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Abstract

Probabilistic forecasting is crucial for real-world spatiotemporal systems, such as1

climate, energy, and urban environments, where quantifying uncertainty is essential2

for informed, risk-aware decision-making. While diffusion models have shown3

promise in capturing complex data distributions, their application to spatiotem-4

poral forecasting remains limited due to complex spatiotemporal dynamics and5

high computational demands. In this work, we propose CoST, a novel frame-6

work that Collaborates deterministic and diffusion models for SpatioTemporal7

forecasting. CoST formulates a mean-residual decomposition strategy: it lever-8

ages a powerful deterministic model to capture the conditional mean and a9

lightweight diffusion model to learn residual uncertainties This collaborative for-10

mulation simplifies learning objectives, enhances forecasting accuracy, enables11

uncertainty quantification, and significantly improves computational efficiency. To12

address spatial heterogeneity, we further design a scale-aware diffusion mech-13

anism to guide the diffusion process. Extensive experiments across ten real-14

world datasets from climate, energy, communication, and urban systems show15

that CoST achieves 25% performance gains over state-of-the-art baselines, while16

significantly reducing computational cost. Code and datasets are available at:17

https://anonymous.4open.science/r/CoST_8069.18

1 Introduction19

Real-world spatiotemporal systems underpin many critical domains, such as climate science, energy20

systems, communication networks, and urban environments. Accurate forecasting of the dynamics is21

essential for planning, resource allocation, and risk management [58, 5, 59, 51]. Existing approaches22

fall into two categories: deterministic and probabilistic forecasting. Deterministic methods estimate23

the conditional mean by minimizing MAE or MSE losses to capture spatiotemporal patterns [64,24

37, 63]. In contrast, probabilistic methods aim to learn the full predictive distribution of observed25

data [46, 31, 62], enabling uncertainty quantification to support forecasting. This is particularly26

important in many domains, for example, in climate modeling and renewable energy, where assessing27

prediction reliability is essential for risk-aware decisions such as disaster preparedness and energy28

grid management [42, 54].29

In this paper, we highlight the critical role of probabilistic forecasting in capturing uncertainty30

and improving the reliability of spatiotemporal predictions. However, it is non-trivial due to three31

challenges. First, these systems exhibit complex evolving dynamics, characterized by periodic trends,32

seasonal variations, and stochastic fluctuations [7, 62]. Second, these systems involve intricate33

spatiotemporal interactions and nonlinear dependencies [24, 63]. Third, real-world applications34

require both computationally efficient and scalable models [41, 51]. Recently, diffusion models35

have been widely adopted for probabilistic forecasting [57, 62, 46, 51]. Compared with existing36
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approaches such as Generative Adversarial Networks (GANs) [20, 15] and Variational Autoencoders37

(VAEs) [28, 30], diffusion models offer superior capability in capturing complex data distributions38

while ensuring stable training [22, 53, 23]. These advantages make diffusion models a promising39

alternative. However, originally developed for image generation, they face inherent limitations in40

capturing temporal correlations in sequential data, as evidenced in video generation [66, 45, 9, 17]41

and time series forecasting [62, 47, 46, 50].42

Existing Spatiotemporal Forecasting 
Models

Deterministic 
Model

Diffusion
Model

Deterministic 
Model

Diffusion
Model

Our Mean-Residual Decomposition
Framework

Deterministic Probabilistic

Figure 1: Comparison of existing models with our
mean-residual decomposition framework.

To address this issue, recent efforts have ex-43

plored incorporating temporal correlations as44

conditional inputs to guide the diffusion pro-45

cess [46, 50, 57], or injecting temporal priors46

into the noised data to explicitly model tempo-47

ral correlations across time steps [31, 51, 62].48

While these approaches improve temporal mod-49

eling, they remain constrained by the inherent50

limitations of the diffusion framework [46, 31,51

47]. In contrast, we introduce a new perspective:52

rather than relying solely on diffusion models53

to capture the full data distribution, we propose54

a collaborative approach that combines a deter-55

ministic model and a diffusion model, leverag-56

ing their complementary strengths for probabilistic forecasting. Our design offers two key advantages.57

First, by leveraging powerful deterministic models to predict the conditional mean, it effectively cap-58

tures the primary spatiotemporal patterns and benefits from advancements in established architectures.59

Second, instead of requiring the diffusion model to learn the full data distribution from scratch, we60

employ it to model the residuals, focusing its capacity on capturing uncertainty beyond the mean.61

This collaborative framework simplifies the learning objectives for each component and enhances62

both predictive accuracy and probabilistic expressiveness.63

Building on this insight, we propose CoST, a novel framework that Collaborates deterministic and64

diffusion models for SpatioTemporal forecasting. As illustrated in Figure 1, we first leverage an65

advanced deterministic spatiotemporal forecasting model to estimate the conditional mean E[y|x],66

effectively capturing the regular patterns. Based on this, we model the residual distribution p(r|x) =67

p((y − E[y|x])|x) using a diffusion model, which complements the deterministic forecasting with68

uncertainty quantification. Since the diffusion model focuses solely on residuals, it allows us to adopt69

a lightweight denoising network and mitigate the computational overhead associated with multi-step70

diffusion processes. To address spatial heterogeneity, we quantify differences across spatial units71

and introduce a scale-aware diffusion mechanism. More importantly, we propose a comprehensive72

evaluation protocol for spatiotemporal probabilistic forecasting by incorporating metrics such as73

QICE and IS, rather than relying solely on traditional measures like CRPS, MAE, and RMSE. In74

summary, our main contributions are as follows:75

• We highlight the importance of probabilistic forecasting for complex spatiotemporal systems76

and introduce a novel perspective that integrates deterministic and probabilistic modeling in a77

collaborative framework.78

• We propose CoST, a mean-residual decomposition approach that employs a deterministic model to79

estimate the conditional mean and a diffusion model to capture the residual distribution. We further80

design a scale-aware diffusion mechanism to address spatial heterogeneity.81

• Extensive experiments on ten real-world datasets spanning climate science, energy systems, com-82

munication networks, and urban environments show that CoST consistently outperforms state-of-83

the-art baselines on both deterministic and probabilistic metrics, achieving an average improvement84

of 25% while offering notable gains in computational efficiency.85

2 Related Work86

Spatiotemporal deterministic forecasting. Deterministic forecasting of spatiotemporal systems87

focuses on point estimation. These models are typically trained with loss functions like MSE or MAE88

to learn the conditional mean E[y|x], capturing regular patterns. Common deep learning architectures89

include MLP-based [49, 44, 67], CNN-based [29, 34, 64], and RNN-based [2, 33, 56, 55] models,90
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valued for their efficiency. GNN-based methods [1, 3, 18, 25] capture spatial dependencies in graph-91

based data, while Transformer-based models [10, 12, 37, 61, 5] are effective at modeling complex92

temporal dynamics.93

Spatiotemporal probabilistic forecasting. The core of probabilistic forecasting lies in modeling94

uncertainty, aiming to capture the full data distribution [60, 53]. This is particularly suited for95

modeling the stochastic nature of spatiotemporal systems. While early methods focused on Bayesian96

approaches, recent advances have explored generative models such as GANs [26, 48, 65], VAEs [11,97

13, 68], and diffusion models [53, 8, 32]. Diffusion models, in particular, have gained traction for98

their ability to model complex distributions with stable training, yielding strong performance in99

spatiotemporal forecasting [46, 47, 50, 51].100

Diffusion-based spatiotemporal probabilistic forecasting. Most diffusion-based forecasting meth-101

ods formulate the task as conditional generation without explicitly modeling temporal dynamics,102

which hinders the generation of temporally coherent sequences [53, 16, 57, 47]. Moreover, the103

progressive corruption of time series during diffusion often distorts key patterns like long-term104

trends and periodicity, making temporal recovery difficult [62, 35]. To address this, methods such as105

TimeGrad [46] and TimeDiff [50] incorporate temporal embeddings as conditional inputs to enhance106

temporal awareness. Other approaches like NPDiff [51], TMDM [31], and Diffusion-TS [62] inject107

temporal priors into the diffusion process to better preserve temporal dynamics. More recently,108

DYffusion [47] redefines the denoising process to explicitly model temporal transitions at each109

diffusion step. Unlike prior methods, we avoid using diffusion to model temporal dynamics. Instead,110

we decouple forecasting into deterministic mean prediction and residual uncertainty estimation. The111

diffusion model focuses solely on the residuals, simplifying learning and allowing for a smaller112

denoising network, which greatly reduces the computational cost of the iterative diffusion process.113

3 Preliminaries114

We provide a summary of notations used in this paper in Appendix A.1 for clarity.115

Spatiotemporal systems. Spatiotemporal systems underpin many domains such as climate science,116

energy, communication networks, and urban environments. The data recording spatiotemporal117

dynamics are typically represented as a tensor x ∈ RT×V×C , where T , V , and C denote the118

temporal, spatial, and feature dimensions, respectively. Depending on the spatial structure, the data119

can be organized as grid-structured (V = H×W ) or graph-structured (where V represents the set of120

nodes). Given a historical context xco = xt−M+1:t of length M , the goal is to predict future targets121

xta = xt+1:t+P over a horizon P using a model F .122

Conditional diffusion models. The diffusion-based forecasting includes a forward process and a123

reverse process. In the forward process, noise is added incrementally to the target data xta
0 , gradually124

transforming the data distribution into a standard Gaussian distribution N (0, I). At any diffusion125

step, the corrupted target data can be computed using the one-step forward equation:126

xta
n =

√
ᾱnx

ta
0 +

√
1− ᾱnϵ, ϵ ∼ N (0, I), (1)

where ᾱn =
∏n

i=1 αi and αn = 1− βn. In the reverse process, prediction begins by first sampling127

xta
N from the standard Gaussian distribution N (0, I), followed by a denoising procedure through the128

following Markov process:129

pθ(x
ta
0:N ) := p(xta

N )

N∏
n=1

pθ(x
ta
n−1|xta

n ,xco
0 ),

pθ(x
ta
n−1|xta

n ) := N (xta
n−1;µθ(x

ta
n , n|xco

0 ),Σθ(x
ta
n , n)),

µθ(x
ta
n , n|xco

0 ) =
1√
ᾱn

(
xta
n − βn√

1− ᾱn
ϵθ(x

ta
n , n|xco

0 )

) (2)

where the variance Σθ(x
ta
n , n) = 1−ᾱn−1

1−ᾱn
βn, and ϵθ(x

ta
n , n|xco

0 ) is predicted by the denoising130

network trained by the loss function below:131

L(θ) = En,x0,ϵ

[∥∥ϵ− ϵθ(x
ta
n , n|xco

0 )
∥∥2
2

]
. (3)
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Figure 2: Overview of CoST: (a) Pretraining of the deterministic model; (b) Computation of the
customized fluctuation scale; (c) Overall framework of the mean-residual decomposition.

Evaluations of probabilistic forecasting. We argue that probabilistic forecasting should be assessed132

from two key perspectives: Data Distribution—the predicted distribution should match the empirical133

distribution, and Prediction Usability—prediction intervals should achieve high coverage while134

remaining sharp. While metrics like CRPS, MAE and RMSE are widely used, they fail to assess: (i)135

the accuracy of quantile-wise coverage; (ii) whether the interval width reflects true uncertainty. To136

address this, we introduce Quantile Interval Coverage Error (QICE) [21] and Interval Score (IS) [19]137

as complementary metrics.138

(i) QICE measures the mean absolute deviation between the empirical and expected proportions of139

ground-truth values falling into each of equal-sized quantile intervals. QICE evaluates how well the140

predicted distribution aligns with the expected coverage across quantiles, which is defined as follows:141

QICE :=
1

MQIs

MQIs∑
m=1

∣∣∣∣rm − 1

MQIs

∣∣∣∣ , rm =
1

N

N∑
n=1

1yn≥ŷlowm
n

· 1
yn≤ŷ

highm
n

, (4)

where ŷlowm
n and ŷ

highm
n denote the bounds of the m-th quantile interval for yn. Ideally, each QI142

should contain 1/MQIs of the observations, yielding a QICE of 0. Lower QICE indicates better143

alignment between predicted and true distributions.144

(ii) IS evaluates prediction interval (PI) quality by jointly accounting for sharpness and empirical145

coverage, and is defined as:146

IS :=
1

N

N∑
n=1

[
(uαCI

n − lαCI
n ) +

2

αCI
(lαCI
n − yn)1yn<l

αCI
n

+
2

αCI
(yn − uαCI

n )1yn>u
αCI
n

]
,

(5)
where uαCI

n and lαCI
n are the upper and lower bounds of the central prediction interval for the n-th147

data point, derived from the corresponding predictive quantiles. A narrower interval improves the148

score, while missed coverage incurs a penalty scaled by αCI . Lower IS indicates better performance.149

4 Methodology150

In this section, we propose CoST, a unified framework that combines the strengths of deterministic151

and diffusion models. Specifically, we first train a deterministic model to predict the conditional152

mean, capturing the regular spatiotemporal patterns. Then, guided by a customized fluctuation scale,153

we employ a scale-aware diffusion model to learn the residual distribution, enabling fine-grained154

uncertainty modeling. An overview of the CoST architecture is shown in Figure 2.155

4.1 Theoretical Analysis of Mean-Residual Decomposition156

Current diffusion-based probabilistic forecasting approaches typically employ a single diffusion157

model to capture the full distribution of data, incorporating both the regular spatiotemporal patterns158
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and the random fluctuations. However, jointly modeling these components remains challenging [62].159

Inspired by [38] and the Reynolds decomposition in fluid dynamics [43], we propose to decompose160

the spatiotemporal data xta as follows:161

xta = E[xta|xco]︸ ︷︷ ︸
:=µ(Deterministic)

+(xta − E[xta|xco])︸ ︷︷ ︸
:=r(Diffusion)

, (6)

where µ is the conditional mean representing the regular patterns, and r is the residual representing162

the random variations. If the deterministic model approximates the conditional mean accurately,163

the expected residual becomes negligible, i.e. E[r|xco] ≈ 0, and we can obtain that var(r|xco) =164

var(xta|xco). Based on the law of total variance [4], we can express the variance of the target data165

and residuals as:166

var(r) = E[var(r|xco)] + var(E[r|xco])︸ ︷︷ ︸
=0

, var(xta) = E[var(xta|xco)] + var(E[xta|xco])︸ ︷︷ ︸
≥0

. (7)

Due to var(r|xco) = var(xta|xco), we have var(r) ≤ var(xta). Moreover, the highly dynamic167

nature of the spatiotemporal system results in a larger var(E[xta|xco]), which consequently makes168

var(r) smaller compared to var(xta). Our core idea is that if a deterministic model can accurately169

predict the conditional mean, that is, µ ≈ Eθ[x
ta|x], then the diffusion model can be dedicated solely170

to learning the simpler residual distribution. This design avoids the challenge diffusion models face171

in modeling complex spatiotemporal dynamics, while fully exploiting their strength in uncertainty172

estimation. By collaborating high-performing deterministic architectures and diffusion models, our173

method effectively captures regular dynamics and models uncertainty via residual learning.174

4.2 Mean Prediction via Deterministic Model175

To capture the conditional mean Eθ[x
ta|xco], our framework leverages existing high-performance de-176

terministic architectures, which are designed to capture complex spatiotemporal dynamics efficiently.177

In our main experiments, we use the STID [49] model as the backbone for mean prediction, and also178

validate our framework with ConvLSTM [52], STNorm [14], and iTransformer [36] to ensure its179

generality ( See Section 5.1). In the first stage of training, we pretrain the deterministic model for 50180

epochs using historical conditional inputs xco to output the mean estimate Eθ[x
ta|xco]. The model is181

trained with the standard L2 loss:182

L2 =
∥∥Eθ[x

ta|xco]− xta
∥∥2
2
. (8)

4.3 Residual Learning via Diffusion Model183

The residual distribution of spatiotemporal data is not independently and identically distributed184

(i.i.d.) nor does it follow a fixed distribution, such as N (0, σ). Instead, it often exhibits complex185

spatiotemporal dependence and heterogeneity. We use the diffusion model to focus on learning the186

distribution of residual rta = xta−Eθ[x
ta|xco]. Accordingly, the target data xta for diffusion models187

in Eqs. (1), (2), and (3) is replaced by rta. We incorporate timestamp information as a condition188

in the denoising process and concatenate the context data xco
0 with noised residual rtan as input to189

capture real-time fluctuations. Notably, no noise is added to xco
0 during diffusion training or inference.190

To model the spatial patterns of the residuals, we propose a scale-aware diffusion process to further191

distinguish the heterogeneity for different spatial units. In this section, we detail the calculation of Q192

and how it is integrated into the scale-aware diffusion process.193

(i) Customized fluctuation scale. Specifically, we apply the Fast Fourier Transform (FFT) to194

spatiotemporal sequences in the training set to quantify fluctuation levels in different spatial units and195

use the custom scale Q as input to account for spatial heterogeneity in residual. Specifically, we first196

employ FFT to extract the fluctuation components for each spatial unit within the training set. The197

detailed steps are as follows:198
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Ak = |FFT(x)k| , ϕk = ϕ (FFT(x)k) , Amax = max
k∈{1,··· ,⌊L

2 ⌋+1}
Ak,

K =

{
k ∈

{
1, · · · ,

⌊
L

2

⌋
+ 1

}
: Ak < 0.1×Amax

}
,

xr[i] =
∑
k∈K

Ak

[
cos (2πfki+ ϕk) + cos

(
2πf̄ki+ ϕ̄k

) ]
,

(9)

where Ak, ϕk reprent the amplitude and phase of the k−th frequency component. L is the temporal199

length of the training set. Amax is the maximum amplitude among the components, obtained using200

the max operator. K represents the set of indices for the selected residual components. fk is the201

frequency of the k-th component. f̄k, ϕ̄k represent the conjugate components. xr ref to the extracted202

residual component of the training set. We then compute the variance σ2
v of the residual sequence for203

each location v and expand it to match the shape as rta0 ∈ RB×V×P , where B represents the batch204

size. And we can get the variance tensor M:205

Mb,v,p = σ2
v ,∀b ∈ {1, · · · , B},∀v ∈ {1, · · · , V },∀p ∈ {1, · · · , P}. (10)

The residual fluctuations are bidirectional, encompassing both positive and negative variations, so206

we generate a random sign tensor S ∈ RB×V×P for M, where each element Sb,v,p of S is sampled207

from a Bernoulli distribution with p = 0.5. The customized fluctuation scale Q is computed as:208

Qb,v,p = Sb,v,p ×Mb,v,p,∀b ∈ {1, · · · , B},∀v ∈ {1, · · · , V },∀p ∈ {1, · · · , P}. (11)

Then Q is used as the input of the denoising network.209

(ii) Scale-aware diffusion process. The vanilla diffusion models assume a shared prior distribution210

N (0, I) across all spatial locations, failing to capture spatial heterogeneity. To further model such211

differences, we adopt the technique proposed by [21] to make the residual learning location-specific212

conditioned on Q. Specifically, we redefine the noise distribution at the endpoint of the diffusion213

process as follows:214

p(rtaN ) = N (Q, I), (12)
Accordingly, the Eq (1) in the forward process is rewritten as:215

rtan =
√
ᾱnr

ta
0 + (1−

√
ᾱn)Q+

√
1− ᾱnϵ, ϵ ∼ N (0, I). (13)

And in the denoising process, we sample rtaN from N (Q, I), and denoise it use Eq (2), the computation216

of µθ(r
ta
n , n|xco

0 ) in Eq (2) is modified as:217

µθ(r
ta
n , n|xco

0 ) =
1√
ᾱn

(
rtan − βn√

1− ᾱn
ϵθ(r

ta
n , n|xco

0 )

)
+ (1− 1√

ᾱn
)Q. (14)

This modification allows the diffusion process to be conditioned on location-specific priors Q,218

enhancing its ability to model spatial heterogeneity in uncertainty.219

4.4 Training and Inference220

Our training follows a two-stage training procedure: we first pretrain a deterministic model to221

predict the conditional mean, then train a diffusion model to capture the residual distribution. The full222

procedure is outlined in Algorithm 1. The inference consists of two paths: the pretrained deterministic223

model predicts the conditional mean, and the diffusion model estimates the residuals. Their outputs224

are combined to form the final prediction, as detailed in Algorithm 2.225

5 Experiments226

Datasets. We evaluate our method on ten datasets spanning four domains, including climate (SST-227

CESM2 and SST-ERA5), energy (SolarPower), communication (MobileNJ and MobileSH), and228

urban systems (CrowdBJ, CrowdBM, TaxiBJ, BikeDC and Los-Speed), each featuring distinct229

spatiotemporal characteristics. Detailed information on the datasets can be found in Appendix C.1.230

Baselines. We compare against six representative state-of-the-art baselines commonly adopted in231

spatiotemporal modeling, including: D3VAE [30], DiffSTG [57], TimeGrad [46], CSDI [53], DYf-232

fusion [47], and NPDiff [51]. Detailed descriptions of each baseline are provided in Appendix C.2.233
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Table 1: Short-term forecasting results in terms of CRPS, QICE, and IS. Bold indicates the best
performance, while underlining denotes the second-best. DYffusion is limited to grid-format data,
and ‘-’ denotes results that are not applicable.

Model Climate MobileSH TaxiBJ SolarPower CrowdBJ
CRPS QICE IS CRPS QICE IS CRPS QICE IS CRPS QICE IS CRPS QICE IS

D3VAE 0.053 0.071 15.8 0.856 0.105 1.729 0.433 0.160 985.7 0.475 0.083 731.1 0.668 0.099 53.6
DiffSTG 0.026 0.068 7.42 0.303 0.078 0.526 0.299 0.074 416.5 0.213 0.068 240.6 0.436 0.089 32.1

TimeGrad 0.042 0.147 16.0 0.489 0.143 0.759 0.170 0.102 213.2 1.000 0.128 781.7 0.385 0.113 48.6
CSDI 0.027 0.019 5.18 0.200 0.052 0.295 0.122 0.048 121.8 0.267 0.050 221.6 0.306 0.028 16.4

NPDiff 0.022 0.031 4.24 0.201 0.106 0.627 0.222 0.112 474.1 0.209 0.020 175.3 0.287 0.120 34.5
DYffusion 0.020 0.123 12.4 0.230 0.096 0.573 0.084 0.054 99.5 - - - - - -

CoST 0.021 0.009 4.04 0.147 0.014 0.215 0.100 0.023 95.3 0.208 0.019 192.1 0.215 0.014 11.5

Table 2: Short-term forecasting results in terms of MAE and RMSE.

Model Climate MobileSH TaxiBJ SolarPower CrowdBJ
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

D3VAE 1.75 2.31 0.186 0.373 49.3 84.8 60.1 122.8 5.16 10.1
DiffSTG 0.90 1.13 0.066 0.103 41.8 69.4 31.1 63.8 3.68 6.63

TimeGrad 1.31 1.48 0.047 0.053 29.1 34.1 39.3 94.8 4.37 5.43
CSDI 0.94 1.20 0.044 0.075 18.2 31.6 38.8 69.6 2.71 5.51

NPDiff 0.79 1.07 0.037 0.057 26.7 52.2 32.1 53.6 2.05 3.27
DYffusion 0.86 1.07 0.050 0.072 12.3 18.0 - - - -

CoST 0.74 0.96 0.033 0.051 15.1 25.6 29.7 51.9 1.92 3.04

Metrics. To evaluate the performance, we employ two deterministic metrics, MAE and RMSE, along234

with three probabilistic metrics: CRPS, QICE and IS. For QICE, we set the number of QIs, denoted235

as MQIs, to 10. We choose 10 bins for QICE to align with the original proposal [21]. which offers a236

balanced trade-off between granularity and stability. For IS, we choose a confidence level of 90%237

(i.e., αCI = 0.1) following common practice in spatiotemporal forecasting tasks [53, 46].238

Experimental configuration. We define the short-term forecasting task as predicting the next 12239

time steps based on the previous 12 observations, following [51, 57]. Since the temporal granularity240

varies across datasets, the actual time duration corresponding to these 12 steps differs accordingly.241

In addition to the standard 12-step setting commonly used in spatiotemporal forecasting, we eval-242

uate long-term forecasting by predicting 64 future steps based on the preceding 64 observations,243

following [63, 27, 40]. Detailed training and model configurations are provided in Appendix C.3.244

5.1 Spatiotemporal Probabilistic Forecasting245

Short-term forecasting. Table 1 presents the results of probabilistic metrics for selected datasets.246

Due to space constraints, the remaining results are in Appendix Table 6. As shown in Table 1,247

CoST consistently outperforms baseline methods across all evaluated datasets. Compared to the248

best-performing baseline methods on each dataset, CoST demonstrates an average improvement of249

17.4% in CRPS and 46.6% in QICE metrics, indicating its superior ability to accurately capture the250

true distribution characteristics. Moreover, CoST achieves a 16.5% improvement in the IS metric,251

suggesting that its prediction intervals not only maintain compactness but also exhibit higher coverage,252

thereby better reflecting the uncertainty of data. Although certain individual metrics may not reach253

the optimal level on specific datasets, CoST consistently maintains performance comparable to the254

best methods. Beyond probabilistic metrics, we also report deterministic evaluation results (MAE255

and RMSE) in Table 2 and Appendix Table 7. The results show that our method achieves an average256

reduction of 7% in MAE and 6.1% in RMSE datasets. This suggests that the integration with a257

strong conditional mean estimator enables CoST to better capture regular patterns compared to other258

probabilistic baseline models.259

Long-term forecasting. As shown in Appendix Table 8, CoST achieves substantial improvements260

in long-term forecasting under probabilistic metrics, with an improvement of 15.0% and 70.4% in261

terms of CRPS and QICE. Despite adopting a simple MLP architecture, CoST achieves higher overall262

accuracy than CSDI, a Transformer-based model tailored for capturing long-range dependencies.263

Furthermore, it provides significantly better training efficiency and inference speed, as detailed in264

Section 5.4. In addition, CoST performs well on deterministic metrics (Appendix Table 9), achieving265

an average reduction of 9.0% in MAE and 11.0% in RMSE compared to the best-performing baseline.266

Framework generalization. To demonstrate the generality of CoST, we instantiate it with four267

representative spatiotemporal forecasting models: STID [49], STNorm [14], ConvLSTM [52], and268
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Table 3: Performance of different deterministic backbone models within the CoST framework.
’Diffusion (w/o m)’ denotes the results obtained using a single diffusion model.

Model Climate MobileNJ BikeDC
MAE RMSE CRPS QICE IS MAE RMSE CRPS QICE IS MAE RMSE CRPS QICE IS

Diffussion (w/o m) 1.070 1.361 0.030 0.030 6.58 0.195 0.6711 0.159 0.036 1.364 2.387 10.79 1.090 0.059 12.6

+iTransformer 0.818 1.088 0.023 0.018 4.83 0.122 0.207 0.123 0.021 0.815 0.526 2.23 0.454 0.035 3.82
Reduction 23.6% 20.1% 23.3% 40.0% 26.6% 37.4% 69.2% 22.6% 41.7% 40.2% 78.0% 79.3% 58.3% 40.7% 69.7%

+ ConvLSTM 0.889 1.151 0.027 0.024 5.54 0.137 0.231 0.120 0.025 0.913 0.454 2.01 0.443 0.037 6.07
Reduction 16.9% 15.4% 10.0% 20.0% 15.8% 29.7% 65.6% 24.5% 30.6% 33.1% 81.0% 81.4% 59.4% 37.3% 51.8%

+STNorm 0.819 1.066 0.023 0.007 4.52 0.144 0.276 0.123 0.016 0.825 0.600 2.71 0.500 0.029 3.74
Reduction 23.5% 21.7% 23.3% 76.7% 31.3% 26.2% 58.9% 22.6% 55.6% 39.5% 74.9% 74.9% 54.1% 50.8% 70.3%

iTransformer [36]. These models cover a diverse set of deep learning architectures, including CNNs,269

RNNs, MLPs, and Transformers. As shown in Table 3, CoST consistently enhances the performance270

of these backbones by effectively integrating deterministic and probabilistic modeling. Compared271

to using a single diffusion model, CoST yields more accurate predictions and better-calibrated272

uncertainty estimates, validating the framework’s broad applicability and effectiveness.273

Figure 3: (a) and (b) show the ground-truth and predicted
value of SST, and (c) displays the spatial distribution of
forecasting uncertainty.

Case study of SST forecasting. To274

assess our model’s ability to quantify275

uncertainty under complex climate dy-276

namics, we evaluate its performance277

in a key region for ENSO-related278

Sea Surface Temperature (SST) fore-279

casting. As shown in Figure 3,280

our model produces high-fidelity SST281

forecasts that closely match ground282

truth across both warm pool and cold283

tongue regions. In addition to ac-284

curate mean predictions, it provides285

well-calibrated uncertainty estimates,286

revealing elevated variance in the cen-287

tral equatorial Pacific, especially near288

0° latitude and 140°–130°W, where289

sharp thermocline gradients and non-290

linear feedbacks make forecasting par-291

ticularly challenging. These high-292

uncertainty areas align with known regions of model divergence in climate science [39, 6, 7],293

demonstrating that our method delivers both accurate predictions and geophysically consistent294

uncertainty estimates.295

5.2 Ablation Study296

We perform an ablation study to assess the contribution of each proposed module. Specifically, we297

construct three model variants by progressively removing key components: (w/o s): removes the298

scale-aware diffusion process; (w/o q) excludes the customized fluctuation scale as a prior; (w/o299

m) removes the conditional mean predictor, relying solely on the diffusion model. We conduct300

experiments on two datasets and visualize the results in terms of CRPS and IS metrics, as illustrated301

in Appendix Figure 8. Results show that the deterministic predictor notably improves performance302

by capturing regular spatiotemporal patterns, while also reducing the diffusion model’s complexity.303

Adding the customized fluctuation scale further enhances accuracy, indicating its utility in providing304

valuable fluctuation information across different spatial units. And the scale-aware diffusion process305

enables the diffusion model to better utilize this condition.306

5.3 Qualitative Analysis307

Analysis of distribution alignment. As shown in Figure 4, the ground truth exhibits clear spa-308

tiotemporal multi-modality. In Figure 4(a), three peaks likely correspond to different time points or309

varying states at the same time. CoST accurately captures all three peaks, while CSDI only fits two,310

showing CoST’s superior multi-modal modeling. In Figure 4(b), both models capture two peaks,311

but CoST aligns better with the peak spacing in the true distribution, reflecting stronger temporal312
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sensitivity. These strengths arise from CoST’s hybrid design: the diffusion component models313

residual uncertainty to capture multi-modal traits, while the deterministic backbone learns regular314

trends. See Appendix C.5.1 for more analysis and results.315
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Figure 6: Visualizations of predictive uncertainty
for both CSDI and CoST on the CrowdBJ dataset.
The shaded regions represent the 90% confidence
interval. The dashed lines denote the median of
the predicted values for each model.

Analysis of prediction quality. To intuitively316

demonstrate the effectiveness of our predictions,317

we visualize results on the CrowdBJ dataset in318

Figure 6, comparing our model with the best319

baseline, CSDI. As shown in Figures 6 (a, c, f),320

our model, aided by a deterministic backbone,321

better captures regular spatiotemporal patterns.322

Meanwhile, the diffusion module enhances un-323

certainty modeling by focusing on residuals, as324

reflected in Figures 6 (b, d, e). Beyond sample-325

level comparison, we evaluate prediction inter-326

val calibration via dynamic quantile error curves327

on CrowdBM and MobileSH (Figure 5). For328

each confidence level α, we compute the cor-329

responding quantile interval and its Prediction330

Interval Coverage Probability (PICP). Closer331

alignment with the diagonal (black dashed line)332

indicates better calibration. Our model consis-333

tently outperforms CSDI in this regard.334

5.4 Computational Cost335

We benchmark training and inference time (including 50 sampling iterations and pretraining for our336

mean predictor) on the MobileSH dataset. As shown in Appendix Table 10, our method achieves337

markedly higher efficiency than existing probabilistic models in both training and inference. This338

efficiency is particularly advantageous for real-world applications such as mobile traffic prediction.339

Notably, CSDI leverages the Transformer’s expressive power but incurs substantial computational340

cost, limiting its applicability in time-sensitive settings.341

6 Conclusion342

In this work, we highlight the importance of probabilistic forecasting for complex spatiotemporal343

systems and propose CoST, a collaborative framework that integrates deterministic and diffusion344

models. By decomposing data into a conditional mean and residual component, CoST bridges345

deterministic and probabilistic modeling, enabling accurate capture of both regular patterns and346

uncertainties. Extensive experiments on seven real-world datasets show that CoST consistently347

outperforms state-of-the-art methods with an average improvement of 25%. Our approach offers an348

effective solution for combining precise pattern learning with uncertainty modeling in spatiotemporal349

forecasting.350

Limitations and future work. CoST relies on a strong deterministic backbone, which may limit its351

applicability in domains lacking mature models. Moreover, it has not yet been validated on complex352

physical systems governed by PDEs or coupled dynamics. Future work will explore physics-informed353

extensions, adaptive decomposition, and more generalizable architectures.354
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A Background557

A.1 Glossary558

We summarize all notations and symbols used throughout the paper in Table 4.559

Table 4: Glossary of notations and symbols used in this paper.

Symbol Used for

G = (V, E ,A) Graph structure where V is the node set, E is the edge set, and A is the adjacency matrix.
x ∈ RT×V×C Spatiotemporal data.

T The length of spatiotemporal series.
V The number of spatial units.
C The number of feature dimensions.
B Batch size.
P Prediction horizon.
M Historical horizon.
N The number of diffusion steps.
H Height of the grid-based data
W Width of the grid-based data
Q Customized fluctuation scale.
M The variance tensor.
S The random sign tensor.

{·}co Historical (conditional) term.
{·}ta Predicted (target) term.
{·}n Noisy data at n-th diffusion step.
µ Mean.
r Residual.
ϵ Gaussian noise.
K K The set of indices for the selected FFT components

{βn}Nn=1 The noise schedule in the diffusion process.
αn, ᾱn αn = 1− βn, ᾱn =

∏n
i=1 αi.

ϵθ(·) The denoising network with parameter θ.
αCI Significance level for the prediction interval.
1(·) Indicator function, which takes the value 1 when a certain condition is true, and 0 when the condition is false.

A.2 Spatiotemporal Data560

Spatiotemporal data typically come in two forms: (i) Grid-based data, where the spatial dimension561

V can be expressed in a two-dimensional form as H × W , with H and W denoting height and562

width, respectively. (ii) Graph-based data, where V denotes the number of nodes in a spatial graph563

G = (V, E ,A), defined by its set of nodes V , the set of edges E and the adjacency matrix A. Its564

elements aij show if there’s an edge between node i and j in V , aij = 1 when there’s an edge and565

aij = 0 otherwise.566

B Methodology567

B.1 Algorithm568

The training and inference procedures of CoST are summarized in Algorithm 1 and Algorithm 2,569

respectively.570

C Experiments571

C.1 Datasets572

In our experiments, we evaluate the proposed method on ten real-world datasets across four domains:573

climate, energy, communication systems, and urban systems. For climate forecasting, we train our574

models on the simulated SST-CESM2 dataset and evaluate them on the observational SST-ERA5575

dataset, using the first 30 years for validation and the remaining years for testing. The remaining576

datasets are partitioned into training, validation, and test sets with a 6:2:2 ratio, and all datasets are577

standardized during training.Table 5 provides a summary of the datasets. The details are as follows:578
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Algorithm 1 Training
1: Stage 1: Pretraining of Deterministic Model Eθ

2: repeat
3: Estimate the conditional mean Eθ[x

ta
0 |xco

0 ].
4: Update Eθ using the following loss function:

L2 =
∥∥Eθ[x

ta
0 |xco

0 ]− xta
0

∥∥2
2

5: until The model has converged.
6: Stage 2: Training of Diffusion Model ϵθ
7: repeat
8: Initialize n ∼ Uniform(1, . . . , N) and ϵ ∼ N (0, I).
9: Calculate the target rta0 = xta

0 − Eθ[x
ta
0 |xco

0 ].
10: Calculate noisy targets rtan using Eq. (13).
11: Update ϵθ using the following loss function:

L(θ) =
∥∥ϵ− ϵθ(r

ta
n , n|xco

0 )
∥∥2
2

12: until The model has converged.

Algorithm 2 Inference
1: Input: Context data xco

0 , customized fluctuation scale Q, trained diffusion model ϵθ, trained
deterministic model Eθ

2: Output: Target data xta
0

3: Estimate the conditional mean Eθ[x
ta
0 |xco

0 ]
4: Sample rtaN from ϵ ∼ N (Q, I)
5: for n = N to 1 do
6: Estimate the noise ϵθ(r

ta
n , n|xco

0 )
7: Calculate the µθ(r

ta
n , n|xco

0 ) using Eq. (14)
8: Sample rtan−1 using Eq. (2)
9: end for

10: Return: xta
0 = Eθ[x

ta
0 |xco

0 ] + rta0

• Climate. We utilize two datasets for sea surface temperature (SST) prediction in the Niño 3.4 region579

(5°S–5°N, 170°W–120°W), which is widely used for monitoring El Niño events: (i) SST-CESM2,580

simulated SST data from the CESM2-FV2 model of the CMIP6 project, covering the period from581

1850 to 2014, with a spatial resolution of 1◦ × 1◦. (ii) SST-ERA5: reanalysis data from ERA5,582

containing SST and 10-meter wind speed (U10/V10) variables from 1940 to 2025, with an original583

spatial resolution of approximately 0.25◦ × 0.25◦. All data are regridded to a 1◦ × 1◦ resolution584

for consistency. The CESM2 data are used for training, while the first 30 years of ERA5 are used585

for validation and the remaining years for testing.586

• Energy. This dataset contains real-time meteorological measurements and photovoltaic (PV) power587

output collected from a PV power station in China, spanning from March 1st to December 31st,588

2024. The features include: total active power output of the PV grid-connection point (P), ambient589

temperature, back panel temperature, dew point, relative humidity, atmospheric pressure, global590

horizontal irradiance (GHI), diffuse and direct radiation, wind direction and wind speed. Our591

forecasting task focuses on GHI, which is the key variable for solar power prediction. Due to data592

privacy restrictions, the raw dataset cannot be publicly released.593

• Communication Systems. Mobile communication traffic datasets are collected from two major594

cities in Shanghai and Nanjing, capturing the spatiotemporal dynamics of network usage patterns.595

• Urban Systems. We adopt five widely used public datasets representing various urban sensing596

signals: (i) CrowdBJ and CrowdBM, crowd flow data from Beijing and Baltimore, respectively. (ii)597

TaxiBJ, taxi trajectory-based traffic flow data from Beijing. (iii) BikeDC, bike-sharing demand data598

from Washington D.C. (iv) Los-Speed, traffic speed data from the Los Angeles road network. These599

datasets have been extensively used in spatiotemporal forecasting research and provide diverse600

signals for evaluating model generality across cities and domains.601
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Table 5: The basic information of grid-based spatio-temporal data.
Dataset Location Type Temporal Period Spatial partition Interval

SST-CESM2 Global (Niño 3.4) Simulated SST 1850-2014 1◦ × 1◦ Monthly
SST-ERA5 Global (Niño 3.4) Reanalysis SST / U10 / V10 1940-2025 0.25◦ × 0.25◦ Monthly
SolarPower China (a PV station) GHI / Weather / PV power 2024/03/01 - 2024/12/31 Station-level 15 min

TaxiBJ Beijing Taxi flow 2014/03/01 - 2014/06/30 32× 32 Half an hour
TaxiBJ Beijing Taxi flow 2014/03/01 - 2014/06/30 32× 32 Half an hour
TaxiBJ Beijing Taxi flow 2014/03/01 - 2014/06/30 32× 32 Half an hour
BikeDC Washington, D.C. Bike flow 2010/09/20 - 2010/10/20 20× 20 Half an hour

MobileSH Shanghai Mobile traffic 2014/08/01 - 2014/08/21 32× 28 One hour
MobileNJ Nanjing Mobile traffic 2021/02/02 - 2021/02/22 20× 28 One hour
CrowdBJ Beijing Crowd flow 2018/01/01 - 2018/01/31 1010 One hour
CrowdBM Baltimore Crowd flow 2019/01/01 - 2019/05/31 403 One hour
Los-Speed Los Angeles Traffic speed 2012/03/01 - 2012/03/07 207 5 minutes

C.2 Baselines602

We provide a brief description of the baselines used in our experiments:603

• D3VAE [30]: Aims at short-period and noisy time series forecasting. It combines generative604

modeling with a bidirectional variational auto-encoder, integrating diffusion, denoising, and disen-605

tanglement.606

• DiffSTG [57]: First applies diffusion models to spatiotemporal graph forecasting. By combining607

STGNNs and diffusion models, it reduces prediction errors and improves uncertainty modeling.608

• TimeGrad [46]: An autoregressive model based on diffusion models. It conducts probabilistic609

forecasting for multivariate time series and performs well on real-world datasets.610

• CSDI [53]:Utilizes score-based diffusion models for time series imputation. It can leverage the611

correlations of observed values and also shows remarkable results on prediction tasks.612

• DYffusion [47]: A training method for diffusion models in probabilistic spatiotemporal forecasting.613

It combines data temporal dynamics with diffusion steps and performs well in complex dynamics614

forecasting.615

• NPDiff [51]: A general noise prior framework for mobile traffic prediction. It uses the data616

dynamics to calculate noise prior for the denoising process and achieve effective performance.617

C.3 Experimental Configuration618

In our experiment, for our model, we set the training maximum epoch for both the deterministic619

model and the diffusion model to 50, with early stopping based on patience of 5 for both models.620

For the diffusion model, we set the validation set sampling number to 3, and the average metric621

computed over these samples is used as the criterion for early stopping. For the baseline models, we622

set the maximum training epoch to 100 and the early stopping patience also to 5. We set the number623

of samples to 50 for computing the experimental results presented in the paper. For the denoising624

network architecture, we adopt a lightweight variant of the MLP-based STID [49]. Specifically, we625

set the number of encoder layers to 8 and the embedding dimension to 128. The diffusion model626

employs a maximum of 50 diffusion steps, using a linear noise schedule with β1 = 0.0001 and627

βN = 0.5. During training, we set the initial learning rate to 0.001, and after 20 epochs, we adjust it628

to 4e-4. We use the Adam optimizer with a weight decay of 1e-6. All experiments are conducted629

with fixed random seeds. Models with lower GPU memory demands are run on NVIDIA TITAN630

Xp (12GB GDDR5X) and NVIDIA GeForce RTX 4090 (24GB GDDR6X) GPUs under a Linux631

environment. For the DYffusion [47] baseline, which requires substantially more resources, training632

is performed on NVIDIA A100 (80GB HBM2e) and A800 (40GB HBM2e).633

C.4 Geographic Extent of the ENSO Region634

To provide geographic context for the SST case study presented in Section 3, Figure 7 illustrates the635

global location and spatial extent of the selected region. The red box highlights the area from 4.5°S636

to 4.5°N and 169.5°W to 120.5°W in the central-to-eastern equatorial Pacific, a region known for637

strong ocean-atmosphere coupling and ENSO-related variability.638
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Figure 7: Global map indicating the spatial extent of ENSO region (highlighted in yellow). The
region spans from 4.5°S to 4.5°N and 169.5°W to 120.5°W in the equatorial Pacific.

C.5 Additional Experimental Results639

Table 6: Short-term forecasting results in terms of CRPS, QICE, and IS. Bold indicates the best
performance, while underlining denotes the second-best. DYffusion is limited to grid-format data,
and ‘-’ denotes results that are not applicable.

Model BikeDC MobileNJ CrowdBM Los-Speed
CRPS QICE IS CRPS QICE IS CRPS QICE IS CRPS QICE IS

D3VAE 0.785 0.157 8.77 0.565 0.096 6.03 0.593 0.110 136.4 0.119 0.089 90.5
DiffSTG 0.692 0.157 8.08 0.291 0.071 3.11 0.453 0.047 68.5 0.078 0.045 50.9

TimeGrad 0.469 0.130 5.65 0.432 0.162 5.87 0.240 0.085 46.9 0.031 0.098 20.8
CSDI 0.529 0.057 4.79 0.111 0.039 0.80 0.390 0.054 61.1 0.059 0.026 30.8

NPDiff 0.442 0.066 7.11 0.128 0.133 2.22 0.331 0.119 91.2 0.057 0.023 30.5
DYffusion 0.573 0.079 6.46 0.196 0.080 1.80 - - - - - -

CoST 0.419 0.028 3.45 0.089 0.032 0.66 0.256 0.027 37.8 0.056 0.023 31.9

Table 7: Short-term forecasting results in terms of MAE and RMSE. Bold indicates the best perfor-
mance, while underlining denotes the second-best. DYffusion is limited to grid-format data, and ‘-’
denotes results that are not applicable.

Model BikeDC MobileNJ CrowdBM Los-Speed
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

D3VAE 0.871 3.59 0.580 1.135 11.0 24.7 8.28 11.9
DiffSTG 0.770 4.02 0.317 0.649 8.88 21.3 5.38 9.75

TimeGrad 0.843 1.07 0.340 0.357 10.1 12.4 2.33 3.00
CSDI 0.592 3.10 0.129 0.237 7.31 19.3 4.53 8.07

NPDiff 0.435 1.90 0.123 0.175 5.42 13.7 4.07 7.64
DYffusion 0.480 1.37 0.222 0.357 - - - -

CoST 0.492 1.76 0.102 0.172 5.04 12.1 4.05 7.30

Table 8: Long-term forecasting results in terms of CRPS, QICE, and IS. Bold indicates the best
performance, while underlining denotes the second-best. DYffusion is limited to grid-format data,
and ‘-’ denotes results that are not applicable.

Model MobileSH Climate CrowdBJ CrowdBM Los-Speed
CRPS QICE IS CRPS QICE IS CRPS QICE IS CRPS QICE IS CRPS QICE IS

D3VAE 0.798 0.129 1.830 0.075 0.083 24.0 0.710 0.109 63.9 0.674 0.108 152.3 0.138 0.101 113.2
DiffSTG 0.374 0.107 0.923 0.027 0.077 7.90 0.370 0.094 31.3 0.400 0.073 67.1 0.124 0.080 104.6

TimeGrad 0.245 0.075 0.408 0.041 0.101 14.2 0.371 0.073 32.4 0.237 0.049 33.9 0.192 0.081 98.8
CSDI 0.158 0.045 0.216 0.036 0.073 6.80 0.229 0.038 12.0 0.235 0.052 33.7 0.134 0.090 59.2

NPDiff 0.204 0.102 0.611 0.109 0.115 41.3 0.288 0.114 33.6 0.331 0.111 90.8 1.366 0.126 950.4
DYffusion 0.308 0.086 0.550 0.030 0.147 15.2 - - - - - - - - -

CoST 0.158 0.016 0.218 0.024 0.011 4.87 0.217 0.011 11.5 0.235 0.009 31.2 0.089 0.040 64.6
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Figure 8: Ablation study on the CrowdBJ and CrowdBM comparing variants in terms of (a) CRPS
and (b) IS.
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Figure 9: PIT analysis on the MobileSH dataset: (a) PIT histogram and (b) PIT empirical CDF.

Table 10: Comparison of training and inference time on the MobileSH dataset.

Model Train Time Inference Time

D3VAE 3min 27s 2min 15s
DiffSTG 24min 16s 18min 38s

TimeGrad 5min 2min
CSDI 48min 40s 38min 49s

DyDiffusion 33h 3h
CoST 2min 50s

Table 9: Long-term forecasting results in terms of MAE and RMSE. Bold indicates the best perfor-
mance, while underlining denotes the second-best. DYffusion is limited to grid-format data, and ‘-’
denotes results that are not applicable.

Model MobileSH SST CrowdBJ CrowdBM Los-Speed
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

D3VAE 0.207 0.392 2.39 3.13 5.63 11.4 12.4 28.2 9.43 13.3
DiffSTG 0.078 0.125 0.94 1.19 3.04 6.37 7.59 18.8 7.77 14.2

TimeGrad 0.058 0.072 1.30 1.64 3.48 4.83 5.25 7.40 18.2 22.3
CSDI 0.035 0.057 1.31 1.63 1.99 3.64 4.64 12.4 11.3 15.0

NPDiff 0.037 0.057 1.91 2.82 2.06 3.28 5.44 13.8 46.0 58.3
DYffusion 0.047 0.066 0.85 1.06 - - - - - -

CoST 0.035 0.053 0.86 1.13 1.92 3.05 4.74 11.2 5.94 10.8

C.5.1 Analysis of Distribution Alignment.640

Additionally, we present the PIT (Probability Integral Transform) histogram in Figure 9 (a) and641

the PIT empirical cumulative distribution function (CDF) in Figure 9 (b) to visually reflect the642
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alignment of the full distribution. Ideally, the true values’ quantiles in the predictive distribution643

should follow a uniform distribution, corresponding to the dashed line in Figure 9 (a). In the case644

of perfect calibration, the PIT CDF should closely resemble the yellow diagonal line. Clearly, our645

model outperforms CSDI.646
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Question: Do the main claims made in the abstract and introduction accurately reflect the649

paper’s contributions and scope?650

Answer: [Yes]651
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• The answer NA means that the abstract and introduction do not include the claims654

made in the paper.655
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• It is fine to include aspirational goals as motivation as long as it is clear that these goals661

are not attained by the paper.662

2. Limitations663

Question: Does the paper discuss the limitations of the work performed by the authors?664
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will be specifically instructed to not penalize honesty concerning limitations.693
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authors are welcome to describe the particular way they provide for reproducibility.745
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22



Answer: [Yes]753

Justification: We have submitted code and data anonymously as supplementary materials.754

Guidelines:755

• The answer NA means that paper does not include experiments requiring code.756

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/757

public/guides/CodeSubmissionPolicy) for more details.758

• While we encourage the release of code and data, we understand that this might not be759

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not760

including code, unless this is central to the contribution (e.g., for a new open-source761

benchmark).762

• The instructions should contain the exact command and environment needed to run to763

reproduce the results. See the NeurIPS code and data submission guidelines (https:764

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.765

• The authors should provide instructions on data access and preparation, including how766

to access the raw data, preprocessed data, intermediate data, and generated data, etc.767

• The authors should provide scripts to reproduce all experimental results for the new768

proposed method and baselines. If only a subset of experiments are reproducible, they769

should state which ones are omitted from the script and why.770

• At submission time, to preserve anonymity, the authors should release anonymized771

versions (if applicable).772

• Providing as much information as possible in supplemental material (appended to the773

paper) is recommended, but including URLs to data and code is permitted.774

6. Experimental setting/details775

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-776

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the777

results?778

Answer: [Yes]779

Justification: We provide sufficient information on experimental setting. See Section C.3.780

Guidelines:781

• The answer NA means that the paper does not include experiments.782

• The experimental setting should be presented in the core of the paper to a level of detail783

that is necessary to appreciate the results and make sense of them.784

• The full details can be provided either with the code, in appendix, or as supplemental785

material.786

7. Experiment statistical significance787

Question: Does the paper report error bars suitably and correctly defined or other appropriate788

information about the statistical significance of the experiments?789

Answer: [Yes]790

Justification: We report the the statistical significance of the experiments suitably and791

correctly. See Section C.3.792

Guidelines:793

• The answer NA means that the paper does not include experiments.794

• The authors should answer "Yes" if the results are accompanied by error bars, confi-795

dence intervals, or statistical significance tests, at least for the experiments that support796

the main claims of the paper.797

• The factors of variability that the error bars are capturing should be clearly stated (for798

example, train/test split, initialization, random drawing of some parameter, or overall799

run with given experimental conditions).800

• The method for calculating the error bars should be explained (closed form formula,801

call to a library function, bootstrap, etc.)802

• The assumptions made should be given (e.g., Normally distributed errors).803

23

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It should be clear whether the error bar is the standard deviation or the standard error804

of the mean.805

• It is OK to report 1-sigma error bars, but one should state it. The authors should806

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis807

of Normality of errors is not verified.808

• For asymmetric distributions, the authors should be careful not to show in tables or809

figures symmetric error bars that would yield results that are out of range (e.g. negative810

error rates).811

• If error bars are reported in tables or plots, The authors should explain in the text how812

they were calculated and reference the corresponding figures or tables in the text.813

8. Experiments compute resources814

Question: For each experiment, does the paper provide sufficient information on the com-815

puter resources (type of compute workers, memory, time of execution) needed to reproduce816

the experiments?817

Answer: [Yes]818

Justification: We provide sufficient information on the computer resources. See Section C.3.819

Guidelines:820

• The answer NA means that the paper does not include experiments.821

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,822

or cloud provider, including relevant memory and storage.823

• The paper should provide the amount of compute required for each of the individual824

experimental runs as well as estimate the total compute.825

• The paper should disclose whether the full research project required more compute826

than the experiments reported in the paper (e.g., preliminary or failed experiments that827

didn’t make it into the paper).828

9. Code of ethics829

Question: Does the research conducted in the paper conform, in every respect, with the830

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?831

Answer: [Yes]832

Justification: We make sure that the presented research conforms with the NeurIPS Code of833

Ethics.834

Guidelines:835

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.836

• If the authors answer No, they should explain the special circumstances that require a837

deviation from the Code of Ethics.838

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-839

eration due to laws or regulations in their jurisdiction).840

10. Broader impacts841

Question: Does the paper discuss both potential positive societal impacts and negative842

societal impacts of the work performed?843

Answer: [Yes]844

Justification: We provide thorough discussion about broader impacts of this work. See845

Section 6.846

Guidelines:847

• The answer NA means that there is no societal impact of the work performed.848

• If the authors answer NA or No, they should explain why their work has no societal849

impact or why the paper does not address societal impact.850

• Examples of negative societal impacts include potential malicious or unintended uses851

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations852

(e.g., deployment of technologies that could make decisions that unfairly impact specific853

groups), privacy considerations, and security considerations.854

24

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied855

to particular applications, let alone deployments. However, if there is a direct path to856

any negative applications, the authors should point it out. For example, it is legitimate857

to point out that an improvement in the quality of generative models could be used to858

generate deepfakes for disinformation. On the other hand, it is not needed to point out859

that a generic algorithm for optimizing neural networks could enable people to train860

models that generate Deepfakes faster.861

• The authors should consider possible harms that could arise when the technology is862

being used as intended and functioning correctly, harms that could arise when the863

technology is being used as intended but gives incorrect results, and harms following864

from (intentional or unintentional) misuse of the technology.865

• If there are negative societal impacts, the authors could also discuss possible mitigation866

strategies (e.g., gated release of models, providing defenses in addition to attacks,867

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from868

feedback over time, improving the efficiency and accessibility of ML).869

11. Safeguards870

Question: Does the paper describe safeguards that have been put in place for responsible871

release of data or models that have a high risk for misuse (e.g., pretrained language models,872

image generators, or scraped datasets)?873

Answer: [NA]874

Justification: The paper poses no such risks.875

Guidelines:876

• The answer NA means that the paper poses no such risks.877

• Released models that have a high risk for misuse or dual-use should be released with878

necessary safeguards to allow for controlled use of the model, for example by requiring879

that users adhere to usage guidelines or restrictions to access the model or implementing880

safety filters.881

• Datasets that have been scraped from the Internet could pose safety risks. The authors882

should describe how they avoided releasing unsafe images.883

• We recognize that providing effective safeguards is challenging, and many papers do884

not require this, but we encourage authors to take this into account and make a best885

faith effort.886

12. Licenses for existing assets887

Question: Are the creators or original owners of assets (e.g., code, data, models), used in888

the paper, properly credited and are the license and terms of use explicitly mentioned and889

properly respected?890

Answer: [Yes]891

Justification: All assets used in the paper are properly credited. The license and terms of use892

are explicitly mentioned and properly respected.893

Guidelines:894

• The answer NA means that the paper does not use existing assets.895

• The authors should cite the original paper that produced the code package or dataset.896

• The authors should state which version of the asset is used and, if possible, include a897

URL.898

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.899

• For scraped data from a particular source (e.g., website), the copyright and terms of900

service of that source should be provided.901

• If assets are released, the license, copyright information, and terms of use in the902

package should be provided. For popular datasets, paperswithcode.com/datasets903

has curated licenses for some datasets. Their licensing guide can help determine the904

license of a dataset.905

• For existing datasets that are re-packaged, both the original license and the license of906

the derived asset (if it has changed) should be provided.907
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• If this information is not available online, the authors are encouraged to reach out to908

the asset’s creators.909

13. New assets910

Question: Are new assets introduced in the paper well documented and is the documentation911

provided alongside the assets?912

Answer: [Yes]913

Justification: All new assets introduced in the paper are well documented and we provide914

the documentation alongside the assets.915

Guidelines:916

• The answer NA means that the paper does not release new assets.917

• Researchers should communicate the details of the dataset/code/model as part of their918

submissions via structured templates. This includes details about training, license,919

limitations, etc.920

• The paper should discuss whether and how consent was obtained from people whose921

asset is used.922

• At submission time, remember to anonymize your assets (if applicable). You can either923

create an anonymized URL or include an anonymized zip file.924

14. Crowdsourcing and research with human subjects925

Question: For crowdsourcing experiments and research with human subjects, does the paper926

include the full text of instructions given to participants and screenshots, if applicable, as927

well as details about compensation (if any)?928

Answer: [NA]929

Justification: The paper does not involve crowdsourcing nor research with human subjects.930

Guidelines:931

• The answer NA means that the paper does not involve crowdsourcing nor research with932

human subjects.933

• Including this information in the supplemental material is fine, but if the main contribu-934

tion of the paper involves human subjects, then as much detail as possible should be935

included in the main paper.936

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,937

or other labor should be paid at least the minimum wage in the country of the data938

collector.939

15. Institutional review board (IRB) approvals or equivalent for research with human940

subjects941

Question: Does the paper describe potential risks incurred by study participants, whether942

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)943

approvals (or an equivalent approval/review based on the requirements of your country or944

institution) were obtained?945

Answer: [NA]946

Justification: The paper does not involve crowdsourcing nor research with human subjects.947

Guidelines:948

• The answer NA means that the paper does not involve crowdsourcing nor research with949

human subjects.950

• Depending on the country in which research is conducted, IRB approval (or equivalent)951

may be required for any human subjects research. If you obtained IRB approval, you952

should clearly state this in the paper.953

• We recognize that the procedures for this may vary significantly between institutions954

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the955

guidelines for their institution.956

• For initial submissions, do not include any information that would break anonymity (if957

applicable), such as the institution conducting the review.958
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16. Declaration of LLM usage959

Question: Does the paper describe the usage of LLMs if it is an important, original, or960

non-standard component of the core methods in this research? Note that if the LLM is used961

only for writing, editing, or formatting purposes and does not impact the core methodology,962

scientific rigorousness, or originality of the research, declaration is not required.963

Answer: [NA]964

We did not use large language models (LLMs) as an important, original, or non-standard965

component of the core methods in this research966

Guidelines:967

• The answer NA means that the core method development in this research does not968

involve LLMs as any important, original, or non-standard components.969

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)970

for what should or should not be described.971
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