonhuman animals as 429

objects. In addition, contrary to our assumption, 430

the number of relative pronouns such as “who” that 431

refers to “dogs” and “cats” in all corpora is almost 432

the same as the total number of “that” and “which” 433

(see Figures 8 and 9). 434

Next, we examine the results of analyzing the 435

bias of MLMs using sentences collected from the 436

Books3 corpus (see Figure 3). The vertical axis of 437

each graph represents the degree of bias, and the 438

horizontal one represents the animal names. A pos- 439

itive bias indicates a high probability of incorrectly 440

entering “that” or “which” (i.e., having a speciesist 441

bias), while a negative bias indicates a high prob- 442

ability of incorrectly filling “who”, “which”, or 443

“which” (i.e., having a non-speciesist bias). 444

All of the models exhibited a negative bias 445

against “human”, and a positive bias against 446

“chicken” and “turkey”. These results are in line 447

with our expectations. However, contrary to our 448

predictions, the bias for “dog” and “cat” in BERT 449

and RoBERTa is positive, indicating that they tend 450

to be treated as objects. On the other hand, Distil- 451

BERT and ALBERT were found to include more 452

negative bias, i.e. non-speciesist tendency, com- 453

pared to BERT and RoBERTa. Table 5 shows the 454

correlation between these biases and the ratio of 455

the frequency of object-related pronouns in the cor- 456

pora. The correlation was above 0.7 for MLMs 457

other than RoBERTa, and above 0.5 for RoBERTa, 458

which indicates that the ratio of relative pronouns 459

in the corpus explains the bias of MLMs to some 460

extent. We think that the low value for RoBERTa is 461

due to the fact that RoBERTa has been pre-trained 462

on other corpora. 463

6 Discussion 464

6.1 Template-based Approach 465

The results of the animal names clustering in BERT 466

and RoBERTa partially support our hypothesis, 467

which indicates that these models alter the words 468

associated with animals between object and human 469

sentences. On the other hand, DistilBERT and AL- 470

BERT performed clustering slightly different from 471

our expectation, which may be due to the lower 472

performance of mask predictions caused by the 473

smaller model size. 474

As shown in Tables 2 and 3, when nonhuman 475
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(b) RoBERTa
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(d) ALBERT

Figure 3: Results of the corpus-based bias analysis, sorted by the magnitude of the bias represented by Equation 3.
Vertical axis shows the magnitude of the bias, where positive values indicate that MLMs incorrectly insert “that”
or “which”, and negative values indicate that MLMs incorrectly insert “who”, “whose”, or “whom” with higher
probability. The horizontal one shows the animal names. Bigger versions of the graphs are given in Appendix A.

animals are described by object sentences, they476

are linked with harmful words such as “f**ked”.477

Furthermore, in the case of animals who live in478

farms to be utilized as flesh, meat-related words479

have been confirmed, for example “slaughtered”480

and “harvested” described as problematic in previ-481

ous studies (Dunayer, 2001, 2003, see also Section482

2.2). These words are likely to be associated with483

speciesist language that objectifies animals.484

In the experiments of sentiment analysis, it is485

important to note here that VADER itself may ex-486

hibit a speciesist bias. For example, VADER con-487

siders “killed” to be a negative word, but recog-488

nizes “slaughtered” as a neutral word. This prob-489

lem should be investigated further.490

6.2 Corpus-based Approach491

Frequencies of human-related pronouns are lower492

than object-related pronouns in all corpora (see493

Table 4). There are at least two possible causes494

for this discrepancy: (1) there are fewer human-495

related relative pronouns that refer to nonhuman496

animals in the corpus than object-related ones, or497

(2) the recall of CoreNLP for human-related rela-498

tive pronouns is low. If (1) is correct, it suggests499

that people tend to treat nonhuman animals as ob-500

jects. If (2) is correct, it suggests that there is a501

bias in CoreNLP which makes the parser unable to502

sufficiently capture human-related relational refer-503

ences to nonhuman animals. Either result could be504

indirectly harmful to nonhuman animals.505

In our corpus bias evaluation experiments, we506

found that, contrary to our hypothesis, the mod-507

els had a speciesist bias against “dog” and “cat”.508

However, all models exhibited a non-speciesist bias 509

for more specific kinds of dogs and cats such as 510

“newhoundland” and “persian”. These results sug- 511

gest that MLMs predicted “that” and “which” re- 512

ferring to “dog” and “cat” with high probability 513

because they are commonly used as general names 514

and therefore do not represent specific individuals. 515

The bias between general names and more specific 516

names will also be a subject of our future work. 517

7 Conclusion 518

In this paper, we analyze the speciesist bias against 519

animals inherent in MLMs. Our experimental re- 520

sults show that such models strongly associate 521

harmful words with many nonhuman animals. 522

We also found that MLMs, especially BERT and 523

RoBERTa, are biased to associate object-related 524

pronouns (“that” and “which”) with various non- 525

human animals, and demonstrate that this bias is 526

correlated with the frequency of these relative pro- 527

nouns referring to each animal in the corpora. 528

Since this research is restricted to English lan- 529

guage, it cannot be generalized to other languages. 530

Moreover, this paper does not address so-called 531

intersectional bias. For example, “bitch” means 532

a female dog, but it is also used as an insult to- 533

ward women. In future, we plan to expand our 534

research by utilizing findings in animal ethics re- 535

garding intersectional bias and discrimination be- 536

tween speciesist bias and other biases (Birke et al., 537

1995; Adams, 1990). 538
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Figure 4: A heat map of the results of the template-based experiments, clustered by TMR with large probability
changes in BERT: refers to “farm” animals, indicates nonhuman companions and stands for the remaining
species.
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Figure 6: A heat map of the results of the template-based experiments, clustered by TMR with large probability
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Table 6: Sets of five words with the highest change rate in BERT

animal name words with high probability change in object sen-
tences

words with high probability change in human sen-
tences

bat endemic, threatened, predatory, barred, endan-
gered

Ninja, sarcastic, blonde, Nordic, psychic

bear f**ked, ours, waking, happening, stirring sarcastic, bisexual, mute, psychic, blonde
beaver endemic, reproduced, f**ked, extinct, viable mute, psychic, Ninja, sarcastic, superhero
beetle conspicuous, stinging, waking, ripe, variable coach, coaching, coaches, Swiss, midfielder
bird endemic, threatened, uncommon, endangered,

widespread
sarcastic, blonde, psychic, superhero, heroine

bombay standardized, portable, timed, ceremonial, audible unemployed, widowed, homeless, heroine, psy-
chologist

buffalo stamped, f**ked, beef, slaughtered, reproduced psychic, mute, sarcastic, clumsy, blind
butterfly endemic, widespread, uncommon, threatened, dis-

puted
sarcastic, superhero, blonde, cheerful, mute

cat f**ked, f**king, reproduced, violated, ripe sarcastic, mute, Ninja, clumsy, unnamed
chicken slaughtered, f**ked, stamped, reproduced, ripe clumsy, mute, sarcastic, psychic, superhero
cow f**ked, stamped, slaughter, slaughtered, ripe sarcastic, mute, clumsy, psychic, cheerful
crane loading, rotating, operating, overhead, tuned psychic, blonde, sarcastic, mute, heroine
deer beef, f**ked, f**king, viable, barred mute, fairy, sarcastic, Ariel, psychic
dog f**ked, f**king, struck, violated, committed sarcastic, Ninja, mute, bisexual, unnamed
duck endemic, f**ked, reproduced, endangered, viable sarcastic, psychic, clumsy, mute, cheerful
eagle barred, circling, happening, endemic, yours mute, psychic, sarcastic, Amazon, blonde
elephant f**ked, stamped, reproduced, f**king, happening sarcastic, mute, psychic, clumsy, cheerful
falcon barred, endemic, f**ked, reproduced, extinct blonde, Ninja, psychic, sarcastic, Amazon
fish endemic, predatory, widespread, perennial, barred heroine, sarcastic, Cinderella, princess, cheerful
fly predatory, toxic, stinging, endemic, colonial sarcastic, cheerful, superhero, blonde, genius
fox f**ked, happening, waking, calling, ours mute, sarcastic, blonde, bisexual, clumsy
frog endemic, threatened, endangered, ##olate,

widespread
sarcastic, Ninja, cheerful, clumsy, blonde

horse f**ked, sin, violated, stamped, ripe unnamed, pink, sarcastic, blonde, Ariel
human ourselves, worth, ours, yours, our bisexual, Ninja, sarcastic, blonde, lesbian
lion ours, happening, waking, arising, pictured psychic, sarcastic, mute, heroine, bisexual
molly unacceptable, theirs, treason, happening, occur-

ring
blonde, mute, deaf, cheerful, widowed

monkey f**ked, f**king, waking, happening, ours sarcastic, mute, clumsy, lesbian, Ninja
moth endemic, Crambidae, ##tropical, variable, Ge-

ometridae
unemployed, Ninja, DJ, psychic, undefeated

mouse reproduced, viable, mating, f**ked, endemic sarcastic, cheerful, clumsy, Dorothy, superhero
newfoundland ours, theirs, happening, paradise, nearer bisexual, protagonist, narrator, heroine, blonde
penguin endemic, extinct, endangered, barred, reproduced sarcastic, psychic, Ninja, clumsy, mute
persian periodic, convex, contraction, symmetric, bounded deaf, genius, widowed, ##headed, intelligent
pig f**ked, stamped, slaughtered, reproduced, sin clumsy, sarcastic, mute, cheerful, blonde
pike endemic, barred, preferred, edged, subspecies blonde, mute, widowed, cheerful, homeless
rabbit f**ked, waking, happening, slaughtered, arriving mute, sarcastic, bisexual, psychic, clumsy
rat reproduced, f**ked, viable, reared, waking sarcastic, mute, clumsy, Gothic, cheerful
robin endemic, subspecies, threatened, barred, unmis-

takable
mute, sarcastic, psychic, cheerful, mechanic

seal stamped, forged, valid, void, binding Brave, blonde, Ninja, psychic, mute
sheep endemic, f**ked, sustainable, perennial, viable mute, sarcastic, psychic, princess, narrator
snail predatory, endemic, widespread, fossil, marine sarcastic, cheerful, mute, optimistic, psychic
snake endemic, yours, barred, ours, venom sarcastic, cheerful, blonde, mute, optimistic
swan yours, ours, f**ked, reproduced, endemic psychic, sarcastic, mute, mechanic, clumsy
tang audible, repeated, nasal, consonant, pronounced Smart, unemployed, smart, homeless, brave
tiger happening, ours, f**king, waking, f**ked mute, sarcastic, psychic, bisexual, blonde
turkey stamped, slaughtered, beef, ripe, viable mute, clumsy, psychic, sarcastic, deaf
wolf ours, yours, happening, waking, you bisexual, mute, sarcastic, psychic, lesbian
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Table 7: Sets of five words with the highest change rate in RoBERTa

animal name words with high probability change in object sen-
tences

words with high probability change in human sen-
tences

bat intact, handled, dried, unloaded, batted virtuous, heroic, witty, superhuman, princess
bear polled, extant, freshwater, handled, endemic superhuman, mercenary, romantic, sarcastic,

prince
beaver invasive, freshwater, widespread, dried, common atheist, lonely, swearing, nineteen, lesbian
beetle deposited, feeding, circulating, hardest, clustered virtuous, heroic, fictional, philosophical, coura-

geous
bird freshwater, offshore, migr, endemic, extant Human, philosophical, jealous, sarcastic, witty
bombay fallacy, phosphorus, absurdity, gelatin, FALSE Shy, loyal, married, shy, wealthy
buffalo dried, freshwater, listed, polled, stamped cowardly, arrogant, selfish, cunning, rebellious
butterfly variable, common, offshore, widespread, clustered virtuous, superhuman, philosophical, rebellious,

heroic
cat terrestrial, armoured, netted, scaled, predatory foster, deaf, Transgender, Blind, Polish
chicken dried, freshwater, semen, polled, harvested optimistic, sarcastic, romantic, pessimistic, Psy-

chic
cow polled, dried, semen, domestically, processed romantic, optimistic, witty, poetic, mysterious
crane erected, automated, propelled, loader, towed jealous, psychic, horny, deaf, conflicted
deer bucks, dried, harvested, roadside, buck swearing, witty, romantic, philosophical, jealous
dog terrestrial, itself, predatory, defined, armoured deaf, transsexual, foster, Homeless, lesbian
duck freshwater, polled, dried, offshore, netted superhuman, heroic, superhero, protagonist, Hu-

man
eagle correlated, achievable, warranted, measurable, ir-

reversible
adventurer, hacker, Paladin, Sailor, trainer

elephant achievable, warranted, happening, extinct, irre-
versible

adventurer, detective, Lesbian, thief, vigilante

falcon freshwater, netted, largest, aerial, perched Human, optimistic, superhuman, rebellious, les-
bian

fish freshwater, reef, widespread, polled, aggregate swearing, jealous, witty, superhuman, sixteen
fly respiratory, common, genital, dried, larvae heroic, lonely, witty, Talking, intuitive
fox polled, invasive, Madagascar, pictured, extant pessimistic, sarcastic, mercenary, romantic, com-

passionate
frog freshwater, larvae, widespread, invasive, dart superhuman, seventeen, nineteen, swearing,

heroic
horse clicking, enough, beat, it, right Transgender, lesbian, deaf, transgender, transsex-

ual
human extant, extinct, ours, yours, edible bartender, nineteen, seventeen, sixteen, eighteen
lion pictured, Madagascar, Guinea, polled, Bengal Human, prince, princess, mercenary, Princess
molly edible, larvae, harvested, dried, invasive pessimistic, Persian, nineteen, deaf, lazy
monkey polled, palm, Madagascar, extant, Guinea virtuous, mercenary, superhuman, Alone, roman-

tic
moth happening, circulating, newer, collapsing, getting prophetic, divine, :, Blind, feminist
mouse polled, larvae, extant, freshwater, edible swearing, romantic, Alone, heroic, rich
newfoundland Antarctica, unfolding, contiguous, ours, wetlands deaf, transsexual, bisexual, runner, addicted
penguin lower, offshore, flattened, freshwater, oval lesbian, unmarried, married, rebellious, feminist
persian larvae, edible, peeled, citrus, vegetation atheist, writer, novelist, journalist, physicist
pig polled, dried, harvested, yielded, peeled romantic, selfish, optimistic, jealous, arrogant
pike freshwater, offshore, invasive, Atlantic, harvested Human, protector, nineteen, optimistic, swearing
rabbit dried, widespread, netted, terrestrial, harvested sarcastic, Psychic, optimistic, pessimistic, heroic
rat dried, freshwater, widespread, polled, extant heroic, swearing, superhuman, romantic, protector
robin common, variable, migrating, widespread, larvae superhuman, virtuous, philosophical, trustworthy,

irresponsible
seal tightening, tightened, tighter, stamped, dried autistic, Hungry, dreaming, deaf, transsexual
sheep polled, dried, harvested, yielded, processed jealous, witty, arrogant, heroic, optimistic
snail minute, deposited, dried, flattened, occurring clueless, Psychic, jealous, cowardly, loyal
snake freshwater, netted, dried, invasive, widespread superhuman, swearing, cursed, immortal, protago-

nist
swan freshwater, aerial, lower, largest, netted protector, trustworthy, forgiving, pessimistic, loyal
tang contraction, residue, correlation, causation, corre-

lated
deaf, homeless, transsexual, Homeless, veterinar-
ian

tiger manageable, corrected, viable, right, largest lesbian, princess, transsexual, vegan, Human
turkey dried, processed, ground, slaughtered, cached deaf, listening, jealous, optimistic, psychic
wolf polled, extant, heaviest, widespread, invasive Psychic, wizard, Human, Loki, prince
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Table 8: Sets of five words with the highest change rate in DistilBERT

animal name words with high probability change in object sen-
tences

words with high probability change in human sen-
tences

bat endemic, distributed, widespread, ##olate, ##gra-
tory

magician, psychic, witch, villains, wizard

bear endemic, distributed, valid, edible, convex psychic, witches, witch, herself, grandmother
beaver distributed, endemic, lateral, ##gratory, inacti-

vated
psychic, heroine, archaeologist, magician, narrator

beetle endemic, widespread, distributed, subsp, valid magician, transgender, psychic, widowed, deaf
bird endemic, distributed, widespread, variable, declin-

ing
robot, psychic, princess, witches, angel

bombay quarterly, annual, administered, recited, yearly widowed, transgender, deaf, bisexual, blind
buffalo endemic, abolished, extinct, inactivated, edible heroine, actress, girlfriend, psychic, narrator
butterfly endemic, widespread, distributed, valid, decreas-

ing
lion, psychic, controlling, gifted, vain

cat endemic, valid, convex, inactivated, viable narrator, thirteen, psychic, fourteen, seventeen
chicken endemic, edible, pounded, differentiated, clarified deaf, blind, psychic, narrator, bullying
cow endemic, edible, differentiated, sacred, branched homeless, deaf, bullying, blind, paranoid
crane distributed, towed, valid, endemic, unfolded psychic, heroine, deaf, magician, actress
deer endemic, ##gratory, distributed, extinct, sub-

species
psychic, sailor, narrator, witch, grandmother

dog endemic, subspecies, branched, differentiated,
valid

herself, teenage, widowed, thirteen, grandmother

duck endemic, valid, distributed, subspecies, edible psychic, narrator, clumsy, deaf, thirteen
eagle endemic, distributed, valid, lateral, decreasing psychic, princess, witches, herself, fairies
elephant endemic, distributed, convex, valid, inhabited heroine, magician, nurse, psychic, princess
falcon convex, scaled, lateral, distributed, endemic psychic, transgender, magician, controlling, kid-

napped
fish endemic, distributed, widespread, variable, diag-

nostic
widowed, narrator, sailor, genius, girlfriend

fly distributed, valid, extant, endemic, occurring deaf, motorcycle, sailor, narrator, thirteen
fox endemic, distributed, ##gratory, extinct, extant heroine, magician, psychic, sailor, narrator
frog endemic, distributed, widespread, variable, valid vain, princess, fairies, psychic, narrator
horse valid, equivalent, propelled, endemic, assessed heroine, grandmother, witches, fairies, princess
human worth, acceptable, our, reproduced, valid princess, witch, emerald, angel, witches
lion endemic, engraved, displayed, seated, valid psychic, heroine, princess, witches, witch
molly frequented, underway, inhabited, unfinished, exca-

vated
bisexual, deaf, transgender, elderly, widowed

monkey endemic, distributed, valid, convex, differentiated princess, witch, magician, herself, witches
moth widespread, occurring, varies, irregular, subsp blind, sighted, deaf, blinded, astronomer
mouse distributed, endemic, inactivated, valid, bilateral witches, fairies, thirteen, prostitutes, witch
newfoundland endemic, populated, inhabited, frequented, dotted widowed, secretary, bisexual, transgender, preg-

nant
penguin endemic, valid, distributed, extinct, extant psychic, widowed, narrator, magician, actress
persian convex, bounded, periodic, continuous, compact transgender, actress, widowed, nurse, wrestler
pig endemic, edible, viable, differentiated, inactivated thirteen, dolls, narrator, girlfriend, seventeen
pike valid, longitudinal, endemic, distributed, convex psychic, heroine, fairies, caring, narrator
rabbit endemic, distributed, viable, differentiated, inacti-

vated
magician, psychic, witch, witches, narrator

rat endemic, distributed, oral, lateral, bilateral witches, witch, fairies, wizard, princess
robin endemic, distributed, valid, branched, widespread psychic, heroine, autism, deaf, narrator
seal stamped, filed, valid, worn, engraved heroine, psychic, kidnapped, protagonist, drown-

ing
sheep endemic, distributed, inactivated, viable, extinct psychic, housekeeper, narrator, thirteen, witch
snail widespread, distributed, endemic, variable, minute psychic, villain, widowed, protagonist, lion
snake distributed, endemic, ##olate, variable, diagnostic witch, princess, fairies, wizard, goddess
swan endemic, distributed, ##tail, lateral, ##gratory psychic, narrator, magician, transgender, autism
tang recited, oral, cumulative, meaningful, elastic blind, widowed, heroine, deaf, scientist
tiger endemic, distributed, valid, extant, inhabited heroine, widowed, princess, lovers, witch
turkey endemic, extant, edible, widespread, valid deaf, actress, psychic, transgender, narrator
wolf endemic, valid, conspicuous, edible, variable witches, witch, princess, fairies, grandmother
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Table 9: Sets of five words with the highest change rate in ALBERT

animal name words with high probability change in object sen-
tences

words with high probability change in human sen-
tences

bat printed, basalt, lodged, cylindrical, mandible confident, gambler, dreamer, fearless, grieving
bear lodged, reported, indicated, suggested, excavated trusting, helpless, fearless, trusted, obedient
beaver noticeable, lodged, brownish, coughed, yellowish heiress, dreamer, princess, bachelor, addict
beetle leaked, brownish, lodged, occurring, yellowish princess, adventurer, dreamer, valkyrie, knighted
bird printed, brownish, yellowish, lodged, localized dreamer, conqueror, princess, angels, slaves
bombay reopened, commenced, redeveloped, expanded,

skyline
widow, soprano, eunuch, knighted, pregnant

buffalo brownish, lodged, yellowish, reported, basalt dreamer, hero, helpless, obedient, widow
butterfly printed, yellowish, brownish, highlighted,

forewing
dreamer, conqueror, adventurer, himself, superhu-
man

cat lodged, boar, appeared, urine, yellowish dreamer, fearless, bachelor, confident, jed
chicken spelt, brownish, lodged, compressed, stemmed dreamer, atheist, jealous, telepathic, princess
cow weigh, spelt, raked, brownish, lodged destiny, conqueror, happiness, trusting, fearless
crane corrugated, aluminium, hangar, diameter, turbine jealous, dreamer, eunuch, homosexual, tigre
deer brownish, lodged, reported, yellowish, surfaced dreamer, slaves, conqueror, trusting, angels
dog lodged, boar, suggested, reported, spelt perfection, caring, fearless, loving, faithful
duck spelt, contains, termed, spelled, containing atheist, adventurer, dreamer, addict, estranged
eagle resembled, printed, brachy, tapered, holotype conqueror, helpless, widow, steward, dreamer
elephant reported, brownish, yellowish, lodged, surfaced helpless, conqueror, obedient, slaves, estranged
falcon resembled, compressed, mandible, resembles, rect-

angular
dreamer, fearless, trusting, addict, obedient

fish tapered, formulated, brownish, stemmed, tasted dreamer, jealous, himself, atheist, conqueror
fly nitrogen, printed, tapered, compressed, brownish conqueror, dreamer, hostage, slaves, murderer
fox brownish, yellowish, dorsal, bluish, puma dreamer, trusted, slaves, trusting, selfish
frog resembled, contains, spelt, termed, compressed atheist, princess, bachelor, transgender, dreamer
horse hoof, suggested, raked, overturned, hydraulic caring, fearless, helpless, trusting, perfection
human http, suggested, computed, spelt, stated savior, loves, protector, loving, beloved
lion noticeable, indicated, reported, yellowish, conical trusting, estranged, helpless, dreamer, selfish
molly spelled, suggested, advertised, yellowish, bacterio confidant, dreamer, confident, obedient, fearless
monkey resembled, spelt, xylo, termed, suggested estranged, princess, dreamer, atheist, bachelor
moth widespread, annual, biennial, localized, basal dreamer, jed, magician, sorcerer, himself
mouse generate, termed, contains, kernel, xml wealthy, fearless, princess, billionaire, dreamer
newfoundland happen, happened, place, reopened, resumed widow, knighted, pregnant, transgender, addict
penguin contained, brownish, noticeable, smelled, yellow-

ish
widow, atheist, addict, billionaire, heiress

persian quartz, sodium, clarified, indicated, contrary heiress, wealthy, married, widow, unmarried
pig brownish, termed, dorsal, yellowish, spelt trusting, jealous, princess, selfish, estranged
pike corrugated, diameter, tapered, aluminium, com-

pressed
jealous, gambler, grieving, helpless, dreamer

rabbit snout, resembled, contains, termed, spelt dreamer, atheist, princess, transgender, estranged
rat nitrogen, termed, contains, 1:, containing dreamer, selfish, conqueror, estranged, atheist
robin plumage, brownish, yellowish, printed, spelt dreamer, confident, heroine, psychopath, selfish
seal minimize, compress, tissue, membrane, corru-

gated
temeraire, racehorse, knighted, valkyrie, shepherd

sheep aerobic, discontinued, uploaded, dorsal, reported traitor, helpless, trusting, conqueror, slaves
snail nitrogen, termed, corrugated, sodium, containing selfish, dreamer, strangers, helpless, obedient
snake localized, bluish, yellowish, pointed, brownish messiah, conqueror, dreamer, helpless, obedient
swan printed, tapered, erupted, conical, plumage helpless, obedient, trusting, conqueror, estranged
tang nitrogen, minimize, termed, compressed, com-

press
adventurer, conqueror, abbess, empress, barbarian

tiger yellowish, brownish, bluish, excavated, reported helpless, trusting, selfish, caretaker, incapable
turkey tasted, dried, sliced, crisp, highlighted adventurer, atheist, transgender, telepathic,

knighted
wolf mandible, dorsal, conical, termed, brownish dreamer, helpless, princess, orphan, traitor
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Figure 8: Number of relative pronouns referring to each
animal in English Wikipedia.
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Figure 9: Number of relative pronouns referring to each
animal in BookCorpus.
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Figure 10: Number of relative pronouns referring to
each animal in Books3.
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(d) ALBERT

Figure 11: Results of the corpus-based bias analysis, sorted by the magnitude of the bias represented by Equation
3. Vertical axis shows the magnitude of the bias, where positive values indicate that MLMs incorrectly insert “that”
or “which”, and negative values indicate that MLMs incorrectly insert “who”, “whose”, or “whom” with higher
probability. The horizontal one shows the animal names.
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