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Abstract

In supervised machine learning, privileged information (PI) is information that is unavailable
at inference, but is accessible during training time. Research on learning using privileged
information (LUPI) aims to transfer the knowledge captured in PI onto a model that can
perform inference without PI. It seems that this extra bit of information ought to make
the resulting model better. However, finding conclusive theoretical or empirical evidence
that supports the ability to transfer knowledge using PI has been challenging. In this paper,
we critically examine the assumptions underlying existing theoretical analyses and argue
that there is little theoretical justification for when LUPI should work. We analyze LUPI
methods and reveal that apparent improvements in empirical risk of existing research may
not directly result from PI. Instead, these improvements often stem from dataset anomalies
or modifications in model design misguidedly attributed to PI. Our experiments for a wide
variety of application domains further demonstrate that state-of-the-art LUPI approaches
fail to effectively transfer knowledge from PI. Thus, we advocate for practitioners to exercise
caution when working with PI to avoid unintended inductive biases.

1 Introduction

In supervised machine learning (ML), we aim to learn the fit between some features x ∈ X and target y ∈ Y .
The information going into x can only be used if it is accessible at the time of inference. However, there
may exist features z ∈ Z that are only available during training due to engineering complexities or because
this information only materializes post-inference. These features z can present themselves in many forms,
including uncompressed features (e.g., images), third-party expert annotations, non-target post-inference
signals (e.g., clicks or dwell time), and metadata about the annotator/label provider. Our work is motivated
by a common e-commerce application of optimizing a north-star metric, such as product conversion. In
this context, user interactions that occur after prediction, such as clicks, can be strong indicators of the
user’s intent to purchase, and evaluating the probability of conversion conditioning on a click becomes more
straightforward. However, clicks exist as features only in the offline data and not during inference.

For this reason, Vapnik & Vashist (2009) introduced the paradigm of learning using privileged informa-
tion (LUPI). Since its introduction, LUPI has sparked significant interest within the research community
across various domains, including speech recognition (Markov & Matsui, 2016), computer vision (Garcia
et al., 2020; Lee et al., 2020), semi-supervised learning (Gong et al., 2018; Yang et al., 2022b), noisy-labels
(Collier et al., 2022; Ortiz-Jimenez et al., 2023), and others (Li et al., 2020; Xu et al., 2020). Given this
widespread interest, it is crucial to develop sound methodologies to conclusively ascertain the effectiveness
of privileged information (PI). However, existing methods, being generic, are often mistakenly considered
universal solutions. This misconception leads to a lack of thorough theoretical and empirical foundations
regarding the impact of privileged information.

The key intuition behind LUPI is that privileged information should be addressed via knowledge transfer –
transferring knowledge from the space of privileged information (PI model) to the space where the decision
rule is constructed (no-PI model) (Vapnik & Izmailov, 2015b). State-of-the-art approaches for LUPI are
largely based on two knowledge transfer techniques: knowledge distillation (Lopez-Paz et al., 2016; Markov &
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Matsui, 2016; Lee et al., 2020; Xu et al., 2020; Yang et al., 2022b) and marginalization with weight sharing
(Lambert et al., 2018; Collier et al., 2022; Ortiz-Jimenez et al., 2023). In this work, we analyze these two
popular knowledge transfer techniques for LUPI from both theoretical and practical perspectives.

Recent research suggests that incorporating PI is crucial for enhancing sample efficiency and generalization
performance (Lambert et al., 2018; Yang et al., 2022b; Collier et al., 2022). These studies attempt to explain
under what conditions LUPI is beneficial. However, theoretical analyses often either assume knowledge
transfer occurs or demonstrate it takes place for extreme cases under assumptions that are difficult to verify.
Additionally, empirical analyses in existing studies frequently rely on stylized examples (Collier et al., 2022;
Ortiz-Jimenez et al., 2023), specific experimental settings (Lopez-Paz et al., 2016; Xu et al., 2020; Collier
et al., 2022), or low-data regimes (Vapnik & Izmailov, 2015b; Markov & Matsui, 2016; Lopez-Paz et al., 2016;
Lambert et al., 2018). Therefore, conclusively identifying that knowledge transfer happens and is induced by
PI is non-trivial, and there remains a gap in understanding PI.

In this paper, we investigate whether knowledge transfer truly takes place in knowledge distillation and
marginalization with weight sharing. To that end, we critically review the theory behind knowledge transfer
in LUPI and explicitly discuss assumptions imposed by the existing theoretical analyses. We argue that the
imposed assumptions are overly restrictive and discover that discussions on the robustness of the results to
violations of these assumptions are frequently omitted. On the empirical side, we conduct an elaborate ablation
study and demonstrate the apparent improvements often result from factors unrelated to PI. We reveal that
previous studies tend to misinterpret the observed gains in empirical performance and mistakenly attribute
them to PI. Interestingly, when focusing on the mechanisms that disclose PI models’ better performance,
we observe that the gap between PI and no-PI models can be bridged by simply training models longer or
replacing PI with a constant.

Back to the real world, we validate the existing methods on four real-life datasets from various application
domains, including e-commerce, healthcare, and aeronautics. Our results demonstrate that the state-of-the-art
approaches fail to outperform a model that does not use PI, which adds evidence to the limited contributions
of LUPI in practical applications. Overall, our study highlights that, in the current state of research, there is
no solid empirical or theoretical evidence that knowledge transfer takes place in the LUPI paradigm.

Our contribution Our key contributions can be summarized as follows:

• We critically review the theory behind knowledge transfer in LUPI and argue that current research
provides little theoretical justification for when LUPI should work.

• We revisit empirical studies that claim performance improvements due to PI and highlight that these
improvements can be explained through mechanisms unrelated to PI.

• We conduct experiments on four real-world datasets from various application domains and find out
that no improvement from PI model is observed, which adds evidence to the limited contribution of
LUPI in practical applications.

Concerns about LUPI are not unprecedented. Earlier work by Serra-Toro et al. (2014) discusses experiments
on SVM+, one of the first algorithms developed for LUPI (Vapnik & Vashist, 2009), that yield identical
results to the regular Support Vector Machine (SVM) algorithm with randomly generated features as PI. Our
analysis extends to newer algorithms that utilize PI, further advancing our understanding of the practical
limitations of LUPI algorithms despite recent developments.

Paper outline The rest of the paper is organized as follows. Section 2 discusses the knowledge transfer
in LUPI and introduces the techniques of knowledge distillation and marginalization with weight sharing.
Section 3 reviews the theory behind knowledge transfer in LUPI. The common misinterpretations are outlined
in Section 4, with elaborate analyses of knowledge distillation in Section 4.1 and marginalization with weight
sharing in Section 4.2. This is followed by our real-world experiments in Section 5. Finally, we conclude with
Section 6.
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2 Knowledge transfer in LUPI

In this section, we present two popular knowledge transfer techniques that are largely used in LUPI.

Let D denote a training dataset, D := {(xi, zi, yi)}n
i=1, consisting of triples: features xi ∈ X , available during

both training and inference, privileged information zi ∈ Z accessible only during training, and labels yi ∈ Y
drawn from the unknown distribution p(·|xi, zi). We focus on a c-class classification task (i.e., yi ∈ {1, . . . , c}),
although the same ideas apply to a regression task.

The LUPI problem is often described as an interaction between an intelligent teacher, who has access to PI, and
a student, who learns from the teacher’s ‘explanations’ (Vapnik & Vashist, 2009). Let Gt := {g|g : X ×Z → Y}
be a teacher function class and Gs := {g|g : X → Y} be a student function class. Vapnik & Izmailov (2015b)
formulate two conditions that are required to learn effectively using PI:

1. the empirical error in privileged space X × Z is smaller than the empirical error in the feature space
X , i.e., the classification rule y = gt(x, z) is more accurate than the classification rule y = gs(x), for
some gt ∈ Gt and the best gs ∈ Gs.

2. the knowledge of the rule y = gt(x, z) in space X × Z can be represented/transferred to improve the
accuracy of the desired rule y = gs(x) in space X .

Assuming that the first condition holds, which is easy to verify empirically on a given dataset, the difficulty
is to verify whether and when the knowledge transfer actually happens. To address this challenge, two main
knowledge transfer techniques have been proposed in the LUPI literature for improving the accuracy of rule
y = gs(x): knowledge distillation and marginalization with weight sharing.

Knowledge distillation Distillation introduced by Hinton et al. (2015) forms the basis for knowledge
distillation methods using PI (Lopez-Paz et al., 2016; Markov & Matsui, 2016; Garcia et al., 2020; Lee et al.,
2020; Xu et al., 2020; Yang et al., 2022b). Lopez-Paz et al. (2016) unifies LUPI with distillation for supervised
learning and suggests that the representation learned by the PI model can be effectively distilled to a no-PI
model. Their method, called Generalized distillation, proceeds in two stages. First, train a teacher model that
takes both x and z as input to predict y. With a slight abuse of notation, we assume that y is represented by
a one-hot encoded vector, i.e., y ∈ ∆c, where ∆c is a set of c-dimensional probability vectors. The teacher’s
goal is to learn the representation

gt = arg min
g∈Gt

1
n

n∑
i=1

ℓ (yi, σ(g(xi, zi))) , (1)

where ℓ : ∆c ×∆c → R+ is a loss function, and σ : Rc → ∆c is the softmax operation.

In the second stage, a student model distills the learned representation gt into

gs = arg min
g∈Gs

1
n

n∑
i=1

[(1− λ)ℓ (yi, σ(g(xi))) + λℓ (si, σ(g(xi)))] , (2)

where si = σ(gt(xi, zi)/T ) ∈ ∆c is a soft label with temperature T provided by the teacher model and
λ ∈ [0, 1] is the imitation parameter, which balances the importance between imitating the soft predictions si

and predicting the true hard labels yi.

Intuitively, the teacher reveals the label dependencies to the privileged information by softening the class-
probability predictions in si, and the student distills this knowledge by training using the input-output pairs
{(xi, yi)}n

i=1, {(xi, si)}n
i=1. The soft labels si provided by the teacher assumed to contain more information

than hard labels yi and allow faster learning (Lopez-Paz et al., 2016). After distilling the privileged information,
we can use the student model gs ∈ Gs for prediction at test time.

Generalized distillation underpins numerous PI algorithms (Markov & Matsui, 2016; Garcia et al., 2020; Lee
et al., 2020; Xu et al., 2020; Yang et al., 2022b) introduced with problem-specific adjustments peripheral to
the knowledge distillation component.
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Marginalization and weight sharing Another popular approach of incorporating privileged information
is based on marginal distribution p(y|x) =

∫
p(y|x, z)p(z|x)dz (Lambert et al., 2018; Collier et al., 2022;

Ortiz-Jimenez et al., 2023). Consider a training problem:

gt = arg min
g∈Gt

1
n

n∑
i=1

ℓ (yi, g(xi, zi)) . (3)

This is equivalent to a classical supervised learning problem defined over the privileged space X ×Z. In order
to solve the inference problem, we can consider the following marginal distribution

gs(x) = Ez∼p(z|x) [gt(x, z)] . (4)

The major problem in this formulation is the intractability of computing the expectation in equation 4, as
p(z|x) is unknown. As such, Collier et al. (2022) propose a knowledge transfer technique based on weight
sharing to approximate equation 4. Their method, called TRAM (transfer and marginalize), is designed to
reduce the harmful impact of noisy labels and facilitate learning. The authors motivate their work by the
ability of PI to reduce the effect of malicious or lazy annotators on collected labels.

TRAM is based on a two-headed model in which one head has access to PI, and the other one does not.
Specifically, they propose a neural network architecture which consists of three parts: shared feature extractor
ϕ(x), No PI head gs(x′), and PI head gt(x′, z), where ϕ : X → X ′ learns representation x′ of features x for
some representation space X ′. Then, they consider the following two-step approach:

ϕ∗, gt = arg min
g∈Gt,ϕ

1
n

n∑
i=1

ℓ (yi, g(ϕ(xi), zi)) , (5)

gs = arg min
g∈Gs

1
n

n∑
i=1

ℓ (yi, g(ϕ∗(xi))) . (6)

Crucially, feature extractor ϕ∗ is learned in equation 5 with access to PI. This weight sharing assumed to
enable knowledge transfer to the network trained without PI in equation 6. At test time, only the No PI
head is used for prediction.

3 When is knowledge transfer in LUPI proven theoretically?

In this section, we review the existing theoretical analyses of the LUPI paradigm. Recent work attempts to
explain when LUPI is beneficial, but finding conclusive theoretical evidence for knowledge transfer using PI
remains challenging. These theoretical analyses often depend on strong assumptions and lack discussion on
when these are satisfied or violated.

LUPI was introduced as a technique that can leverage PI to distinguish between easy and hard examples,
a concept closely tied to SVMs, where the difficulty of an example can be quantified by the slack variable
(Vapnik & Vashist, 2009). For the case of SVMs, Vapnik & Izmailov (2015b) show that utilizing slack
variables as privileged information can result in a generalization error bound with rate O( 1

n ) instead of
O( 1√

n
). The motivation behind this is that SVM classification becomes separable after we correct for the

slack values, which measure the degree of misclassification of training data points. 1 Since it is unlikely
that the teacher is able to provide true slack variables, the idea of the SVM+ algorithm is to estimate slack
variables and represent them by the teacher’s decision rule gt. Technically, the improved convergence rate
holds under two conditions: (i) function class Gt has a smaller capacity than student’s function class Gs and
(ii) teachers’ explanations p(z|x) engender a convergence that is faster than O( 1√

n
). However, the sets of

functions satisfying these conditions are confined to Reproducing Kernel Hilbert Space (RKHS) (Vapnik &
1Separable classification corresponds to a situation when there exists a function that separates the training data without

errors and admits generalization error bound of the rate O( 1
n

). Conversely, in non-separable classification, there is no function
that can separate training data without errors, and the generalization error bound is of the order O( 1√

n
) (Vapnik, 1998).
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Table 1: Expanding the training size of Experiment 1 (Clean Labels) from Lopez-Paz et al. (2016). The effect
of Generalized distillation wears off when the training size surpasses 1000 samples.

Training size Privileged Generalized distillation no-PI
200 0.95 ±0.01 0.95 ±0.01 0.87 ±0.02
500 0.95 ±0.01 0.95 ±0.01 0.92 ±0.01
1000 0.95 ±0.01 0.95 ±0.01 0.94 ±0.01
2000 0.95 ±0.01 0.95 ±0.01 0.95 ±0.01

Izmailov, 2015b), and their theoretical justifications does not generalize beyond SVMs with decision rules
defined in RKHS.

On the last point, Lopez-Paz et al. (2016) argue that in Generalized distillation, the rate at which the student
learns from the teacher’s soft labels is faster than O( 1√

n
), since soft labels contain more information than

hard labels per example, and should allow for faster learning. This requirement on the learning rate is rather
strong and hard to satisfy in a general setting.

Generalized distillation was also analyzed in the semi-supervised learning setting by Yang et al. (2022b).
The authors consider a problem where two datasets are available: Dlabel := {(xi, zi, yi)}n

i=1 and Dunlabel :=
{(xi, zi)}m

i=1. Their distillation algorithm trains the teacher model using labeled dataset Dlabel, which provides
pseudo-labels for both the labeled and unlabeled datasets, Dlabel and Dunlabel, respectively. Then, the student
model is trained on the combined dataset Dlabel ∪ Dunlabel using the imputed pseudo-labels as targets. They
theoretically demonstrate that their algorithm reduces estimation variance in the case of linear models
with independent regular and privileged features and report improved empirical performance. However, the
improvement appears to largely come from the semi-supervised aspect rather than PI-induced knowledge
transfer. In Appendix A, we show that when we have no unlabelled data, the estimation variance of distillation
actually slightly increases.

For the marginalization approach, Lambert et al. (2018) demonstrate that the convergence rate can be
increased to O( 1

n ) for convolutional neural networks under a strict assumption that the variance of the model
can be upper-bounded by δ for an arbitrarily small value of δ > 0. The authors leave verifying this assumption
as an open problem.

Meanwhile, Collier et al. (2022) formulate two conditions under which marginalization can achieve a lower
empirical risk for a linear regression y = x⊤w + z⊤v + ϵ, where z ∼ p(z|x) (i) the regression coefficients v
have a large variance when explained only by the features x and (ii) privileged features z have a significant
average component outside of the subspace spanned by the features x. However, their analysis is intractable
beyond this simple case, and hence, we cannot quantify such conditions in the general setting.

Overall, the existing theory either assumes that knowledge transfer occurs or identifies conditions under which
it might happen in stylized linear models. However, conclusive theoretical evidence supporting knowledge
transfer through PI remains lacking.

4 What does existing empirical evidence show?

In this section, we revisit the original experiments conducted with the introduction of Generalised distillation
and TRAM. Our goal is to challenge PI-induced knowledge transfer in these experiments. In Section 4.1, we
revisit four experiments from Lopez-Paz et al. (2016) (one of the experiments is deferred to Appendix B)
to highlight potential limitations and misinterpretations from the aforementioned work. In Section 4.2, we
revisit the experiments by Collier et al. (2022) to demonstrate that TRAM fails to explain the annotators’
noise, and the observed improvements in empirical risk can be explained by the architecture of TRAM.
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(b) Results on MNIST for 500 samples

Figure 1: The effect of sufficient training epochs on the MNIST Generalised distillation experiment.

4.1 Generalized distillation

Synthetic experiments from Lopez-Paz et al. (2016) Lopez-Paz et al. (2016) ran four experiments to
demonstrate the ability of Generalized distillation to transfer knowledge. These are simulations of logistic
regression models repeated over 100 random partitions. For the two experiments that see positive effects of
using Generalised distillation, the triplets (xi, zi, yi) are sampled from one of two generating processes:

Experiment 1: Clean labels as PI
xi ∼ N (0, Id)
zi ← ⟨α, xi⟩
ϵi ∼ N (0, 1)
yi ← I {(zi + ϵi) > 0}

Experiment 3: Relevant features as PI
xi ∼ N (0, Id)
zi ← xi,J

yi ← I {⟨α, zi⟩ > 0} ,

where d is dimensionality of regular features, d = 50, α ∈ Rd is the separating hyperplane, and set J , J = 3,
is a subset of the variable indices {1, . . . , d} chosen at random but common for all samples. Both Generalized
distillation and no-PI models are trained on 200 samples (n = 200), and the authors report a substantial
improvement in accuracy (88% vs. 95% for Clean labels as PI and 89% vs. 97% for Relevant features as PI)
testing models on 10000 test samples.

In both experiments, PI contains (almost) perfect information about the distance of each sample to the
decision boundary. In Experiment 1, PI encodes the exact distance, while in Experiment 3, PI encodes
the relevant features used to calculate distance. Both cases align with the perfect knowledge of the slack
variables in Vapnik & Izmailov (2015a). However, from a practical perspective, obtaining such high-quality
PI is improbable. Furthermore, the knowledge transfer aids performance in low data regimes, but the effect
quickly diminishes as the sample size increases with respect to the dimensionality of x (refer to Table 1 for
Experiment 1 and Table 3 for Experiment 3).

MNIST experiment from Lopez-Paz et al. (2016) The authors further demonstrate PI-induced
knowledge transfer using an experiment with the MNIST dataset. In this experiment, the teacher learns from
full 28x28 images while the student learns from downscaled 7x7 images. They conduct two experiments with
300 and 500 training samples, reporting significant improvement in classification accuracy compared to a
model without PI. When revisiting these experiments, we found that the original experiment limited training
epochs to 50. In Figure 1, we show that the reported effects are indeed visible around 50 epochs but quickly
disappear when we allow all models to continue training.

Important to note, is that given the teacher-student setup, when the no-PI and student model performances
are reported at 50 epochs in Figure 1, the student model actually requires a teacher model that had already
completed 50 epochs, thus combined requiring 100 training epochs. Taking this into consideration, there is
no evidence of either improved sample efficiency or computational efficiency by using Generalised distillation
in this setting.
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Figure 2: TRAM zeros, TRAM, and no-PI for insufficient training (2a) and sufficient training (2b). The
numbers in the legend indicate MSE loss with respect to the noise-free function.

Further discussion on knowledge distillation using PI While Generalized distillation shows preliminary
evidence of knowledge transfer, we can see that it takes place only for low data regimes and in highly styled
examples. To address these gaps, several attempts have been made from the application side (Markov &
Matsui, 2016; Garcia et al., 2020; Lee et al., 2020; Xu et al., 2020), with Xu et al. (2020) applying generalized
distillation to recommendations with privileged information in e-commerce. Admittedly, all of these works
report marginal improvement over the no-PI model.

4.2 Revisiting TRAM

Collier et al. (2022) and Ortiz-Jimenez et al. (2023) argue that PI can be used to “explain away” label
noise. To demonstrate TRAM having this capability, Collier et al. (2022) consider the following synthetic
experiment: A noisy annotator z is simulated by binary indicator z ∼ Ber(0.3), such that z = 1 represents
the case where the noisy annotator provides a random label independent of x

y = (1− z) · sin(2πx) + z · v + ϵ, (7)

where x ∈ [0, 1], v ∼ Unif(−1, 1), and ϵ ∼ N (0, 0.1).

The authors train TRAM and no-PI models on n = 2500 training samples using a 2-layer fully connected
neural network with a tanh activation function. They observe results from Figure 2a and state “We see that
the representations learned by the model with access to PI in step #1 2 enable a near perfect fit to the true
expected marginal distribution, E(z,y)∼p(z,y|x)[y], over X . However, without access to PI, the noise term a · v
cannot be explained away.”

We regard the expression “explaining away the noise term” as cumbersome in this context: as one can see,
neither TRAM nor no-PI effectively explains the noise term z · v away. The task of explaining noise term
would ideally correspond to learning the noise-free function E[y|x, z = 0] = sin(2πx); however, as depicted
in Figure 2b, after sufficient training, TRAM and no-PI converge to a biased function. This effect is more
clearly visible in Figure 3, where we compare the TRAM performance to an uncorrupted model (a regular
model that is fitted to data without the corrupted labels coming from v). Thus, we can conclude that TRAM
does not “average out” or “explain away” label noise; rather, similarly to the no-PI model, it completes the
average E[y|x].

Next, we consider the training dynamics of TRAM against no-PI model for the regression task in equation 7.
Figure 3 (left) shows the training dynamics over 200 epochs for n = 2500. Figure 3 (right) shows the models’
performances trained for 200 epochs across varying numbers of samples. The y-axis represents the MSE loss
with respect to the noise-free generating function sin(2πx).

2step #1 corresponds to learning feature extractor ϕ∗ in equation 5.
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Figure 3: TRAM and no-PI training dynamics for the synthetic experiment from equation 7. (Left) presents
training dynamics over 200 epochs. (Right) shows the resulting models’ performances across varying sample
sizes trained for 200 epochs. “Uncorrupted” corresponds to a regular model fitted to uncorrupted data
y = sin(2πx) + ϵ.

Although, which was already observed in Figure 2b, both TRAM and no-PI models eventually converge
to similar performance levels, some disparity is observed in their trajectories (refer to Figure 3 (left)), with
TRAM achieving optimal performance generally faster (in Appendix D, we extend our analysis to classification
tasks, which are generally more difficult, and the advantage of TRAM is more noticeable there). This suggests
that TRAM has a faster convergence rate. However, from Figure 3 (right), we can see that both models enjoy
the same performance after sufficient training, which suggests that TRAM is not more sample efficient than
no-PI model. Thus, similar to the MNIST experiment, increasing the number of epochs for no-PI model
achieves identical performance to TRAM, resulting in both models fitting the expected marginal distribution
almost perfectly.

Why TRAM does not leverage PI In order to understand by which mechanisms TRAM enables a
faster convergence rate, we consider a modification of TRAM, where instead of PI z, we plug in a zero
vector (TRAM zeros). Figures 2a and 2b show that the performance of TRAM zeros is identical to the
performance of TRAM using PI. This suggests that the benefit of TRAM stems from architectural changes
rather than PI-induced knowledge transfer.

This mechanism can be traced back to the original TRAM experiments, as outlined in Appendix F of Collier
et al. (2022). In this experiment, the authors reduced the capacity of the network by downsizing the number
of parameters by 75% while keeping the number of training samples unchanged. Their observation indicated
that TRAM performed equivalently to the no-PI model under these conditions. However, with the full-size
network, TRAM exhibited a slight improvement over the no-PI model. This observation suggests that
the full-size network might have been in an underfitted regime, where TRAM’s architectural adjustments
conferred an advantage.

5 Real-world applications

To further validate the described methodologies, we conduct experiments on four real-world datasets from a
variety of application domains, including e-commerce, healthcare, and aeronautics: 3

• Repeat Buyers (Alibaba, 2024) Motivated by our use-case example, we consider the Repeat Buyers
dataset, a large-scale public dataset from the IJCAI-15 competition. The data provides users’ activity
logs of an online retail platform, including user-related features, information about items at sale,
and implicit multi-behavioral feedback such as click, add to cart, and purchase. We assign user-item
features to x, intermediate signals click and add to cart to z, and purchase to y.

3All datasets are distributed under CC BY-NC 4.0 license.
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Figure 4: Training dynamics of No PI, TRAM, Gen. dist., and Teacher for 4 real-world datasets averaged over
10 runs. (Top row) shows the performance metric on the test set (scaled roc auc score for Repeat Buyers
and Heart Disease datasets and accuracy for NASA-NEO and Smoker or Drinker datasets). (Bottom row)
shows cross-entropy loss on the test set.

• Heart Disease (BRFSS, 2024) This dataset is derived from the 2015 Behavioral Risk Factor
Surveillance System, and it contains ∼ 260k cleaned responses, focusing on the binary classification of
heart disease. We use social-demographic features (such as age and income) as privileged information
z and medical data as regular features x.

• NASA-NEO (NASA, 2024) NASA nearthest earth object dataset compiles the list of NASA-certified
asteroids. It contains ∼ 90k samples with various properties of asteroids, and the task is to predict
if an asteroid is hazardous. For the purpose of our study, we treat a subset of original features as
privileged information.

• Smoker or Drinker (Soo, 2024) This dataset was collected from the National Health Insurance
Service in Korea. It compiles medical histories of ∼ 900k patients, focusing on their smoking and
drinking status. For our study, we treat a subset of original features as privileged information.

We consider Generalized distillation, TRAM, and no-PI models, which are 2-layer fully-connected neural
networks for all datasets. For reference, we report the teacher’s performance for all datasets to indicate
that PI could be useful in all cases. We perform a timestamp-based train test split and use 70% of data
for training each model and 30% of data for reporting performance. The experiments are repeated over 10
random model initialization. The further experimental details are provided in Appendix E.

Figure 4 shows the training dynamics for TRAM, Generalized distillation, and no-PI models across the four
datasets, and Table 2 reports the resulting performance metric. We use scaled roc auc4 for Repeat Buyers
and Heart Disease datasets and accuracy for NASA-NEO and Smoker or Drinker datasets. As we can see,
there is no benefit from using TRAM or Generalized distillation over no-PI model for all datasets, with
TRAM performing substantially worse in Smoker or Drinker dataset. Therefore, there is no evidence that
TRAM and Generalized distillation transfer knowledge from privileged information, and there is no added
value in a real-world setting with moderate to large data sizes and properly tuned and trained models.

4scaled roc auc = 2 * roc auc - 1
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Table 2: Comparison of models’ performance on test data. Results represent mean ± std. dev. and are
averaged over 10 random seeds. We use scaled roc auc score for Repeat Buyers and Heart Disease datasets
and accuracy for NASA-NEO and Smoker or Drinker datasets.

Dataset Method ↓ Cross-entropy loss ↑ Metric

Repeat Buyers

no-PI 0.2189 ± 0.0015 63.13 ± 0.25

sc
.

ro
c

au
c

TRAM 0.2194 ± 0.0013 62.89 ± 0.42

Gen. dist. 0.2183 ± 0.0017 62.88 ± 0.56

Teacher 0.1938 ± 0.0019 73.23 ± 0.38

Heart Disease

no-PI 0.2557 ± 0.0020 61.64 ± 0.47

TRAM 0.2555 ± 0.0018 61.62 ± 0.30

Gen. dist. 0.2543 ± 0.0013 61.11 ± 0.42

Teacher 0.2422 ± 0.0018 67.38 ± 0.31

NASA-NEO

no-PI 0.1945 ± 0.0009 90.28 ± 0.07

ac
cu

ra
cy

TRAM 0.1948 ± 0.0009 90.26 ± 0.09

Gen. dist. 0.1951 ± 0.0010 90.29 ± 0.09

Teacher 0.1818 ± 0.0011 91.35 ± 0.10

Drinker or Smoker

no-PI 0.5823 ± 0.0017 69.05 ± 0.15

TRAM 0.6125 ± 0.0031 66.54 ± 0.44

Gen. dist. 0.5820 ± 0.0009 69.09 ± 0.15

Teacher 0.5157 ± 0.0011 73.08 ± 0.11

6 Conclusion

Misinterpretations of empirical results and attributing performance gains to privileged information are so
prevalent in recent literature that they create a widely accepted impression of the uncompromising usefulness
of PI. However, this misconception leads to a lack of thorough theoretical and empirical foundations regarding
the impact of privileged information. Our work rethinks knowledge transfer in learning using PI and highlights
that, in the current state of research, there is no solid empirical or theoretical evidence that LUPI works in
realistic scenarios.

Our theoretical overview of recent developments on LUPI argues that the existing theory does not provide a
sufficient basis for claiming that knowledge transfer occurs and highlights the need for a more solid theoretical
justification. While this observation only applies to the theoretical analyses discussed in our study, we are
also unaware of other work compellingly showing when knowledge transfer is possible and effective in LUPI.

In our experiments, we identified common fallacies of misinterpreting gains in empirical performance as
knowledge transfer induced by PI. We demonstrate that after adequate training, state-of-the-art LUPI
methods fail to outperform no-PI model. Surprisingly, we observe that low data regimes and undertrained
models (low training epoch regimes) often seem to be confused. While PI is beneficial in low data regimes in
highly styled examples, it has yet to be verified that this can be extended to realistic settings. So far, existing
methods benefit from other factors unrelated to PI.

Similarly, our empirical evidence for TRAM suggests a lack of support for the notion that PI accounts for
noise originating from corrupted labels. We have illustrated that the purported improvements in empirical
risk achieved through TRAM can be attributed to alterations in model architecture.

While our findings do not definitively disprove the possibility of knowledge transfer induced by privileged
information, our experiments provide compelling evidence that existing methods are insufficient in achieving
effective learning using PI in practical, realistic scenarios. Therefore, we believe practitioners and researchers
should exercise caution when working with PI to avoid potential performance degradation or unintended
inductive biases caused by experiment setup or dataset anomalies. Additionally, we urge the research
community to devise more sound methodologies to conclusively ascertain the presence and effectiveness of
knowledge transfer induced by PI.

10
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A Independent features

We follow the proof by Yang et al. (2022b) for the special case that m = 0 (no unlabelled instances)

Assuming a linear model generating the label y as follows:

y = x⊺w∗ + z⊺v∗ + ϵ, ϵ ∼ N (0, σ2), (8)

where w∗ ∈ Rd
x and v∗ ∈ Rd

z the unknown parameters, the regular features x ∼ N (0, Idx), the privileged
features z ∼ N (0, Idz

). and ϵ represents label noise. The solution of the standard linear regression is

ŵreg = X†y = X†(Xw∗ + Zv∗ + N) = w∗ + X†(Zv∗ + N), (9)

where N ∈ Rn×1 the label noise vector. Therefore, we have

EX∥ŵreg −w∗∥2
2 = EX∥(Zv∗ + N)⊺X†⊺X†(Zv∗ + N)∥2

2

= dx · (σ2 + ∥v∗∥2)
n− dx − 1

The last equality holds because X†⊺X† = (X⊺X)−1 follows the inverse-Wishart distribution, whose expectation
is Idx

n−dx−1 .

For generalised distillation, the teacher θ̂ ∈ Rdx+dz , we have

θ̂ = [X; Z]† [Xw∗ + Zv∗ + N)]
= [w∗⊺; w∗⊺]⊺ + [(XZ,⊥N)⊺ ; (ZX,⊥N)⊺]⊺ ,

where XZ,⊥ is the pseudo inverse of the projection of X to the column space orthogonal to Z, and ZX,⊥ is
defined similarly. After distillation, we have that

ŵpri = X† [X; Z] θ̂

= ŵ∗ + X†Zv̂∗ + X†
Z,⊥N + X†ZZ†

X,⊥N.

We note that Z†
X,⊥N has variance of order O

( 1
n2

)
, which is a non dominating term. For the other two terms

we have

EX,Z∥ŵpri −w∗∥2
2 = EX,Z∥X†Zv∗ + X†

Z,⊥N∥
2

2

= dx · ∥v∗∥2

n− dx − 1 + dx · σ2

n− dx − dz − 1
≥ EX∥ŵreg −w∗∥2

2.

B Generalized distillation: SARCOS experiment

SARCOS experiment from Lopez-Paz et al. (2016) The last experiment provided by Lopez-Paz et al.
(2016) is based on the SARCOS dataset (Vijayakumar, 2000). This dataset characterizes the 7 joint torques
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Figure 5: Reproducing the SARCOS experiment with the teacher replaced with gt = 0.

of a robotic arm given 21 real-valued features. Lopez-Paz et al. (2016) learns a teacher on 300 samples to
predict each of the 7 torques given the other 6, and then distills this knowledge into a student who uses as
her regular input space the 21 real-valued features. They report improvement in mean squared error when
using Generalized distillation and conclude, “when distilling at the proper temperature, distillation allowed
the student to match her teacher performance.”

However, there is a misalignment between the experiment setup and the conclusion drawn by the authors. It
is observed that as the teacher labels approach 0, the student’s performance improves. In fact, in Figure
equation 5, we demonstrate that, due to the experiment setup, plugging in all zeros as a target for the
student model corresponds to the best student’s performance. In their code, instead of applying T as a
softmax temperature to the labels, the authors divide the soft label by T . This means that by increasing the
temperature T and the imitation parameter λ in the original experiment, the authors force the teacher labels
closer to 0 and report the observed improvement. Given that this is not reported in the paper, we believe
this to be unintended by the authors. However, this means that the performance improvement can fully be
attributed to the temperature scaling and not to a successful knowledge transfer of PI.

C Experiment 3

Table 3: Expanding the training size of Experiment 3 (Relevant features as privileged information) from
Lopez-Paz et al. (2016). The effect of Generalized distillation wears off when the training size surpasses 2000
samples.

Training size Privileged Generalized distillation no-PI
200 0.97 ±0.02 0.96 ±0.02 0.84 ±0.03
500 0.97 ±0.02 0.97 ±0.01 0.92 ±0.02
1000 0.98 ±0.02 0.97 ±0.01 0.95 ±0.01
2000 0.98 ±0.02 0.97 ±0.01 0.96 ±0.01
5000 0.98 ±0.02 0.97 ±0.01 0.97 ±0.01

D Extending the TRAM experiment to classification tasks

Synthetic experiments for classification task To further demonstrate that explaining away harmful
noise is non-trivial, extend the setting above to a classification task to make it more suitable for our use-case
example. As such, y is a binary label that represents conversion, and z is PI, which represents the nature of
the click.
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Figure 6: Example of TRAM and no-PI for 4 classification tasks. The models are trained for 50 epochs and
2500 samples in the top row and for 200 epochs and 10000 samples in the bottom row. The numbers in the
legend indicate MSE loss with respect to the noise-free function. (U) corresponds to an undertrained regime,
(S) corresponds to a sufficiently trained regime.

Similarly to Collier et al. (2022), z ∼ Ber(0.3), and the data generating process is as follows:

yscore = (1− z) · sin(2πx) + z · v, (10)
y ∼ Ber(yscore),

where x ∈ [0, 1] and v represents the nature of the click. We consider four scenarios of PI impact on the label:
Deterministic – v = 1, Bernoulli – v ∼ Ber(0.7), Uniform – v ∼ Unif [−1, 1], Cosine – v = cos(2πx). The
examples of these scenarios and trained TRAM and no-PI models are represented in Figure 6, with Figures
6a-6d representing models trained for 50 epochs with 2500 samples and Figures 6e-6h representing models
trained for 200 epochs with 10000 samples.

Intuitively, Uniform resembles the original setup of Collier et al. (2022) but for the classification task. In
our setting, it can be motivated by a bot or users that just randomly click on banners. Deterministic
might correspond to an adversary that, for example, always clicks and never makes a purchase. Intuitively,
explaining the noise for Deterministic regime should be more difficult than for Uniform regime because there
is no randomness. Bernoulli regime is a middle point between Uniform and Deterministic regimes – there is
still corruption but with some randomness. Finally, Cosine corresponds to a scenario when there are two
types of users with different click behavior (according to sin for part of the population and to cos for the rest
of the population).

Taking a closer look at Figures 6a-6d, we can see that TRAM enables a faster convergence rate. However,
from Figures 6e-6h, it is apparent that both models No PI and TRAM eventually converged to the same
functions, which do not correspond to the noise-free function sin(2πx).

Finally, we empirically analyze the sample efficiency of TRAM compared to the no-PI model.We train
TRAM and No PI models for various values of n, from 100 to 10000. Both models are trained for 200 epochs
for each generated dataset. Figure 7 (right) presents MSE loss across different values of n. We can see that
both models converge to roughly the same value of all data regimes and all values of n, which suggests that
TRAM doesn’t enhance the sample efficiency.
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Figure 7: TRAM and no-PI training dynamics for 4 data regimes.

E Experimental details

This section describes experimental details for sections 4.1, 4.2, and 5. The source code for all experiments
is attached in supplementary materials and will be available publicly upon acceptance of the article. We
distribute all runs across 6 CPU nodes (Intel(R) CPU i7-10750H) and 1 GPU Nvidia Quadro T1000 per run
for experiments.

Generalized distillation experiments We follow the original setup of Lopez-Paz et al. (2016). For both
Experiment 1 and Experiment 3, as a no-PI, student, and teacher models, we use 1 linear layer of dimension
50, with softmax activation. The networks were trained using an rmsprop optimizer with a mean squared
error loss function. The temperature and imitation parameters for Generalized distillation were set to 1.

For MNIST and SARCOS experiments, we use two-layer fully connected neural networks of dimension 20,
with ReLU hidden activations and softmax output activation for the no-PI, student, and teacher models.
The networks were trained using an rmsprop optimizer with a mean squared error loss function. The
temperature and imitation parameters for Generalized distillation in the MNIST experiment were set to 10
and 1, respectively, as the best parameter set from the original paper Lopez-Paz et al. (2016).

TRAM experiments For both regression and classification tasks, as a no-PI model, we use two-layer
fully connected neural networks of dimension 64, with tanh hidden activations and linear output activation
for regression and sigmoid for classification. TRAM model has an extra hidden layer of size 64 with tanh
activation function in the PI head. Both TRAM and no-PI networks are fit using the Adam optimizer
Kingma & Ba (2017) with mean squared error loss function. The numbers of epochs are specified in figure
captions for each experiment.

Real-world experiments The experiment design is the same for all datasets unless stated otherwise.

For the no PI model, we use a two-layer fully connected neural network with the Gaussian error linear unit
activation and a residual connection. For the Generalized distillation model, the teacher and student have
the same architecture as the no-PI model, with teacher models’ inputs x and z being fed independently
to the linear layer first and then concatenated. The temperature and imitation parameters for Generalized
distillation were set to 1 and 1, respectively, as the best parameter set. For TRAM, the feature extractor
ϕ(x) also has an architecture of the no-PI model, and similarly to the teacher of Generalized distillation, the
PI head of TRAM had independent inputs x and z that goes through a linear layer first.
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All models are trained for 50 epochs with cross-entropy loss function and Adam optimizer with a base learning
rate of 0.001, β1 = 0.9, β1 = 0.95, ϵ = 1e− 07. All models are trained with L2 weight regularization with a
decay weight of 0.1.

We train all models 10 times with the random initialization, and for all models, we report the cross-entropy
loss value and performance metric on the test data – Heart Disease datasets and accuracy for NASA-NEO
and Smoker or Drinker datasets and ROC AUC scaled between 0 and 1 (2*ROC AUC - 1) for Repeat
Buyers (refer to Table 2). Additionally, we report the training dynamics of the cross-entropy loss value and
performance metric on the test data in Figure 4. The teacher performance is provided for the reference to
demonstrate that PI is indeed useful information.

F Other related work

Multi-task learning While not strictly focused on the concept of PI, indications of successful knowledge
transfer can be found in the field of multi-task (Caruana, 1997) and multi-objective learning (Mehrotra et al.,
2020; Sagtani et al., 2024). The primary goal of this type of research is to find some joint- or Pareto optimal
solution for multiple tasks or objectives simultaneously. These techniques could also be interpreted as a case
of LUPI by predicting each privileged feature with an additional task. However, while instances of successful
knowledge transfer have been reported in the literature, the quality of predictions is often observed to suffer
with making multiple predictions due to a phenomenon called negative transfer (Standley et al., 2020).

Different from multi-task learning, LUPI mainly focuses on improving the learning of the target task rather
than ensuring the performance of all the tasks (Jonschkowski et al., 2016). From the practical point of
view, when using dozens of privileged features at once or when estimating the privileged features is more
complicated than the original problem, it would be a challenge to tune all the tasks (Xu et al., 2020). For this
reason, we focus on methods that can generalize to any type of PI and are not exclusive to auxiliary tasks.

Surrogate signals In a similar spirit to LUPI, the proxy or surrogate signals literature (Athey et al.,
2019; Mann et al., 2019; Yang et al., 2022a) studies how short-term outcomes can be used for estimating the
long-term target outcome (e.g., in cancer studies). In this setting, the materialization of the target outcome
is generally delayed to such an extent that it is unfeasible to use for decision-making. By using a short-term
proxy or surrogate, existing work is able to construct a best-effort estimation of the primary signal before it
has fully matured. In contrast to the PI setting, the issue of knowledge transfer is not presented. Additionally,
we assume that the primary outcome has fully matured, hence the use of such proxies is not desirable.
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