
Optimal Rates for Random Order Online Optimization

Uri Sherman
Blavatnik School of Computer Science

Tel Aviv University
urisherman@mail.tau.ac.il.

Tomer Koren
Blavatnik School of Computer Science

Tel Aviv University, and Google Research
tkoren@tauex.tau.ac.il.

Yishay Mansour
Blavatnik School of Computer Science

Tel Aviv University, and Google Research
mansour.yishay@gmail.com.

Abstract

We study online convex optimization in the random order model, recently proposed
by Garber et al. [8], where the loss functions may be chosen by an adversary, but are
then presented to the online algorithm in a uniformly random order. Focusing on
the scenario where the cumulative loss function is (strongly) convex, yet individual
loss functions are smooth but might be non-convex, we give algorithms that achieve
the optimal bounds and significantly outperform the results of Garber et al. [8],
completely removing the dimension dependence and improving their scaling with
respect to the strong convexity parameter. Our analysis relies on novel connections
between algorithmic stability and generalization for sampling without-replacement
analogous to those studied in the with-replacement i.i.d. setting, as well as on a
refined average stability analysis of stochastic gradient descent.

1 Introduction
Online convex optimization [25, 12] studies the iterative process of decision making as data arrives in
an online fashion. The model posits a game of) rounds, where in each round the learner chooses
a decision FC from a convex set , ⊆ ℝ3 , after which she observes a loss function 5C : , → ℝ,
and incurs loss 5C (FC). The learner’s objective is to minimize her regret, defined as her cumulative
loss minus that of the best decision in hindsight F∗ = arg minF ∈,

∑)
C=1 5C (F). In the prototypical

setting, the individual loss functions are assumed to be convex and adversarially chosen by an
opponent—commonly known as nature or the adversary—who has knowledge of the learner’s
algorithm. While this setup is fundamental enough to accommodate a diverse set of applications (see,
e.g., [12]), studying variants of the basic model promotes modeling flexibility, and further broadens
the set of problems to which optimization techniques may be applied.
Recently, Garber et al. [8] consider relaxing the convexity assumption by requiring that only on average
the loss is (strongly) convex—a property the authors refer to as cumulative (strong) convexity—but
do not require that the losses are convex individually. It is well known (e.g., [4]) that under these
assumptions, if the losses are sampled i.i.d. from some distribution, stochastic gradient descent (SGD)
obtains the optimal $ (log)) regret in expectation. However, as it turns out, in the fully adversarial
model the cumulative strong convexity assumption is too weak: Garber et al. [8] show that in this case
there is a linear regret lower bound. Consequently, they propose the random order model, where)
losses are chosen adversarially but then revealed to the learner in uniformly random order. Within this
model, under the relaxed convexity assumption Garber et al. [8] obtain sub-linear regret for a number
of specialized settings, differing in their assumptions on the structure of the individual loss functions.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

In the most general case (the one we consider in this paper), they prove online gradient descent obtains
regret $ ((3�2/λ3) log)) w.h.p. for �-Lipschitz λ-cumulative-strongly convex losses.
It is informative to compare the random order model with the i.i.d. stochastic case, where on
every round a new loss is sampled uniformly and independently from the set of losses, that is,
with-replacement. By contrast, the random order model specifies that on every round a new loss is
sampled uniformly without-replacement, an in particular not independently. Concretely, let L be
an arbitrary set of) smooth and Lipschitz continuous loss functions. Set � (F) B 1

)

∑
5 ∈L 5 (F),

and assume � is λ-strongly-convex over, . The learner’s goal is to minimize her regret on the loss
sequence 51, . . . , 5) obtained from a uniformly random ordering of L. As noted previously, if the
losses 5C were drawn i.i.d., SGD obtains the optimal $ (log)) regret even though the losses are not
individually convex. In a nutshell, when losses are i.i.d., the gradients used in the SGD update are
conditionally unbiased estimates of the gradient of the average (strongly convex) loss, hence the
optimal regret is achieved in expectation. The difficulty in the random order model stems from the fact
that random order gradients are not conditionally unbiased; given any set of past losses 51, . . . , 5C−1,
the next loss is uniform over the complement L \ { 51, . . . , 5C−1}, and thus ∇ 5C (FC) is biased.
To overcome this complication, Garber et al. [8] work via the uniform convergence route, and build on
concentration bounds applied to Hessians of the losses. As a result, they achieve suboptimal bounds,
particularly in the general case where a dimension factor is introduced by a discretization argument
necessary to ensure convergence over the entire domain. Here we choose a different strategy, and
draw connections to notions of algorithmic stability and generalization studied in statistical learning
theory. Our approach introduces significant improvements compared to prior work, and achieves
regret bounds optimal up to additive factors.

1.1 Our results
We present and analyze two algorithms for random order online optimization, the first of which obtains
the optimal regret up to additive factors. Let 51, . . . , 5) be a random order sequence of �-Lipschitz,
β-smooth losses, where 5C : , → ℝ for all C ≤) . Assume the domain, ⊂ ℝ3 is convex, and has
diameter bounded by �. Further, assume the average loss 1

)

∑)
C=1 5C is λ-strongly convex. We prove;

Theorem (informal). There exists an algorithm (Algorithm 1) for random order online optimization
that obtains regret of $

(
(�2/λ) log)

)
in expectation.

Although the above result matches the optimal result for the individually strongly convex setting (up
to additive factors), Algorithm 1 requires memory linear in) . This disadvantage motivates another
algorithm, which trades off an extra factor of κ = β/λ in the regret for lower memory requirements.

Theorem (informal). There exists an algorithm (Algorithm 2) for random order online optimization
that requires memory linear in 3, and obtains regret of $

(
(β�2/λ2) log)

)
in expectation.

Big-$ notation in both theorems hides additive factors polynomial in problem parameters β, � and
� (but does not hide multiplicative factors in these parameters). By comparison, Garber et al. [8]
obtain a regret bound of$ ((3�2/λ3) log)) w.h.p. for this setting. Both of our algorithms completely
remove the dimension factor 3, and reduce scaling w.r.t. the strong convexity parameter by a factor of
1/λ2 and 1/λ respectively. Moreover, their results require the losses to have a Lipschitz Hessian (see
8, Theorem A.3), an assumption we do not make.
In addition, we consider the case that � is convex (but not strongly convex), and apply our above
results by means of regularization. As a corollary of the first theorem, we obtain for this setting
regret that scales as $̃ (

√
)), matching up to logarithmic and additive factors the optimal rate for the

individually convex setting. Similarly, the second theorem implies a $̃ ()2/3) regret algorithm which
is also memory efficient for the convex � case. Notably, a similar reduction applied to the results
of Garber et al. [8] would yield a regret bound of $̃ (3)3/4). This highlights the significance of our
improvement to the dependence on λ.
Finally, we note it remains an open question to determine whether vanilla without-replacement SGD
achieves optimal regret in the random-order model (our results leave a multiplicative gap of order 1/λ
between the upper and lower bounds). For the case of quadratic losses, however, using our techniques
combined with a concentration argument it is possible to show that SGD indeed achieves optimal
$ (log)/λ) regret bound (up to logarithmic terms).

2

1.2 Overview of techniques
Our approach builds on the observation that regret on a random order loss sequence may be expressed
as the average generalization error w.r.t a without-replacement training sample. In light of this, we
relate random order regret to a suitable notion of algorithmic stability, mimicking in a sense a well
known argument previously employed in the context of i.i.d. sampled training sets [3, 21]. At a high
level, stability measures the sensitivity of an algorithm to small changes in its training set, and is
a classical approach to proving generalization bounds [3, 21]. More often than not, the particular
notion used in practice is uniform stability, where sensitivity is measured w.r.t. the worst case small
change in the training dataset; max(⊆Z(<) ‖ 5 (A(() − 5 (A((′)))‖.
Our key insight is that while we cannot hope for uniform stability as losses are not assumed to be
convex individually, we may exploit strong convexity of the population loss to show SGD admits
average stability; E(∼Z(<) ‖ 5 (A(()) − 5 (A((′))‖ ≤ ε(<). In particular, we prove the gradient
update is contractive in expectation; E ‖G−η∇ 5 (G) − (H−η∇ 5 (H))‖ � E ‖G− H‖ under the cumulative
strong convexity assumption. In turn, this yields a stability result which implies regret that scales
with 1/C for the early rounds up to C ≈)/κ, where κ is the condition number of the problem. In short,
as the game progresses the bias of the random order gradient estimates increases, and the gradient
update becomes unstable.
To overcome the loss of stability in later rounds, we devise a simple online sampling mechanism
that generates i.i.d. uniform samples from a random order distribution, effectively ensuring unbiased
gradient estimates throughout all) rounds, and consequently optimal regret up to additive factors.
Finally, our approach allows us to develop an analysis framework that naturally accommodates SGD
based algorithms in the random order model, and in a broader sense establish stability of SGD in a
new, relatively general setting.

1.3 Related work
Random-Order Online Optimization was proposed in the recent work of [8] (where it is referred to as
ROOCO), who establish an $ ((3�2/λ3) log)) regret upper bound for �-Lipschitz λ-cumulative-
strongly convex losses. In the classical OCO setup [25, 12], under the assumption the losses are
λ-strongly convex individually, it is well known the minimax regret scales as Θ((�2/λ) log)), and
that the lower bound also applies under the assumption the adversary is i.i.d. stochastic [14, 13]. 1 In
addition, it is well known (see e.g., [4]) that the upper bound for the i.i.d. adversary is obtained in
expectation by SGD also for non-convex losses, as long as the expected loss is strongly convex. In
this work, we show that the same regret upper bound also holds for the random order adversary.
Also relevant to our work is the study of stability and generalization [3, 21] in modern learning theory,
and in particular stability properties of SGD. Proving generalization bounds with stability arguments
is a well known approach dating back at least to [19, 5, 6]. The specific notion of average stability in
the i.i.d. setting we draw upon was defined in [21], though many similar measures have appeared in
the literature long before their work (see [3, 21] for an overview). The influential work of [11] gave
the first generalization bounds for general forms of SGD with an analysis relying on the notion of
uniform stability [3]. Since then, several works have used a similar approach to gain further insight
into stability and generalization properties of SGD, e.g., [15, 7, 2].
A related line of work [9, 22, 16, 20, 18] studies SGD without-replacement for solving finite-sum
optimization problems, a setting commonly encountered in offline machine learning applications.
Here, multiple epochs of SGD are executed over a given training set, with the objective to produce a
single output (approximately) minimizing the average loss. However, the majority of the results are
obtained under the (vastly simplifying) assumption that the individual loss functions are convex, and
therefore do not apply in our setting. In addition, the performance metric of interest is convergence
rate, and not regret which is the focus of our paper. In particular, Nagaraj et al. [16] employ the
method of exchangeable pairs to relate the average and random order loss to a stability-like property,
and obtain optimal (up to polylogarithmic factors) convergence rate for a single epoch, albeit only for
individually convex loss functions.
Recently, a number of papers study SGD without-replacement and attempt to relax the convexity
assumption [10, 17, 1], but the bounds they obtain are under conditions inapplicable for our setting.

1The lower bound given in Hazan and Kale [13] uses quadratic (hence, smooth) losses, and is easily extensible
to without-replacement sampling, and therefore applies in our setting.

3

Specifically, they impose a requirement that the number of epochs passes a certain threshold strictly
larger than one. Moreover, state-of-the-art bounds achieved by [1] are suboptimal w.r.t ours even had
we ignored the epoch requirement.

2 Setup: Random-Order Online Optimization
In this section, we review notation and assumptions used throughout the paper, and give the
formal definition of the model we consider. We let / = {ζ1, . . . , ζ) } denote an arbitrary set of
) different datapoints, and denote by , ⊆ ℝ3 a closed convex set with diameter bounded by
� B maxG,H∈, ‖G − H‖. In addition, we let Π(G) B Π, (G) B arg minF ∈, ‖G − F‖2 denote the
orthogonal projection onto, .
We consider a loss function 5 : , × / → ℝ, and denote the average (also expected / population) loss
by � (F) B 1

)

∑
I∈/ 5 (F; I). We make the following assumptions;

Assumption 1 (Individual Lipschitz Continuity). For all I ∈ / , 5 (· ; I) is �-Lipschitz; namely
‖∇ 5 (F; I)‖ ≤ � for all F ∈ , .
Assumption 2 (Individual smoothness). For all I ∈ / , 5 (· ; I) is β-smooth; namely ‖∇ 5 (G; I) −
∇ 5 (H; I)‖ ≤ β‖G − H‖ for all G, H ∈ , .
Assumption 3 (Cumulative strong convexity). � is λ-strongly convex; namely � (H) ≥ � (G) +
∇� (G)T (H − G) + λ

2 ‖H − G‖
2 for all G, H ∈ , .

In addition, we define the condition number of � by κ B β/λ.
We will be primarily interested in the random sequence of losses 5 (· ; IC) obtained from uniformly
random orderings of / . Let I1, . . . , I< ∼ Z(<) denote a random sequence of < datapoints, where
IC = ζσC

∈ / and σ : [)] → [)] is a uniformly random permutation. Equivalently, Z(<) may be
also considered as the distribution of < datapoints sampled sequentially without-replacement from / .
Omitting the number of samples parameter and writing I ∼ Z denotes a uniformly random sample of
a single datapoint from / . In addition, if (= (I1, . . . , I<) is a sequence of datapoints, I ∼ Z \ (
denotes a uniformly random sample of a single datapoint from / \ (. In sake of conciseness, we
write (, Ĩ ∼ Z(<, 1) to denote a sample of a sequence (∼ Z(<), followed by a sample from the
complement Ĩ ∼ Z\ (. We writeF< = σ(I1, . . . , I<) to denote the filtration given by the sequence of
σ-algebras generated by the random variables (I1, . . . , I<). This, of course, is equivalent to sampling
I1, . . . I<+1 ∼ Z(< + 1), and then setting (= (I1, . . . , I<) and Ĩ = I<+1.
Given a random order sequence I1, . . . , I) ∼ Z()), we consider the problem of minimizing the
expected regret with an online algorithm. We denote the minimizer of the population loss � by
F∗ B arg minF ∈, � (F), and let FC denote the iterates produced by an online algorithm A. The
expected regret of A on Z()) is defined as;

R) B E
[)∑
C=1

5 (FC ; IC) − 5 (F∗; IC)
]
,

where the expectation is over the random order sequence and any randomness potentially introduced
by A. Finally, when a sequence of realized datapoints I1, . . . , I< is clear from context, we let
�< (F) B 1

<

∑<
C=1 5 (F; IC) denote their empirical average loss.

3 Stability and Generalization Without Replacement
In this section, we discuss notions of stability and generalization when sampling without-replacement,
and give basic results relating to stability of SGD in the setting under consideration. We work
with ordered training sets, and write (= (I1, . . . , I<) to make the ordering explicit in our
notation. When such a training set is in context along with another datapoint Ĩ8 , we define
((8) B (I1, . . . , I8−1, Ĩ8 , I8+1, . . . , I<) to be the new training set formed by taking (and swapping the
8’th datapoint I8 with Ĩ8 . Finally, we say A is a learning algorithm if it maps training sets of any
length to a decision; A : /∗ → , .

3.1 Recap: Stability and generalization in the i.i.d. setting
In this section we recall the relevant definitions previously studied in the i.i.d. setting. Here, we assume
the training set (= (I1, . . . , I<) ∼ D< is an i.i.d. sample of < datapoints from some predefined
distribution D over elements of / .

4

Definition (on-average generalization; [21, 3]). We say a learning algorithmA on-average-generalizes
with rate εgen (<) if for all <;

| E(∼D< [�< (A(()) − � (A(())] | ≤ εgen (<).

The definition of stability that follows relates a small change in the training set (→ ((8) to the change
in the learning algorithm’s performance. Here, as one would expect, the swapped datapoint Ĩ8 ∼D is
sampled independently from the original training set sample (.
Definition (average-RO stability; [21, 3]). We say a learning algorithm A is average-replace-one
stable with rate εstab (<) if for all <;����� 1

<

<∑
8=1

E(∼D< , Ĩ8∼D [5 (A((); Ĩ8) − 5 (A(((8) ; Ĩ8)]
����� ≤ εstab (<).

With the above definitions, it is well known stability and generalization are in fact equivalent
(e.g., [21]).

3.2 Stability and generalization without replacement
In this section we discuss the analogous notions suitable for sampling without-replacement. We
adopt the term out-of-sample (oos) to distinguish the without-replacement setting, and say A
on-average-generalize-oos with rate εgen (<) if��E(,Ĩ∼Z(<,1) [5 (A((); Ĩ) − �< (A(())] �� ≤ εgen (<). (1)
Note that here, generalization is measured w.r.t. a datapoint drawn out-of-sample, and in particular
not independently of (. The situation is similar for the notion of stability; while in the i.i.d. case the
“non-coupled” index 8 in ((8) hosts a different datapoint sampled independently, here this datapoint is
sampled from the complement / \ (. The analogous definition for stability without-replacement says
a learning algorithm A is average-replace-one-oos stable with rate εstab if����� 1

<

<∑
8=1

E(,Ĩ8∼Z(<,1) [5 (A((); Ĩ8) − 5 (A(((8)); Ĩ8)]
����� ≤ εstab (<). (2)

However, it will be more convenient in our case to work with a slightly different definition, which
relates to the distance between outputs of the learning algorithm, rather than to the change in
out-of-sample loss. We consider w.l.o.g. randomized learning algorithms � : /∗ ×X→ , , where
ξ ∈ X denotes the internal random seed used byA. For convenience, we slightly overload notation
and let ξ ∼ X denote the distribution over A’s random seeds.
Definition 1 (on-average-oos stability). A learning algorithmA is on-average-oos stable with rate
εstab (<) on random order distribution Z if

max
8≤<

E(,Ĩ8∼Z(<,1) ,ξ∼X
[
‖A((; ξ) −A(((8) ; ξ)‖

]
≤ εstab (<).

We wish to draw the reader’s attention to two important aspects of the above definition. First, note
that the measure is w.r.t. random training sets, which significantly differs from uniform stability where
worst case training sets are considered. The maximum in the definition relates to the index of the
swapped sample, and not to the training sets (, ((8) . Second, the same random seed ξ is fed to A on
both training sets, that is, we measure the expected distance between outputs subject to a maximal
coupling of the algorithm’s randomness.
When we discuss an online algorithm A and a random order sequence I1, . . . , I) ∼ Z()) is in
context, we denote by I1:< = (I1, . . . , I<) the prefix of length <. In addition, if F<+1 = A(I1:<; ξ),
we denote the coupled iterate by

F
(8)
<+1 B A(I (8)1:<; ξ) = A(I1, . . . , I8−1, Ĩ8 , I8+1, . . . , I<; ξ), where Ĩ8 = I<+1. (3)

With this notation, ifA satisfies Definition 1 with rate ε(<), we have E ‖F<+1 − F (8)<+1‖ ≤ ε(<) for
all 8 ≤ <. Note that an online learning algorithm is nothing more than a learning algorithm that
respects the order of the samples it is given as input. To conclude this section, we relate the population
and out-of-sample performance gap to stability of the learning algorithm, as provided by the below
lemma.

5

Lemma 1. AssumeA is on-avg-oos stable with rate ε(<), and let ` : , × / → ℝ be any !-Lipschitz
loss function. Then; ���E(,Ĩ∼Z(<,1) ,I∼Z [

`(A((); Ĩ) − `(A((); I)
] ��� ≤ !<

)
ε(<).

IfA is an online algorithm producing iterates FC and I1, . . . , IC ∼ Z(C) is a random order sample,
this immediately implies

E[5 (FC ; IC) − � (FC)] ≤
� (C − 1)

)
ε(C − 1).

We provide the proof in the full version of the paper [23].

3.3 Average stability of SGD
In this section, we develop the basic tools employed to establish that under appropriate conditions,
SGD is algorithmically stable in the sense of Definition 1. Crucially, by considering average stability
we are able to leverage strong convexity of the expected function � and prove the desired result. For
F ∈ , and ψ : , → ℝ, we denote by G(F;ψ, η) = Π(F − η∇ψ(F)) a projected gradient descent
step from F. Our key lemma stated below and proved in the full version of the paper [23], says a
gradient step on a random function ψ is contractive in expectation when ψ is strongly convex in
expectation, and the step-size is sufficiently small.
Lemma 2. Consider an arbitrary discrete distribution P of �-Lipschitz and β-smooth functions
ψ : , → ℝ such that Ψ(F) B Eψ(F) is µ-strongly-convex. Then for any G, H ∈ , , a gradient
descent step with step-size η ≤ µ/β2 satisfies;

Eψ∼P ‖G(G;ψ, η) − G(H;ψ, η)‖ ≤
(
1 − ηµ

2

)
‖G − H‖.

Notice that the above result dictates for the step-size to be lesser than µ/β2, which is roughly a
factor of 1/κ smaller than needed to ensure (deterministic) contractivity under the assumption of
individually strongly convex losses (see [11]). Lemma 2 serves as a building block to prove stability
of SGD subject to relatively generic conditions, which we do next. Loosely speaking, if two training
sequences do not differ too much, and the conditional expected loss is strongly convex, the expected
distance between SGD iterates shrinks proportionally to the number of iterations executed.
We denote by GD((;F1, <, {ηC }) the iterate F<+1 ∈ , produced by executing < projected gradient
descent steps on a sequence of datapoints (= (I1, . . . , Iτ), τ ≥ <, starting at the initial point F1 ∈ , ,
with step-sizes {ηC }. When any one of F1, < or {ηC } are clear from context, they may be omitted
in sake of conciseness. Our next lemma quantifies how small perturbations in random training sets
translate to the expected change in outputs of SGD. Informally, it says that under the appropriate
conditions, if we swap just a single training index 8 ≤ <, the sequence of gradient steps arrives at the
same output up to distance $ (1/<).
Lemma 3. Let 8 ≤ < ∈ ℕ, and (= (I1, . . . , I<), (′ = (I′1, . . . , I

′
<) be two random datapoint

sequences. Further, assume that for 0 < µ and 0 ≤ δ ≤ µ/2β, it holds that

(i) Pr(IC ≠ I′C | FC−1) ≤ δ for all C ≠ 8;

(ii) E
[
5 (F; IC) | FC−1

]
is µ-strongly convex as a function of FC−1-measurable F ∈ , ,

where FC−1 B σ(I1, I
′
1, . . . , IC−1, I

′
C−1). Then, for step-size schedule ηC = min

{
µ̃/β2, 2/µ̃C

}
with

µ̃ B µ − δβ, and any F1 ∈ , , we have;

E ‖GD((;F1, <) − GD((′;F1, <)‖ ≤
4�
µ̃<
(1 + 4δ<).

The proof of the above lemma is given by following the recursive relation specified by Lemma 2 and
the conditions imposed on the random sequences (, (′. The details are rather technical and are thus
deferred to the full version of the paper [23]. To conclude this section, we state and prove a simple
corollary of Lemma 3, establishing stability of SGD when the number of steps taken is sufficiently
small.

6

Corollary 1. Let F1 ∈ , , and set ηC = min
{
λ/2β2, 4/λC

}
. Then the SGD update defined by

FC+1 = Π(FC − ηC∇ 5 (FC ; IC)) is on-avg-oos stable with rate

εstab (<) ≤
8�
λ<

,

for all < ≤)/2κ.
Proof. Fix 8 ≤ <, let A denote the SGD algorithm, and consider a random order sequence
I1, . . . , I) ∼ Z()). We have F<+1 = A(I1:<), and F (8)<+1 = A(I (8)1:<) as defined in Eq. (3) (note that
here though,A has no internal randomness). Next, we verify conditions for Lemma 3 are satisfied
with the two sequences (B I1:< and (′ B (I′1 . . . , I

′
<) B I

(8)
1:<.

Let FC−1 B σ(I1, I
′
1, . . . , IC−1, I

′
C−1), and by definition of (and (′, we have that IC = I′C for all

C ≠ 8, hence clearly Pr(IC ≠ I′C | FC−1) = 0 for all C ≠ 8. For the second condition, let FC−1 denote
the set of all datapoints observed prior to round C; FC−1 B {I ∈ / | I ∈ (I1, I

′
1, . . . , IC−1, I

′
C−1)}.

This means FC−1 contains exactly {I1, . . . , IC−1}, and perhaps Ĩ8 depending on whether C > 8, hence
: B |FC−1 | ∈ {C, C − 1}. Now, given FC−1, we have that IC is uniform over Z \ FC−1, therefore

E[5 (F; IC) | FC−1] =
1

) − :
∑

I∈/\FC−1

5 (F; I) =)

) − :

(
� (F) − 1

)

∑
I∈FC−1

5 (F; I)
)
.

By our smoothness assumption, 1
)

∑
I∈FC−1 5 (F; I) is (:β/))-smooth, and in addition :β/) ≤

<β/) ≤ (λ/2β)β = λ/2. Therefore, by λ-strong convexity of � we get that the last term in the above
derivation is at least λ/2-strongly-convex (this follows from a standard argument, see Lemma 10).
Therefore, by Lemma 3 with µ B λ/2, δ B 0 it now follows that

E ‖F<+1 − F (8)<+1‖ = E ‖GD(() − GD((′)‖ ≤ 8�
λ<

,

which completes the proof. �

4 SGD for Random Order Online Optimization
In this section, we present two algorithms for random order online optimization. Lemma 1 motivates
us to derive SGD based algorithms that obtain low regret w.r.t. the population loss �, and are
algorithmically stable in the sense of Definition 1. Given a random order sequence I1, . . . , I) ∼ Z()),
the SGD update with gradient estimates {6̂C } and step sizes {ηC } is given by

FC+1 ← Π(FC − ηC 6̂C).
It is not hard to show that the regret w.r.t. � of SGD is directly related to the error terms introduced
by using 6̂C in place of the true population loss gradients ∇� (FC). This fact is made formal in the
lemma below, which serves as a starting point for the analysis of both algorithms we present. The
proof follows from standard arguments, and is deferred to the full version of the paper [23].
Lemma 4. Consider τ iterations of SGD with gradient estimates {6̂C } and step-size schedule
ηC = min

{
µ̃/β2, 2/(µ̃C)

}
. We have that the following bound holds with probability one;

τ∑
C=1

� (FC) − � (F∗) ≤
β2�2

2µ̃
+ �

2

µ̃
(1 + log τ) +

τ∑
C=1
(∇� (FC) − 6̂C)T (FC − F∗). (4)

4.1 Reservoir SGD
In light of Corollary 1, it is evident that a different strategy is necessary to achieve stability in
late rounds of the online game. As a solution, Algorithm 1 presented here employs a sampling
procedure reminiscent of reservoir sampling [24], which results in gradient estimates 6̂C that are
conditionally unbiased estimates of ∇� (FC) throughout all) rounds. This ensures the conditionally
expected function on every round is strongly convex, thereby implying stability is maintained for
the duration of the game. As another implication, the error terms on the RHS of Eq. (4) vanish,
which essentially reduces the optimization problem (i.e., regret w.r.t. the population loss �) to the
i.i.d. setting. Consequently, a regret bound will follow from a batch-to-online conversion supported
by Lemma 1 and Lemma 3.
Our first lemma given below, shows that the intermediate sequence of datapoints I′C generated in line
4 are i.i.d. uniformly distributed, which immediately implies that E 6̂C = ∇� (FC).

7

Algorithm 1 ReservoirSGD
1: input: step-sizes η1, . . . , η) ∈ ℝ+, F1 ∈ ,
2: for C = 1 to) do
3: Play FC , Observe IC

4: Set 6̂C B ∇ 5 (FC ; I′C), where I′C =
{
IC w.p. 1 − C−1

)

Unif (I1, . . . , IC−1) w.p. C−1
)

5: FC+1 ← Π(FC − ηC 6̂C)
6: end for

Lemma 5. The {I′C } intermediate sequence produced by Algorithm 1 in line 4 is uniform over / and
i.i.d.;

∀I ∈ /; Pr(I′C = I) = Pr(I′C = I | I<C) = 1
)
.

Proof. Fix the first C − 1 sampled datapoints I1, . . . , IC−1 ∼ Z(C − 1). Then for all I ∈ {I1, . . . , IC−1},

Pr(I′C = I | I1:C−1) =
C − 1
)
· 1
C − 1

=
1
)
.

In addition, since I1, . . . , IC ∼ Z(C), it follows that IC is uniform over / \ I1:C−1. (Note that as we are
conditioning on I1:C−1, we have that / \ I1:C−1 is deterministic.) Hence, for all I ∈ / \ I1:C−1 we have

Pr(I′C = I | I1:C−1) =
) − C + 1

)
· 1
) − C + 1

=
1
)
.

The above implies that Pr(I′C = I | I1:C−1) = 1/) for all I ∈ / . Finally, the by the law of total
probability;

Pr(I′C = I) = EI1 ,...IC−1∼Z(C−1)
[

Pr(I′C = I | I1:C−1)
]
=

1
)
,

as desired. �

Next, we argue Algorithm 1 maintains average stability with the desired rate throughout all) rounds.
Lemma 6. Assume) ≥ 2β/λ, and set µ̃ B λ − β/) . Then Algorithm 1 with step-size schedule
ηC = min

{
µ̃/β2, 2/(µ̃C)

}
is on-avg-oos stable (Definition 1) with rate

εstab (<) ≤
40�
λ<

.

Proof. Let 8 ≤ < ≤) , and recall the definition of the coupled iterate in Eq. (3). We have that

E ‖F<+1 − F (8)<+1‖ = E ‖GD((′) − GD((′′)‖,
where (′ = (I′1, . . . , I

′
<) and (′′ = (I′′1 , . . . , I

′′
<) denote the intermediate sequences (line 4) produced

when running Algorithm 1 on I1:< and I (8)1:< respectively. Now, consider the indexes of datapoints
selected by the sampling mechanism on line 4 which we denote by 9C , meaning 9C = ; when I′C = I; .
Since the same random seed is used for each coupled iterate, we have that the indexes 9C from both
execution paths are the same. Next, we will show (′, (′′ satisfy the conditions of Lemma 3.
Indeed, denote by FC the filtration encapsulating all randomness (random order and algorithm) up to
and including round C. Then by Lemma 5 and since I1:< and I (8)1:< differ only at index 8, we have for
any C > 8;

Pr(I′C ≠ I′′C | FC−1) = Pr(9C = 8 | FC−1) = 1
)
.

In addition, it trivially follows that Pr(I′C ≠ I′′C | FC−1) = 0 for all C < 8. Owed to our assumption on
) , we have 1/) ≤ λ/2β, and so the first condition is satisfied. For the second condition, note that
again by Lemma 5, E[5 (F; I′C) | FC−1] = � (F) for any FC−1-measurable F ∈ , , which immediately
implies λ-strong convexity of the conditionally expected function.
By the above, we obtain that (′, (′′ follow a distribution satisfying conditions required by Lemma 3
with µ B λ, δ B 1/) , therefore,

E ‖GD((′;<) − GD((′′;<)‖ ≤ 4�
(λ − (1/))β)<

(
1 + 4

<

)

)
≤ 40�

λ<
,

and we are done. �

8

A regret bound for Algorithm 1 readily follows, as we have essentially established both convergence
rate and stability of the algorithm. Below, we state and prove our main result concluding this section.
Theorem 1. Running Algorithm 1 with step-size schedule ηC = min

{
µ̃/β2, 2/(µ̃C)

}
where µ̃ B

λ − β/) , it is guaranteed that;

E
[)∑
C=1

5 (FC ; IC) − 5 (F∗; IC)
]
≤ 2�2

λ
(1 + log)) + 40�2 + β2�2 + 2β��

λ
.

Proof. By Lemma 5, we have that for all C ≤) ,

E[∇ 5 (FC ; I′C))T (FC − F∗)] = E[EC [∇ 5 (FC ; I′C)])T (FC − F∗)] = E[∇� (FC)T (FC − F∗)],

where EC [·] = E[· | I1, I
′
1, . . . , IC−1, I

′
C−1] denotes the conditional expectation w.r.t. all rounds up to

and not including C. This implies the gradient error terms on the RHS of Eq. (4) vanish. In addition,
note we may assume) ≥ 2β/λ, for otherwise it trivially follows that

∑)
C=1 5 (FC ; IC) − 5 (F∗; IC) ≤

��) ≤ 2β��
λ

. Hence δ B 1/) ≤ λ/2β, and by Lemma 4 we obtain the following bound on the
regret w.r.t. the population loss �;

E
[)∑
C=1

� (FC) − � (F∗)
]
≤ β2�2

λ
+ 2�2

λ
(1 + log)).

To establish online performance, observe that by Lemma 1 and Lemma 6 we have

E[5 (FC ; IC) − � (FC)] ≤
� (C − 1)

)
εstab (C − 1) = � (C − 1)

)

40�
λ(C − 1) =

40�2

λ)
.

Therefore,

E
[)∑
C=1

5 (FC ; IC) − 5 (F∗; IC)
]
=

)∑
C=1

E[5 (FC ; IC) − � (FC)] + E
[)∑
C=1

� (FC) − � (F∗)
]

≤ 40�2

λ
+ β

2�2

λ
+ 2�2

λ
(1 + log)),

and the result follows. �

4.2 SGD without replacement
While Algorithm 1 obtains regret which is optimal up to additive factors, it is memory intensive due to
the sampling procedure requiring the history of the entire loss sequence. This motivates Algorithm 2
which uses the random order gradients as they arrive, and sacrifices a factor of κ in the regret bound
for lower memory requirements.

Algorithm 2 SGD-without-replacement
1: input: τ,) ∈ ℕ, step-sizes η1, . . . , ητ ∈ ℝ+, F1 ∈ ,
2: for C = 1 to τ do
3: Play FC , Observe IC
4: FC+1 ← Π(FC − ηC 6̂C), where 6̂C B ∇ 5 (FC ; IC)
5: end for
6: for C = τ + 1, . . . ,) : play FC ≡ F̄ B 1

τ

∑τ
8=1 F8 .

With Corollary 1, we already know Algorithm 2 is stable with rate $ (1/<) for τ ≤)/2κ, at least
for all iterates excluding F̄. However, it is not clear a priori whether these iterates also obtain good
convergence rate—to prove this we must control the gradient error terms on the RHS of Eq. (4).
Evidently, with random order gradient estimates the behavior of these error terms is also related to
stability in the same sense that the actual losses are. By Lemma 1 with `(F; I) B ∇ 5 (F; IC)T (F−F∗),
it only remains to derive the appropriate Lipschitz constant, which is done in our next lemma. Notably,
this means that the two sources of error, gradient estimates and the batch-to-online gap, both hinge on
the very same stability property of the algorithm.

9

Lemma 7. Running Algorithm 2 with a step-size schedule ηC = min
{
λ/2β2, 4/λC

}
and τ =)/2κ,

we have that the gradient error terms on the RHS of Eq. (4) are bounded, for all C ≤ τ, as

E[(∇� (FC) − 6̂C)T (FC − F∗)] ≤
8� (� + β�)

λ)
.

The proof of Lemma 7 is given by arguments following the above discussion, and is deferred to the
full version of the paper [23]. Next, we state and prove our main theorem for this section providing
the regret guarantees for Algorithm 2.
Theorem 2. Running Algorithm 2 with a step-size schedule ηC = min

{
λ/2β2, 4/λC

}
and τ =)/2κ,

it holds that

E
[)∑
C=1

5 (FC ; IC) − 5 (F∗; IC)
]
= $

(
β�2

λ2 log) + β��
λ
+ β

3�2

λ2

)
.

The proof of Theorem 2 provided in the full version of the paper [23], hinges on the ingredients
discussed thus far, along with the fact that averaging preserves stability.

4.3 The convex case
Given Algorithms 1 and 2, we can derive as an immediate corollary regret bounds for the case where the
loss function 5 is only assumed to be convex in expectation, but not strongly convex. This is achieved
by adding L2 regularization; pick F0 ∈ , arbitrarily, and consider 5 α(F; I) B 5 (F; I) + α

2 ‖F−F0‖2.
By transforming the gradient estimators 6̂C ← 6̂C + α(FC − F0) in both algorithms, we optimize
for the regularized random order loss sequence 5 α(·; I1), . . . 5 α(·; I)), and obtain regret bounds for
suitable choices of α.
Corollary 2. Assume the loss function 5 : , × / → ℝ is �-Lipschitz and β-smooth for all I ∈ /
individually (Assumption 1 and Assumption 2), and that 1

)

∑
I∈/ 5 (·; I) is convex over, . Then, we

have the following guarantees for running Algorithms 1 and 2 on the regularized loss sequence:

(i) for Algorithm 1 and α = 1/
√
); E

[∑)
C=1 5 (FC ; IC) − 5 (F∗; IC)

]
= $̃ (

√
)),

(ii) for Algorithm 2 and α = 1/)1/3; E
[∑)

C=1 5 (FC ; IC) − 5 (F∗; IC)
]
= $̃ ()2/3) ,

where big-$̃ hides polynomial dependence on the problem parameters β, �, �, and logarithmic
dependence on) .
Proof. To ease notational clutter denote 5C (F) B 5 (F; IC) and 5 αC (F) B 5 α (F; IC) = 5C (F) + α

2 ‖F −
F0‖2. Let �α(F) B 1

)

∑
I∈/ 5

α (F; I), then �α (F) = � (F) + α
2 ‖F − F0‖2, which implies that �α

is α-strongly convex. Therefore,

E
[)∑
C=1

5 αC (FC) − 5 αC (F∗)
]
≤ R) (α),

where R) (α) denotes the regret w.r.t. the regularized loss sequence 5 αC . In addition;
)∑
C=1

5C (FC) − 5C (F∗) =
)∑
C=1

5C (FC) − 5 αC (FC) +
)∑
C=1

5 αC (FC) − 5 αC (F∗) +
)∑
C=1

5 αC (F∗) − 5C (F∗)

=
α

2

)∑
C=1
‖FC − F0‖2 +

)∑
C=1

5 αC (FC) − 5 αC (F∗) +
α

2

)∑
C=1
‖F∗ − F0‖2

≤
)∑
C=1

5 αC (FC) − 5 αC (F∗) + α�2)

≤ R) (α) + α�2).

The result follows after substituting for the values of α specified in the statement of the theorem, and
the regret bounds of Theorems 1 and 2. �

We conclude by noting the above result underscores the importance of obtaining bounds with good
dependence on the strong convexity parameter. In particular, only the optimal 1/λ dependence allows
for regularization that guarantees optimal (up to logarithmic factors) performance w.r.t.) in the
non-strongly convex setting.

10

Acknowledgements and funding disclosure
This work was supported by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation program (grant agreement No. 882396), by the Israel Science
Foundation (grants number 993/17 and 2549/19), by the Len Blavatnik and the Blavatnik Family
foundation, and by the Yandex Initiative in Machine Learning at Tel Aviv University.

References
[1] K. Ahn, C. Yun, and S. Sra. SGD with shuffling: optimal rates without component convexity

and large epoch requirements. arXiv preprint arXiv:2006.06946, 2020.
[2] R. Bassily, V. Feldman, C. Guzmán, and K. Talwar. Stability of stochastic gradient descent on

nonsmooth convex losses. Advances in Neural Information Processing Systems, 33, 2020.
[3] O. Bousquet and A. Elisseeff. Stability and generalization. The Journal of Machine Learning

Research, 2:499–526, 2002.
[4] S. Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and Trends®

in Machine Learning, 8(3-4):231–357, 2015.
[5] L. Devroye and T. Wagner. Distribution-free inequalities for the deleted and holdout error

estimates. IEEE Transactions on Information Theory, 25(2):202–207, 1979.
[6] L. Devroye and T. Wagner. Distribution-free performance bounds with the resubstitution error

estimate (corresp.). IEEE Transactions on Information Theory, 25(2):208–210, 1979.
[7] V. Feldman and J. Vondrak. High probability generalization bounds for uniformly stable

algorithms with nearly optimal rate. In Conference on Learning Theory, pages 1270–1279.
PMLR, 2019.

[8] D. Garber, G. Korcia, and K. Levy. Online convex optimization in the random order model. In
International Conference on Machine Learning, pages 3387–3396. PMLR, 2020.

[9] M. Gürbüzbalaban, A. Ozdaglar, and P. A. Parrilo. Why random reshuffling beats stochastic
gradient descent. Mathematical Programming, pages 1–36, 2019.

[10] J. Haochen and S. Sra. Random shuffling beats SGD after finite epochs. In International
Conference on Machine Learning, pages 2624–2633. PMLR, 2019.

[11] M. Hardt, B. Recht, and Y. Singer. Train faster, generalize better: Stability of stochastic gradient
descent. In International Conference on Machine Learning, pages 1225–1234. PMLR, 2016.

[12] E. Hazan. Introduction to online convex optimization. arXiv preprint arXiv:1909.05207, 2019.
[13] E. Hazan and S. Kale. Beyond the regret minimization barrier: an optimal algorithm for

stochastic strongly-convex optimization. In Proceedings of the 24th Annual Conference on
Learning Theory, pages 421–436. JMLR Workshop and Conference Proceedings, 2011.

[14] E. Hazan, A. Agarwal, and S. Kale. Logarithmic regret algorithms for online convex optimization.
Machine Learning, 69(2-3):169–192, 2007.

[15] B. London. A pac-bayesian analysis of randomized learning with application to stochastic
gradient descent. In Proceedings of the 31st International Conference on Neural Information
Processing Systems, pages 2935–2944, 2017.

[16] D. Nagaraj, P. Jain, and P. Netrapalli. SGD without replacement: Sharper rates for general
smooth convex functions. In International Conference on Machine Learning, pages 4703–4711.
PMLR, 2019.

[17] L. M. Nguyen, Q. Tran-Dinh, D. T. Phan, P. H. Nguyen, and M. van Dĳk. A unified convergence
analysis for shuffling-type gradient methods. arXiv preprint arXiv:2002.08246, 2020.

[18] S. Rajput, A. Gupta, and D. Papailiopoulos. Closing the convergence gap of SGD without
replacement. In International Conference on Machine Learning, pages 7964–7973. PMLR,
2020.

[19] W. H. Rogers and T. J. Wagner. A finite sample distribution-free performance bound for local
discrimination rules. The Annals of Statistics, pages 506–514, 1978.

[20] I. Safran and O. Shamir. How good is SGD with random shuffling? In Conference on Learning
Theory, pages 3250–3284. PMLR, 2020.

11

[21] S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan. Learnability, stability and uniform
convergence. The Journal of Machine Learning Research, 11:2635–2670, 2010.

[22] O. Shamir. Without-replacement sampling for stochastic gradient methods. In Proceedings of
the 30th International Conference on Neural Information Processing Systems, pages 46–54,
2016.

[23] U. Sherman, T. Koren, and Y. Mansour. Optimal rates for random order online optimization.
arXiv preprint arXiv:2106.15207, 2021.

[24] J. S. Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical Software
(TOMS), 11(1):37–57, 1985.

[25] M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent.
In Proceedings of the 20th international conference on machine learning (ICML’03), pages
928–936, 2003.

12

	Introduction
	Our results
	Overview of techniques
	Related work

	Setup: Random-Order Online Optimization
	Stability and Generalization Without Replacement
	Recap: Stability and generalization in the i.i.d. setting
	Stability and generalization without replacement
	Average stability of SGD

	SGD for Random Order Online Optimization
	Reservoir SGD
	SGD without replacement
	The convex case

	Stability proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3

	SGD without-replacement - proofs
	Auxiliary lemmas

