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Figure 1. Self-attention patterns of the average attention head of DeiT-S from the last transformer layer for MoBY and our approach.

Abstract

This paper does not introduce a novel method per se.
Instead, we address the neglected potential of hard nega-
tive samples in self-supervised learning. Previous works
explored synthetic hard negatives but rarely in the context of
vision transformers. We build on this observation and inte-
grate synthetic hard negatives to improve vision transformer
representation learning. This simple yet effective technique
notably improves the discriminative power of learned rep-
resentations. Our experiments show performance improve-
ments for both DeiT-S and Swin-T architectures.1

1. Introduction

Computer vision has recently witnessed two major advances.
Self-supervised contrastive learning [4, 11] has fundamen-
tally transformed how machines learn from visual data with-
out labels. Concurrently, vision transformer architectures
[8, 23] have reshaped the field by applying attention mecha-
nisms to image understanding tasks. Self-supervised meth-
ods have proven remarkably effective for building robust
visual representations [15], often referred to as ”the dark
matter of intelligence” that underpins broader machine com-
prehension. As Yann LeCun aptly noted, ”if intelligence is a
cake, the bulk of the cake is unsupervised learning”, and the
emergence of transformer models facilitates this by provid-
ing architectures capable of capturing complex relationships
within visual data [8].

1https://github.com/giakoumoglou/synco-v2

Despite their effectiveness, contrastive learning ap-
proaches face a persistent challenge regarding the quality
of negative examples [13]. Standard techniques rely on
randomly sampling negatives from a batch [4, 5] or mem-
ory bank [11, 24], but these negatives are often too easy
to distinguish, limiting the discriminative power of learned
representations [9, 13].

In this work, we attempt to overcome this limitation by in-
tegrating synthetic hard negatives into self-supervised vision
transformer training. Building upon existing momentum-
based frameworks [10, 11, 25], we generate challenging
negative examples that force the model to learn more dis-
criminative features [9, 13]. Inspired by recent advances
in contrastive learning [9], our approach synthesizes hard
negatives ”on-the-fly” in the feature space, creating exam-
ples that improve representation quality while maintaining
stability. The key insight of our approach is that synthetic
negatives provide a controlled way to increase the difficulty
of the learning task [9], pushing the model to develop more
robust representations.

Our main contributions include exploring the previously
uninvestigated application of synthetic negatives in vision
transformers. Specifically:

• We demonstrate the potential of synthetic hard negatives
in contrastive learning by integrating our approach with
the MoBY framework and experimenting on the DeiT-S
and Swin-T architectures.

• We ablate and benchmark on ImageNet, where we find
that most configuration settings of our proposed method
provide sufficient contrast for the models to learn highly
discriminative features.

https://github.com/giakoumoglou/synco-v2
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Figure 2. SynBY framework overview. Our approach incorporates synthetic hard negatives into the MoBY framework.

2. Related Work
Self-supervised visual representation learning. Unsu-
pervised learning has emerged as a powerful approach to
learn visual representations without manual annotations.
Within this paradigm, contrastive learning has shown partic-
ular promise and has been widely adopted in various forms
[4, 5, 11, 20]. SimCLR [4] demonstrated the effectiveness
of a simple framework using data augmentation, large batch
sizes, and nonlinear projection heads. MoCo [11] introduced
a momentum encoder and queue-based mechanism, enabling
contrastive learning with smaller batch sizes.

Hard negatives in contrastive learning. The quality of
negative samples in contrastive learning has been a focus
of extensive research [1, 6, 9, 13, 19, 24]. These studies
aim to select informative negative samples and address false
negatives in instance discrimination tasks. Recent work
[13] explored mixing of hard negatives to create challenging
contrasts, showing that harder examples lead to improved
representations. Subsequent works developed this direction,
with newer approaches [9] proposing systematic methods
for generating synthetic hard negatives in the feature space.

Self-supervised transformers for vision. Self-supervised
learning for vision transformers has rapidly evolved [2, 12].
Self-distillation methods operate without labels [3], while
masked modeling draws inspiration from language process-
ing [2, 12]. MoCo-v3 [5] adapted momentum-based frame-
works for transformers, addressing instability through fixed
patch projection and batch normalization. Other contrastive
methods like MoBY [25] implemented asymmetric drop
path rates and fewer stability ”tricks”.

3. Background
In this section, we introduce contrastive learning basics (Sec-
tion 3.1) and our framework for generating synthetic hard
negatives (Section 3.2), illustrated in Figure 2.

3.1. Contrastive Learning
Contrastive learning aims to learn representations by com-
paring similar and dissimilar samples. Given an image, x,
and two distributions of image augmentations, T and T ′,
two augmented views of the same image are created via
xq = tq(x) and xk = tk(x), with tq ∼ T and tk ∼ T ′. The
views are encoded by online and target encoders, fq and fk,
respectively, producing vectors q = fq(xq) and k = fk(xk).
The learning objective is to minimize the InfoNCE loss [22]:

L(q,k,Q) = − log
exp(q⊤ · k/τ)

exp(q⊤ · k/τ) +
∑
n∈Q

exp(q⊤ · n/τ)
.

(1)
Here, Q = {n1,n2, . . . ,nK} is a set of K negative sam-
ples and τ is a temperature parameter. Negative samples
are mined either from the batch [4, 5] or from a memory
bank [11, 18, 20]. The online encoder is updated via gradi-
ent descent whereas the target encoder may be updated via
momentum, θk ← m · θk + (1−m) · θq , or through weight
sharing in siamese networks (i.e., where fk ≡ fq).

3.2. Synthetic Hard Negatives
Synthetic negatives provide challenging examples that help
models learn more discriminative features. Let QN =
TopK({sim(q,n) | n ∈ Q}, N) be the subset containing
the N < K hardest negatives, where sim(·, ·) is the cosine
similarity. The synthetic hard negatives can be abstractly
represented through a synthesis function, F , as follows:

s =
F(q,QN ; ξ)

∥F(q,QN ; ξ)∥2
, (2)

where ∥·∥2 denotes the ℓ2 norm, and ξ represents the pa-
rameters that control the synthesis process, described in [9].
The set of L synthetic negatives, Qs = {s1, s2, . . . , sL}, is
then combined with the existing queue of real negatives, Q,
effectively expanding the diversity of negative examples and
exposing the model to more challenging contrasts.
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Figure 3. Ablation study of different hardness selection values and synthetic negative percentages.

4. Experiments

We develop our approach in PyTorch, building upon the
implementation of MoBY [25] and SynCo [9]. We refer to
our method as SynBY.

4.1. Setup

We pretrain SynBY on ImageNet ILSVRC-2012 [7] and its
smaller ImageNet-100 subset [14] using a DeiT-Small [8, 21]
or Swin-Tiny [16] encoder. Our implementation builds upon
MoBY [25], where the online encoder, fq, consists of the
backbone, a projection head [4], and an extra prediction head
[10]; the target encoder, fk, has the backbone and projection
head, but does not include the prediction head. For training,
we use the AdamW optimizer [17] with a base learning rate
of 0.03, weight decay of 10−4, and batch size of 512. Unless
otherwise stated, we use the following default hyperparame-
ters. The momentum parameter starts at mstart = 0.99 and
increases to 1 following a cosine schedule. For synthetic
negatives, we select the top N = 256 hardest negatives. We
use a temperature τ = 0.2 for the contrastive loss of Equa-
tion (1) and a queue size K = 4096. For our experiments
on ILSVRC-2012, we implement a cooldown period for the
last 100 epochs where no synthetic negatives are generated.
For linear evaluation, we train a fully-connected layer on
frozen features for 100 epochs. We refer the reader to [25]
for further implementation details.

4.2. Linear Evaluation on ImageNet

Table 1 shows top-1 accuracy of our method after pretrain-
ing for 300 epochs on ImageNet ILSVRC-2012. SynBY
outperforms the MoBY baseline by 0.2% on both architec-
tures and maintains superiority over DINO [3] and MoCo-v3
[5]. However, we note that there is a considerable gap in
performance when one compares with supervised training.

Table 1. Top-1 classification accuracy on ImageNet for self-
supervised methods with DeiT-S and Swin-T architectures.

Method Arch. Params (M) Top-1 (%)

Supervised
DeiT-S 22 79.8
Swin-T 29 81.3

DINO [3] DeiT-S 22 72.5
MoCo-v3 [5] DeiT-S 22 72.5

MoBY [25] DeiT-S 22 72.8
Swin-T 29 75.0

SynBY (ours) DeiT-S 22 73.0
Swin-T 29 75.2

Visualizing attention. Figure 1 shows self-attention pat-
terns of MoBY and SynBY. Though similar, ours tends to
produce more focused attention maps with finer-grained pat-
terns that highlight semantically meaningful regions. This
suggests that synthetic negatives help develop more discrim-
inative features, targeting relevant visual elements.

4.3. Ablation Study
Our ablation studies of SynBY are performed on ImageNet-
100 classification, with pretraining for 100 epochs.

Synthetic negatives. We observe architectural differences
in how DeiT and Swin transformers respond to synthetic
negatives, shown in Figure 3. DeiT benefits from mining
negatives at either low (256) or high (1024) hardness lev-
els, while Swin performs well across all hardness levels.
Additionally, DeiT achieves better results with moderately
hard negatives at medium or high proportions whereas Swin
performs consistently well with all proportions. This likely
stems from Swin’s inductive biases requiring less aggressive
negative samples than DeiT’s pure transformer architecture.



Table 2. Ablation study on applying tricks of MoCo-v3.

Fixed Patch Replace LN before Top-1 (%)

Embedding MLP with BN DeiT-S Swin-T

66.7 67.5
✓ 66.4 67.2

✓ 67.2 67.9

Table 3. Ablation study on the drop path rates.

Online Target Top-1 (%)

dpr dpr DeiT-S Swin-T

0.1 0.1 61.9 74.3
0.05 0.0 65.0 75.3
0.1 0.0 65.0 75.4
0.2 0.0 64.7 72.7

Table 4. Ablation study on queue size K.

K
Top-1 (%)

DeiT-S Swin-T

1024 64.5 72.5
2048 64.5 72.5
4096 64.7 72.7
8192 63.6 72.3

16384 62.6 71.6

Table 5. Ablation study on temperature τ .

τ
Top-1 (%)

DeiT-S Swin-T

0.07 59.3 61.5
0.1 61.5 69.2
0.2 64.5 72.7
0.3 64.0 71.7

Table 6. Ablation study on momentum mstart.

mstart
Top-1 (%)

DeiT-S Swin-T

0.99 64.5 72.7
0.993 65.2 72.2
0.996 63.8 72.4
0.999 60.3 68.6

Applying MoCo-v3 tricks. Our experiments reveal that
synthetic negatives eliminate the need for additional stabi-
lization techniques from MoCo-v3. As shown in Table 2,
fixing the patch embedding leads to worse results, suggesting
that our synthetic negatives already provide sufficient regu-
larization. This allows for a simpler implementation without
compromising performance. Notably, replacing Layer Nor-
malization (LN) with Batch Normalization (BN) before MLP
blocks yields improvements.

Asymmetric drop path rates. As shown in Table 3, the
asymmetric configuration of drop path rates (dpr) signifi-
cantly impacts model performance. Unlike MoBY, which
uses 0.2 for the online encoder, we find a smaller rate of 0.1
is optimal when combined with synthetic negatives. This is
in agreement with our intuition that the synthetic negatives
provide additional regularization and reduce the need for
stablization tricks. Applying drop path only to the online
encoder while keeping the target encoder stable yields the
best balance.

Other hyperparameters. The default hyperparameters
from MoBY work effectively with our synthetic negative ap-
proach. As shown in Tables 4 to 6, performance remains sta-
ble across different queue sizes (best at 4096), temperatures
(optimal at 0.2), and momentum values (best at 0.99). This
demonstrates that synthetic negatives can be incorporated
without extensive re-tuning of existing parameters. Over-
all, our synthetic negative generation technique integrates
seamlessly with established contrastive learning frameworks,
requiring minimal adaptation effort.

5. Discussion

In this paper, we explored synthetic negatives in vision trans-
former pretraining. We found that synthetic negatives pro-
vide sufficient regularization for learning more robust rep-
resentations while also reducing the need for stabilization
tricks. Importantly, our approach requires minimal adjust-
ments to current frameworks, working in a ”plug-and-play”
manner with existing architectures. The experimental re-
sults demonstrate that SynBY further improves unsupervised
learning with minimal computational overhead, showing con-
sistent gains across different transformer architectures.

Limitations. Our ablation studies were conducted on
ImageNet-100, which may not fully capture the behavior on
larger-scale datasets. Additionally, while we demonstrated
improved performance on image classification, we did not
evaluate on more complex downstream tasks.

Future work. Synthetic hard negatives have proven ef-
fective for vision transformers. Exploring their integration
into vision-language frameworks represents a promising di-
rection, with potential to enhance cross-modal contrastive
learning through more challenging negative examples.
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