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Abstract

Probabilistic forecasting is crucial for real-world spatiotemporal systems, such as
climate, energy, and urban environments, where quantifying uncertainty is essential
for informed, risk-aware decision-making. While diffusion models have shown
promise in capturing complex data distributions, their application to spatiotem-
poral forecasting remains limited due to complex spatiotemporal dynamics and
high computational demands. In this work, we propose CoST, a novel frame-
work that Collaborates deterministic and diffusion models for SpatioTemporal
forecasting. CoST formulates a mean-residual decomposition strategy: it lever-
ages a powerful deterministic model to capture the conditional mean and a
lightweight diffusion model to learn residual uncertainties This collaborative for-
mulation simplifies learning objectives, enhances forecasting accuracy, enables
uncertainty quantification, and significantly improves computational efficiency. To
address spatial heterogeneity, we further design a scale-aware diffusion mech-
anism to guide the diffusion process. Extensive experiments across ten real-
world datasets from climate, energy, communication, and urban systems show
that CoST achieves 25% performance gains over state-of-the-art baselines, while
significantly reducing computational cost. Code and datasets are available at:
https://anonymous.4open.science/r/CoST_8069.

1 Introduction

Real-world spatiotemporal systems underpin many critical domains, such as climate science, energy
systems, communication networks, and urban environments. Accurate forecasting of the dynamics is
essential for planning, resource allocation, and risk management [58} 15,59, 151]]. Existing approaches
fall into two categories: deterministic and probabilistic forecasting. Deterministic methods estimate
the conditional mean by minimizing MAE or MSE losses to capture spatiotemporal patterns [[64]
37,163]]. In contrast, probabilistic methods aim to learn the full predictive distribution of observed
data [46] 31} 162], enabling uncertainty quantification to support forecasting. This is particularly
important in many domains, for example, in climate modeling and renewable energy, where assessing
prediction reliability is essential for risk-aware decisions such as disaster preparedness and energy
grid management [42} [54].

In this paper, we highlight the critical role of probabilistic forecasting in capturing uncertainty
and improving the reliability of spatiotemporal predictions. However, it is non-trivial due to three
challenges. First, these systems exhibit complex evolving dynamics, characterized by periodic trends,
seasonal variations, and stochastic fluctuations [7 [62]]. Second, these systems involve intricate
spatiotemporal interactions and nonlinear dependencies [24, [63]]. Third, real-world applications
require both computationally efficient and scalable models [41} 51]. Recently, diffusion models
have been widely adopted for probabilistic forecasting [S7, 162} 146, 51]]. Compared with existing
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approaches such as Generative Adversarial Networks (GANs) [20} [15] and Variational Autoencoders
(VAESs) [128,130], diffusion models offer superior capability in capturing complex data distributions
while ensuring stable training [22] 53 [23]]. These advantages make diffusion models a promising
alternative. However, originally developed for image generation, they face inherent limitations in
capturing temporal correlations in sequential data, as evidenced in video generation [66, |45} 9, [17]]
and time series forecasting [62, 47, 146} 50].

To address this issue, recent efforts have ex- - - - . : -
plored incorporating temporal correlations as | e S For e ramework
conditional inputs to guide the diffusion pro- Deterministic | Probabilistic —_—

cess [46} 50, 1571, or injecting temporal priors —— — x

into the noised data to explicitly model tempo- | el
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ral correlations across time steps [31} 511 [62]]. Deterministic| | Diffusion
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While these approaches improve temporal mod- Uit Model |{ ¥ v __.

eling, they remain constrained by the inherent /\L\ X L N =t T
limitations of the diffusion framework [46, 31, i ~ ;1 m

47). In contrast, we introduce a new perspective: o PO PO
rather than relying solely on diffusion models
to capture the full data distribution, we propose Figure 1: Comparison of existing models with our
a collaborative approach that combines a deter- mean-residual decomposition framework.
ministic model and a diffusion model, leverag-

ing their complementary strengths for probabilistic forecasting. Our design offers two key advantages.
First, by leveraging powerful deterministic models to predict the conditional mean, it effectively cap-
tures the primary spatiotemporal patterns and benefits from advancements in established architectures.
Second, instead of requiring the diffusion model to learn the full data distribution from scratch, we
employ it to model the residuals, focusing its capacity on capturing uncertainty beyond the mean.
This collaborative framework simplifies the learning objectives for each component and enhances
both predictive accuracy and probabilistic expressiveness.

Building on this insight, we propose CoST, a novel framework that Collaborates deterministic and
diffusion models for SpatioTemporal forecasting. As illustrated in Figure [T} we first leverage an
advanced deterministic spatiotemporal forecasting model to estimate the conditional mean E[y|x],
effectively capturing the regular patterns. Based on this, we model the residual distribution p(r|z) =
p((y — Ely|x])|x) using a diffusion model, which complements the deterministic forecasting with
uncertainty quantification. Since the diffusion model focuses solely on residuals, it allows us to adopt
a lightweight denoising network and mitigate the computational overhead associated with multi-step
diffusion processes. To address spatial heterogeneity, we quantify differences across spatial units
and introduce a scale-aware diffusion mechanism. More importantly, we propose a comprehensive
evaluation protocol for spatiotemporal probabilistic forecasting by incorporating metrics such as
QICE and IS, rather than relying solely on traditional measures like CRPS, MAE, and RMSE. In
summary, our main contributions are as follows:

* We highlight the importance of probabilistic forecasting for complex spatiotemporal systems
and introduce a novel perspective that integrates deterministic and probabilistic modeling in a
collaborative framework.

* We propose CoST, a mean-residual decomposition approach that employs a deterministic model to
estimate the conditional mean and a diffusion model to capture the residual distribution. We further
design a scale-aware diffusion mechanism to address spatial heterogeneity.

* Extensive experiments on ten real-world datasets spanning climate science, energy systems, com-
munication networks, and urban environments show that CoST consistently outperforms state-of-
the-art baselines on both deterministic and probabilistic metrics, achieving an average improvement
of 25% while offering notable gains in computational efficiency.

2 Related Work

Spatiotemporal deterministic forecasting. Deterministic forecasting of spatiotemporal systems
focuses on point estimation. These models are typically trained with loss functions like MSE or MAE
to learn the conditional mean E[y|z], capturing regular patterns. Common deep learning architectures
include MLP-based [49, 44} |67], CNN-based [29, 134, 164], and RNN-based [2} 133} 56, |55] models,
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valued for their efficiency. GNN-based methods [[1} 3} |18} 25] capture spatial dependencies in graph-
based data, while Transformer-based models [10} 112} 137,161} 5] are effective at modeling complex
temporal dynamics.

Spatiotemporal probabilistic forecasting. The core of probabilistic forecasting lies in modeling
uncertainty, aiming to capture the full data distribution [60} I53]]. This is particularly suited for
modeling the stochastic nature of spatiotemporal systems. While early methods focused on Bayesian
approaches, recent advances have explored generative models such as GANs [26} 48, 165], VAEs [11}
131 168]], and diffusion models [53} 8] 32]. Diffusion models, in particular, have gained traction for
their ability to model complex distributions with stable training, yielding strong performance in
spatiotemporal forecasting [46} 47, 50, 51].

Diffusion-based spatiotemporal probabilistic forecasting. Most diffusion-based forecasting meth-
ods formulate the task as conditional generation without explicitly modeling temporal dynamics,
which hinders the generation of temporally coherent sequences [53) 16, 57, 47]]. Moreover, the
progressive corruption of time series during diffusion often distorts key patterns like long-term
trends and periodicity, making temporal recovery difficult [62,135]. To address this, methods such as
TimeGrad [46] and TimeDiff [S0] incorporate temporal embeddings as conditional inputs to enhance
temporal awareness. Other approaches like NPDiff [51]], TMDM [31]], and Diffusion-TS [62] inject
temporal priors into the diffusion process to better preserve temporal dynamics. More recently,
DYffusion [47] redefines the denoising process to explicitly model temporal transitions at each
diffusion step. Unlike prior methods, we avoid using diffusion to model temporal dynamics. Instead,
we decouple forecasting into deterministic mean prediction and residual uncertainty estimation. The
diffusion model focuses solely on the residuals, simplifying learning and allowing for a smaller
denoising network, which greatly reduces the computational cost of the iterative diffusion process.

3 Preliminaries

We provide a summary of notations used in this paper in Appendix [A.T]for clarity.

Spatiotemporal systems. Spatiotemporal systems underpin many domains such as climate science,
energy, communication networks, and urban environments. The data recording spatiotemporal
dynamics are typically represented as a tensor x € RTXV*C where T, V, and C denote the
temporal, spatial, and feature dimensions, respectively. Depending on the spatial structure, the data
can be organized as grid-structured (V' = H x W) or graph-structured (where V represents the set of
nodes). Given a historical context x°° = x*~M+1 of length M, the goal is to predict future targets

xt = x4+ P gver a horizon P using a model F.

Conditional diffusion models. The diffusion-based forecasting includes a forward process and a
reverse process. In the forward process, noise is added incrementally to the target data x{ , gradually
transforming the data distribution into a standard Gaussian distribution A/(0,I). At any diffusion
step, the corrupted target data can be computed using the one-step forward equation:

\/(Tn +\/1_an €NN(07I)7 (1)

where an = [[i=; @; and o, = 1 — f3,,. In the reverse process, prediction begins by first sampling
0 from the standard Gaussian distribution A/ (0, I), followed by a denoising procedure through the
followmg Markov process:

N
po(xiin) == p(x) [ po(x nsx5%),s
n=1
Po (i [x,") 1= Ny po (7, m|x5%), B (x3,7, m)), @
1 n
,UQ( n|x ) = \/55771 (X;‘l — \/16_701”69()(;@’71|X80))
where the variance Yo (x!%,n) = 110‘7}1 Bn, and €g(x!%, n|x5°) is predicted by the denoising

network trained by the loss function below:

£(0) = Enxo.e [[l€ = eolxte, nlx6?)][3] 3)
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Figure 2: Overview of CoST: (a) Pretraining of the deterministic model; (b) Computation of the
customized fluctuation scale; (c¢) Overall framework of the mean-residual decomposition.

Evaluations of probabilistic forecasting. We argue that probabilistic forecasting should be assessed
from two key perspectives: Data Distribution—the predicted distribution should match the empirical
distribution, and Prediction Usability—prediction intervals should achieve high coverage while
remaining sharp. While metrics like CRPS, MAE and RMSE are widely used, they fail to assess: (i)
the accuracy of quantile-wise coverage; (ii) whether the interval width reflects true uncertainty. To
address this, we introduce Quantile Interval Coverage Error (QICE) [21]] and Interval Score (IS) [19]
as complementary metrics.

(i) QICE measures the mean absolute deviation between the empirical and expected proportions of
ground-truth values falling into each of equal-sized quantile intervals. QICE evaluates how well the
predicted distribution aligns with the expected coverage across quantiles, which is defined as follows:

| M ) L
QICE := T — , Tm = — 1 o | righr, )
M mzzl Mqs N ; YnZ0n Yn <in’

where §°%m and Q?Ligh’" denote the bounds of the m-th quantile interval for y,,. Ideally, each QI
should contain 1/Mqys of the observations, yielding a QICE of 0. Lower QICE indicates better
alignment between predicted and true distributions.

(ii) IS evaluates prediction interval (PI) quality by jointly accounting for sharpness and empirical
coverage, and is defined as:

N
1 2 2
IS := ~ Z [(“301 — 1" + Tm(l%m —yn)l, ocr + Tm(yn —up®L, | ecr |,
n=1
&)
where u>¢! and [¢! are the upper and lower bounds of the central prediction interval for the n-th
data point, derived from the corresponding predictive quantiles. A narrower interval improves the
score, while missed coverage incurs a penalty scaled by a.crr. Lower IS indicates better performance.

4 Methodology

In this section, we propose CoST, a unified framework that combines the strengths of deterministic
and diffusion models. Specifically, we first train a deterministic model to predict the conditional
mean, capturing the regular spatiotemporal patterns. Then, guided by a customized fluctuation scale,
we employ a scale-aware diffusion model to learn the residual distribution, enabling fine-grained
uncertainty modeling. An overview of the CoST architecture is shown in Figure[2]

4.1 Theoretical Analysis of Mean-Residual Decomposition

Current diffusion-based probabilistic forecasting approaches typically employ a single diffusion
model to capture the full distribution of data, incorporating both the regular spatiotemporal patterns
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and the random fluctuations. However, jointly modeling these components remains challenging [62].
Inspired by [38]] and the Reynolds decomposition in fluid dynamics [43]], we propose to decompose
the spatiotemporal data x*® as follows:

Xta — ]E[Xta‘xco} + (Xta _ E[xta|xw]), (6)
—_——
:=p(Deterministic) :=r(Dif fusion)

where p is the conditional mean representing the regular patterns, and r is the residual representing
the random variations. If the deterministic model approximates the conditional mean accurately,
the expected residual becomes negligible, i.e. E[r|x°°] = 0, and we can obtain that var(r|x®) =
var(x'|x“). Based on the law of total variance [4]], we can express the variance of the target data
and residuals as:

var(r) = E[var(r|x)] + var(E[r|x®]), var(x') = E[var(x"*|x°)] + var(E[x"*|x°°]). (7)
—_——

=0 >0

Due to var(r|x®) = var(x!*|x°), we have var(r) < var(x'®). Moreover, the highly dynamic
nature of the spatiotemporal system results in a larger var(E[x!%|x“°]), which consequently makes
var(r) smaller compared to var(x'®). Our core idea is that if a deterministic model can accurately
predict the conditional mean, that is, g ~ Ey [xt“ |x], then the diffusion model can be dedicated solely
to learning the simpler residual distribution. This design avoids the challenge diffusion models face
in modeling complex spatiotemporal dynamics, while fully exploiting their strength in uncertainty
estimation. By collaborating high-performing deterministic architectures and diffusion models, our
method effectively captures regular dynamics and models uncertainty via residual learning.

4.2 Mean Prediction via Deterministic Model

To capture the conditional mean Eg[x*|x°], our framework leverages existing high-performance de-
terministic architectures, which are designed to capture complex spatiotemporal dynamics efficiently.
In our main experiments, we use the STID [49]] model as the backbone for mean prediction, and also
validate our framework with ConvLSTM [52]], STNorm [14], and iTransformer [36] to ensure its
generality ( See Section[5.1)). In the first stage of training, we pretrain the deterministic model for 50
epochs using historical conditional inputs x°° to output the mean estimate [Eq[x‘*|x°°]. The model is
trained with the standard £, loss:

Lo = ||Eglx*xc] — x*||3 . ®)

4.3 Residual Learning via Diffusion Model

The residual distribution of spatiotemporal data is not independently and identically distributed
(i.i.d.) nor does it follow a fixed distribution, such as N'(0, ). Instead, it often exhibits complex
spatiotemporal dependence and heterogeneity. We use the diffusion model to focus on learning the
distribution of residual r'® = x'* —Eg[x"*|x’]. Accordingly, the target data x** for diffusion models
in Egs. (1), ), and (@) is replaced by r*®. We incorporate timestamp information as a condition
in the denoising process and concatenate the context data x5° with noised residual r!® as input to
capture real-time fluctuations. Notably, no noise is added to x§° during diffusion training or inference.
To model the spatial patterns of the residuals, we propose a scale-aware diffusion process to further
distinguish the heterogeneity for different spatial units. In this section, we detail the calculation of Q
and how it is integrated into the scale-aware diffusion process.

(i) Customized fluctuation scale. Specifically, we apply the Fast Fourier Transform (FFT) to
spatiotemporal sequences in the training set to quantify fluctuation levels in different spatial units and
use the custom scale Q as input to account for spatial heterogeneity in residual. Specifically, we first
employ FFT to extract the fluctuation components for each spatial unit within the training set. The
detailed steps are as follows:
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Ak = ‘FFT(X)H 5 gbk = ¢ (FFT(X)k) s Amax = max Ak,
ke{uo [ ¥ ]+1)

L
]C{ke{1,"',\‘2J+1}:Ak<0-1XAmax}7 O]

Xpli] = Z Ay [cos (27 fii + @) + cos (27rfki + (bk) ] ,
kek
where Ay, ¢y reprent the amplitude and phase of the k—th frequency component. L is the temporal
length of the training set. A« is the maximum amplitude among the components, obtained using
the max operator. K represents the set of indices for the selected residual components. fy is the
frequency of the k-th component. fy, ¢y represent the conjugate components. x,. ref to the extracted
residual component of the training set. We then compute the variance o2 of the residual sequence for
each location v and expand it to match the shape as rf® € REXV*F where B represents the batch
size. And we can get the variance tensor M:

Mpyp=02¥be{l,--- ,B},Yve{l,--- ,V},Vpe{l,---,P}. (10)

The residual fluctuations are bidirectional, encompassing both positive and negative variations, so
we generate a random sign tensor S € RE*V*F for M, where each element S, ,, ,, of S is sampled
from a Bernoulli distribution with p = 0.5. The customized fluctuation scale Q is computed as:

Qbop=Sbwp X Mpyp,Voe{l,--- ,B},Vvoe{l,---,V},Vpe{l,---,P}. (11
Then Q is used as the input of the denoising network.

(ii) Scale-aware diffusion process. The vanilla diffusion models assume a shared prior distribution
N (0, T) across all spatial locations, failing to capture spatial heterogeneity. To further model such
differences, we adopt the technique proposed by [21] to make the residual learning location-specific
conditioned on Q. Specifically, we redefine the noise distribution at the endpoint of the diffusion
process as follows:

p(ry) = N(Q. 1), (12)
Accordingly, the Eq (I) in the forward process is rewritten as:
ri = a, vl + (1 — Van)Q+ V1 —ane, €~ N(0,1). (13)

And in the denoising process, we sample r’¢ from N (Q, I), and denoise it use Eq , the computation
of pg(rt®, n|x§°) in Eq (2) is modified as:

1 B
ta co ta n ta co
r,,nxy )= r, — €g(r,, ,n|x + (1 —
,LLQ( n o 0 ) /7@” < n /;1 —a, 9( n ‘ 0 )) ( /70—4”
This modification allows the diffusion process to be conditioned on location-specific priors Q,
enhancing its ability to model spatial heterogeneity in uncertainty.

)Q. (14)

4.4 Training and Inference

Our training follows a two-stage training procedure: we first pretrain a deterministic model to
predict the conditional mean, then train a diffusion model to capture the residual distribution. The full
procedure is outlined in Algorithm[I] The inference consists of two paths: the pretrained deterministic
model predicts the conditional mean, and the diffusion model estimates the residuals. Their outputs
are combined to form the final prediction, as detailed in Algorithm[2]

S Experiments

Datasets. We evaluate our method on ten datasets spanning four domains, including climate (SST-
CESM2 and SST-ERAS), energy (SolarPower), communication (MobileNJ and MobileSH), and
urban systems (CrowdBJ, CrowdBM, TaxiBJ, BikeDC and Los-Speed), each featuring distinct
spatiotemporal characteristics. Detailed information on the datasets can be found in Appendix [C.1]

Baselines. We compare against six representative state-of-the-art baselines commonly adopted in
spatiotemporal modeling, including: D3VAE [30], DiffSTG [S7], TimeGrad [46], CSDI [53], DY{-
fusion [47], and NPDiff [S1]. Detailed descriptions of each baseline are provided in Appendix
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Table 1: Short-term forecasting results in terms of CRPS, QICE, and IS. Bold indicates the best
performance, while underlining denotes the second-best. DY ffusion is limited to grid-format data,
and ‘-’ denotes results that are not applicable.

Climate MobileSH TaxiBJ SolarPower CrowdBJ
CRPS QICE IS CRPS QICE IS CRPS QICE IS CRPS QICE IS CRPS QICE IS

D3VAE 0.053 0071 158 0.856 0.105 1.729 0433 0.160 9857 0475 0.083 731.1 0.668 0.099 53.6
DiffSTG ~ 0.026  0.068 742 0303 0.078 0.526 0.299 0.074 4165 0213 0.068 240.6 0436 0.089 32.1
TimeGrad 0.042 0.147 16.0 0489 0.143 0.759 0.170 0.102 213.2 1.000 0.128 781.7 0.385 0.113 43.6

CSDI 0.027 0.019 5.18 0.200 0.052 0.295 0.122 0.048 121.8 0.267 0.050 221.6 0306 0.028 16.4

NPDiff 0.022 0.031 424 0201 0.106 0.627 0222 0.112 4741 0.209 0.020 1753 0.287 0.120 34.5

DYffusion 0.020 0.123 124 0230 0.096 0573 0.084 0.054 99.5 - - - - - -

CoST 0.021  0.009 4.04 0.147 0.014 0.215 0.100 0.023 953 0208 0.019 192.1 0.215 0.014 115

Table 2: Short-term forecasting results in terms of MAE and RMSE.

Model

Climate MobileSH TaxiBJ SolarPower CrowdBJ
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

D3VAE 175 231 0186 0373 493 848  60.1 1228 5.6  10.1
DiffSTG 090 113 0066 0.103 418 694 31.1 638 368 663
TimeGrad 131 148 0047 0053 29.1 341 393 948 437 543
CSDI 094 120 0044 0075 182 316 388 696 271 551
NPDiff 079  1.07 0.037 0057 267 522 321 536 205 327
DYffusion 086  1.07 0050 0072 123  18.0 - - - -

CoST 0.74 096 0.033 0.05s1 15.1 25.6 29.7 51.9 1.92 3.04

Model

Metrics. To evaluate the performance, we employ two deterministic metrics, MAE and RMSE, along
with three probabilistic metrics: CRPS, QICE and IS. For QICE, we set the number of QIs, denoted
as M, to 10. We choose 10 bins for QICE to align with the original proposal [21]. which offers a
balanced trade-off between granularity and stability. For IS, we choose a confidence level of 90%
(i.e., acr = 0.1) following common practice in spatiotemporal forecasting tasks [53} 46].

Experimental configuration. We define the short-term forecasting task as predicting the next 12
time steps based on the previous 12 observations, following [51} 57]. Since the temporal granularity
varies across datasets, the actual time duration corresponding to these 12 steps differs accordingly.
In addition to the standard 12-step setting commonly used in spatiotemporal forecasting, we eval-
uate long-term forecasting by predicting 64 future steps based on the preceding 64 observations,
following [63} 27, 40]. Detailed training and model configurations are provided in Appendix [C.3]

5.1 Spatiotemporal Probabilistic Forecasting

Short-term forecasting. Table[I] presents the results of probabilistic metrics for selected datasets.
Due to space constraints, the remaining results are in Appendix Table [l As shown in Table [T}
CoST consistently outperforms baseline methods across all evaluated datasets. Compared to the
best-performing baseline methods on each dataset, CoST demonstrates an average improvement of
17.4% in CRPS and 46.6% in QICE metrics, indicating its superior ability to accurately capture the
true distribution characteristics. Moreover, CoST achieves a 16.5% improvement in the IS metric,
suggesting that its prediction intervals not only maintain compactness but also exhibit higher coverage,
thereby better reflecting the uncertainty of data. Although certain individual metrics may not reach
the optimal level on specific datasets, CoST consistently maintains performance comparable to the
best methods. Beyond probabilistic metrics, we also report deterministic evaluation results (MAE
and RMSE) in Table [2]and Appendix Table[7] The results show that our method achieves an average
reduction of 7% in MAE and 6.1% in RMSE datasets. This suggests that the integration with a
strong conditional mean estimator enables CoST to better capture regular patterns compared to other
probabilistic baseline models.

Long-term forecasting. As shown in Appendix Table [8] CoST achieves substantial improvements
in long-term forecasting under probabilistic metrics, with an improvement of 15.0% and 70.4% in
terms of CRPS and QICE. Despite adopting a simple MLP architecture, CoST achieves higher overall
accuracy than CSDI, a Transformer-based model tailored for capturing long-range dependencies.
Furthermore, it provides significantly better training efficiency and inference speed, as detailed in
Section[5.4] In addition, CoST performs well on deterministic metrics (Appendix Table [9), achieving
an average reduction of 9.0% in MAE and 11.0% in RMSE compared to the best-performing baseline.

Framework generalization. To demonstrate the generality of CoST, we instantiate it with four
representative spatiotemporal forecasting models: STID [49], STNorm [14], ConvLSTM [52], and
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Table 3: Performance of different deterministic backbone models within the CoST framework.
"Diffusion (w/o m)’ denotes the results obtained using a single diffusion model.
Climate MobileNJ BikeDC
MAE RMSE CRPS QICE IS MAE RMSE CRPS QICE IS MAE RMSE CRPS QICE IS
Diffussion (w/om) 1.070 1.361 0.030  0.030 6.58 0.195 0.6711 0.159 0.036 1.364 2387 10.79 1.090  0.059 12.6
+iTransformer 0.818 1.088 0.023  0.018 4.83 0.122 0.207 0.123  0.021 0.815 0.526 223 0.454  0.035 3.82

Model

Reduction 23.6% 20.1% 233% 40.0% 26.6% 374% 69.2% 22.6% 41.7% 402% 78.0% 193% 583% 40.7% 69.7%
+ ConvLSTM 0.889  1.I51  0.027 0.024 554 0.137 0231 0.120 0.025 0913 0454 2.01 0443 0.037  6.07
Reduction 16.9% 154% 10.0% 20.0% 158% 29.7% 65.6% 24.5% 30.6% 33.1% 81.0% 81.4% 59.4% 37.3% 51.8%
+STNorm 0819  1.066  0.023 0.007 452 0.144 0276 0.123 0.016 0.825  0.600 2.71 0.500 0.029  3.74
Reduction 235% 21.7% 233% 76.7% 313% 262% 589% 22.6% 55.6% 39.5% 14.9% T49% 54.1% 50.8% 70.3%

iTransformer [36]. These models cover a diverse set of deep learning architectures, including CNNss,
RNNs, MLPs, and Transformers. As shown in Table[3] CoST consistently enhances the performance
of these backbones by effectively integrating deterministic and probabilistic modeling. Compared
to using a single diffusion model, CoST yields more accurate predictions and better-calibrated
uncertainty estimates, validating the framework’s broad applicability and effectiveness.

Case study of SST forecasting. To . (a) Ground Truth o
assess our model’s ability to quantify g 42N . o
uncertainty under complex climate dy- 2 0° -ﬂ 262
namics, we evaluate its performance & 24222 g
in a key region for ENSO-related 169.5°W 159.7°W 149.9°W 140.1°W 130.3°W 120.5°W 25 E
Sea Surface Temperature (SST) fore- , 4.5°N (i Bredican L
casting. As shown in Figure 525N Pz
our model produces high-fidelity SST =~ & 2.25°S A
forecasts that closely match ground 4363, 23§
truth across both warm pool and cold 5

tongue regions. In addition to ac- § 5 045
curate mean predictions, it provides & ; 55 &
well-calibrated uncertainty estimates, — 3 0.2

revealing elevated variance in the cen- Long,tude

tral equatorial Pacific, especially near

0° latitude and 140°—130°W, where Figure 3: (a) and (b) show the ground-truth and predicted
sharp thermocline gradients and non- Vvalue of SST, and (c) displays the spatial distribution of
linear feedbacks make forecasting par- forecasting uncertainty.

ticularly challenging. These high-

uncertainty areas align with known regions of model divergence in climate science [39] 6} [7],
demonstrating that our method delivers both accurate predictions and geophysically consistent
uncertainty estimates.

5.2 Ablation Study

We perform an ablation study to assess the contribution of each proposed module. Specifically, we
construct three model variants by progressively removing key components: (w/o s): removes the
scale-aware diffusion process; (w/o q) excludes the customized fluctuation scale as a prior; (w/o
m) removes the conditional mean predictor, relying solely on the diffusion model. We conduct
experiments on two datasets and visualize the results in terms of CRPS and IS metrics, as illustrated
in Appendix Figure[§] Results show that the deterministic predictor notably improves performance
by capturing regular spatiotemporal patterns, while also reducing the diffusion model’s complexity.
Adding the customized fluctuation scale further enhances accuracy, indicating its utility in providing
valuable fluctuation information across different spatial units. And the scale-aware diffusion process
enables the diffusion model to better utilize this condition.

5.3 Qualitative Analysis

Analysis of distribution alignment. As shown in Figure ] the ground truth exhibits clear spa-
tiotemporal multi-modality. In Figure[@(a), three peaks likely correspond to different time points or
varying states at the same time. CoST accurately captures all three peaks, while CSDI only fits two,
showing CoST’s superior multi-modal modeling. In Figure f{b), both models capture two peaks,
but CoST aligns better with the peak spacing in the true distribution, reflecting stronger temporal
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Figure 4: KDE plots of the MobileSH dataset for Figure 5: PICP comparison between our model
different regions: (a) Region 182, (b) Region 520. and CSDI on CrowdBM and MobileSH.

sensitivity. These strengths arise from CoST’s hybrid design: the diffusion component models
residual uncertainty to capture multi-modal traits, while the deterministic backbone learns regular
trends. See Appendix [C.5.1]for more analysis and results.

Analysis of prediction quality. To intuitively L0 &\ 40

demqnstra}te the effectiveness of our predlCthI}S, s10 °"“’ ‘\f 20 ,,»/\/A l"‘"‘\

we visualize results on the CrowdB]J dataset in 0 \u_.;‘ 0

Figure [6] comparing our model with the best 5 10( ) 15 20 (b) 20
a

baseline, CSDI. As shown in Figures@ (a, c, 1), 10
our model, aided by a deterministic backbone,
better captures regular spatiotemporal patterns.

100

\/\.//*""“ "

Meanwhile, the diffusion module enhances un- 0
. . . . 20 5 10 15 20
certainty modeling by focusing on residuals, as (C) A
reflected in Figures[6] (b, d, ). Beyond sample- 10 of
level comparison, we evaluate prediction inter- 2 so 5 7
>

val calibration via dynamic quantile error curves o \\‘\«w %'1'3‘?5 0 e et 54
on CrowdBM and MobileSH (Figure [5). For o 5 10 15 20 0o 5 10 15 20
each confidence level a, we compute the cor- © ®
responding quantile interval and its Prediction Figure 6: Visualizations of predictive uncertainty
Interval Coverage Probability (PICP). Closer for both CSDI and CoST on the CrowdBJ dataset.
alignment with the diagonal (black dashed line) The shaded regions represent the 90% confidence
indicates better calibration. Our model consis- interval. The dashed lines denote the median of
tently outperforms CSDI in this regard. the predicted values for each model.

5.4 Computational Cost

We benchmark training and inference time (including 50 sampling iterations and pretraining for our
mean predictor) on the MobileSH dataset. As shown in Appendix Table [I0] our method achieves
markedly higher efficiency than existing probabilistic models in both training and inference. This
efficiency is particularly advantageous for real-world applications such as mobile traffic prediction.
Notably, CSDI leverages the Transformer’s expressive power but incurs substantial computational
cost, limiting its applicability in time-sensitive settings.

6 Conclusion

In this work, we highlight the importance of probabilistic forecasting for complex spatiotemporal
systems and propose CoST, a collaborative framework that integrates deterministic and diffusion
models. By decomposing data into a conditional mean and residual component, CoST bridges
deterministic and probabilistic modeling, enabling accurate capture of both regular patterns and
uncertainties. Extensive experiments on seven real-world datasets show that CoST consistently
outperforms state-of-the-art methods with an average improvement of 25%. Our approach offers an
effective solution for combining precise pattern learning with uncertainty modeling in spatiotemporal
forecasting.

Limitations and future work. CoST relies on a strong deterministic backbone, which may limit its
applicability in domains lacking mature models. Moreover, it has not yet been validated on complex
physical systems governed by PDEs or coupled dynamics. Future work will explore physics-informed
extensions, adaptive decomposition, and more generalizable architectures.
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A Background

A.1 Glossary
We summarize all notations and symbols used throughout the paper in Table 4]

Table 4: Glossary of notations and symbols used in this paper.

Symbol Used for

G=(V,E,A) Graph structure where V is the node set, £ is the edge set, and A is the adjacency matrix.
x € RTXV*C  gpatiotemporal data.

T The length of spatiotemporal series.

%4 The number of spatial units.

C The number of feature dimensions.

B Batch size.

P Prediction horizon.

M Historical horizon.

N The number of diffusion steps.

H Height of the grid-based data

w Width of the grid-based data

Q Customized fluctuation scale.

M The variance tensor.

S The random sign tensor.
{3 Historical (conditional) term.
{3 Predicted (target) term.
{1 Noisy data at n-th diffusion step.

m Mean.

r Residual.

€ Gaussian noise.

K K The set of indices for the selected FFT components

{Ba 3N, The noise schedule in the diffusion process.
Qs Oy, anp =1-— ﬁns ap = H?:l Q.

e () The denoising network with parameter 6.
act Significance level for the prediction interval.
1 Indicator function, which takes the value 1 when a certain condition is true, and 0 when the condition is false.

A.2 Spatiotemporal Data

Spatiotemporal data typically come in two forms: (i) Grid-based data, where the spatial dimension
V' can be expressed in a two-dimensional form as H x W, with H and W denoting height and
width, respectively. (ii) Graph-based data, where V' denotes the number of nodes in a spatial graph
G = (V,&, A), defined by its set of nodes V, the set of edges £ and the adjacency matrix A. Its
elements a;; show if there’s an edge between node ¢ and j in V, a;; = 1 when there’s an edge and
a;; = 0 otherwise.

B Methodology

B.1 Algorithm

The training and inference procedures of CoST are summarized in Algorithm [T]and Algorithm [2]
respectively.

C Experiments

C.1 Datasets

In our experiments, we evaluate the proposed method on ten real-world datasets across four domains:
climate, energy, communication systems, and urban systems. For climate forecasting, we train our
models on the simulated SST-CESM2 dataset and evaluate them on the observational SST-ERAS
dataset, using the first 30 years for validation and the remaining years for testing. The remaining
datasets are partitioned into training, validation, and test sets with a 6:2:2 ratio, and all datasets are
standardized during training.Table 5| provides a summary of the datasets. The details are as follows:
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Algorithm 1 Training

1: Stage 1: Pretraining of Deterministic Model E,
2: repeat

3: Estimate the conditional mean Eg[x5"|x5°].

4: Update Ey using the following loss function:

L = |[Ealxix57] — x|
until The model has converged.
Stage 2: Training of Diffusion Model ¢
repeat
Initialize n ~ Uniform(1,..., N) and ¢ ~ N(0, I).
Calculate the target rly* = x{* — Eq[x5*|x5°].
Calculate noisy targets r’” using Eq.
Update €y using the following loss function:

TeYeaw

—_—

L(O) = ||e - eo(xie, nlxg)||2

n o

12: until The model has converged.

Algorithm 2 Inference

1: Input: Context data x§°, customized fluctuation scale Q, trained diffusion model ¢y, trained
deterministic model Ey
Output: Target data x}*
Estimate the conditional mean Eg[x5*|x5°]
Sample r%} from e ~ N (Q, I)
forn = N to1ldo
Estimate the noise € (r’, n|x5°)
Calculate the pp(rt®, n|x5°) using Eq.
Sample r!® ; using Eq.
end for
Return: x{* = Eq[x}*[x§°] + rl

A A A

Ju—

* Climate. We utilize two datasets for sea surface temperature (SST) prediction in the Nifio 3.4 region
(5°S-5°N, 170°W-120°W), which is widely used for monitoring El Nifio events: (i) SST-CESM2,
simulated SST data from the CESM2-FV2 model of the CMIP6 project, covering the period from
1850 to 2014, with a spatial resolution of 1° x 1°. (ii) SST-ERAS: reanalysis data from ERAS,
containing SST and 10-meter wind speed (U10/V10) variables from 1940 to 2025, with an original
spatial resolution of approximately 0.25° x 0.25°. All data are regridded to a 1° x 1° resolution
for consistency. The CESM2 data are used for training, while the first 30 years of ERAS are used
for validation and the remaining years for testing.

* Energy. This dataset contains real-time meteorological measurements and photovoltaic (PV) power
output collected from a PV power station in China, spanning from March 1st to December 31st,
2024. The features include: total active power output of the PV grid-connection point (P), ambient
temperature, back panel temperature, dew point, relative humidity, atmospheric pressure, global
horizontal irradiance (GHI), diffuse and direct radiation, wind direction and wind speed. Our
forecasting task focuses on GHI, which is the key variable for solar power prediction. Due to data
privacy restrictions, the raw dataset cannot be publicly released.

* Communication Systems. Mobile communication traffic datasets are collected from two major
cities in Shanghai and Nanjing, capturing the spatiotemporal dynamics of network usage patterns.

» Urban Systems. We adopt five widely used public datasets representing various urban sensing
signals: (i) CrowdBJ and CrowdBM, crowd flow data from Beijing and Baltimore, respectively. (ii)
TaxiBJ, taxi trajectory-based traffic flow data from Beijing. (iii) BikeDC, bike-sharing demand data
from Washington D.C. (iv) Los-Speed, traffic speed data from the Los Angeles road network. These
datasets have been extensively used in spatiotemporal forecasting research and provide diverse
signals for evaluating model generality across cities and domains.
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Table 5: The basic information of grid-based spatio-temporal data.

Dataset Location Type Temporal Period Spatial partition Interval
SST-CESM2  Global (Nifio 3.4) Simulated SST 1850-2014 1° x 1° Monthly
SST-ERAS Global (Nifio 3.4)  Reanalysis SST/U10/ V10 1940-2025 0.25° x 0.25° Monthly
SolarPower ~ China (a PV station) =~ GHI/ Weather / PV power ~ 2024/03/01 - 2024/12/31 Station-level 15 min
TaxiBJ Beijing Taxi flow 2014/03/01 - 2014/06/30 32 x 32 Half an hour
TaxiBJ Beijing Taxi flow 2014/03/01 - 2014/06/30 32 x 32 Half an hour
TaxiBJ Beijing Taxi flow 2014/03/01 - 2014/06/30 32 x 32 Half an hour
BikeDC Washington, D.C. Bike flow 2010/09/20 - 2010/10/20 20 x 20 Half an hour
MobileSH Shanghai Mobile traffic 2014/08/01 - 2014/08/21 32 x 28 One hour
MobileNJ Nanjing Mobile traffic 2021/02/02 - 2021/02/22 20 x 28 One hour
CrowdBJ Beijing Crowd flow 2018/01/01 - 2018/01/31 1010 One hour
CrowdBM Baltimore Crowd flow 2019/01/01 - 2019/05/31 403 One hour
Los-Speed Los Angeles Traffic speed 2012/03/01 - 2012/03/07 207 5 minutes

C.2 Baselines
We provide a brief description of the baselines used in our experiments:

* D3VAE [30]: Aims at short-period and noisy time series forecasting. It combines generative
modeling with a bidirectional variational auto-encoder, integrating diffusion, denoising, and disen-
tanglement.

» DiffSTG [57]: First applies diffusion models to spatiotemporal graph forecasting. By combining
STGNNSs and diffusion models, it reduces prediction errors and improves uncertainty modeling.

* TimeGrad [46]: An autoregressive model based on diffusion models. It conducts probabilistic
forecasting for multivariate time series and performs well on real-world datasets.

» CSDI [53]:Utilizes score-based diffusion models for time series imputation. It can leverage the
correlations of observed values and also shows remarkable results on prediction tasks.

* DYffusion [47]: A training method for diffusion models in probabilistic spatiotemporal forecasting.
It combines data temporal dynamics with diffusion steps and performs well in complex dynamics
forecasting.

» NPDiff [S1]: A general noise prior framework for mobile traffic prediction. It uses the data
dynamics to calculate noise prior for the denoising process and achieve effective performance.

C.3 Experimental Configuration

In our experiment, for our model, we set the training maximum epoch for both the deterministic
model and the diffusion model to 50, with early stopping based on patience of 5 for both models.
For the diffusion model, we set the validation set sampling number to 3, and the average metric
computed over these samples is used as the criterion for early stopping. For the baseline models, we
set the maximum training epoch to 100 and the early stopping patience also to 5. We set the number
of samples to 50 for computing the experimental results presented in the paper. For the denoising
network architecture, we adopt a lightweight variant of the MLP-based STID [49]. Specifically, we
set the number of encoder layers to 8 and the embedding dimension to 128. The diffusion model
employs a maximum of 50 diffusion steps, using a linear noise schedule with 5; = 0.0001 and
Bn = 0.5. During training, we set the initial learning rate to 0.001, and after 20 epochs, we adjust it
to 4e-4. We use the Adam optimizer with a weight decay of le-6. All experiments are conducted
with fixed random seeds. Models with lower GPU memory demands are run on NVIDIA TITAN
Xp (12GB GDDR5X) and NVIDIA GeForce RTX 4090 (24GB GDDR6X) GPUs under a Linux
environment. For the DYffusion [47] baseline, which requires substantially more resources, training
is performed on NVIDIA A100 (80GB HBM?2e) and A800 (40GB HBM2e).

C.4 Geographic Extent of the ENSO Region

To provide geographic context for the SST case study presented in Section [3| Figure [7)illustrates the
global location and spatial extent of the selected region. The red box highlights the area from 4.5°S
to 4.5°N and 169.5°W to 120.5°W in the central-to-eastern equatorial Pacific, a region known for
strong ocean-atmosphere coupling and ENSO-related variability.
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Figure 7: Global map indicating the spatial extent of ENSO region (highlighted in yellow). The
region spans from 4.5°S to 4.5°N and 169.5°W to 120.5°W in the equatorial Pacific.

C.5 Additional Experimental Results

Table 6: Short-term forecasting results in terms of CRPS, QICE, and IS. Bold indicates the best
performance, while underlining denotes the second-best. DY ffusion is limited to grid-format data,
and ‘-’ denotes results that are not applicable.

BikeDC MobileNJ CrowdBM Los-Speed
CRPS QICE IS CRPS QICE IS CRPS QICE IS CRPS QICE IS

D3VAE 0.785 0.157 877 0565 0.09 603 0593 0110 1364 0.119 0.089 90.5
DiffSTG ~ 0.692  0.157 8.08 0291 0.071 3.11 0453 0.047 685 0.078 0.045 50.9
TimeGrad 0469 0.130 565 0432 0.162 587 0240 0.085 469 0.031 0.098 20.8
CSDI 0.529 0.057 479 0.111 0.039 080 039 0.054 61.1 0.059 0.026 308
NPDiff 0442 0.066 7.11 0.128 0.133 222 0331 0119 912 0057 0.023 30.5
DYffusion 0.573 0.079 6.46 0.196 0.080 1.80 - - - - - -

CoST 0419 0.028 345 0.089 0.032 0.66 0256 0.027 37.8 0.056 0.023 31.9

Model

Table 7: Short-term forecasting results in terms of MAE and RMSE. Bold indicates the best perfor-
mance, while underlining denotes the second-best. DY ffusion is limited to grid-format data, and ‘-’
denotes results that are not applicable.

BikeDC MobileNJ CrowdBM Los-Speed

MAE RMSE MAE RMSE MAE RMSE MAE RMSE
D3VAE  0.871 3.59 0.580  1.135 11.0 24.7 8.28 11.9
DiffSTG ~ 0.770  4.02 0317  0.649 8.88 21.3 538 9.75
TimeGrad  0.843 1.07 0340 0.357 10.1 124 2.33 3.00
CSDI 0.592 310 0129 0237 731 19.3 4.53 8.07
NPDiff  0.435 190 0.123 0.175 542 13.7 4.07 7.64
DYffusion 0480  1.37 0222 0357 - - - -

CoST 0.492 1.76 0102 0.172  5.04 12.1 4.05 7.30

Model

Table 8: Long-term forecasting results in terms of CRPS, QICE, and IS. Bold indicates the best
performance, while underlining denotes the second-best. DYffusion is limited to grid-format data,
and ‘-’ denotes results that are not applicable.

Model MobileSH Climate CrowdBJ CrowdBM Los-Speed
CRPS QICE IS CRPS QICE IS CRPS QICE IS CRPS QICE IS CRPS QICE IS
D3VAE 0.798 0.129 1.830 0.075 0.083 240 0710 0.109 639 0.674 0.108 1523 0.138 0.101 1132

DiffSTG ~ 0.374 0.107 0.923 0.027 0.077 7.90 0370 0.094 313 0400 0.073 67.1 0.124 0.080 104.6

TimeGrad 0.245 0.075 0408 0.041 0.101 142 0371 0.073 324 0237 0.049 339 0.192 0.081 9838
CSDI 0.158 0.045 0.216 0.036 0.073 6.80 0229 0.038 12.0 0.235 0.052 33.7 0.134 0.090 59.2
NPDiff 0204 0.102 0611 0.109 0.115 413 0288 0.114 33.6 0331 0.111 90.8 1366 0.126 950.4

DYffusion 0.308 0.086 0.550 0.030 0.147 15.2 - - - - - - - - -

CoST 0.158 0.016 0218 0.024 0.011 4.87 0217 0.011 11.5 0.235 0.009 312 0.089 0.040 64.6
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Figure 8: Ablation study on the CrowdBJ and CrowdBM comparing variants in terms of (a) CRPS
and (b) IS.
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Figure 9: PIT analysis on the MobileSH dataset: (a) PIT histogram and (b) PIT empirical CDF.

Table 10: Comparison of training and inference time on the MobileSH dataset.

Model Train Time Inference Time
D3VAE 3min 27s 2min 15s
DiffSTG 24min 16s 18min 38s

TimeGrad Smin 2min

CSDI 48min 40s 38min 49s

DyDiffusion 33h 3h
CoST 2min 50s

Table 9: Long-term forecasting results in terms of MAE and RMSE. Bold indicates the best perfor-
mance, while underlining denotes the second-best. DY ffusion is limited to grid-format data, and ‘-’
denotes results that are not applicable.

MobileSH SST CrowdBJ CrowdBM Los-Speed
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

D3VAE 0207 0392 239 3.13 5.63 11.4 12.4 28.2 9.43 133
DiffSTG ~ 0.078  0.125 0.94 1.19 3.04 6.37 7.59 18.8 177 14.2
TimeGrad 0.058  0.072 1.30 1.64 3.48 4.83 525 7.40 18.2 223
CSDI 0.035  0.057 1.31 1.63 1.99 3.64 4.64 12.4 11.3 15.0
NPDiff ~ 0.037  0.057 1.91 2.82 2.06 3.28 5.44 13.8 46.0 58.3
DYffusion 0.047  0.066  0.85 1.06 - - - - - -

CoST 0.035 0.053 0.86 113 192 3.05 4.74 11 5.94 10.8

Model

es0 C.5.1 Analysis of Distribution Alignment.

e+t Additionally, we present the PIT (Probability Integral Transform) histogram in Figure 9] (a) and
642 the PIT empirical cumulative distribution function (CDF) in Figure [9| (b) to visually reflect the
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643 alignment of the full distribution. Ideally, the true values’ quantiles in the predictive distribution
s44  should follow a uniform distribution, corresponding to the dashed line in Figure[9] (a). In the case
645 of perfect calibration, the PIT CDF should closely resemble the yellow diagonal line. Clearly, our
e46 model outperforms CSDI.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: See Abstract and Section [T
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: See Section Gl

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: See Section .11
Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We release all the code and data, as well as instructions for how to replicate
the results. See abstract and Section[C.3]

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We have submitted code and data anonymously as supplementary materials.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide sufficient information on experimental setting. See Section
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the the statistical significance of the experiments suitably and
correctly. See Section[C.3]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide sufficient information on the computer resources. See Section[C.3]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We make sure that the presented research conforms with the NeurIPS Code of
Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We provide thorough discussion about broader impacts of this work. See
Section[6l

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets used in the paper are properly credited. The license and terms of use
are explicitly mentioned and properly respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: All new assets introduced in the paper are well documented and we provide
the documentation alongside the assets.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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959 16. Declaration of LLLM usage

960 Question: Does the paper describe the usage of LLMs if it is an important, original, or
961 non-standard component of the core methods in this research? Note that if the LLM is used
962 only for writing, editing, or formatting purposes and does not impact the core methodology,
963 scientific rigorousness, or originality of the research, declaration is not required.

964 Answer: [NA]

965 We did not use large language models (LLMs) as an important, original, or non-standard
966 component of the core methods in this research

967 Guidelines:

968 * The answer NA means that the core method development in this research does not
969 involve LLMs as any important, original, or non-standard components.

970 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
971 for what should or should not be described.
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