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Abstract

Fine-tuned models have been shown to repro-
duce underlying biases existing in their training
data, which is by default the majority perspec-
tive. While this process has been shown to
minimise minority perspectives, proposed solu-
tions either fail to preserve nuances present in
the original data, or are based on strong a-priori
assumptions about annotators that when used
can bias model training. We propose an ap-
proach that trains models purely in an annotator
demographic-agnostic manner, extracts latent
embeddings informed by annotator behaviour
during training, and clusters annotators based
on their behaviour over the respective corpus.
Resulting clusters are subsequently validated
post-hoc via internal and external validative
quantitative metrics, as well as our resulting
qualitative analysis. Our results explain the
strong generalisation capability of our frame-
work, indicated by resulting clusters being ad-
equately robust, while also capturing minority
perspectives based on different demographic
factors throughout two distinct datasets.’

Content Warning: This document con-
tains and discusses examples of potentially of-
fensive and toxic language.

1 Introduction

Supervised training of Machine Learning (ML)
and Natural Language Processing (NLP) models is
rooted in the presupposition that for every exam-
ple in a dataset, a ground truth, also known as a
gold label, exists. This allows for an objective mea-
sure of success; a model has learned the underlying
patterns from the data if its prediction for an exam-
ple is congruent with the ground truth (Hettiachchi
et al., 2021).

However, the concept of a single ground truth
per item can be particularly challenging to assess
in subjective tasks in cases of pervasive annotator
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Figure 1: Models are trained through text examples
and annotations, with models learning to predict the
unique perspectives of each annotators without any fur-
ther annotator metadata. Decoder hidden states are sub-
sequently used to cluster annotator opinions on a given
corpus through unsupervised methods to find emergent
groups of unique minority perspectives not fully cap-
tured via sociodemographic information.

disagreement persisting throughout a dataset (Uma
etal.,2022,2021). While such disagreement can be
indicative of task difficulty or semantic ambiguity



(Wang et al., 2021; Jiang and Marneffe, 2022; San-
dri et al., 2023), it can also indicate stable and con-
flicting intra-annotator perspectives (Basile et al.,
2020; Abercrombie et al., 2023).

Efforts on how to best deal with clashing per-
spectives include changes to both how models
are trained and evaluated. Regarding model train-
ing, recent approaches have proposed introducing
demographic-level labels alongside annotations to
improve a model’s representative capacities and
generalisability towards a target minority group
present in the dataset (Fleisig et al., 2023; Gupta
et al., 2023; Beck et al., 2023). For evaluation,
the consensus seems to be rejecting gold labels in
favour of more representative metrics or methodolo-
gies, e.g., distributional labels that capture per-item
disagreements which allow for degrees of confi-
dence on predictions (Leonardelli et al., 2023).

Although preferable to gold labels, such solu-
tions are still vulnerable to collapsing multiple
viewpoints into a minority—majority distribution
per item (Gordon et al., 2022). While recent ap-
proaches have explained the importance of captur-
ing and preserving distinct perspectives as-is (Vit-
sakis et al., 2023; Cabitza et al., 2023), it remains
unclear as to which modelling and training choices
should be employed to best do so.

Our Contributions We introduce a framework
that evaluates how training choices affect a model’s
ability to preserve distinct perspectives in a dataset.
We employed six distinct modelling architectures
on two heterogeneous datasets, all within the con-
text of annotation of political bias. Models were
trained to predict individual annotations per anno-
tator in a demographic-agnostic manner, i.e., no
annotator information was provided as input to the
models. Extracted the latent embeddings of each
model were used them to cluster annotations into
groups through unsupervised learning.

We show that such models can correctly identify
perspectives learned through similarities between
annotator behaviours (their annotation patterns) as
captured in latent spaces without the need for fur-
ther information. Crucially, we validated the cre-
ated clusters by matching the demographic infor-
mation of annotators post-hoc, and conducted an
in-depth qualitative analysis of the clusters them-
selves. Since the models are trained without any
demographic information, our method uniquely al-
lows us to explain the impact of demographics on
different datasets without constraints, evidenced by

the creation of clusters based solely on different
demographics that emerged organically throughout
distinct datasets.

2 Related Work

Dealing with disagreements Aggregating anno-
tator disagreements into a single gold label per item
can improve model performance (Nguyen et al.,
2017). However, such approaches also imprint
the resulting model with a simplified and reduced
view of the minority perspectives present in the
data (Gordon et al., 2022), leading to further era-
sure of underrepresented minorities of annotators
(Prabhakaran et al., 2021).

One solution is to supplement gold labels with
silver labels, i.e., distributional per-item labels
that measure disagreement amongst annotators
(Leonardelli et al., 2023; Uma et al., 2022, 2021).
While this approach allows for the identification
of controversial items in datasets (Fornaciari et al.,
2022), it fails to capture stable inter-annotator dis-
agreements throughout the dataset that could pro-
vide insight as to why disagreement occurs beyond
an item-by-item scale (Abercrombie et al., 2023).

Demographics and annotator Bias Bias intro-
duced through annotations is an established phe-
nomenon (Hovy and Prabhumoye, 2021; Garrido-
Muiioz et al., 2021; Blodgett et al., 2020; Geva
et al.,, 2019). Individual annotator characteris-
tics such as age (Al Kuwatly et al., 2020), gen-
der (Stanczak and Augenstein, 2021; Biester et al.,
2022), or political orientation (Baly et al., 2020;
Sap et al., 2021), have all been shown to impact
annotator behaviour, and consequently, model per-
formance in classification tasks.

Proposed solutions have attempted to incorpo-
rate information about annotator beliefs (Rottger
et al., 2021; Davani et al., 2023), or demograph-
ics (Fleisig et al., 2023; Gupta et al., 2023) into
the training pipeline to allow learning of pat-
terns between annotations and in-group tendencies.
While incorporation of such information can seem-
ingly improve model performance in specific tasks
(Welch et al., 2020), evidence suggests that such
results might not be generalisable across datasets
(Lee et al., 2023). Since demographics are not nec-
essarily predictive of underlying annotator beliefs
(Hwang et al., 2023; Beck et al., 2023), there is a
strong need for models that capture annotator per-
spectives without the need for a priori assumptions.
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Figure 2: Training component: 6 modelling architectures for extracting decoder hidden states (denoted with a yellow
circle as Emb,,) used as input for the Clustering component.

Unsupervised learning and clustering of at-
titudes Unsupervised learning has been used
to identify emergent themes within corpora via
clustering of latent textual embeddings (Sevil-
lano et al., 2007; Meng et al., 2022). Dhillon
and Modha (2001) explain that using textual el-
ements (i.e., word embeddings) as features in a
high-dimensional latent space allows for cluster-
ing based on inter-dimensional similarities. How-
ever, fine-tuning pre-trained language model em-
beddings tend to produce embeddings that are
anisotropic and anisometric (Rajaee and Pilehvar,
2021; Xu and Koehn, 2021) in nature; when
paired with their high dimensionality, clustering
via distance-based metrics becomes challenging.
Nevertheless, recent findings indicate that al-
though isotropy still exists, distance metrics can
still be employed after employing dimensionality
reduction methods (Mu et al., 2017). More specifi-
cally, since similar contextual embeddings follow
a spiral-band, or Swiss-roll manifold shape (Cai
et al., 2020), we can use appropriate dimensionality

reductions to then analyse relationships between
features through Euclidean distance-based metrics
(Mclnnes et al., 2018).

3 Experimental Methodology

Our approach consists of two components. First,
we explore several modelling choices (Section 3.2)
for supervised fine-tuning to predict each anno-
tator’s individual annotation for a given example.
This ensures we preserve the unique perspective
without biasing the model by providing additional
information (Vitsakis et al., 2023). Each model
is fine-tuned separately for each of our chosen
datasets. Secondly, we cluster the resulting latent
spaces from each model which have been informed
by each annotator’s opinion of the text during train-
ing. These embeddings are then processed through
one of two dimensionality reduction techniques
(Section 3.3) before being clustered using K-Means
(MacQueen et al., 1967; Pedregosa et al., 2011).



3.1 Datasets

All datasets used in our experiments contain an-
notator demographics such as personal political
leaning, age, and education level.

Media Bias Annotation Dataset (MBIC)
(Spinde et al., 2021a,b) comprises sentences from
media articles that may contain political bias from
news outlets across the political spectrum (e.g.,
Fox News, MSNBC, etc.) covering 14 potentially
divisive topics (e.g., gender issues, coronavirus,
the 2020 American election). 784 crowd-sourced
annotators labelled sentences on whether they
consider them to contain bias. Demographics
of the dataset were slightly skewed throughout
dimensions such as political ideology (44.3% left
learning, 26.7% right-leaning, 29.1% center).

Global Warming Stance Dataset (GWSD)
(Luo et al., 2020) contains opinions of varying in-
tensities on the subject of global warming, gathered
from news outlets of varied political leanings (e.g.,
The New York Times, and Breitbart). 398 anno-
tators labelled each sentence with whether they
agreed, disagreed, or were neutral. Demographic
skew of this dataset mirrored that of MBIC in self
reported political affiliation (46% Democrat, 21.2%
Republican, 28.8% Independent, 4% Other).

3.2 Training component

We evaluated the performance of six distinct mod-
elling architectures, each trained through a different
combination of our inputs as seen in Fig. 2. For a
given text sample in a dataset, x € X, each model
predicts the individual annotation of each annota-
tor py(y|x) where y = (y1,...,yx), and K is
the total number of unique annotators within the
dataset.

Unpooled Cross Attention This model uses a
pretrained T5 encoder-decoder model (Raffel et al.,
2020) where the encoded text and the embedded en-
coded annotator unique identifiers are fed through
a decoder layer which predicts each annotator’s
annotation as a sequence.

Encoder-Encoder Inspired by multi-modal ap-
proaches which leverage distinct modalities
through either text and vision (Tan and Bansal,
2019; Singh et al., 2022; Agarwal et al., 2020),
this architecture treats text and annotators as sep-
arate modalities. The encoded text and embedded
annotator unique identifiers are fed through a cross-

modality encoder (Raffel et al., 2020) to predict the
annotation of each annotator.

Classifier Model This architecture uses a
transformer-based encoder-only classifier as a back-
bone model, i.e., BERT (Devlin et al., 2018) for
GWSD, and RoBERTa (Liu et al., 2019) for MBIC.
We simply concatenate the text with a unique an-
notator identifier and predict each label indepen-
dently.

Pooled Cross Attention This model is based on
Sullivan et al. (2023)’s approach, which showed
strong results during the 2023 Learning With Dis-
agreements (LeWiDi) shared task (Leonardelli
et al., 2023) in predicting annotator disagreement.
Largely similar in structure to ‘Unpooled Cross At-
tention’, it also uses a TS encoder-decoder model
as the backbone. Then the encoded text embed-
ding dimension gets reduced through downsam-
pling as previous research has indicated possible
benefits in salience of encoded features (Schick
and Schiitze, 2019; Dhingra et al., 2018; Holzen-
berger et al., 2018). Finally, decoder outputs are
pooled (Reimers and Gurevych, 2019) into a shared
latent space that is used to predict an aggregated
annotation for each batch.

Pretrained Decoder This architecture uses
a pre-trained GPT-2 decoder (Radford et al.,
2019) that receives as input the concatenated
text and annotator identifiers of the form
“<text> [SEP] <Ann1> [SEP] ... <AnnN>”
and predicted the annotation for each annotator.

Pretrained Encoder-Decoder This architecture
is similar to ‘Unpooled Cross Attention’. The
model uses a pre-trained T5 encoder-decoder in-
stead (Raffel et al., 2020); the only difference is
that the unique annotator identifiers were embed-
ded through the decoder tokenizer of the TS model
itself, to be able again to predict each annotator’s
annotation, autoregressively.

Metrics Since both datasets have a fairly unbal-
anced distribution of labels we report precision,
recall, and F1 score. Average pairwise cosine simi-
larity between decoder hidden states of predicted
annotations were also procured. Since this metric
shows how dense the decoder latent state is by the
end of training; a lower score generally correlates
with better clustering performance.

Results Table 1 summarises the results for the
Training component experiments. For the GWSD



F1 Score T Precision? RecallT Avg. Pairwise Similarity |

GWSD Dataset
Cross Attention 0.65
Pooled Cross Attention 0.19
Encoder-Encoder 0.63
Classifier Model 0.63
Pretrained Decoder 0.62
Pretrained Encoder-Decoder 0.19

MBIC Dataset
Cross Attention 0.72
Pooled Cross Attention 0.43
Encoder-Encoder 0.72
Classifier 0.38
Pretrained Decoder 0.63
Pretrained Encoder-Decoder 0.71

0.64 0.65 0.14+0.07
0.14 0.33 0.54+0.13
0.66 0.62 0.15+0.11
0.67 0.61 0.81+0.14
0.64 0.61 0.66+0.08
0.28 0.34 0.95+0.02
0.72 0.72 0.22+0.05
0.47 0.41 0.70+0.06
0.72 0.72 0.21+0.06
0.3 0.5 1.00

0.65 0.63 0.75+0.07
0.71 0.71 0.74+0.25

Table 1: Overall performance (Precision/Recall, and F1 score) for the training component of our framework (6
modelling architectures) on MBIC and GWSD for the task of individual annotator prediction. We also report the
average pairwise cosine similarity across decoder hidden states for every model; lower score indicates greater variety
in representation which correlates with better clustering performance.

dataset, the Cross Attention architecture performed
best overall, while for the case of the MBIC dataset,
the Cross Attention and Encoder-Encoder architec-
tures resulted in the highest F1 Score. The Classi-
fier Model was the worst performing model for the
MBIC dataset and had an average pairwise similar-
ity of 1, indicating that the decoder hidden states
are near-identical. Similarly, one of the worst per-
forming models for the GWSD dataset also has
high pairwise similarity across the decoder hidden
states. Models with the highest F1 score across
both datasets also have a low average pairwise sim-
ilarity across the decoder hidden states, which in-
dicates that the latent state of the models are less
dense.

3.3 Clustering component

Next, we move on to clustering the decoder hid-
den states of the annotation embeddings. For the
remainder of the paper, we used the outputs of the
‘Encoder-Encoder’ model as it has the highest F1
scores and on average lowest pairwise similarities
across both datasets (see Table 1). Following the
discussion in Section 2, we perform dimensional-
ity reduction first before proceeding to obtain the
clusters.

Dimensionality Reduction We experimented
with the following dimensionality reduction tech-
niques: a baseline of no dimensionality reduction,
Principal Component Analysis (PCA; a linear com-

bination of components), and Uniform Manifold
Approximation and Projection for Dimension Re-
duction (UMAP; a non-linear transformation al-
gorithm) (Mclnnes et al., 2018). Both PCA (Sia
et al., 2020; Gupta et al., 2019), and UMAP (Cai
et al., 2020; Ait-Saada and Nadif, 2023; George
and Sumathy, 2023) have been previously shown to
improve feature representation in high-dimensional
latent spaces leading to improved clustering perfor-
mances.

Clustering Techniques We used K-means (Mac-
Queen et al., 1967; Pedregosa et al., 2011) to clus-
ter the behavioural embeddings resulting from the
different options of dimensionality reduction. K-
means exhibits robustness and performs well when
clustering features from high-dimensional latent
spaces created from text (Song and Park, 2007;
Rashid et al., 2020; Ahmed et al., 2022), especially
when paired with PCA (Hosseini and Varzaneh,
2022), or UMAP (Allaoui et al., 2020).

Metrics We used two internal validation met-
rics namely, Silhouette (Rousseeuw, 1987; Pe-
dregosa et al., 2011) and Davies-Bouldin Index
(Davies and Bouldin, 1979; Pedregosa et al., 2011);
both are used to assess average similarity scores
between clusters. Silhouette assesses intra cluster
separatation and is bound between -1 and 1, with 1
being the best possible score, with the threshold for
moderate clusters being being 0.5 (Shahapure and
Nicholas, 2020; Lengyel and Botta-Dukat, 2019).



# Clusters  Davies-Bouldin Index|  Silhouette 1  Purity-Political T  Purity-Education 1
MBIC

Cross Attention

No dim. reduction 19 6.35 0.02 0.71 0.71

w/ PCA 14 1.10 0.25 0.36 0.43

w/ UMAP 19 0.50 0.53 0.50 0.41
Pooled Cross Attention

No dim. reduction 19 3.03 0.06 0.42 0.48

w/ PCA 19 0.51 0.53 0.44 0.51

w/ UMAP 10 0.51 0.53 0.49 0.55
Encoder-Encoder

No dim. reduction 19 6.93 0.01 0.41 0.46

w/ PCA 19 0.49 0.54 0.53 0.43

w/ UMAP 19 0.49 0.53 0.51 0.48
Classifier Model

No dim. reduction 5 6.37 0.04 0.45 0.50

w/ PCA 13 0.50 0.55 0.43 0.44

w/ UMAP 18 0.52 0.50 0.38 0.50
Pretrained Decoder

No dim. reduction 19 2.86 0.06 0.47 0.47

w/ PCA 19 0.50 0.53 0.44 0.52

w/ UMAP 19 0.49 0.55 0.50 0.53
Pretrained Encoder-Decoder

No dim. reduction 5 1.70 0.16 0.47 0.48

w/ PCA 19 0.48 0.55 0.46 0.46

w/ UMAP 14 0.49 0.56 0.53 0.49

Table 2: Overall performance through internal (Davies-Bouldin Index, Silhouette) and external (Purity Political /
Education) validity measures for the clustering component of our framework. Intra-cluster separation indicative of
better overall clustering performance indicated by higher Silhouette and lower Davies-Bouldin scores. External
validity, measured via inter-cluster purity, indicated by higher purity scores

The Davies-Bouldin Index is also a measure of
intra-cluster dissimilarity, as indicated by the low-
est possible score with a lower bound of 0 (Idrus,
2022; Karkkidinen and Franti, 2000).

We used Purity to assess the external validity of
clusters. Purity measures the internal consistency
of assigned labels within a cluster. It has been
previously used to evaluate whether a cluster is
prototypical (i.e., representative) across provided
labels within a dataset (Christodoulopoulos et al.,
2010). In our case, it allows us to automatically
assess whether a cluster emerging from annotator
behaviours during training is linked to any of the
annotator labels (e.g., a cluster with high right-
leaning political consistency) and thus is indicative
of a distinct perspective.

The labels used were based on political orienta-
tion and education levels. Each dataset collected
the labels slightly differently: GWSD represents
political party affiliation as a categorical variable
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(i.e., “democrat”, “other”, “republican” etc.), while
MBIC uses a range of values between -10 and 10.

3.4 Quantitative Cluster Validation Results

Optimal cluster numbers were automatically cal-
culated through a series of hyperparameter sweeps
to minimise the Silhouette score (see Appendix A
for more information). Table 2 shows the best per-
forming clusterings for MBIC; results for GWSD
can be found in Table 12 (Appendix B.2).

Internal Validity Metrics Overall, the choice
of dimensionality reduction significantly impacted
the quality of the resulting clusters as indicated
through our internal validation metrics. On the
GWSD dataset, UMAP and PCA marginally out-
performed each other in terms of Silhouette and
Davies-Bouldin Index scores respectively, while in
the MBIC dataset, UMAP outperformed PCA on
both internal validation metrics. No dimensional-
ity reduction consistently resulted in poor cluster



Dataset/Cluster No.

Examples

Bias Label

Distribution

MBIC -1

British Olympic swimmer Sharron Davies also slammed the concept of transgender athletes.

BBC Presenter Gabby Logan has said that it is not fair that transgender women can compete in sport
alongside biologically female women.

v
v

BBC Presenter Gabby Logan has said that it is not fair that transgender women can compete in sport
alongside biologically female women.

X

M [ 820

Right, 31%

MBIC -7

Trump — who has been criticized for painting an overly rosy picture of the outbreak, often con-
tradicting his own health officials - insisted on Friday that his administration was “magnificently
organized” and “totally prepared" to address the virus.

Google declined to offer details beyond Huntley’s tweets, but the unusually public attribution is a sign
of how sensitive Americans have become to digital espionage efforts aimed at political campaigns.

At least 25 transgender or gender-nonconforming people were killed in violent attacks in the United
States last year, according to the Human Rights Campaign, which has been tracking anti-trans
violence since at least 2015.

Center,
Right, 51% 36%

Left, 13%

MBIC -8

Though conservatives try to demonize Ocasio-Cortez an Omar, their actual policy views are perfectly
mainstream. The New York lawmaker proposed a 70 percent tax on top incomes — a view backed
by public opinion and many well-respected economists.

British Olympic swimmer Sharron Davies also slammed the concept of transgender athletes.

At least 25 transgender or gender-nonconforming people were killed in violent attacks in the United
States last year, according to the Human Rights Campaign, which has been tracking anti-trans

Left, 64%

Center, 33%

violence since at least 2015.

Table 3: Analysis of clusters on the MBIC dataset with the Encoder-Encoder architecture and UMAP dimensionality
reduction. We report the cluster number, representative examples of the cluster, and their paired annotation (v
for perceived bias, Xfor no perceived bias). We also show the distribution of annotator characteristics which is

indicative of the prototypical nature of each cluster.

quality as indicated by low Silhouette (Shahapure
and Nicholas, 2020; Idrus, 2022) scores. Finally,
PCA resulted in a smaller average number of op-
timal clusters in the MBIC dataset compared to
UMAP while the opposite is true for the MBIC
dataset. We report the averages of internal validity
scores across different dimensionality techniques
in Appendix B.1.

External Validity Metrics Individual purity
scores assigned to each cluster can help us inter-
pret whether clustering of behavioural embeddings
resulted in clusters prototypical of the demograph-
ics of our annotators. Purity scores of all created
clusters per method were averaged, with the result-
ing scores shown in Table 12. However, since we
are interested in finding prototypical clusters poten-
tially small in size, we manually inspected several
of them to assess the efficacy of our framework.

3.5 Qualitative Cluster Validation

3.5.1 MBIC Dataset

Table 3 shows the results of a case study of individ-
ual clusters resulting from K-means using UMAP
on the behavioural embeddings from the Encoder-
Encoder model on the MBIC dataset. We found
emerging clusters with political orientation being
their most salient feature. Any cluster that signif-
icantly deviated from the dataset’s original label

distribution (described in Section 3.1) was consid-
ered a potentially prototypical cluster. We pick
three clusters (out of a single K-means run) and
discuss them below:

Cluster 1 This cluster is a prototypical example
of a consensus amongst annotators. Following sim-
ilar trends to the original label distribution of the
data (44.3%, 29.1%, 26.7% for left, center, and
right political lean), the cluster’s distribution is
more even. Such clusters often contain different
labels for the same sentences, while there is also
no strong emerging effect from collected labels.

Cluster 7 This is a minority cluster, with dis-
tribution of labels indicating that this cluster is
primarily formed through opinions that are right-
leaning. While Item 1 is expectantly labelled as
‘bias’, Item 3 contains no obvious biased words, al-
though it comes from an obvious place of concern
for a marginalised minority.

Cluster 8 This is a prototypical example of a ma-
jority dominant cluster. Such clusters are populated
by the opinion of the original dataset’s distribu-
tional majority label although with a much heavier
skew, indicating a stable and consistent behaviour
of the group. Labelling distribution of this cluster is
expected to be populated by left-leaning views and
indeed sentences that were previously labelled as



Dataset/Cluster No.

Examples

Agreement Label

Distribution

The early 21st-century drought that afflicted Central Asia is the worst in Mongolia in more
than 1,000 years, and made harsher by the higher temperatures consistent with man-made

global warming.

~
Dem,
Rep, 60% 28%

GWSD -9 Climate change means the end of shopping.
The oil sands are responsible for just 0.001 percent of global greenhouse emissions ~
There is a connection between human activity and an assumptive change in global climate. v
Hiring a White House "climate change czar" would be a good idea. v
GWSD -2 R
Scaring young people young people into believing that climate change is going to kill young X
people is child abuse. ml
The oil sands are responsible for just 0.001 percent of global greenhouse emissions v
This could mean that current I.P.C.C. model predictions for the next century are wrong, and v
GWSD -5 there will be no cooling in the North Atlantic to partially offset the effects of global climate Hop. 0% MI
change over North America and Europe.
GRD, 42%
Eco-towns could provide an inspiring blueprint for low-carbon living X

Table 4: Analysis of clusters on the GWSD dataset using same parameters as the MBIC dataset, and results are
shown in a similar fashion (v"agree with the statement, Xfor disagree and ~ for neutral). Distribution of annotator

characteristics is provided.

biased in non-left-leaning clusters (Item 1 of Clus-
ter 1, and Item 3 of Cluster 7), were consistently
found to not be labelled as such.

3.5.2 GWSD Dataset

Table 4 shows a case study on the GWSD dataset,
under the exact same experimental conditions.

Cluster 9 This is a prototypical example of a mi-
nority cluster, as indicated by the differences in
the distribution of the minority label between the
cluster (60% and the original data (21%). Opin-
ions expressed in the cluster were generally agree-
able about climate-changing effects, we didn’t find
any more agreement with more politically charged
statements.

Cluster 2 This is a majority-dominant cluster.
Opinions that could be perceived as more political
were found to be more common (Item 2), with
some strong examples (Item 3).

Cluster S An example of a minority within a mi-
nority perspective. Opinions are over-represented
by two minority labels, the “republican” in terms of
political affiliation, and that of the “higher degree”
in terms of education level (8.4% label represen-
tation in the original dataset). Opinions showed
fewer “neutral” responses and were generally in-
dicative of a well-informed audience, explicitly
agreeing with more technical items such as Item
2 and especially Item 1, which received mostly
“neutral” scores in other clusters (e.g., Cluster 9).

3.6 Summarisation of qualitative results

The results of Sections 3.4 and 3.5 showcase the
generalisability capacities of our framework: our
models produce embeddings that can be clustered
based on behavioural patterns that capture perspec-
tives indicative of population sample minorities.
The three types of clusters found in GWSD (minor-
ity, majority, and minority within a minority) paired
with the inspections of the sentence-annotation
pairs validate our claims.

4 Conclusion

In this work, we propose a novel framework that
can be used to find underlying minority perspec-
tives in data. Six distinct model architectures were
trained on a classification task while not being pro-
vided with any annotator meta-data to avoid biasing
their training. Subsequently, the decoder hidden
layers of trained models were passed through vari-
ous methods of dimensionality reductions (UMAP
and PCA), with the resulting embeddings used to
create clusters through an unsupervised algorithm
(K-means).

The resulting clusters were adequately separated
according to internal validative metrics. Man-
ual inspection of clusters produced by our best-
performing models showcased the ability of our
framework to capture perspectives as shown by
three distinct types: clusters representative of a
minority, a majority, and clusters that captured mul-
tiple minority labels, a minority within a minority.



Limitations and Ethical Considerations

4.1 Internal validity and dimensionality
reduction

A current limitation of the model is the ability to
automatically assess which methodologies perform
without manual inspection. As shown in Tables 2
and 11 while internal validation scores can be in-
dicative of well defined clusters of minority per-
spectives, they are not necessarily so. While PCA
was only marginally outperformed by UMAP in
terms of internal validation scores, the distributions
of labels in the clusters resulting from a PCA di-
mensionality reduction were minimally different
when compared to label distributions present in the
original data.

Manual inspection of the clusters indicated that
clusters were formed around the most salient fea-
tures discovered during training, namely the unique
annotator tokens, or the inter-sentence similari-
ties. A possible reason for this phenomenon could
be that PCA reduces dimensionalities to the most
salient principal components, which have been
shown to not be good conducive to clustering based
on contextual features in large language models
(Cai et al., 2020). Interestingly, this phenomenon
can also be reproduced with UMAP when instruct-
ing the model to focus on finding clusters based on
local and not overarching features (Mclnnes et al.,
2018). A possible solution to this issue is offered
by (Mu et al., 2017), which explain that removal of
the top principal components results in more salient
representations, and thus could improve clustering
performance.

4.2 Labels and further marginalisation of
minorities

Our model uses labels procured during data gath-
ering to validate emergent clusters. However, the
labelling gathering process can potentially be an
erasing process towards minorities in and of itself
(Hovy and Prabhumoye, 2021; Chandrabose et al.,
2021). In our case we encountered this limitation
with the GWSD dataset (Luo et al., 2020), which
collected categorical labels about political affili-
ation of participants. Beyond the three primary
labels ("Democrat”, "Independent"”, "Republican"),
the rest were aggregated into the "other" label. This
resulted in a minority so small that our clustering
methodology could not adequately disentangle.
The labelling process can also further discrim-
inate against socially marginalised minorities by

not providing options consistent with an individ-
ual’s identity (Chandrabose et al., 2021; Jo and
Gebru, 2020). A possible solution would be to
then validate the content of our clusters through a
method not based on collected data such as senti-
ment analysis, which has been previously used to
classify politically opinions on charged data (Dorle
and Pise, 2018; Kazienko et al., 2023; Ansari et al.,
2020).
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Hyperparameter GWSD MBIC

Hyperparameter GWSD MBIC
Pretrained Model google/t5-v1_1-large google/t5-vi_1-large
Decoder Depth 2 4

Decoder Heads 4 16

Dropout 0.2979 0.0979
Learning Rate 4.85 x 107° 3.5 x 107°
‘Warmup Steps 332 296

Pretrained Model google/t5-vi_1-large google/t5-v1_1-large
4 2

Decoder Depth

Decoder Heads 2 8
Dropout 0.241 0.155
Learning Rate 4.24 x 107° 7.67 x 107°
Warmup Steps 782 426

Table 5: Hyperparameters for the Cross Attention mod-
els on each of our chosen datasets, obtained from run-
ning running a hyperparameter sweep for 12 hours.

Hyperparameter GWSD MBIC

Pretrained Model google/t5-v1_1-large google/t5-v1_1-large

Decoder Depth 15 12
Decoder Heads 2 16
Dropout 0.188 0.0657
Learning Rate 9.27 x 107° 1.13 x 107°
Warmup Steps 296 535
Downsampling 1 3

Num. Layer

Downsampling Di- 768 192

mension

Table 6: Hyperparameters for the Pooled Cross Atten-
tion models on each of our chosen datasets, obtained
from running running a hyperparameter sweep for 12
hours.

Haoran Xu and Philipp Koehn. 2021. Cross-lingual
bert contextual embedding space mapping with
isotropic and isometric conditions. arXiv preprint
arXiv:2107.09186.

A Training Details

To aid in reproducibility, we report all training de-
tails and any relevant hyperparameters.

A.1 Hyperparameters

All models were trained using a single NVIDIA
A40 GPU. A total of 1080 hours were used during
training of all models. For all models, we used the
AdamW optimizer (Loshchilov and Hutter, 2017)
during training with weight decay 0.01. We re-
port hyperparameters for each model and dataset
in Tables 5 to 10.

From small performance gains during prelimi-
nary experiments, we disable bias across all linear
layers as indicated in Fig. 2. Across every model,
we found that when comparing hyperparameters
for both PCA and UMAP converged to the same
choices. For both methods, we found that 2 com-
ponents yielded the best results. Additionally, for
UMAP, we found that the optimal number of neigh-
bours were found to be between 80-100 across all
models,with a minimum distance ranging from 0.8
to 1 to yield better clustering performance.
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Table 7: Hyperparameters for the Encoder-Encoder
models on each of our chosen datasets, obtained from
running running a hyperparameter sweep for 12 hours.

Hyperparameter GWSD MBIC
Pretrained Model roberta-large roberta-large
Learning Rate 8.405 x 107%  1.31 x 10™4
Warmup Steps 131 639

Table 8: Hyperparameters for the Classifier models
on each of our chosen datasets, obtained from running
running a hyperparameter sweep for 12 hours.

B Cluster Metrics

B.1 Dimensionality Reduction
B.2 GWSD Cluster Validity Scores

We report the GWSD internal and external valida-
tion metrics resulting from our clustering using a
k-means algorithm and our various employed di-
mensionality reduction techniques.

Hyperparameter GWSD MBIC
Pretrained Model gpt2-large gpt2-large
Learning Rate 9.387 x 1077 6.443 x 107¢
Warmup Steps 415 637

Table 9: Hyperparameters for the Pretrained Decoder
models on each of our chosen datasets, obtained from
running running a hyperparameter sweep for 12 hours.



Hyperparameter GWSD MBIC

Pretrained Model gpt2-large gpt2-large
Learning Rate 3.61x107* 291 x 1074
‘Warmup Steps 894 778

Table 10: Hyperparameters for the Pretrained Encoder-
Decoder models on each of our chosen datasets, ob-
tained from running running a hyperparameter sweep
for 12 hours.

Davies-Bouldin Index  Silhouette

No dim. reduction 3.655 0.073
w/ PCA 0.491 0.56
w/ UMAP 0.565 0.53

Table 11: Dimensionality reduction effect on internal
validity scores
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# Clusters  Davies-Bouldin Index |  Silhouette T  Purity-Political T  Purity-Education 1

GWSD
Cross Attention
No dim. reduction 19 5.97 0.02 0.45 0.53
w/ PCA 19 0.49 0.55 0.49 0.48
w/ UMAP 19 0.51 0.53 0.49 0.51
Pooled Cross Attention
No dim. reduction 16 2.73 0.08 0.45 0.65
w/ PCA 19 0.52 0.55 0.59 0.57
w/ UMAP 19 0.46 0.54 0.56 0.54
Encoder-Encoder
No dim. reduction 18 5.77 0.02 0.53 0.34
w/ PCA 19 0.51 0.53 0.40 0.47
w/ UMAP 15 0.49 0.55 0.46 0.63
Classifier Model
No dim. reduction 19 2.10 0.17 0.53 0.46
w/ PCA 17 0.45 0.61 0.53 0.53
w/ UMAP 18 0.95 0.46 0.44 0.51
Pretrained Decoder
No dim. reduction 19 2.83 0.09 0.61 0.47
w/ PCA 19 0.47 0.59 0.42 0.44
w/ UMAP 17 0.49 0.55 0.49 0.51
Pretrained Encoder-Decoder
No dim. reduction 19 2.53 0.06 0.48 0.55
w/ PCA 19 0.51 0.53 0.47 0.44
w/ UMAP 17 0.49 0.55 0.43 0.58

Table 12: Overall performance through internal (Davies-Bouldin Index, Silhouette) and external (Purity Political /
Education) validity measures for the clustering component of our framework. Intra-cluster separation indicative of
better overall clustering performance indicated by higher Silhouette and lower Davies-Bouldin scores. External
validity, measured via inter-cluster purity, indicated by higher purity scores
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