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Abstract

Fine-tuned models have been shown to repro-001
duce underlying biases existing in their training002
data, which is by default the majority perspec-003
tive. While this process has been shown to004
minimise minority perspectives, proposed solu-005
tions either fail to preserve nuances present in006
the original data, or are based on strong a-priori007
assumptions about annotators that when used008
can bias model training. We propose an ap-009
proach that trains models purely in an annotator010
demographic-agnostic manner, extracts latent011
embeddings informed by annotator behaviour012
during training, and clusters annotators based013
on their behaviour over the respective corpus.014
Resulting clusters are subsequently validated015
post-hoc via internal and external validative016
quantitative metrics, as well as our resulting017
qualitative analysis. Our results explain the018
strong generalisation capability of our frame-019
work, indicated by resulting clusters being ad-020
equately robust, while also capturing minority021
perspectives based on different demographic022
factors throughout two distinct datasets.1023

Content Warning: This document con-024
tains and discusses examples of potentially of-025
fensive and toxic language.026

1 Introduction027

Supervised training of Machine Learning (ML)028

and Natural Language Processing (NLP) models is029

rooted in the presupposition that for every exam-030

ple in a dataset, a ground truth, also known as a031

gold label, exists. This allows for an objective mea-032

sure of success; a model has learned the underlying033

patterns from the data if its prediction for an exam-034

ple is congruent with the ground truth (Hettiachchi035

et al., 2021).036

However, the concept of a single ground truth037

per item can be particularly challenging to assess038

in subjective tasks in cases of pervasive annotator039

1We will release the codebase on GitHub upon acceptance.

Figure 1: Models are trained through text examples
and annotations, with models learning to predict the
unique perspectives of each annotators without any fur-
ther annotator metadata. Decoder hidden states are sub-
sequently used to cluster annotator opinions on a given
corpus through unsupervised methods to find emergent
groups of unique minority perspectives not fully cap-
tured via sociodemographic information.

disagreement persisting throughout a dataset (Uma 040

et al., 2022, 2021). While such disagreement can be 041

indicative of task difficulty or semantic ambiguity 042
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(Wang et al., 2021; Jiang and Marneffe, 2022; San-043

dri et al., 2023), it can also indicate stable and con-044

flicting intra-annotator perspectives (Basile et al.,045

2020; Abercrombie et al., 2023).046

Efforts on how to best deal with clashing per-047

spectives include changes to both how models048

are trained and evaluated. Regarding model train-049

ing, recent approaches have proposed introducing050

demographic-level labels alongside annotations to051

improve a model’s representative capacities and052

generalisability towards a target minority group053

present in the dataset (Fleisig et al., 2023; Gupta054

et al., 2023; Beck et al., 2023). For evaluation,055

the consensus seems to be rejecting gold labels in056

favour of more representative metrics or methodolo-057

gies, e.g., distributional labels that capture per-item058

disagreements which allow for degrees of confi-059

dence on predictions (Leonardelli et al., 2023).060

Although preferable to gold labels, such solu-061

tions are still vulnerable to collapsing multiple062

viewpoints into a minority–majority distribution063

per item (Gordon et al., 2022). While recent ap-064

proaches have explained the importance of captur-065

ing and preserving distinct perspectives as-is (Vit-066

sakis et al., 2023; Cabitza et al., 2023), it remains067

unclear as to which modelling and training choices068

should be employed to best do so.069

Our Contributions We introduce a framework070

that evaluates how training choices affect a model’s071

ability to preserve distinct perspectives in a dataset.072

We employed six distinct modelling architectures073

on two heterogeneous datasets, all within the con-074

text of annotation of political bias. Models were075

trained to predict individual annotations per anno-076

tator in a demographic-agnostic manner, i.e., no077

annotator information was provided as input to the078

models. Extracted the latent embeddings of each079

model were used them to cluster annotations into080

groups through unsupervised learning.081

We show that such models can correctly identify082

perspectives learned through similarities between083

annotator behaviours (their annotation patterns) as084

captured in latent spaces without the need for fur-085

ther information. Crucially, we validated the cre-086

ated clusters by matching the demographic infor-087

mation of annotators post-hoc, and conducted an088

in-depth qualitative analysis of the clusters them-089

selves. Since the models are trained without any090

demographic information, our method uniquely al-091

lows us to explain the impact of demographics on092

different datasets without constraints, evidenced by093

the creation of clusters based solely on different 094

demographics that emerged organically throughout 095

distinct datasets. 096

2 Related Work 097

Dealing with disagreements Aggregating anno- 098

tator disagreements into a single gold label per item 099

can improve model performance (Nguyen et al., 100

2017). However, such approaches also imprint 101

the resulting model with a simplified and reduced 102

view of the minority perspectives present in the 103

data (Gordon et al., 2022), leading to further era- 104

sure of underrepresented minorities of annotators 105

(Prabhakaran et al., 2021). 106

One solution is to supplement gold labels with 107

silver labels, i.e., distributional per-item labels 108

that measure disagreement amongst annotators 109

(Leonardelli et al., 2023; Uma et al., 2022, 2021). 110

While this approach allows for the identification 111

of controversial items in datasets (Fornaciari et al., 112

2022), it fails to capture stable inter-annotator dis- 113

agreements throughout the dataset that could pro- 114

vide insight as to why disagreement occurs beyond 115

an item-by-item scale (Abercrombie et al., 2023). 116

Demographics and annotator Bias Bias intro- 117

duced through annotations is an established phe- 118

nomenon (Hovy and Prabhumoye, 2021; Garrido- 119

Muñoz et al., 2021; Blodgett et al., 2020; Geva 120

et al., 2019). Individual annotator characteris- 121

tics such as age (Al Kuwatly et al., 2020), gen- 122

der (Stanczak and Augenstein, 2021; Biester et al., 123

2022), or political orientation (Baly et al., 2020; 124

Sap et al., 2021), have all been shown to impact 125

annotator behaviour, and consequently, model per- 126

formance in classification tasks. 127

Proposed solutions have attempted to incorpo- 128

rate information about annotator beliefs (Röttger 129

et al., 2021; Davani et al., 2023), or demograph- 130

ics (Fleisig et al., 2023; Gupta et al., 2023) into 131

the training pipeline to allow learning of pat- 132

terns between annotations and in-group tendencies. 133

While incorporation of such information can seem- 134

ingly improve model performance in specific tasks 135

(Welch et al., 2020), evidence suggests that such 136

results might not be generalisable across datasets 137

(Lee et al., 2023). Since demographics are not nec- 138

essarily predictive of underlying annotator beliefs 139

(Hwang et al., 2023; Beck et al., 2023), there is a 140

strong need for models that capture annotator per- 141

spectives without the need for a priori assumptions. 142
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Figure 2: Training component: 6 modelling architectures for extracting decoder hidden states (denoted with a yellow
circle as Embn) used as input for the Clustering component.

Unsupervised learning and clustering of at-143

titudes Unsupervised learning has been used144

to identify emergent themes within corpora via145

clustering of latent textual embeddings (Sevil-146

lano et al., 2007; Meng et al., 2022). Dhillon147

and Modha (2001) explain that using textual el-148

ements (i.e., word embeddings) as features in a149

high-dimensional latent space allows for cluster-150

ing based on inter-dimensional similarities. How-151

ever, fine-tuning pre-trained language model em-152

beddings tend to produce embeddings that are153

anisotropic and anisometric (Rajaee and Pilehvar,154

2021; Xu and Koehn, 2021) in nature; when155

paired with their high dimensionality, clustering156

via distance-based metrics becomes challenging.157

Nevertheless, recent findings indicate that al-158

though isotropy still exists, distance metrics can159

still be employed after employing dimensionality160

reduction methods (Mu et al., 2017). More specifi-161

cally, since similar contextual embeddings follow162

a spiral-band, or Swiss-roll manifold shape (Cai163

et al., 2020), we can use appropriate dimensionality164

reductions to then analyse relationships between 165

features through Euclidean distance-based metrics 166

(McInnes et al., 2018). 167

3 Experimental Methodology 168

Our approach consists of two components. First, 169

we explore several modelling choices (Section 3.2) 170

for supervised fine-tuning to predict each anno- 171

tator’s individual annotation for a given example. 172

This ensures we preserve the unique perspective 173

without biasing the model by providing additional 174

information (Vitsakis et al., 2023). Each model 175

is fine-tuned separately for each of our chosen 176

datasets. Secondly, we cluster the resulting latent 177

spaces from each model which have been informed 178

by each annotator’s opinion of the text during train- 179

ing. These embeddings are then processed through 180

one of two dimensionality reduction techniques 181

(Section 3.3) before being clustered using K-Means 182

(MacQueen et al., 1967; Pedregosa et al., 2011). 183

3



3.1 Datasets184

All datasets used in our experiments contain an-185

notator demographics such as personal political186

leaning, age, and education level.187

Media Bias Annotation Dataset (MBIC)188

(Spinde et al., 2021a,b) comprises sentences from189

media articles that may contain political bias from190

news outlets across the political spectrum (e.g.,191

Fox News, MSNBC, etc.) covering 14 potentially192

divisive topics (e.g., gender issues, coronavirus,193

the 2020 American election). 784 crowd-sourced194

annotators labelled sentences on whether they195

consider them to contain bias. Demographics196

of the dataset were slightly skewed throughout197

dimensions such as political ideology (44.3% left198

learning, 26.7% right-leaning, 29.1% center).199

Global Warming Stance Dataset (GWSD)200

(Luo et al., 2020) contains opinions of varying in-201

tensities on the subject of global warming, gathered202

from news outlets of varied political leanings (e.g.,203

The New York Times, and Breitbart). 398 anno-204

tators labelled each sentence with whether they205

agreed, disagreed, or were neutral. Demographic206

skew of this dataset mirrored that of MBIC in self207

reported political affiliation (46% Democrat, 21.2%208

Republican, 28.8% Independent, 4% Other).209

3.2 Training component210

We evaluated the performance of six distinct mod-211

elling architectures, each trained through a different212

combination of our inputs as seen in Fig. 2. For a213

given text sample in a dataset, x ∈ X, each model214

predicts the individual annotation of each annota-215

tor pθ(y|x) where y = (y1, . . . , yK), and K is216

the total number of unique annotators within the217

dataset.218

Unpooled Cross Attention This model uses a219

pretrained T5 encoder-decoder model (Raffel et al.,220

2020) where the encoded text and the embedded en-221

coded annotator unique identifiers are fed through222

a decoder layer which predicts each annotator’s223

annotation as a sequence.224

Encoder-Encoder Inspired by multi-modal ap-225

proaches which leverage distinct modalities226

through either text and vision (Tan and Bansal,227

2019; Singh et al., 2022; Agarwal et al., 2020),228

this architecture treats text and annotators as sep-229

arate modalities. The encoded text and embedded230

annotator unique identifiers are fed through a cross-231

modality encoder (Raffel et al., 2020) to predict the 232

annotation of each annotator. 233

Classifier Model This architecture uses a 234

transformer-based encoder-only classifier as a back- 235

bone model, i.e., BERT (Devlin et al., 2018) for 236

GWSD, and RoBERTa (Liu et al., 2019) for MBIC. 237

We simply concatenate the text with a unique an- 238

notator identifier and predict each label indepen- 239

dently. 240

Pooled Cross Attention This model is based on 241

Sullivan et al. (2023)’s approach, which showed 242

strong results during the 2023 Learning With Dis- 243

agreements (LeWiDi) shared task (Leonardelli 244

et al., 2023) in predicting annotator disagreement. 245

Largely similar in structure to ‘Unpooled Cross At- 246

tention’, it also uses a T5 encoder-decoder model 247

as the backbone. Then the encoded text embed- 248

ding dimension gets reduced through downsam- 249

pling as previous research has indicated possible 250

benefits in salience of encoded features (Schick 251

and Schütze, 2019; Dhingra et al., 2018; Holzen- 252

berger et al., 2018). Finally, decoder outputs are 253

pooled (Reimers and Gurevych, 2019) into a shared 254

latent space that is used to predict an aggregated 255

annotation for each batch. 256

Pretrained Decoder This architecture uses 257

a pre-trained GPT-2 decoder (Radford et al., 258

2019) that receives as input the concatenated 259

text and annotator identifiers of the form 260

“<text> [SEP] <Ann1> [SEP] ... <AnnN>” 261

and predicted the annotation for each annotator. 262

Pretrained Encoder-Decoder This architecture 263

is similar to ‘Unpooled Cross Attention’. The 264

model uses a pre-trained T5 encoder-decoder in- 265

stead (Raffel et al., 2020); the only difference is 266

that the unique annotator identifiers were embed- 267

ded through the decoder tokenizer of the T5 model 268

itself, to be able again to predict each annotator’s 269

annotation, autoregressively. 270

Metrics Since both datasets have a fairly unbal- 271

anced distribution of labels we report precision, 272

recall, and F1 score. Average pairwise cosine simi- 273

larity between decoder hidden states of predicted 274

annotations were also procured. Since this metric 275

shows how dense the decoder latent state is by the 276

end of training; a lower score generally correlates 277

with better clustering performance. 278

Results Table 1 summarises the results for the 279

Training component experiments. For the GWSD 280
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F1 Score ↑ Precision ↑ Recall ↑ Avg. Pairwise Similarity ↓

GWSD Dataset
Cross Attention 0.65 0.64 0.65 0.14 ± 0.07
Pooled Cross Attention 0.19 0.14 0.33 0.54 ± 0.13
Encoder-Encoder 0.63 0.66 0.62 0.15 ± 0.11
Classifier Model 0.63 0.67 0.61 0.81 ± 0.14
Pretrained Decoder 0.62 0.64 0.61 0.66 ± 0.08
Pretrained Encoder-Decoder 0.19 0.28 0.34 0.95 ± 0.02

MBIC Dataset
Cross Attention 0.72 0.72 0.72 0.22 ± 0.05
Pooled Cross Attention 0.43 0.47 0.41 0.70 ± 0.06
Encoder-Encoder 0.72 0.72 0.72 0.21 ± 0.06
Classifier 0.38 0.3 0.5 1.00
Pretrained Decoder 0.63 0.65 0.63 0.75 ± 0.07
Pretrained Encoder-Decoder 0.71 0.71 0.71 0.74 ± 0.25

Table 1: Overall performance (Precision/Recall, and F1 score) for the training component of our framework (6
modelling architectures) on MBIC and GWSD for the task of individual annotator prediction. We also report the
average pairwise cosine similarity across decoder hidden states for every model; lower score indicates greater variety
in representation which correlates with better clustering performance.

dataset, the Cross Attention architecture performed281

best overall, while for the case of the MBIC dataset,282

the Cross Attention and Encoder-Encoder architec-283

tures resulted in the highest F1 Score. The Classi-284

fier Model was the worst performing model for the285

MBIC dataset and had an average pairwise similar-286

ity of 1, indicating that the decoder hidden states287

are near-identical. Similarly, one of the worst per-288

forming models for the GWSD dataset also has289

high pairwise similarity across the decoder hidden290

states. Models with the highest F1 score across291

both datasets also have a low average pairwise sim-292

ilarity across the decoder hidden states, which in-293

dicates that the latent state of the models are less294

dense.295

3.3 Clustering component296

Next, we move on to clustering the decoder hid-297

den states of the annotation embeddings. For the298

remainder of the paper, we used the outputs of the299

‘Encoder-Encoder’ model as it has the highest F1300

scores and on average lowest pairwise similarities301

across both datasets (see Table 1). Following the302

discussion in Section 2, we perform dimensional-303

ity reduction first before proceeding to obtain the304

clusters.305

Dimensionality Reduction We experimented306

with the following dimensionality reduction tech-307

niques: a baseline of no dimensionality reduction,308

Principal Component Analysis (PCA; a linear com-309

bination of components), and Uniform Manifold 310

Approximation and Projection for Dimension Re- 311

duction (UMAP; a non-linear transformation al- 312

gorithm) (McInnes et al., 2018). Both PCA (Sia 313

et al., 2020; Gupta et al., 2019), and UMAP (Cai 314

et al., 2020; Ait-Saada and Nadif, 2023; George 315

and Sumathy, 2023) have been previously shown to 316

improve feature representation in high-dimensional 317

latent spaces leading to improved clustering perfor- 318

mances. 319

Clustering Techniques We used K-means (Mac- 320

Queen et al., 1967; Pedregosa et al., 2011) to clus- 321

ter the behavioural embeddings resulting from the 322

different options of dimensionality reduction. K- 323

means exhibits robustness and performs well when 324

clustering features from high-dimensional latent 325

spaces created from text (Song and Park, 2007; 326

Rashid et al., 2020; Ahmed et al., 2022), especially 327

when paired with PCA (Hosseini and Varzaneh, 328

2022), or UMAP (Allaoui et al., 2020). 329

Metrics We used two internal validation met- 330

rics namely, Silhouette (Rousseeuw, 1987; Pe- 331

dregosa et al., 2011) and Davies-Bouldin Index 332

(Davies and Bouldin, 1979; Pedregosa et al., 2011); 333

both are used to assess average similarity scores 334

between clusters. Silhouette assesses intra cluster 335

separatation and is bound between -1 and 1, with 1 336

being the best possible score, with the threshold for 337

moderate clusters being being 0.5 (Shahapure and 338

Nicholas, 2020; Lengyel and Botta-Dukát, 2019). 339
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# Clusters Davies-Bouldin Index↓ Silhouette ↑ Purity-Political ↑ Purity-Education ↑

MBIC
Cross Attention

No dim. reduction 19 6.35 0.02 0.71 0.71
w/ PCA 14 1.10 0.25 0.36 0.43
w/ UMAP 19 0.50 0.53 0.50 0.41

Pooled Cross Attention
No dim. reduction 19 3.03 0.06 0.42 0.48
w/ PCA 19 0.51 0.53 0.44 0.51
w/ UMAP 10 0.51 0.53 0.49 0.55

Encoder-Encoder
No dim. reduction 19 6.93 0.01 0.41 0.46
w/ PCA 19 0.49 0.54 0.53 0.43
w/ UMAP 19 0.49 0.53 0.51 0.48

Classifier Model
No dim. reduction 5 6.37 0.04 0.45 0.50
w/ PCA 13 0.50 0.55 0.43 0.44
w/ UMAP 18 0.52 0.50 0.38 0.50

Pretrained Decoder
No dim. reduction 19 2.86 0.06 0.47 0.47
w/ PCA 19 0.50 0.53 0.44 0.52
w/ UMAP 19 0.49 0.55 0.50 0.53

Pretrained Encoder-Decoder
No dim. reduction 5 1.70 0.16 0.47 0.48
w/ PCA 19 0.48 0.55 0.46 0.46
w/ UMAP 14 0.49 0.56 0.53 0.49

Table 2: Overall performance through internal (Davies-Bouldin Index, Silhouette) and external (Purity Political /
Education) validity measures for the clustering component of our framework. Intra-cluster separation indicative of
better overall clustering performance indicated by higher Silhouette and lower Davies-Bouldin scores. External
validity, measured via inter-cluster purity, indicated by higher purity scores

The Davies-Bouldin Index is also a measure of340

intra-cluster dissimilarity, as indicated by the low-341

est possible score with a lower bound of 0 (Idrus,342

2022; Kärkkäinen and Fränti, 2000).343

We used Purity to assess the external validity of344

clusters. Purity measures the internal consistency345

of assigned labels within a cluster. It has been346

previously used to evaluate whether a cluster is347

prototypical (i.e., representative) across provided348

labels within a dataset (Christodoulopoulos et al.,349

2010). In our case, it allows us to automatically350

assess whether a cluster emerging from annotator351

behaviours during training is linked to any of the352

annotator labels (e.g., a cluster with high right-353

leaning political consistency) and thus is indicative354

of a distinct perspective.355

The labels used were based on political orienta-356

tion and education levels. Each dataset collected357

the labels slightly differently: GWSD represents358

political party affiliation as a categorical variable359

(i.e., “democrat”, “other”, “republican” etc.), while 360

MBIC uses a range of values between -10 and 10. 361

3.4 Quantitative Cluster Validation Results 362

Optimal cluster numbers were automatically cal- 363

culated through a series of hyperparameter sweeps 364

to minimise the Silhouette score (see Appendix A 365

for more information). Table 2 shows the best per- 366

forming clusterings for MBIC; results for GWSD 367

can be found in Table 12 (Appendix B.2). 368

Internal Validity Metrics Overall, the choice 369

of dimensionality reduction significantly impacted 370

the quality of the resulting clusters as indicated 371

through our internal validation metrics. On the 372

GWSD dataset, UMAP and PCA marginally out- 373

performed each other in terms of Silhouette and 374

Davies-Bouldin Index scores respectively, while in 375

the MBIC dataset, UMAP outperformed PCA on 376

both internal validation metrics. No dimensional- 377

ity reduction consistently resulted in poor cluster 378
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Dataset/Cluster No. Examples Bias Label Distribution

MBIC -1

British Olympic swimmer Sharron Davies also slammed the concept of transgender athletes. ✓

BBC Presenter Gabby Logan has said that it is not fair that transgender women can compete in sport
alongside biologically female women.

✓

BBC Presenter Gabby Logan has said that it is not fair that transgender women can compete in sport
alongside biologically female women.

✗

MBIC -7

Trump — who has been criticized for painting an overly rosy picture of the outbreak, often con-
tradicting his own health officials - insisted on Friday that his administration was “magnificently
organized” and “totally prepared" to address the virus.

✓

Google declined to offer details beyond Huntley’s tweets, but the unusually public attribution is a sign
of how sensitive Americans have become to digital espionage efforts aimed at political campaigns.

✗

At least 25 transgender or gender-nonconforming people were killed in violent attacks in the United
States last year, according to the Human Rights Campaign, which has been tracking anti-trans
violence since at least 2015.

✓

MBIC -8

Though conservatives try to demonize Ocasio-Cortez an Omar, their actual policy views are perfectly
mainstream. The New York lawmaker proposed a 70 percent tax on top incomes — a view backed
by public opinion and many well-respected economists.

✗

British Olympic swimmer Sharron Davies also slammed the concept of transgender athletes. ✗

At least 25 transgender or gender-nonconforming people were killed in violent attacks in the United
States last year, according to the Human Rights Campaign, which has been tracking anti-trans
violence since at least 2015.

✓

Table 3: Analysis of clusters on the MBIC dataset with the Encoder-Encoder architecture and UMAP dimensionality
reduction. We report the cluster number, representative examples of the cluster, and their paired annotation (✓
for perceived bias, ✗for no perceived bias). We also show the distribution of annotator characteristics which is
indicative of the prototypical nature of each cluster.

quality as indicated by low Silhouette (Shahapure379

and Nicholas, 2020; Idrus, 2022) scores. Finally,380

PCA resulted in a smaller average number of op-381

timal clusters in the MBIC dataset compared to382

UMAP while the opposite is true for the MBIC383

dataset. We report the averages of internal validity384

scores across different dimensionality techniques385

in Appendix B.1.386

External Validity Metrics Individual purity387

scores assigned to each cluster can help us inter-388

pret whether clustering of behavioural embeddings389

resulted in clusters prototypical of the demograph-390

ics of our annotators. Purity scores of all created391

clusters per method were averaged, with the result-392

ing scores shown in Table 12. However, since we393

are interested in finding prototypical clusters poten-394

tially small in size, we manually inspected several395

of them to assess the efficacy of our framework.396

3.5 Qualitative Cluster Validation397

3.5.1 MBIC Dataset398

Table 3 shows the results of a case study of individ-399

ual clusters resulting from K-means using UMAP400

on the behavioural embeddings from the Encoder-401

Encoder model on the MBIC dataset. We found402

emerging clusters with political orientation being403

their most salient feature. Any cluster that signif-404

icantly deviated from the dataset’s original label405

distribution (described in Section 3.1) was consid- 406

ered a potentially prototypical cluster. We pick 407

three clusters (out of a single K-means run) and 408

discuss them below: 409

Cluster 1 This cluster is a prototypical example 410

of a consensus amongst annotators. Following sim- 411

ilar trends to the original label distribution of the 412

data (44.3%, 29.1%, 26.7% for left, center, and 413

right political lean), the cluster’s distribution is 414

more even. Such clusters often contain different 415

labels for the same sentences, while there is also 416

no strong emerging effect from collected labels. 417

Cluster 7 This is a minority cluster, with dis- 418

tribution of labels indicating that this cluster is 419

primarily formed through opinions that are right- 420

leaning. While Item 1 is expectantly labelled as 421

‘bias’, Item 3 contains no obvious biased words, al- 422

though it comes from an obvious place of concern 423

for a marginalised minority. 424

Cluster 8 This is a prototypical example of a ma- 425

jority dominant cluster. Such clusters are populated 426

by the opinion of the original dataset’s distribu- 427

tional majority label although with a much heavier 428

skew, indicating a stable and consistent behaviour 429

of the group. Labelling distribution of this cluster is 430

expected to be populated by left-leaning views and 431

indeed sentences that were previously labelled as 432
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Dataset/Cluster No. Examples Agreement Label Distribution

GWSD - 9

The early 21st-century drought that afflicted Central Asia is the worst in Mongolia in more
than 1,000 years, and made harsher by the higher temperatures consistent with man-made
global warming.

✓

Climate change means the end of shopping. ∼

The oil sands are responsible for just 0.001 percent of global greenhouse emissions ∼

GWSD - 2

There is a connection between human activity and an assumptive change in global climate. ✓

Hiring a White House "climate change czar" would be a good idea. ✓

Scaring young people young people into believing that climate change is going to kill young
people is child abuse.

✗

GWSD - 5

The oil sands are responsible for just 0.001 percent of global greenhouse emissions ✓

This could mean that current I.P.C.C. model predictions for the next century are wrong, and
there will be no cooling in the North Atlantic to partially offset the effects of global climate
change over North America and Europe.

✓

Eco-towns could provide an inspiring blueprint for low-carbon living ✗

Table 4: Analysis of clusters on the GWSD dataset using same parameters as the MBIC dataset, and results are
shown in a similar fashion (✓agree with the statement, ✗for disagree and ∼ for neutral). Distribution of annotator
characteristics is provided.

biased in non-left-leaning clusters (Item 1 of Clus-433

ter 1, and Item 3 of Cluster 7), were consistently434

found to not be labelled as such.435

3.5.2 GWSD Dataset436

Table 4 shows a case study on the GWSD dataset,437

under the exact same experimental conditions.438

Cluster 9 This is a prototypical example of a mi-439

nority cluster, as indicated by the differences in440

the distribution of the minority label between the441

cluster (60% and the original data (21%). Opin-442

ions expressed in the cluster were generally agree-443

able about climate-changing effects, we didn’t find444

any more agreement with more politically charged445

statements.446

Cluster 2 This is a majority-dominant cluster.447

Opinions that could be perceived as more political448

were found to be more common (Item 2), with449

some strong examples (Item 3).450

Cluster 5 An example of a minority within a mi-451

nority perspective. Opinions are over-represented452

by two minority labels, the “republican” in terms of453

political affiliation, and that of the “higher degree”454

in terms of education level (8.4% label represen-455

tation in the original dataset). Opinions showed456

fewer “neutral” responses and were generally in-457

dicative of a well-informed audience, explicitly458

agreeing with more technical items such as Item459

2 and especially Item 1, which received mostly460

“neutral” scores in other clusters (e.g., Cluster 9).461

3.6 Summarisation of qualitative results 462

The results of Sections 3.4 and 3.5 showcase the 463

generalisability capacities of our framework: our 464

models produce embeddings that can be clustered 465

based on behavioural patterns that capture perspec- 466

tives indicative of population sample minorities. 467

The three types of clusters found in GWSD (minor- 468

ity, majority, and minority within a minority) paired 469

with the inspections of the sentence-annotation 470

pairs validate our claims. 471

4 Conclusion 472

In this work, we propose a novel framework that 473

can be used to find underlying minority perspec- 474

tives in data. Six distinct model architectures were 475

trained on a classification task while not being pro- 476

vided with any annotator meta-data to avoid biasing 477

their training. Subsequently, the decoder hidden 478

layers of trained models were passed through vari- 479

ous methods of dimensionality reductions (UMAP 480

and PCA), with the resulting embeddings used to 481

create clusters through an unsupervised algorithm 482

(K-means). 483

The resulting clusters were adequately separated 484

according to internal validative metrics. Man- 485

ual inspection of clusters produced by our best- 486

performing models showcased the ability of our 487

framework to capture perspectives as shown by 488

three distinct types: clusters representative of a 489

minority, a majority, and clusters that captured mul- 490

tiple minority labels, a minority within a minority. 491
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Limitations and Ethical Considerations492

4.1 Internal validity and dimensionality493

reduction494

A current limitation of the model is the ability to495

automatically assess which methodologies perform496

without manual inspection. As shown in Tables 2497

and 11 while internal validation scores can be in-498

dicative of well defined clusters of minority per-499

spectives, they are not necessarily so. While PCA500

was only marginally outperformed by UMAP in501

terms of internal validation scores, the distributions502

of labels in the clusters resulting from a PCA di-503

mensionality reduction were minimally different504

when compared to label distributions present in the505

original data.506

Manual inspection of the clusters indicated that507

clusters were formed around the most salient fea-508

tures discovered during training, namely the unique509

annotator tokens, or the inter-sentence similari-510

ties. A possible reason for this phenomenon could511

be that PCA reduces dimensionalities to the most512

salient principal components, which have been513

shown to not be good conducive to clustering based514

on contextual features in large language models515

(Cai et al., 2020). Interestingly, this phenomenon516

can also be reproduced with UMAP when instruct-517

ing the model to focus on finding clusters based on518

local and not overarching features (McInnes et al.,519

2018). A possible solution to this issue is offered520

by (Mu et al., 2017), which explain that removal of521

the top principal components results in more salient522

representations, and thus could improve clustering523

performance.524

4.2 Labels and further marginalisation of525

minorities526

Our model uses labels procured during data gath-527

ering to validate emergent clusters. However, the528

labelling gathering process can potentially be an529

erasing process towards minorities in and of itself530

(Hovy and Prabhumoye, 2021; Chandrabose et al.,531

2021). In our case we encountered this limitation532

with the GWSD dataset (Luo et al., 2020), which533

collected categorical labels about political affili-534

ation of participants. Beyond the three primary535

labels ("Democrat", "Independent", "Republican"),536

the rest were aggregated into the "other" label. This537

resulted in a minority so small that our clustering538

methodology could not adequately disentangle.539

The labelling process can also further discrim-540

inate against socially marginalised minorities by541

not providing options consistent with an individ- 542

ual’s identity (Chandrabose et al., 2021; Jo and 543

Gebru, 2020). A possible solution would be to 544

then validate the content of our clusters through a 545

method not based on collected data such as senti- 546

ment analysis, which has been previously used to 547

classify politically opinions on charged data (Dorle 548

and Pise, 2018; Kazienko et al., 2023; Ansari et al., 549

2020). 550
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Hyperparameter GWSD MBIC

Pretrained Model google/t5-v1_1-large google/t5-v1_1-large
Decoder Depth 2 4
Decoder Heads 4 16
Dropout 0.2979 0.0979

Learning Rate 4.85 × 10−5 3.5 × 10−5

Warmup Steps 332 296

Table 5: Hyperparameters for the Cross Attention mod-
els on each of our chosen datasets, obtained from run-
ning running a hyperparameter sweep for 12 hours.

Hyperparameter GWSD MBIC

Pretrained Model google/t5-v1_1-large google/t5-v1_1-large
Decoder Depth 15 12
Decoder Heads 2 16
Dropout 0.188 0.0657

Learning Rate 9.27 × 10−5 1.13 × 10−5

Warmup Steps 296 535
Downsampling
Num. Layer

1 3

Downsampling Di-
mension

768 192

Table 6: Hyperparameters for the Pooled Cross Atten-
tion models on each of our chosen datasets, obtained
from running running a hyperparameter sweep for 12
hours.

Haoran Xu and Philipp Koehn. 2021. Cross-lingual917
bert contextual embedding space mapping with918
isotropic and isometric conditions. arXiv preprint919
arXiv:2107.09186.920

A Training Details921

To aid in reproducibility, we report all training de-922

tails and any relevant hyperparameters.923

A.1 Hyperparameters924

All models were trained using a single NVIDIA925

A40 GPU. A total of 1080 hours were used during926

training of all models. For all models, we used the927

AdamW optimizer (Loshchilov and Hutter, 2017)928

during training with weight decay 0.01. We re-929

port hyperparameters for each model and dataset930

in Tables 5 to 10.931

From small performance gains during prelimi-932

nary experiments, we disable bias across all linear933

layers as indicated in Fig. 2. Across every model,934

we found that when comparing hyperparameters935

for both PCA and UMAP converged to the same936

choices. For both methods, we found that 2 com-937

ponents yielded the best results. Additionally, for938

UMAP, we found that the optimal number of neigh-939

bours were found to be between 80-100 across all940

models,with a minimum distance ranging from 0.8941

to 1 to yield better clustering performance.942

Hyperparameter GWSD MBIC

Pretrained Model google/t5-v1_1-large google/t5-v1_1-large
Decoder Depth 4 2
Decoder Heads 2 8
Dropout 0.241 0.155

Learning Rate 4.24 × 10−5 7.67 × 10−5

Warmup Steps 782 426

Table 7: Hyperparameters for the Encoder-Encoder
models on each of our chosen datasets, obtained from
running running a hyperparameter sweep for 12 hours.

Hyperparameter GWSD MBIC

Pretrained Model roberta-large roberta-large
Learning Rate 8.405 × 10−6 1.31 × 10−4

Warmup Steps 131 639

Table 8: Hyperparameters for the Classifier models
on each of our chosen datasets, obtained from running
running a hyperparameter sweep for 12 hours.

B Cluster Metrics 943

B.1 Dimensionality Reduction 944

B.2 GWSD Cluster Validity Scores 945

We report the GWSD internal and external valida- 946

tion metrics resulting from our clustering using a 947

k-means algorithm and our various employed di- 948

mensionality reduction techniques. 949

Hyperparameter GWSD MBIC

Pretrained Model gpt2-large gpt2-large
Learning Rate 9.387 × 10−7 6.443 × 10−6

Warmup Steps 415 637

Table 9: Hyperparameters for the Pretrained Decoder
models on each of our chosen datasets, obtained from
running running a hyperparameter sweep for 12 hours.
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Hyperparameter GWSD MBIC

Pretrained Model gpt2-large gpt2-large
Learning Rate 3.61 × 10−4 2.91 × 10−4

Warmup Steps 894 778

Table 10: Hyperparameters for the Pretrained Encoder-
Decoder models on each of our chosen datasets, ob-
tained from running running a hyperparameter sweep
for 12 hours.

Davies-Bouldin Index Silhouette

No dim. reduction 3.655 0.073
w/ PCA 0.491 0.56
w/ UMAP 0.565 0.53

Table 11: Dimensionality reduction effect on internal
validity scores
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# Clusters Davies-Bouldin Index ↓ Silhouette ↑ Purity-Political ↑ Purity-Education ↑

GWSD
Cross Attention

No dim. reduction 19 5.97 0.02 0.45 0.53
w/ PCA 19 0.49 0.55 0.49 0.48
w/ UMAP 19 0.51 0.53 0.49 0.51

Pooled Cross Attention
No dim. reduction 16 2.73 0.08 0.45 0.65
w/ PCA 19 0.52 0.55 0.59 0.57
w/ UMAP 19 0.46 0.54 0.56 0.54

Encoder-Encoder
No dim. reduction 18 5.77 0.02 0.53 0.34
w/ PCA 19 0.51 0.53 0.40 0.47
w/ UMAP 15 0.49 0.55 0.46 0.63

Classifier Model
No dim. reduction 19 2.10 0.17 0.53 0.46
w/ PCA 17 0.45 0.61 0.53 0.53
w/ UMAP 18 0.95 0.46 0.44 0.51

Pretrained Decoder
No dim. reduction 19 2.83 0.09 0.61 0.47
w/ PCA 19 0.47 0.59 0.42 0.44
w/ UMAP 17 0.49 0.55 0.49 0.51

Pretrained Encoder-Decoder
No dim. reduction 19 2.53 0.06 0.48 0.55
w/ PCA 19 0.51 0.53 0.47 0.44
w/ UMAP 17 0.49 0.55 0.43 0.58

Table 12: Overall performance through internal (Davies-Bouldin Index, Silhouette) and external (Purity Political /
Education) validity measures for the clustering component of our framework. Intra-cluster separation indicative of
better overall clustering performance indicated by higher Silhouette and lower Davies-Bouldin scores. External
validity, measured via inter-cluster purity, indicated by higher purity scores
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