
Exploring Consistency in Graph Representations:
from Graph Kernels to Graph Neural Networks

Xuyuan Liu Yinghao Cai Qihui Yang Yujun Yan
Dartmouth College

{xuyuan.liu.gr, yinghao.cai, qihui.yang, yujun.yan}@dartmouth.edu

Abstract

Graph Neural Networks (GNNs) have emerged as a dominant approach in graph
representation learning, yet they often struggle to capture consistent similarity
relationships among graphs. While graph kernel methods such as the Weisfeiler-
Lehman subtree (WL-subtree) and Weisfeiler-Lehman optimal assignment (WLOA)
kernels are effective in capturing similarity relationships, they rely heavily on
predefined kernels and lack sufficient non-linearity for more complex data patterns.
Our work aims to bridge the gap between neural network methods and kernel
approaches by enabling GNNs to consistently capture relational structures in their
learned representations. Given the analogy between the message-passing process
of GNNs and WL algorithms, we thoroughly compare and analyze the properties of
WL-subtree and WLOA kernels. We find that the similarities captured by WLOA
at different iterations are asymptotically consistent, ensuring that similar graphs
remain similar in subsequent iterations, thereby leading to superior performance
over the WL-subtree kernel. Inspired by these findings, we conjecture that the
consistency in the similarities of graph representations across GNN layers is crucial
in capturing relational structures and enhancing graph classification performance.
Thus, we propose a loss to enforce the similarity of graph representations to be
consistent across different layers. Our empirical analysis verifies our conjecture
and shows that our proposed consistency loss can significantly enhance graph
classification performance across several GNN backbones on various datasets.

1 Introduction
Graph classification tasks are extensively applied across multiple domains, including chemistry [Liu
et al., 2022, Xu et al., 2023], bioinformatics [Yan et al., 2019, Li et al., 2023a,b], and social network
analysis [Ying et al., 2018, Wang et al., 2024]. Graph neural networks (GNNs) [Kipf and Welling,
2017, Xu et al., 2019, Velickovic et al., 2018, Huang et al., 2024] have emerged as the predominant
approach for performing graph classification, owing to their ability to extract rich representations
from various types of graph data. A typical GNN employs the message-passing mechanism [Gilmer
et al., 2017], where node features are propagated and aggregated across connected nodes. This
process effectively captures local tree structures, enabling the differentiation between various graphs.
However, GNNs often struggle to preserve relational structures among graphs, resulting in inconsistent
relative similarities across the layers. As shown in Figure 1, graphs with higher relative similarity
in one layer may exhibit reduced similarity in the subsequent layer. This phenomenon arises from
the limitations of cross-entropy loss, which fails to preserve relational structures, as it forces graphs
within the same class into identical representations.

Graph kernel methods, on the other hand, are designed to capture similarities between graphs and
utilize these similarities for classification tasks. For instance, subgraph-pattern approaches [Sher-
vashidze et al., 2009, Costa and Grave, 2010, Kriege et al., 2020] compare graphs by counting the

Code: https://github.com/GraphmindDartmouth/Graph-consistency

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/GraphmindDartmouth/Graph-consistency

Figure 1: Cosine similarity of three molecules from the NCI1 dataset, evaluated using graph representations
from three consecutive GIN layers. Common GNN models fail to preserve relational structures across the layers.

occurrences of fixed-size subgraph motifs. Other methods compare sequences of vertices or edges
encountered during graph traversals [Borgwardt and Kriegel, 2005, Kashima et al., 2003, Zhang
et al., 2018]. Among all graph kernels, two notable ones are the Weisfeiler-Lehman subtree (WL-
subtree) kernel [Shervashidze et al., 2011] and the Weisfeiler-Lehman optimal assignment (WLOA)
kernel [Kriege et al., 2016]. They are found to have comparable performance to simple GNNs [Niko-
lentzos et al., 2021].The WL-subtree kernel iteratively relabels graphs using the Weisfeiler-Lehman
algorithm [Weisfeiler and Lehman, 1968] and constructs a kernel based on the number of occurrences
of each label. The WLOA kernel uses the same relabeling scheme but computes a matching between
substructures to reveal structural correspondences between the graphs.

While effective in capturing relative graph similarity, kernel methods rely on predefined kernels
and exhibit insufficient non-linearities, limiting their ability to capture complex patterns in high-
dimensional data. Additionally, kernel methods are computationally costly, making them unsuitable
for handling large datasets and consequently limiting their overall applicability.

In this work, we aim to bridge the gap between kernel methods and GNN models. Given the iterative
nature of GNNs, we study a class of kernels which are induced from graph representations obtained
through an iterative process and name them iterative graph kernels (IGK). Within this framework,
we define the consistency property, which ensures that similar graphs remain similar in subsequent
iterations. Our analysis demonstrates that kernels with this property yield better classification perfor-
mance. Furthermore, we find that this property sheds light on why the WLOA kernel outperforms
the WL-subtree kernel. The WLOA kernel asymptotically demonstrates consistency as the iteration
goes to infinity, whereas the WL-subtree kernel does not exhibit this behavior. Inspired by these
findings and the analogy between message-passing GNNs and the WL-subtree kernel [Xu et al.,
2019], we hypothesize that this principle is also applicable to GNNs. To explore this, we introduce
a novel loss function designed to align the ranking of graph similarities across GNN layers. The
aim is to ensure that the relational structures of the graphs are preserved and consistently reflected
throughout the representation space of these layers. We validate this hypothesis by applying our loss
function to different GNN backbones across various graph datasets. Extensive experiments demon-
strate that our proposed model-agnostic consistency loss improves graph classification performance
comprehensively.

In summary, the main contributions of this work are as follows:

• Novel perspective: We present a novel perspective on understanding the graph classification
performance of GNNs by analyzing the similarity relationships captured by different layers.

• New insights: We are the first to introduce and formalize the consistency principle within
both kernel-based and GNN methods for graph classification tasks. Additionally, we provide
theoretical proofs explaining how this principle enhances the performance.

• Simple yet effective method: Empirical results demonstrate that the proposed consistency
loss universally enhances performance across a wide range of base models and datasets.

2 Preliminaries
In this section, we begin by introducing the notations and definitions used throughout the paper. Next,
we provide an introduction to the fundamentals of Weisfeiler-Lehman isomorphism test, GNNs and
graph kernels.

2

2.1 Notations and Definitions

Let G(V , E , X) be an undirected and unweighted graph with N nodes, where V denotes the node set,
E denotes the edge set, and X denotes the feature matrix, where each row represents the features of a
corresponding node. The neighborhood of a node v is defined as the set of all nodes that connected to
v: N (v) = {u|(v, u) ∈ E}. In a graph dataset, each graph Gi is associated with a label Yi, which is
sampled from a label set L. In this paper, we focus on the graph classification task, where a model ϕ
is trained to map each graph to its label.

2.2 Weisfeiler-Lehman Isomorphism Test

We first introduce the Weisfeiler-Lehman isomorphism test [Weisfeiler and Lehman, 1968], which
can be used to distinguish different graphs and is closely related to the message-passing process of
GNNs [Xu et al., 2019]. The WL algorithm operates by iteratively relabeling the colors of vertices in
the graph. Initially, all vertices are assigned the same color C0. In iteration i, the color of a vertex
v is updated based on its current color Cv,i−1 and the colors of its neighbors

{
Cu∈N (v),i−1

}
. The

update is given as follows:

Cv,i = f ic
({
Cv,i−1,

{
Cu∈N (v),i−1

}})
where f ic is an injective coloring function that maps the multisets to different colors at iteration i.This
process continues for a predefined number of iterations or until the coloring stabilizes (i.e., the colors
no longer change).

2.3 Graph Neural Network

Most GNNs adopt the message-passing framework [Gilmer et al., 2017], which can be viewed as
a derivative of the Weisfeiler-Lehman coloring mechanism. Specifically, let h(k−1)

v represent the
feature vector of node v at the (k − 1)-th iteration. A GNN computes the new feature for v by
aggregating the representations of itself and its neighboring nodes u ∈ N (v) as follows:

h(k)
v = UPDATE(k)

(
h(k−1)
v ,m(k)

v

)
, where m(k)

v = AGGR(k)
({

h(k−1)
u : u ∈ N (v)

})
The initial node representations h(0)

v are set to the raw node features Xv. At the k-th iteration, the
aggregation function AGGR(k)(·) computes the messages m

(k)
v received from neighboring nodes.

Subsequently, the update function UPDATE(k)(·) computes a new representation for each node by
integrating the neighborhood messages m(k)

v with its previous embedding h
(k−1)
v . After T iterations,

the final node representations are combined into a graph representation using a readout function:

hG = READOUT
({

h(T)
v | v ∈ V

})
.

The readout function, essentially a set function learned by the neural network, commonly employs
AVERAGE or MAXPOOL.

2.4 Graph Kernel

A kernel is a function used to measure the similarity between pairs of objects. For a non-empty set χ
and a function K : χ×χ→ R, the function K qualifies as a kernel on χ if there exists a Hilbert space
Hk and a feature map function ϕ : χ → Hk, such that K(x, y) = ⟨ϕ(x), ϕ(y)⟩ for any x, y ∈ χ,
where ⟨·, ·⟩ denotes the inner product in Hk. Notably, such a feature map exists if and only if K is
a positive semi-definite function. Let K be a kernel defined on χ, and let S = {x1, . . . , xn} be a
finite set of n samples on χ. The Gram matrix for S is defined as G ∈ Rn×n, with each element
Gij = K(xi, xj) representing the kernel value between the i-th and j-th data points in S. The Gram
matrix is always positive semi-definite.

Graph kernel methods apply the kernel approaches to graph data, typically defined using the R-
convolution framework [Haussler et al., 1999, Bause and Kriege, 2022]. Consider two graphs, G
and G′. The key idea is to decompose the graphs into substructures using a predefined feature map
function ϕ, and then compute the kernel value by taking the inner product in the feature space:
K(G,G′) = ⟨ϕ(G), ϕ(G′)⟩, based on these substructures. Weisfeiler-Lehman (WL) graph kernels
stand out as one of the most widely used approaches. These methods employ the Weisfeiler-Lehman

3

coloring scheme to iteratively encode graphs, calculating kernel values based on these colorings. The
final kernel values are derived through the aggregation of intermediate results. Next, we introduce the
WL-subtree kernel and the WLOA kernel in more detail. Let f i be the coloring function at the i-th
iteration, mapping the colored graph from the previous iteration to a new colored graph. Define ψi as
the function that captures the cumulative coloring effect up to the i-th iteration: ψi = f i ◦ · · · ◦ f1.
Specifically, the WL-subtree kernel computes the kernel value by directly using the label histogram
as a feature to compute the dot product, which is expressed as:

K(h)
wl_subtree (G,G

′) =

h∑
i=1

〈
ϕ(ψi(G)), ϕ(ψi (G′))

〉
The WLOA kernel applies a histogram intersection kernel to match substructures between different
graphs, which is formulated as:

K(h)
WLOA (G,G′) =

h∑
i=1

histmin
{
ϕ(ψi(G)), ϕ(ψi(G′))

}
· ω(i)

where ω(i) is a nonnegative, monotonically non-decreasing weight function, and ω(i) = 1 is
commonly used in practice [Kriege et al., 2016, Siglidis et al., 2020]. The operator histmin denotes
the histogram intersection kernel. It is computed by comparing and summing the smallest matching
elements between two sets. For example, consider two sets S1 : {a, a, b, b, c} and S2 : {a, b, b, c, c}.
The histmin(S1, S2) is calculated by taking the minimum frequency of each distinct element across
the two sets, yielding min(2, 1) + min(2, 2) + min(1, 2) = 4.

To ensure that the kernel values fall in the range of 0 to 1, normalization is often applied. The
normalized kernel value K̃(h) is then expressed as follows:

K̃(h)(G,G′) =
K(h)(G,G′)√

K(h)(G,G)
√
K(h)(G′,G′)

3 Consistency Principles

To encode relational structures in GNN learning, we first examine how similarities are represented in
graph kernels. In this section, we start by defining a class of graph kernels, i.e., the iterative graph
kernels, which encompasses many widely used kernels. Then, we delve into a key property known as
the consistency property, which may play an important role in enhancing classification performance.
We support this assertion through theoretical analysis, elucidating how different kernels adhere to or
deviate from this property, thereby explaining their performance differences.

3.1 Iterative Graph Kernels

In this paper, we are interested in a set of kernels defined as follows:

Definition 3.1 Given a colored graph set χ, a feature map function ϕ : χ → Hk (where Hk is a
Hilbert space), and a set of coloring functions Fc = {f0, f1, . . . , f i} on χ (with f i : χ → χ), we
define the set of iterative graph kernels (IGK) as:

KFc,ϕ(x, y, i) = ⟨ϕ(f i ◦ · · · f1(x)), ϕ(f i ◦ · · · f1(y))⟩ = ⟨ψi(x), ψi(y)⟩

where x, y ∈ χ and ψi(·) represents a composite function given by: ψi = f i◦ · · · ◦ f1, Then the
normalized kernel is given by:

K̃Fc,ϕ(x, y, i) =
KFc,ϕ(x, y, i)√

KFc,ϕ(x, x, i)
√
KFc,ϕ(y, y, i)

Based on this definition, we can see that graph kernels utilizing the Weisfeiler-Lehman framework,
including the WL-subtree kernel [Shervashidze et al., 2011], WLOA [Kriege et al., 2016], and
the Wasserstein Weisfeiler-Lehman (WWL) kernel [Togninalli et al., 2019], should be classified
as iterative graph kernels. Conversely, the subgraph-pattern approaches, such as the graphlet ker-
nel [Shervashidze et al., 2009] and the shortest-path kernel [Borgwardt and Kriegel, 2005], do not
fall into this category.

4

3.2 Key Properties: Monotonic Decrease & Order Consistency

To effectively capture relational structures, we design the IGKs to progressively differentiate between
graphs. With each iteration, additional structural features are considered, enabling the distinction
of graphs that may have been indistinguishable in earlier iterations. This implies two properties:
(1) the kernel values monotonically decrease with larger iterations, as the similarity between two
graphs decreases with the consideration of more features; and (2) the similarity rankings across
different iterations should remain consistent, meaning that graphs deemed dissimilar in early iterations
should not be considered similar in later iterations. We then formally define these two properties
and demonstrate how they can lead to a non-decreasing margin (better performance) in the binary
classification task.

Definition 3.2 (Monotonic Decrease) The normalized iterative graph kernels K̃Fc,ϕ(x, y, i) are
said to be monotonically decreasing if and only if:

K̃Fc,ϕ(x, y, i) ≥ K̃Fc,ϕ(x, y, i+ 1) ∀x, y ∈ χ

Definition 3.3 (Order Consistency) The normalized iterative graph kernels K̃Fc,ϕ(x, y, i) are said
to preserve order consistency if the similarity ranking remains consistent across different iterations
for any pair of graphs, which is defined as:

K̃Fc,ϕ(x, y, i) > K̃Fc,ϕ(x, z, i) ⇒ K̃Fc,ϕ(x, y, i+ 1) ≥ K̃Fc,ϕ(x, z, i+ 1) ∀x, y, z ∈ χ

Next we show that these two properties can lead to a non-decreasing margin in the binary classification
task, which suggests better performance.

Consider a binary graph classification task and assume that the graph representations obtained at any
iteration have a uniform norm. This can be achieved by simply normalizing the graph representations
at the end of each iteration. That is, for any graph x: ∥ϕ(ψi(x))∥ = 1. Then, for any IGK that is
monotonically decreasing and preserves the order consistency, the following theorem holds:

Theorem 3.4 Let K̃Fc,ϕ(x, y, i) be a normalized iterative graph kernel that is monotonically de-
creasing and preserves order consistency. In the binary graph classification task with uniform graph
representations, the margin between two classes in the representation space is non-decreasing w.r.t
the iteration i, where the margin at iteration i is defined as the shortest distance between two graph
representations from different classes: margin=∥ψi(x)− ψi(y)∥, Y(x) ̸= Y(y).

Proof sketch. Suppose that at iteration i, the margin is defined by a pair of graphs, x1 from class 1
and y1 from class 2. In the next iteration, i+ 1, the margin is determined by another pair, x2 and y2.
Two possibilities arise: (1) x1 = x2 and y1 = y2, or (2) x1 ̸= x2 or y1 ̸= y2.

(1) If the pair defining the margin remains unchanged, the margin at iteration i + 1 can only
increase or stay the same, as the kernel is a monotonically decreasing function, indicating a
reduction in similarity.

(2) We prove case 2 by contradiction, assuming the margin decreases at iteration i+ 1. This
would imply that the kernel value for x2 and y2 increases at iteration i+1, which contradicts
the fact that the kernel function is monotonically decreasing.

Thus, in both cases, the margin does not decrease as the iterations progress.

We provide the detailed proof in Appendix A.1

3.3 Theoretical Verification with WL-based Kernels

As discussed in Section 3.1, WL-based kernels can be categorized as iterative graph kernels, as they
are generated by the coloring functions in an iterative refinement process. Consequently, a natural
question arises regarding how various kernels adhere to these properties and whether their adherence
reflects their actual performance. We thus investigate two popular WL-based Kernels: the WL-subtree
kernel [Shervashidze et al., 2011] and the WLOA kernel [Kriege et al., 2016].

5

Theorem 3.5 The normalized WL-subtree kernel is neither monotonically decreasing nor does it
preserve order consistency.

Theorem 3.6 The normalized WLOA kernel is monotonically decreasing and asymptotically pre-
serves order consistency when ω(i) = 1.

Proof sketch. For Theorem 3.5, we illustrate a counterexample, while for Theorem 3.6, we consider
two graph pairs where the similarity condition holds:

K̃(h)
WLOA (G,G′) ≥ K̃(h)

WLOA (G,G′′)

The similarity at the next iteration h+ 1 is scaled by a factor dependent ω(i), i = 1, · · · , h+ 1. The
unnormalized kernel increases monotonically, though with diminishing increments over iterations.
Given this, when ω(i) = 1 and h→ ∞, we obtain:

K̃(h+1)
WLOA (G,G′) ≥ K̃(h+1)

WLOA (G,G′′)

We include the complete proof in Appendix A.2 and A.3.

These findings imply that the WLOA kernel better preserves relational structures compared to the WL-
subtree kernel, leading to improved classification performance, as supported by the literature [Kriege
et al., 2016].

4 Proposed Strategy
Given the analogy between WL-based kernels and GNNs [Shervashidze et al., 2011, Gilmer et al.,
2017], and the observation that GNNs often fail to preserve relational structures, we hypothesize
that the consistency principle is also beneficial to GNN learning. Thus, we aim to explore how to
effectively preserve this principle within the GNN architectures.

Figure 2: Computation of loss. At each layer, pairwise distance matrix D is calculated using the normalized
representations of graphs in a batch. After randomly selecting a reference graph xk, the reference probability
matrix is computed using the distance matrix from previous layer, where entry (n,m) represents the known
probability that the graph xk is more similar to the graph xn than to the graph xm. For the distance matrix of
current layer, we compute the predicted probability that xk is closer to xn than to xm and form the prediction
probability matrix. Consistency loss is computed as the cross-entropy between the predicted and reference
probability matrices

4.1 Consistency Loss

Our objective is to enhance graph representation consistency across GNN layers, which has significant
potential to preserve the relational structure in the representation space. If we compare ϕ(ψi(G)) to
the graph representations obtained at the i-th layer, preserving the consistency principle is equivalent
to preserving the ordering of cosine similarity among the graph representations. However, due to the
non-differentiable nature of ranking operations, directly minimizing the ranking differences between
consecutive layers is not feasible using gradient-based optimization techniques. Therefore, we aim

6

to optimize pairwise ordering relations instead of the entire ranking list. In this work, our proposed
loss employs a probabilistic approach inspired by [Burges et al., 2005]. The entire framework is
illustrated in Figure 2.

Let Hh ∈ Rn×d denote the graph embedding matrix for n examples in a batch, each with a d-
dimensional feature vector. We first compute the distance matrix Dh for all the graphs in a batch at
the h-th layer. The entries Dh

i,j of this matrix represent the distance between the representations of

the i-th and j-th graphs, calculated as Dh
i,j = Dist

(
Hh

xi
, Hh

xj

)
. Here, we use the cosine distance,

the complement of cosine similarity in positive space, expressed as: 1−
Hh

xi
·Hh

xj

∥Hh
xi
∥·

∥∥∥Hh
xj

∥∥∥ . Considering

the distance relationship to an arbitrary graph xk in the batch, the predicted probability P̂h
n,m|k that

xk is more similar to graph xn than to graph xm at layer h is defined as P̂h
n,m|k

(
D̂h

k,n < D̂h
k,m

)
.

This probability score, which ranges from 0 to 1, is formulated using the sigmoid function as follows:

P̂h
n,m|k

(
D̂h

k,n < D̂h
k,m

)
=

1

1 + exp
(
D̂h

k,m − D̂h
k,n

)
Given the distance matrix from the previous layer Dh−1, the known probability that graph xk is more
similar to graph xn than to graph xm, denoted as P̃h−1

n,m(D̂h−1
k,n , D̂

h−1
k,m), can be formulated as follows:

P̃h−1
n,m|k =

1

2

(
1 + sign(D̂h−1

k,n − D̂h−1
k,m)

)
We can then minimize the discrepancy between the predicted and the known probability distributions
to enhance representation consistency across the layers. Here,we employ the cross-entropy loss to
effectively measure the divergence between these two distributions. Specifically, for a pair (xn, xm)
centered on xk at layer h, the cross-entropy loss can be expressed as:

Lcross-entropy ((xn, xm) | xk, h) = −P̃h−1
n,m|k log P̂

h
n,m|k −

(
1− P̃h−1

n,m|k

)
log
(
1− P̂h

n,m|k

)
Then, the total loss function, which quantifies the consistency of pair-wise distance relations for graph
xk at layer h, can be formulated as

Lconsistency (k) =
∑
n,m

L((xn, xm) | xk, h)

The overall objective function of the proposed framework can then be formulated as the weighted
sum of the original loss and the consistency loss.

Ltotal = Lorigin + λ
∑
i

Lconsistency (i)

Here, λ is a hyperparameter that controls the strength of the consistency constraint.

5 Experiment

In this section, we examine the effectiveness of the proposed consistency loss for the graph classi-
fication task. Specifically, we aim to address the following questions: Q1: Does the consistency
loss effectively enhance the performance of various GNN backbones in the graph classification task?
Q2: How does the consistency loss influence the rank correlation of graph similarities across GNN
layers? Q3: How does the consistency loss influence dataset performance across varying levels of
complexity, both in structural intricacy and task difficulty?

5.1 Experiment Setup
Dataset We conduct extensive experiments using the TU Dataset [Morris et al., 2020], the Open
Graph Benchmark (OGB) [Hu et al., 2020] and Reddit Threads(Reddit-T) dataset [Bause and Kriege,

7

2022]. The TU Dataset consists of eight graph classification datasets, categorized into three main
types: (1) Chem/Bioinformatics datasets, including D&D, NCI1, NCI109, and PROTEINS; (2) Social
Network datasets, including IMDB-BINARY,IMDB-MULTI and COLLAB, where a constant feature
value of 1 was assigned to all vertices due to the absence of vertex features; and (3) a Computer
Vision dataset, COIL-RAG. The OGB datasets include ogbg-molhiv, a molecular property prediction
dataset used to determine whether a molecule inhibits HIV replication. Reddit-T dataset is used for
classifying threads from Reddit as either discussions or non-discussions, where users are represented
as nodes and replies between them as links.

For the TU dataset and Reddit-T, consistent with prior work [Xinyi and Chen, 2019, Xu et al., 2019],
we utilize an 8:1:1 ratio for training, validation, and testing sets. For the OGB datasets, we use the
official splits provided. Training stops at the highest validation performance, and test accuracy is
taken from the corresponding epoch in each fold. Final results are reported as the mean accuracy
(except ogbg-molhiv) and standard deviation over 10 folds. For ogbg-molhiv, we follow the official
evaluator and use ROC-AUC as the evaluation metric. Detailed information about these datasets can
be found in Appendix B.

Model We use three widely adopted GNN models as baselines: namely, GCN [Kipf and Welling,
2017], GIN [Xu et al., 2019], and GraphSAGE [Hamilton et al., 2017]. We also include two recent
GNN models, namely GTransformer [Shi et al., 2021] and GMT [Baek et al., 2021]. To ensure a fair
comparison, we maintain the same number of layers and layer sizes for both the base models and the
models with our proposed consistency loss, ensuring the sharing of the same network architecture.
Detailed information about hyperparameter tuning is provided in Appendix C.

5.2 Effectiveness of Consistency Loss

To answer Q1, we present the results for the TU, OGB and Reddit-T datasets in Table 1. As shown
in this table, GNN models with the consistency loss yield significant performance improvements
over their base models on different datasets. These findings suggest that the consistency framework
is a versatile and robust approach for enhancing the predictive capabilities of GNNs in real-world
datasets, irrespective of the base model and dataset domain. Notably, the GIN method demonstrates
the most significant improvements, achieving enhancements of up to 4.51% on the D&D dataset,
4.32% on the COLLAB dataset, and 3.70% on the IMDB-B dataset. This improvement can be linked
to our empirical observation regarding the weak ability of GIN to preserve consistency across layers.
In addition, our method demonstrates satisfactory improvements on datasets with numerous classes
(e.g., COIL-RAG) and large-scale datasets (e.g., ogbg-molhiv and Reddit-T), indicating that our
approach is both flexible and scalable for handling complex and extensive datasets.

Table 1: Classification performance on the TU and OGB datasets, with and without the consistency loss.
Highlighted cells indicate instances where the base GNN with the consistency loss outperforms the base GNN
alone. The reported values are average accuracy for TU datasets and ROC-AUC for the ogbg-molhiv dataset,
including their standard deviations.

NCI1 NCI109 PROTEINS D&D IMDB-B IMDB-M COLLAB COIL-RAG OGB-HIV REDDIT-T
#Graphs 4110 4127 1113 1178 1000 1500 5000 3900 41127 203088
Avg. #nodes 29.87 29.68 39.06 284.32 19.77 13.00 74.49 3.01 25.50 23.93
GCN 73.96± 2.37 74.04± 3.09 73.24± 6.93 74.92± 2.66 75.40± 2.97 55.07±1.24 81.72±0.84 91.72±1.65 72.86±1.90 76.00±0.44

+Lconsistency 75.12± 1.19 73.25± 1.25 75.07± 5.05 78.56± 3.32 75.85± 1.82 56.27±1.00 83.44±0.45 93.38±1.64 73.75±0.89 77.12±0.12

GIN 78.13± 2.11 76.75± 2.91 72.97± 4.59 71.10± 4.63 70.80± 4.07 52.13±1.42 79.84±1.05 93.33±1.48 71.60 ±2.36 77.50±0.16

+Lconsistency 79.45± 1.09 77.46± 1.96 74.98± 4.57 75.51± 2.63 74.50± 3.06 53.46±2.44 84.16±0.81 94.03±1.33 74.57±1.61 77.64±0.05

GraphSAGE 74.40± 1.83 73.17± 0.47 74.96± 3.14 76.44± 4.16 73.90± 2.17 51.33±2.95 78.92±1.20 89.56±2.37 77.03±1.65 76.67±0.11

+Lconsistency 78.26± 1.08 74.10± 2.10 76.40± 3.12 77.50± 3.38 74.75± 3.06 54.27±1.24 82.12±0.78 92.31±1.32 78.60±1.44 77.57±0.05

GTransformer 75.72±2.69 74.79±1.82 73.33±4.80 75.42±3.22 72.20±3.49 53.33±1.12 80.36±0.56 83.74±3.17 76.81±1.34 76.75±0.12

+Lconsistency 76.83±1.36 75.82±1.53 77.03±3.79 76.57±2.54 73.75±2.56 56.53±1.54 80.48±0.47 91.67±1.88 76.90±3.25 77.14±0.06

GMT 75.04±1.43 73.90±2.29 72.70±4.21 72.80±2.19 79.80±1.08 54.13±2.90 80.36±1.15 90.85±1.91 74.86±2.26 72.06±10.15

+Lconsistency 75.52±1.07 75.20±0.95 74.86±2.03 73.14±2.28 79.60±1.91 54.80±1.42 82.80±0.61 92.00±1.43 76.00±1.99 77.19±0.14

Furthermore, we analyze the complexity and scalability of our method on the TU Dataset, with
additional details provided in Appendices D.1 and D.2. Additionally, we demonstrate the method’s
potential to enhance performance significantly, even with a marginal increase in computational cost,
as illustrated in Appendix E.

8

5.3 Effect of the Consistency Loss on Rank Correlation

Table 2: Spearman correlation was computed for
graph representations from consecutive layers on the TU
datasets, both with and without consistency loss. Val-
ues with higher rank correlation are highlighted in grey.
The consistency loss can enhance the rank correlation of
graph similarities.

NCI1 NCI109 PROTEINS D&D IMDB-B
GCN 0.753 0.920 0.584 0.709 0.846

+Lconsistency 0.859 0.958 0.946 0.896 0.907

GIN 0.666 0.674 0.741 0.721 0.598
+Lconsistency 0.877 0.821 0.904 0.847 0.816

GraphSAGE 0.903 0.504 0.845 0.741 0.806
+Lconsistency 0.911 0.709 0.916 0.872 0.933

GTransformer 0.829 0.817 0.867 0.865 0.884
+Lconsistency 0.863 0.883 0.915 0.880 0.917

GMT 0.872 0.887 0.980 0.826 0.893
+Lconsistency 0.906 0.908 0.983 0.856 0.908

To answer Q2, we compare the consistency of
graph representations across layers with and with-
out the proposed consistency loss. Specifically,
we use the Spearman’s rank correlation coeffi-
cient, a widely accepted method for computing
correlation between ranked variables, to quanti-
tatively measure the consistency of graph simi-
larities across layers. For a fair comparison, we
construct a distance matrix Dh for all test data at
each layer h, where each row Dh

xi; represents the
distances from graph xi to all other graphs. We
then compute the rank correlation between Dh

xi,:

and Dh+1
xi; for each graph xi.

We average the correlation values for all graphs
to obtain the overall correlation for layer h. Then,
we compute the mean of these values across lay-
ers, enabling a global comparison of relational
consistency throughout the model and dataset. All results were averaged over 5 repeated experiments
with same training setting.
We present our results on a series of datasets from the TU Dataset in Table 2. As shown in the table, it
is evident that the representation space becomes more consistent with our proposed consistency loss.
For example, a significant enhancement is observed for the GIN model. Another notable point is the
result for the GCN model on the NCI109 dataset and for the GMT model on the IMDB-B dataset. We
find that the correlation is already fairly high even without the implementation of Lconsistency, resulting
in minimal correlation improvements with our method. This phenomenon provides a plausible
explanation for why our method is not effective in these two cases.

5.4 Study on Task Complexity

To address Q3 and further evaluate the performance of our method across different scenarios, we
extended our study by conducting experiments on graph datasets with increasing task and structural
complexity.

Increasing Task Complexity We increase the task complexity by expanding the number of classes
that the model needs to classify. To assess the effect of increased class complexity on our method’s
performance, we sampled subsets from the REDDIT-MULTI 5K dataset [Yanardag and Vishwanathan,
2015] with a progressively greater number of classes, which originally consists of five classes.
Specifically, we randomly sampled between 2 and 4 classes to construct new datasets from the
original dataset and conducted classification tasks using both GCN and GCN with Lconsistency on these
newly constructed datasets. We report the mean test accuracy over five experiments for each subset,
as presented in Table.3.

Table 3: Performance comparison across different subsets and the full set.
Subset1 Subset2 Subset3 Fullset

(2 classes) (3 classes) (4 classes) (5 classes)
GCN 79.50 67.13 50.30 53.80

GCN+Lconsistency 81.10 68.00 57.15 57.12

The results demonstrate that the effectiveness of our method remains robust, even as the number of
classes increases. In fact, it may provide greater advantages when applied to multi-class classification
tasks. This resilience likely stems from our method’s focus on identifying relational structures in the
intermediate representations of GNN models, rather than relying heavily on label information. This
approach helps mitigate the impact of potential label noise in the original data. These findings align
with the noticeable performance improvements observed in both binary and multi-class classification
tasks, as shown in Table 1.

9

Increasing Structural Complexity We assessed the impact of structural complexity by partitioning
the IMDB-B dataset into three subsets with progressively increasing graph densities. Graph density,
denoted as d = 2M

N(N−1) , where N is the number of nodes and M is the number of edges in graph
G, was used as the criterion for creating these subsets. The dataset was divided into three groups:
(small) for graphs with densities below the 33rd percentile, (median) for densities between the 33rd
and 67th percentiles, and (large) for graphs with densities above the 67th percentile. We applied both
GCN and GCN+Lconsistency models to these subsets, and the results are summarized in Table 4.

Table 4: Performance comparison on IMDB-B datasets of different densities.
IMDB-B IMDB-B IMDB-B
(small) (medium) (large)

GCN 77.58±4.11 66.25±5.38 67.61±6.21

GCN+Lconsistency 84.24±4.85 69.06±4.06 71.43±4.43

The above results show that the GCN model, enhanced with the Lconsistency loss function, consistently
outperforms the original version across different structural complexity groups, demonstrating the
robustness and effectiveness of the proposed method.

Furthermore, we evaluate the method’s efficiency under various complexity scenarios, as detailed in
the Appendix D.3.

6 Related Work
Graph Distance and Similarity Measuring distances or similarities between graphs is a fundamen-
tal problem in graph learning. Graph kernels, which define graph similarity, have gained significant
attention. Most graph kernels use the R-Convolution framework [Haussler et al., 1999] to compare
substructure similarities. A trailblazing kernel by [Kashima et al., 2003] used node and edge attributes
to generate label sequences through a random walk. The WL-subtree kernel [Shervashidze et al.,
2011] generates graph-level features by summing node representation contributions. Recent works
align matching substructures between graphs. For instance, Kriege et al. [2016] proposed a discrete
optimal assignment kernel based on vertex kernels from WL labels. Togninalli et al. [2019] extended
this to include fractional assignments using the Wasserstein distance. Additionally, measuring graph
distances is also a prevalent problem. Vayer et al. [2019] combined the Wasserstein and Gromov-
Wasserstein distances [Villani and Society, 2003, Mémoli, 2011]. Chen et al. [2022] proposed a
polynomial-time WL distance for labeled Markov chains, treating labeled graphs as a special case.

Bridging Graph Kernels and GNNs Many studies have explored the connection between graph
kernels and GNNs, attempting to integrate them into a unified framework. Certain approaches focus
on leveraging GNN architecture to design novel kernels. For instance, Mairal et al. [2014] presents
neural network architectures that learn graph representations within the Reproducing Kernel Hilbert
Space (RKHS) of graph kernels. Similarly, Du et al. [2019] proposed a graph kernel equivalent to
infinitely wide GNNs, which can be trained using gradient descent. Conversely, other studies have
incorporated kernel methods directly into GNNs. For example, Nikolentzos and Vazirgiannis [2020]
utilize graph kernels as convolutional filters within GNN architectures. Additionally, Lee et al. [2024]
proposes a novel Kernel Convolution Network that employs the random walk kernel as the core
mechanism for learning descriptive graph features. Instead of applying specific kernel patterns as
mentioned in previous work, we introduce a general method for GNNs to capture consistent similarity
relationships, thereby enhancing classification performance.

7 Conclusion
In this paper, we study a class of graph kernels and introduce the concept of consistency property in
graph classification tasks. We theoretically prove that this property leads to a more structure-aware
representation space for classification using kernel methods. Based on this analysis, we extend
this principle to enhance GNN models. We propose a novel, model-agnostic consistency learning
framework for GNNs that enables them to capture relational structures in the graph representation
space. Experiments show that our proposed method universally enhances the performance of backbone
networks on graph classification benchmarks, providing new insights into bridging the gap between
traditional kernel methods and GNN models.

10

References
Jinheon Baek, Minki Kang, and Sung Ju Hwang. Accurate learning of graph representations with

graph multiset pooling. In 9th International Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net
/forum?id=JHcqXGaqiGn.

Franka Bause and Nils Morten Kriege. Gradual weisfeiler-leman: Slow and steady wins the race.
In Bastian Rieck and Razvan Pascanu, editors, Learning on Graphs Conference, LoG 2022, 9-12
December 2022, Virtual Event, volume 198 of Proceedings of Machine Learning Research, page 20.
PMLR, 2022. URL https://proceedings.mlr.press/v198/bause22a.html.

Karsten M. Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on graphs. In Proceedings
of the 5th IEEE International Conference on Data Mining (ICDM 2005), 27-30 November 2005,
Houston, Texas, USA, pages 74–81. IEEE Computer Society, 2005. doi: 10.1109/ICDM.2005.132.
URL https://doi.org/10.1109/ICDM.2005.132.

Christopher J. C. Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton,
and Gregory N. Hullender. Learning to rank using gradient descent. In Luc De Raedt and
Stefan Wrobel, editors, Machine Learning, Proceedings of the Twenty-Second International
Conference (ICML 2005), Bonn, Germany, August 7-11, 2005, volume 119 of ACM International
Conference Proceeding Series, pages 89–96. ACM, 2005. doi: 10.1145/1102351.1102363. URL
https://doi.org/10.1145/1102351.1102363.

Samantha Chen, Sunhyuk Lim, Facundo Mémoli, Zhengchao Wan, and Yusu Wang. Weisfeiler-
lehman meets gromov-wasserstein. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvári, Gang Niu, and Sivan Sabato, editors, International Conference on Machine Learning,
ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine
Learning Research, pages 3371–3416. PMLR, 2022. URL https://proceedings.mlr.pres
s/v162/chen22o.html.

Fabrizio Costa and Kurt De Grave. Fast neighborhood subgraph pairwise distance kernel. In Johannes
Fürnkranz and Thorsten Joachims, editors, Proceedings of the 27th International Conference on
Machine Learning (ICML-10), June 21-24, 2010, Haifa, Israel, pages 255–262. Omnipress, 2010.
URL https://icml.cc/Conferences/2010/papers/347.pdf.

Simon S. Du, Kangcheng Hou, Ruslan Salakhutdinov, Barnabás Póczos, Ruosong Wang, and Keyulu
Xu. Graph neural tangent kernel: Fusing graph neural networks with graph kernels. In Hanna M.
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman
Garnett, editors, Advances in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pages 5724–5734, 2019. URL https://proceedings.neurips.cc/paper/201
9/hash/663fd3c5144fd10bd5ca6611a9a5b92d-Abstract.html.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. In Doina Precup and Yee Whye Teh, editors, Proceedings
of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia,
6-11 August 2017, volume 70 of Proceedings of Machine Learning Research, pages 1263–1272.
PMLR, 2017. URL http://proceedings.mlr.press/v70/gilmer17a.html.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus,
S. V. N. Vishwanathan, and Roman Garnett, editors, Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 1024–1034, 2017. URL https://proceedings.neurips.
cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html.

David Haussler et al. Convolution kernels on discrete structures. Technical report, Citeseer, 1999.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin,

11

https://openreview.net/forum?id=JHcqXGaqiGn
https://openreview.net/forum?id=JHcqXGaqiGn
https://proceedings.mlr.press/v198/bause22a.html
https://doi.org/10.1109/ICDM.2005.132
https://doi.org/10.1145/1102351.1102363
https://proceedings.mlr.press/v162/chen22o.html
https://proceedings.mlr.press/v162/chen22o.html
https://icml.cc/Conferences/2010/papers/347.pdf
https://proceedings.neurips.cc/paper/2019/hash/663fd3c5144fd10bd5ca6611a9a5b92d-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/663fd3c5144fd10bd5ca6611a9a5b92d-Abstract.html
http://proceedings.mlr.press/v70/gilmer17a.html
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html

editors, Advances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL
https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527c
fc84fd0-Abstract.html.

Zheng Huang, Qihui Yang, Dawei Zhou, and Yujun Yan. Enhancing size generalization in graph neural
networks through disentangled representation learning. In Forty-first International Conference on
Machine Learning, 2024.

Hisashi Kashima, Koji Tsuda, and Akihiro Inokuchi. Marginalized kernels between labeled graphs.
In Tom Fawcett and Nina Mishra, editors, Machine Learning, Proceedings of the Twentieth
International Conference (ICML 2003), August 21-24, 2003, Washington, DC, USA, pages 321–328.
AAAI Press, 2003. URL http://www.aaai.org/Library/ICML/2003/icml03-044.php.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL https://openrevi
ew.net/forum?id=SJU4ayYgl.

Nils M. Kriege, Pierre-Louis Giscard, and Richard C. Wilson. On valid optimal assignment kernels
and applications to graph classification. In Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg,
Isabelle Guyon, and Roman Garnett, editors, Advances in Neural Information Processing Systems
29: Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016,
Barcelona, Spain, pages 1615–1623, 2016. URL https://proceedings.neurips.cc/paper
/2016/hash/0efe32849d230d7f53049ddc4a4b0c60-Abstract.html.

Nils M. Kriege, Fredrik D. Johansson, and Christopher Morris. A survey on graph kernels. Appl.
Netw. Sci., 5(1):6, 2020. doi: 10.1007/S41109-019-0195-3. URL https://doi.org/10.1007/
s41109-019-0195-3.

Meng-Chieh Lee, Lingxiao Zhao, and Leman Akoglu. Descriptive kernel convolution network with
improved random walk kernel. In Tat-Seng Chua, Chong-Wah Ngo, Ravi Kumar, Hady W. Lauw,
and Roy Ka-Wei Lee, editors, Proceedings of the ACM on Web Conference 2024, WWW 2024,
Singapore, May 13-17, 2024, pages 457–468. ACM, 2024. doi: 10.1145/3589334.3645405. URL
https://doi.org/10.1145/3589334.3645405.

Gaotang Li, Marlena Duda, Xiang Zhang, Danai Koutra, and Yujun Yan. Interpretable sparsification
of brain graphs: Better practices and effective designs for graph neural networks. In Proceedings of
the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 1223–1234,
2023a.

Gaotang Li, Danai Koutra, and Yujun Yan. Size generalization of graph neural networks on biological
data: Insights and practices from the spectral perspective. arXiv preprint arXiv:2305.15611, 2023b.

Lu Lin, Jinghui Chen, and Hongning Wang. Spectral augmentation for self-supervised learning on
graphs. In The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/forum?id=
DjzBCrMBJ_p.

Shengchao Liu, Hanchen Wang, Weiyang Liu, Joan Lasenby, Hongyu Guo, and Jian Tang. Pre-
training molecular graph representation with 3d geometry. In The Tenth International Conference
on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022.
URL https://openreview.net/forum?id=xQUe1pOKPam.

Julien Mairal, Piotr Koniusz, Zaïd Harchaoui, and Cordelia Schmid. Convolutional kernel networks.
In Zoubin Ghahramani, Max Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q. Weinberger,
editors, Advances in Neural Information Processing Systems 27: Annual Conference on Neural
Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pages
2627–2635, 2014. URL https://proceedings.neurips.cc/paper/2014/hash/81ca026
2c82e712e50c580c032d99b60-Abstract.html.

Facundo Mémoli. Gromov-wasserstein distances and the metric approach to object matching. Found.
Comput. Math., 11(4):417–487, 2011. doi: 10.1007/S10208-011-9093-5. URL https:
//doi.org/10.1007/s10208-011-9093-5.

12

https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html
http://www.aaai.org/Library/ICML/2003/icml03-044.php
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://proceedings.neurips.cc/paper/2016/hash/0efe32849d230d7f53049ddc4a4b0c60-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/0efe32849d230d7f53049ddc4a4b0c60-Abstract.html
https://doi.org/10.1007/s41109-019-0195-3
https://doi.org/10.1007/s41109-019-0195-3
https://doi.org/10.1145/3589334.3645405
https://openreview.net/forum?id=DjzBCrMBJ_p
https://openreview.net/forum?id=DjzBCrMBJ_p
https://openreview.net/forum?id=xQUe1pOKPam
https://proceedings.neurips.cc/paper/2014/hash/81ca0262c82e712e50c580c032d99b60-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/81ca0262c82e712e50c580c032d99b60-Abstract.html
https://doi.org/10.1007/s10208-011-9093-5
https://doi.org/10.1007/s10208-011-9093-5

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. CoRR,
abs/2007.08663, 2020. URL https://arxiv.org/abs/2007.08663.

Giannis Nikolentzos and Michalis Vazirgiannis. Random walk graph neural networks. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin,
editors, Advances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL
https://proceedings.neurips.cc/paper/2020/hash/ba95d78a7c942571185308775
a97a3a0-Abstract.html.

Giannis Nikolentzos, Giannis Siglidis, and Michalis Vazirgiannis. Graph kernels: A survey. J. Artif.
Intell. Res., 72:943–1027, 2021. doi: 10.1613/JAIR.1.13225. URL https://doi.org/10.161
3/jair.1.13225.

Nino Shervashidze, S. V. N. Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten M. Borgwardt.
Efficient graphlet kernels for large graph comparison. In David A. Van Dyk and Max Welling,
editors, Proceedings of the Twelfth International Conference on Artificial Intelligence and Statis-
tics, AISTATS 2009, Clearwater Beach, Florida, USA, April 16-18, 2009, volume 5 of JMLR
Proceedings, pages 488–495. JMLR.org, 2009. URL http://proceedings.mlr.press/v5/s
hervashidze09a.html.

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M.
Borgwardt. Weisfeiler-lehman graph kernels. J. Mach. Learn. Res., 12:2539–2561, 2011. doi:
10.5555/1953048.2078187. URL https://dl.acm.org/doi/10.5555/1953048.2078187.

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjing Wang, and Yu Sun. Masked label
prediction: Unified message passing model for semi-supervised classification. In Zhi-Hua Zhou,
editor, Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI
2021, Virtual Event / Montreal, Canada, 19-27 August 2021, pages 1548–1554. ijcai.org, 2021.
doi: 10.24963/IJCAI.2021/214. URL https://doi.org/10.24963/ijcai.2021/214.

Giannis Siglidis, Giannis Nikolentzos, Stratis Limnios, Christos Giatsidis, Konstantinos Skianis,
and Michalis Vazirgiannis. Grakel: A graph kernel library in python. J. Mach. Learn. Res., 21:
54:1–54:5, 2020. URL https://www.jmlr.org/papers/v21/18-370.html.

Matteo Togninalli, M. Elisabetta Ghisu, Felipe Llinares-López, Bastian Rieck, and Karsten M.
Borgwardt. Wasserstein weisfeiler-lehman graph kernels. In Hanna M. Wallach, Hugo Larochelle,
Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 6436–6446,
2019. URL https://proceedings.neurips.cc/paper/2019/hash/73fed7fd472e502d8
908794430511f4d-Abstract.html.

Titouan Vayer, Nicolas Courty, Romain Tavenard, Laetitia Chapel, and Rémi Flamary. Optimal
transport for structured data with application on graphs. In Kamalika Chaudhuri and Ruslan
Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine Learning,
ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings of Machine
Learning Research, pages 6275–6284. PMLR, 2019. URL http://proceedings.mlr.press/
v97/titouan19a.html.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net, 2018. URL https://openreview.net/forum?id=rJXMpikCZ.

C. Villani and American Mathematical Society. Topics in Optimal Transportation. Graduate
studies in mathematics. American Mathematical Society, 2003. ISBN 9781470418045. URL
https://books.google.com/books?id=MyPjjgEACAAJ.

Haohui Wang, Yuzhen Mao, Yujun Yan, Yaoqing Yang, Jianhui Sun, Kevin Choi, Balaji Veeramani,
Alison Hu, Edward Bowen, Tyler Cody, et al. Evolunet: Advancing dynamic non-iid transfer
learning on graphs. In Forty-first International Conference on Machine Learning, 2024.

13

https://arxiv.org/abs/2007.08663
https://proceedings.neurips.cc/paper/2020/hash/ba95d78a7c942571185308775a97a3a0-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/ba95d78a7c942571185308775a97a3a0-Abstract.html
https://doi.org/10.1613/jair.1.13225
https://doi.org/10.1613/jair.1.13225
http://proceedings.mlr.press/v5/shervashidze09a.html
http://proceedings.mlr.press/v5/shervashidze09a.html
https://dl.acm.org/doi/10.5555/1953048.2078187
https://doi.org/10.24963/ijcai.2021/214
https://www.jmlr.org/papers/v21/18-370.html
https://proceedings.neurips.cc/paper/2019/hash/73fed7fd472e502d8908794430511f4d-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/73fed7fd472e502d8908794430511f4d-Abstract.html
http://proceedings.mlr.press/v97/titouan19a.html
http://proceedings.mlr.press/v97/titouan19a.html
https://openreview.net/forum?id=rJXMpikCZ
https://books.google.com/books?id=MyPjjgEACAAJ

Boris Weisfeiler and AA Lehman. A reduction of a graph to a canonical form and an algebra arising
during this reduction. Nauchno-Technicheskaya Informatsia, 2(9):12–16, 1968.

Zhang Xinyi and Lihui Chen. Capsule graph neural network. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,
2019. URL https://openreview.net/forum?id=Byl8BnRcYm.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In 7th International Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/forum?id=
ryGs6iA5Km.

Minkai Xu, Alexander S. Powers, Ron O. Dror, Stefano Ermon, and Jure Leskovec. Geometric latent
diffusion models for 3d molecule generation. In Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, International Conference
on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of
Proceedings of Machine Learning Research, pages 38592–38610. PMLR, 2023. URL https:
//proceedings.mlr.press/v202/xu23n.html.

Yujun Yan, Jiong Zhu, Marlena Duda, Eric Solarz, Chandra Sripada, and Danai Koutra. Groupinn:
Grouping-based interpretable neural network for classification of limited, noisy brain data. In
Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data
mining, pages 772–782, 2019.

Pinar Yanardag and S. V. N. Vishwanathan. Deep graph kernels. In Longbing Cao, Chengqi Zhang,
Thorsten Joachims, Geoffrey I. Webb, Dragos D. Margineantu, and Graham Williams, editors,
Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Sydney, NSW, Australia, August 10-13, 2015, pages 1365–1374. ACM, 2015. doi:
10.1145/2783258.2783417. URL https://doi.org/10.1145/2783258.2783417.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Yike Guo and Faisal
Farooq, editors, Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD 2018, London, UK, August 19-23, 2018, pages 974–983. ACM,
2018. doi: 10.1145/3219819.3219890. URL https://doi.org/10.1145/3219819.3219890.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/
hash/3fe230348e9a12c13120749e3f9fa4cd-Abstract.html.

Zhen Zhang, Mianzhi Wang, Yijian Xiang, Yan Huang, and Arye Nehorai. Retgk: Graph kernels
based on return probabilities of random walks. In Samy Bengio, Hanna M. Wallach, Hugo
Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances in
Neural Information Processing Systems 31: Annual Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 3968–3978, 2018.
URL https://proceedings.neurips.cc/paper/2018/hash/7f16109f1619fd7a733da
f5a84c708c1-Abstract.html.

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Graph Contrastive Learning
with Adaptive Augmentation. In Proceedings of The Web Conference 2021, WWW ’21, pages
2069–2080, New York, NY, USA, April 2021. Association for Computing Machinery. ISBN
9781450370233. doi: 10.1145/3442381.3449802. URL https://doi.org/10.1145/3442381.
3449802.

14

https://openreview.net/forum?id=Byl8BnRcYm
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://proceedings.mlr.press/v202/xu23n.html
https://proceedings.mlr.press/v202/xu23n.html
https://doi.org/10.1145/2783258.2783417
https://doi.org/10.1145/3219819.3219890
https://proceedings.neurips.cc/paper/2020/hash/3fe230348e9a12c13120749e3f9fa4cd-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/3fe230348e9a12c13120749e3f9fa4cd-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/7f16109f1619fd7a733daf5a84c708c1-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/7f16109f1619fd7a733daf5a84c708c1-Abstract.html
https://doi.org/10.1145/3442381.3449802
https://doi.org/10.1145/3442381.3449802

A Theoretical Verification with WL-based Kernels

A.1 Non-decreasing Margin

Suppose that at iteration i, graph x1 in class 1 and graph y1 in class 2 decide the margin and at
iteration i+1, graph x2 in class 1 and graph y2 in class 2 decide the margin. There are two scenarios:
(1) x1 = x2 and y1 = y2, (2) x1 ̸= x2 or y1 ̸= y2. For case 1, margin at iteration i is given by:

∥ϕ(ψi(x1))− ϕ(ψi(y1))∥ =
√
(ϕ(ψi(x1))− ϕ(ψi(y1)))T (ϕ(ψi(x1))− ϕ(ψi(y1)))

=
√

2− 2⟨ϕ(ψi(x1)), ϕ(ψi(y1))⟩ =
√

2− 2K̃Fc,ϕ(x1, y1, i).

(1)

Since K̃Fc,ϕ(x, y, i) is monotonically decreasing, we have:√
2− 2K̃Fc,ϕ(x1, y1, i) ≤

√
2− 2K̃Fc,ϕ(x1, y1, i+ 1) = ∥ϕ(ψi+1(x1))− ϕ(ψi+1(y1))∥. (2)

This suggests that the margin does not decrease.

For case 2, we prove by contradiction and first assume that the margin decreases. Since the margin
decreases, we have:

∥ϕ(ψi+1(x2))− ϕ(ψi+1(y2))∥ < ∥ϕ(ψi(x1))− ϕ(ψi(y1))∥. (3)

At iteration i, since x1 and y1 decide the margin, we have:

∥ϕ(ψi(x1))− ϕ(ψi(y1))∥ ≤ ∥ϕ(ψi(x2))− ϕ(ψi(y2))∥. (4)

Combining Equation 3 and Equation 4, we have:

∥ϕ(ψi+1(x2))− ϕ(ψi+1(y2))∥ < ∥ϕ(ψi(x2))− ϕ(ψi(y2))∥. (5)

This is equivalent to:√
2− 2K̃Fc,ϕ(x2, y2, i+ 1) <

√
2− 2K̃Fc,ϕ(x2, y2, i), (6)

suggesting that K̃Fc,ϕ(x2, y2, i) increases with i, which conflicts with the fact that K̃Fc,ϕ(x2, y2, i)
is monotonically decreasing. Therefore, the margin does not decrease. □

A.2 Proof of Theorem 3.5

Following Equation 2.4, the normalized WL-subtree kernel after h iterations can be expressed as:

K̃(h)
wl_subtree (G,G

′) =

∑h
i=1

〈
ϕ(ψi(G)), ϕ(ψi (G′))

〉√∑h
i=1 ⟨ϕ(ψi(G)), ϕ(ψi (G))⟩

√∑h
i=1 ⟨ϕ(ψi(G′)), ϕ(ψi (G′))⟩

Next, we show by counterexample that the WL-subtree kernel may not preserve relational structure.

For example, consider two graphs, G and G′, in the h-th iteration. The color (label) set of the nodes
in these graphs is denoted as {Ca, Cb, Cc, . . .}. Graph G contains 200 nodes labeled Ca and 4 nodes
labeled Cb, whereas graph G′ contains 4 nodes labeled Ca and 200 nodes labeled Cb. The similarity
is computed using the vectors ϕ

(
ψi(G)

)
= [200, 4] and ϕ

(
ψi (G′)

)
= [4, 200]. Consequently, the

resulting similarity K̃(h)
wl_subtree is 0.0400.

In the next iteration, for graph G, assume that half of the nodes currently labeled Ca are relabeled
to Cc, while the other half are relabeled to Cd. Additionally, all nodes labeled Cb are relabeled to
Ce. As a result, the updated histogram vector for G becomes ϕ

(
ψi+1(G)

)
= [100, 100, 4]. Similarly,

in graph G′, half of the nodes labeled Ca are relabeled to Cc and the remaining half to Cd, with
all nodes labeled Cb relabeled to Ce, resulting in a histogram vector of ϕ

(
ψi+1(G′)

)
= [2, 2, 200].

Here, the normalized similarity K̃(h)
wl_subtree is 0.0404, which exceeds K̃(h)

wl_subtree.

This situation violates the principle of monotonic decrease, indicating that the WL-subtree kernel
does not exhibit monotonicity—a phenomenon frequently observed in real-world datasets. □

15

A.3 Proof of Theorem 3.6

A.3.1 Monotonic Decrease in WLOA Kernel

The WLOA kernel after h iterations can be computed as follows:

K(h)
WLOA (G,G′) =

h∑
i=1

histmin
{
ϕ(ψi(G)), ϕ(ψi(G′))

}
· ω(i)

where ω(i) is a monotonically increasing function. The normalized kernel is given by:

K̃(h)
WLOA(G,G

′) =
K(h)

WLOA(G,G′)√
K(h)

WLOA(G,G)
√

K(h)
WLOA(G′,G′)

At any iteration i, the expression histmin
{
ϕ(ψi(G)), ϕ(ψi(G))

}
· ω(i) equals to ω(i)|V|. Conse-

quently, for the h-th iteration, this implies:

K(h)
WLOA(G,G) =

h∑
i=1

ω(i)|V|

Thus, the normalized kernel value for the graph pair (G,G′) can be expressed as:

K̃(h)
WLOA(G,G

′) =
K(h)

WLOA(G,G′)√
|V||V ′|

∑i=1
h ω(i)

Given this, the difference between the kernel value at the h-th iteration, K̃(h)
WLOA, and the (h+ 1)-th

iteration, K̃(h+1)
WLOA, can be expressed as follows:

K̃(h)
WLOA(G,G

′)− K̃(h+1)
WLOA(G,G

′)

=
K(h)

WLOA(G,G′)√
|V||V ′|

∑h
i=1 ω(i)

−
K(h+1)

WLOA(G,G′)√
|V||V ′|

∑h+1
i=1 ω(i)

=
1√

|V||V ′|
· (

K(h)
WLOA(G,G′)∑h

i=1 ω(i)
−

K(h)
WLOA(G,G′) + histmin{ϕ(ψh+1(G)), ϕ(ψh+1(G′))ω(h+ 1)}∑h+1

i=1 ω(i)
)

:=D

Considering the hierarchical structure of the refinement processes, one can deduce the following
inequality:

histmin{ϕ(ψi(G)), ϕ(ψi(G′))} ≤ histmin{ϕ(ψi−1(G)), ϕ(ψi−1(G′))} ≤ · · · histmin{ϕ(ψ1(G)), ϕ(ψ1(G′))}

Thus, for the kernel at the (h+ 1)-th iteration, it follows that:

histmin{ϕ(ψh+1(G)), ϕ(ψh+1(G′))} ≤
∑h

i=1 histmin{ϕ(ψ
i(G)), ϕ(ψi(G′)) · ω(i)}∑h

i=1 ω(i)
=

K(h)
WLOA (G,G′)∑h

i=1 ω(i)

16

Given this inequality, we get

D ≥ 1√
|V||V ′|

· (
K(h)

WLOA(G,G′)∑h
i=1 ω(i)

−
K(h)

WLOA(G,G′) + ω(h+1)∑h
i=1 ω(i)

K(h)
WLOA (G,G′)∑h+1

i=1 ω(i)
)

=
1√

|V||V ′|
· (

K(h)
WLOA(G,G′)∑h

i=1 ω(i)
−

∑h
i=1 ω(i)

K(h)
WLOA(G,G′)∑h

i=1 ω(i)
+ ω(h+1)∑h

i=1 ω(i)
K(h)

WLOA (G,G′)∑h+1
i=1 ω(i)

)

=
1√

|V||V ′|
·
K(h)

WLOA (G,G′)∑h
i=1 ω(i)

· (1−
∑h

i=1 ω(i) + ω(h+ 1)∑h
i=1 ω(i) + ω(h+ 1)

)

= 0

(7)

Therefore, we get D ≥ 0. The value of Equation 7 is non-negative, indicating that WLOA is
monotonically decreasing.

A.3.2 Order Consistency in WLOA Kernel

Assume two graph pairs satisfy the following relation:

K̃(h)
WLOA(G,G

′) ≥ K̃(h)
WLOA(G,G

′′)

The normalized WLOA kernel for a graph pair (G,G′) at iteration h+ 1 can be expressed as:

K̃(h+1)
WLOA (G,G′) =

K(h+1)
WLOA (G,G′)√

|V| |V ′|
∑h+1

i=1 ω(i)
=

∑h
i=1 ω(i)∑h+1
i=1 ω(i)

·
K(h+1)

WLOA (G,G′)√
|V| |V ′|

∑h
i=1 ω(i)

K(h)
WLOA is monotonically increasing with the iteration number h, as it follows from: K(h+1)

WLOA =

K(h)
WLOA + histmin

{
ϕ(ψh+1(G)), ϕ(ψh+1(G′))

}
· ω(h+ 1). Thus, we have:

K̃(h+1)
WLOA(G,G

′) ≥
∑h

i=1 ω(i)∑h+1
i=1 ω(i)

·
K(h)

WLOA(G,G′)√
|V||V ′|

∑h
i=1 ω(i)

≥
∑h

i=1 ω(i)∑h+1
i=1 ω(i)

·
K(h)

WLOA(G,G′′)√
|V||V ′′|

∑h
i=1 ω(i)

=

∑h
i=1 ω(i)∑h+1
i=1 ω(i)

· K̃(h)
WLOA (G,G′′)

Given the monotonic decrease property of K̃(h)
WLOA (G,G′′),we have:

K̃(h+1)
WLOA (G,G′′) ≤ K̃(h)

WLOA (G,G′′)

Thus, we can conclude:

K̃(h+1)
WLOA(G,G

′) ≥
∑h

i=1 ω(i)∑h+1
i=1 ω(i)

K̃(h+1)
WLOA (G,G′′)

=

(
1− ω(h+ 1)∑h+1

i=1 ω(i)

)
K̃(h+1)

WLOA (G,G′′)

When ω(i) = 1, limh→∞
ω(h+1)∑h+1
i=1 ω(i)

= limh→∞
h+1

(h+2)(h+1)/2 = limh→∞
2

h+2 = 0. Therefore,

K̃(h+1)
WLOA(G,G′) ≥ K̃(h+1)

WLOA (G,G′′) when h→ ∞. □

17

Table 5: Dataset statistics.
Dataset Task Description # Class # Size Ave.Nodes Ave.Edges Node Label.

ogbg-molhiv Molecular property prediction 2 41127 25.5 54.1 +

PROTEINS Enzyme classification 2 1113 39.06 72.82 +
D&D Enzyme classification 2 1178 284.32 715.66 +
NCI1 Molecular classification 2 4110 29.87 32.30 +
NCI109 Molecular classification 2 4127 29.68 32.13 +
IMDB-B Movie venue categorization 2 1000 19.77 96.53 -
IMDB-M Movie venue categorization 3 1500 13.00 65.94 -
COLLAB Collaboration classification 3 5000 74.49 2457.78 -
COIL-RAG Computer Vision 100 3900 3.01 3.02 -

Reddit-T Reddit Thread Classification 2 203088 23.93 24.99 -

B Dataset

In this section, we provide the statistics of the datasets used, as shown in Table 5.

C Detailed Set-Up

TU Dataset We restrict the hyperparameters and ensure the same architecture is used for both
the base and enhanced models on the same dataset for a fair comparison. Specifically, we fixed the
hidden size to 32, the number of layers to 3, and used a global mean pooling layer to generate the
graph representations. The Adam optimizer was used for optimization. During the training process,
we tuned both the base and enhanced models with the same search ranges: batch size {64, 128},
dropout rate {0, 0.3} and learning rate {0.0001, 0.001, 0.01}.,The only additional parameter for the
enhanced model is the regularization term, which ranges from {0.1, 0.5, 1, 10}.

OGB Considering the complexity of the OGB dataset, we slightly expand the hyperparameter
search range. Initially, we train the model with consistency loss, exploring hidden sizes {32, 64, 128,
256}, batch sizes {64, 128, 256}, and the number of layers {3, 4}, while keeping other parameters
consistent with our experiments on the TU dataset. Subsequently, we fix the hidden size and the
number of layers to ensure an identical network structure. We then repeat the parameter search
process and employ the optimal settings for testing on the base model. All experiments on the OGB
dataset are repeated 5 times to calculate the mean and standard deviation.

Reddit-T Given that the Reddit-T and OGB datasets are of comparable size, we employ similar
experimental settings for training models on these datasets. The architecture is kept fixed, and we
search for optimal hyperparameters for both the base model and the models incorporating consistency
loss. Each model is trained and evaluated over 5 independent runs, with the mean and standard
deviation of the results recorded for performance comparison.

D Complexity& Scalability

D.1 Time Complexity

We present the time complexity analysis for our proposed consistency loss. The loss computation
involves the compuation of pairwise similarities of graphs in a batch, resulting in a computation
complexity of O

(
batchsize · batchsize−1

2

)
= O(batchsize2). Given that there are datasetsize

batchsize batches in
each training epoch and that the similarities are computed between consecutive layers, the total

18

complexity is:

O(loss) = O

{
batchsize2 × (layernum − 1)× datasetsize

batchsize

}
= O(datasetsize × batchsize × layernum).

This analysis shows that the time required to compute consistency loss scales linearly with dataset
size, batch size, and the number of layers. It is important to note that the training time for baseline
models also scales linearly with dataset size.

5000 10000 15000 20000 25000 30000 35000 40000
Dataset Size

2

4

6

8

T
ra

in
in

g
T

im
e(

s/
ep

oc
h

)

GTransformer

GMT

GCN

GIN

GraphSAGE

Figure 3: Training Cost Escalates Linearly with
Dataset Size Increase

Since batch size and the number of layers are
generally small compared to dataset size, our ex-
periments primarily focus on how dataset size
affects training time. We evaluate the training
time of several models—GCN, GIN, GraphSAGE,
GTransformer, and GMT—each enhanced with
our consistency loss. This evaluation is conducted
on different subsets of the ogbg-molhiv dataset,
with subset sizes adjusted by varying the sampling
rates. The training time, measured in seconds, are
presented in Figure 3 . As shown, our findings
confirm that training time increases linearly with
dataset size, indicating that our method maintains
training efficiency comparable to baselines with-
out adding significant time burdens.

Furthermore, we empirically measure the training time for both the baseline models and our proposed
methods. Each model comprises three layers and is trained on the ogbg-molhiv dataset (40,000+
graphs) for 100 epochs. We calculate the average training time per epoch in seconds and present
the results in Table 6, showing that while the inclusion of the consistency loss slightly increases the
training time, the impact is minimal.

Table 6: Average training time per epoch for different models on the ogbg-molhiv dataset, measured
in seconds.

GMT GTransformer GIN GCN GraphSAGE
GCN 8.380 4.937 4.318 4.221 3.952

GCN+Lconsistency 8.861 6.358 5.529 5.382 5.252

D.2 Space Complexity

Next, we present the space complexity analysis for our consistency loss. At each iteration, the loss
function requires storing two pairwise similarity matrices corresponding to two consecutive layers,
which is given by:

O(loss) = O(batchsize2)

Since we use stochastic gradient descent, similarity matrices are not retained for the next iteration.
The consistency loss requires significantly less space than node embeddings, making the additional
space requirement minimal. Table 7 shows the peak memory usage in megabytes (MB) for different
models when training on the ogbg-molhiv dataset, illustrating that the space costs are negligible.

Table 7: Peak memory usage for different models on the ogbg-molhiv dataset, measured in megabytes.
GMT GTransformer GIN GCN GraphSAGE

GCN 1334.0 1267.8 1291.3 1274.2 1288.4
GCN+Lconsistency 1370.0 1330.6 1338.9 1320.1 1321.3

Cost Increase (%) 2.70 4.96 3.68 3.60 2.55

19

D.3 Efficiency on Different Task and Structural Complexities

Task Complexity We measured the runtime of the models on different subsets to evaluate how
task complexity, in terms of the number of classes, influences the efficiency of the proposed method.
The results are presented in Table 8. As demonstrated, the additional computational time remains
minimal even with an increasing number of classes, suggesting that the method scales effectively
with growing class complexity.

Table 8: Average training time per epoch on REDDIT subsets with varying class complexity, measured in
seconds

Subset1 Subset2 Subset3 Fullset
(2 classes) (3 classes) (4 classes) (5 classes)

GCN 0.203 0.345 0.408 0.493
GCN+Lconsistency 0.227 0.355 0.430 0.557

Structure Complexity We also conducted experiments to assess the training costs on datasets with
varying structural complexities when introducing the Lconsistency . The results, summarized below
in Table 9, show that the additional training cost remains minimal across datasets with different
structures. This demonstrates the broad applicability of the proposed method, regardless of structural
complexity.

Table 9: Average training time per epoch for subsets of varying structural complexity from IMDB-B,
measured in seconds.

IMDB-B IMDB-B IMDB-B
(small) (medium) (large)

GCN 0.0308 0.0311 0.0321
GCN+Lconsistency 0.0371 0.0378 0.0392

E Efficient Consistent Learning

To further minimize the overhead of our proposed consistency loss, we examined a scenario where
the consistency loss, denoted as LFL, was only applied to the first and last layers.

Building upon the experimental setup described in Section 5, we conducted experiments using various
backbone models. The results are summarized in Table 10. The penultimate column of this table
highlights the performance gains achieved by applying the consistency loss across all layers, while
the final column demonstrates the improvements observed when the consistency loss is only applied
to the first and last layers.

Table 10: Graph classification performance with improvements of LALL and LFL over base models.
NCI1 NCI109 PROTEINS DD IMDB-B OGB-HIV LALL ↑ LFL ↑

GCN+LFL 75.96±0.89 74.67±1.11 72.97±2.85 76.27±1.69 74.6±1.85 74.44±1.42 +5.49 +7.08
GIN+LFL 79.08±1.21 77.0±2.01 73.15±2.76 74.07±1.38 74.8±4.66 74.2±1.62 +10.95 +15.12

GraphSAGE+LFL 78.88±2.01 74.24±1.21 75.32±2.46 73.90±2.03 76.6±1.96 80.06±1.21 +9.10 +9.71
GTransformer+LFL 76.79±1.24 74.38±0.49 73.69±2.09 75.08±1.57 76.80±1.60 80.53±0.73 +9.00 +8.63

GMT+LFL 76.40±1.00 75.64±0.77 72.25±3.96 73.39±2.18 76.00±1.36 81.05±1.29 +6.23 +5.24

Notably, applying the consistency loss only to the first and last layers achieves performance compara-
ble to that of applying it across all layers, with both configurations yielding substantial improvements
over the original model. This finding suggests that our proposed approach can be accelerated with
minimal additional computational cost while still enhancing performance, thereby validating the
effectiveness of the consistent learning principle.

20

F Similarity/Difference with Contrastive learning

In this section, we discuss the similarities and differences between our method and graph contrastive
learning. Graph Contrastive Learning (GCL) is a self-supervised technique for graph data that
emphasizes instance discrimination [Lin et al., 2023, Zhu et al., 2021]. A typical GCL framework
generates multiple graph views via augmentations and contrasts positive samples (similar instances)
with negative samples (dissimilar instances). This approach facilitates effective representation learning
by capturing relationships between views, ensuring positive pairs remain close in the embedding
space while distinctly separating negative pairs.

While both GCL and our method leverage graph similarity, our approach focuses on maintaining
consistency across layers, rather than solely capturing similarities as in contrastive learning.
To demonstrate this, we integrated the GraphCL technique [You et al., 2020] into a GCN model
(GCN+CL) and assessed its performance and layer consistency across various datasets. The results,
detailed in Tables 11 and 12, use classification accuracy and Spearman rank correlation to measure
performance and consistency, respectively.

Table 11: Graph classification accuracy of GCN with contrastive learning applied across various
datasets.

NCI1 NCI109 PROTEINS D&D IMDB-B
GCN+ CL 74.06 ±1.91 73.14 ±1.90 72.50 ±2.73 75.80 ±2.09 75.80 ±1.90

GCN+Lconsistency 75.12 ±1.19 73.25 ±1.25 75.07 ±5.05 78.56 ±3.32 75.85 ±1.82

Table 12: Spearman correlation for graph representations from consecutive layers.
NCI1 NCI109 PROTEINS D&D IMDB-B

GCN+ CL 0.835 0.717 0.851 0.717 0.810
GCN+Lconsistency 0.859 0.958 0.946 0.896 0.907

As demonstrated by the results, our method consistently outperforms GCN+CL in both graph
classification performance and in enhancing similarity consistency across layers. This underscores
the significant differences between our approach and regular GCL methods.

G Boarder Impact

This paper aims to advance the field of graph learning by proposing a model-agnostic consistency
learning framework. Our framework can be plugged into and improve current methods for graph
classification tasks. This has potential benefits in sectors such as chemistry, bioinformatics and
social analysis, where graph classification is widely used. Additionally, we do not foresee any direct
negative societal or ethical consequences stemming from our work.

H Limitation

One limitation of our work is that the method involves additional computational costs, especially
during large batch training processes. To extend our framework, sampling methodologies on data or
layers can be applied during the consistency-preserving training process. By selectively sampling
data points or specific layers, we can reduce the computational burden while still maintaining the
effectiveness of the cross-layer consistency loss, making the framework more scalable and applicable
to larger datasets.

21

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The experiments and results to support the claims in the introduction and
abstract are all in the main paper and the appendix.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in the main paper Sec. H Limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: This paper include theoretical result and proof involved in main paper and
appendix.

22

Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The training schedule and hyper-parameters are listed in Appendix Sec. C.

Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The data are public, and code is provided in the anonymous github.

23

Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/pu
blic/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have listed all the settings in the appenix for paramtere settings and training
schedules. The data splits are decribed under each case study section in the main paper.

Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All of our results are listed with error bars.

Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

24

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The compute resources of experiments are reported in the appendix.

Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this paper conforms, in every respect, to the NeurIPS
Code of Ethics.

Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The broader impact is discussed in the appendix G.

Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

25

https://neurips.cc/public/EthicsGuidelines

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:[NA]

Justification: The paper poses no such risks.

Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: They are properly cited and credited.

Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: the new model introduced in the paper is well documented.

Guidelines:

26

paperswithcode.com/datasets

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

27

	Introduction
	Preliminaries
	Notations and Definitions
	Weisfeiler-Lehman Isomorphism Test
	Graph Neural Network
	Graph Kernel

	Consistency Principles
	Iterative Graph Kernels
	Key Properties: Monotonic Decrease & Order Consistency
	Theoretical Verification with WL-based Kernels

	Proposed Strategy
	Consistency Loss

	Experiment
	Experiment Setup
	Effectiveness of Consistency Loss
	Effect of the Consistency Loss on Rank Correlation
	Study on Task Complexity

	Related Work
	Conclusion
	Theoretical Verification with WL-based Kernels
	Non-decreasing Margin
	Proof of Theorem 3.5
	Proof of Theorem 3.6
	Monotonic Decrease in WLOA Kernel
	Order Consistency in WLOA Kernel

	Dataset
	Detailed Set-Up
	Complexity& Scalability
	Time Complexity
	Space Complexity
	Efficiency on Different Task and Structural Complexities

	Efficient Consistent Learning
	Similarity/Difference with Contrastive learning
	Boarder Impact
	Limitation

