
IAPT: Instruction-Aware Prompt Tuning for Large Language Models

Anonymous ACL submission

Abstract

Soft prompt tuning is a widely studied001
parameter-efficient fine-tuning method. How-002
ever, it has a clear drawback: many soft to-003
kens must be inserted into the input sequences004
to guarantee downstream performance. As a005
result, soft prompt tuning is less considered006
than Low-rank adaptation (LoRA) in the large007
language modeling (LLM) era. In this work,008
we propose a novel prompt tuning method,009
Instruction-Aware Prompt Tuning (IAPT), that010
requires only four soft tokens. First, we in-011
stall a parameter-efficient soft prompt gener-012
ator at each Transformer layer to generate id-013
iosyncratic soft prompts for each input instruc-014
tion. The generated soft prompts can be seen as015
a semantic summary of the input instructions016
and can effectively guide the output generation.017
Second, the soft prompt generators are mod-018
ules with a bottleneck architecture consisting019
of a self-attention pooling operation, two linear020
projections, and an activation function. Pilot021
experiments show that prompt generators at dif-022
ferent Transformer layers require different acti-023
vation functions. Thus, we propose to learn the024
idiosyncratic activation functions for prompt025
generators automatically with the help of ra-026
tional functions. We have conducted experi-027
ments on various tasks, and the experimental re-028
sults demonstrate that (a) our IAPT method can029
outperform the recent baselines with compara-030
ble tunable parameters. (b) Our IAPT method031
is more efficient than LoRA under the single-032
backbone multi-tenant setting.1033

1 Introduction034

Large language models (LLMs) have been035

emerging and achieving state-of-the-art (SOTA)036

results not only on a variety of natural language037

processing tasks (Qin et al., 2023; Zhu et al., 2023)038

but also many challenging evaluation tasks (Huang039

1Codes and fine-tuned models will be open-sourced to
facilitate future research.

et al., 2023; Li et al., 2023) like question answer- 040

ing, reasoning, math, safety, instruction follow- 041

ing. Despite LLMs becoming general task solvers, 042

fine-tuning still plays a vital role in efficient LLM 043

inference and controlling the style of the LLMs’ 044

generated contents.2 Fine-tuning such large models 045

by full parameters is prohibitive since it requires 046

a large amount of GPU memory and computa- 047

tions. Thus, parameter-efficient fine-tuning (PEFT) 048

(Zhang et al., 2023c; Zhao et al., 2023) has raised 049

much attention in the research field since in PEFT, 050

the tunable parameters are often less than 1% of 051

the LLMs and the computation costs will be signif- 052

icantly decreased. 053

Many PEFT methods have been validated to be 054

effective across various models and tasks, often 055

yielding comparable results with full-parameter 056

fine-tuning (He et al., 2021; Zhu and Tan, 2023; 057

Zhang et al., 2023c). Among these PEFT meth- 058

ods, the reparameterization-based method low-rank 059

adaptation (LoRA) (Hu et al., 2021) is considered 060

one of the most efficient and effective methods at 061

present (Xu et al., 2023; Ding et al., 2022; Xin 062

et al., 2024). Although LoRA is effective and can 063

bring stable performance with the original setting 064

in Hu et al. (2021), it still brings inconvenience 065

under the multi-tenant setting (Chen et al., 2023): 066

it has to add LoRA modules to multiple weights 067

of the Transformer layer and introducing signifi- 068

cant additional latency in every generation steps 069

under the multi-tenant setting. Thus, it is of cen- 070

tral importance to develop a novel PEFT method 071

that introduces minimum latency during generation 072

and still can perform competitively in downstream 073

tasks. 074

In this work, we propose a novel PEFT method 075

called Instruction-Aware Prompt Tuning (IAPT). 076

We fine-tune the LLMs by inserting instruction 077

2Recently, OpenAI also released the fine-tuning API for
GPT-3.5-turbo. See blog post: https://openai.com/blog/
gpt-3-5-turbo-fine-tuning-and-api-updates.

1

https://openai.com/blog/gpt-3-5-turbo-fine-tuning-and-api-updates
https://openai.com/blog/gpt-3-5-turbo-fine-tuning-and-api-updates

Figure 1: Schematic illustration of our IAPT method. Left: The prompt generator which consists of a down-
projection, a self-attention based pooler (SA pooler), a learnable activation whose curvature is learned in the
downstream task, and a up-projection. Right: The prompt generator uses the instructions’ hidden states as the input
tensors, and output the generated soft tokens which will be concatenated to the next layer’s hidden states.

aware soft prompts to each Transformer layer (Fig-078

ure 1). To flexibly regulate the attentions of LLMs,079

we install a prompt generator before each Trans-080

former layer to generate the soft prompts by taking081

the input instruction’s hidden states as input. The082

prompt generator is a lightweight module contain-083

ing a down-projection layer, a self-attention based084

pooling layer, an activation function, and an up-085

projection layer. To enhance the expressiveness086

of prompt generators, we propose to automatically087

learn the idiosyncratic activation functions for dif-088

ferent prompt generators with the help of rational089

functions.090

We conduct extensive experiments on a wide091

collection of tasks, including sentiment classifica-092

tion, natural language inference, question answer-093

ing, constrained sentence generation, math reason-094

ing, SQL query generation, and instruction tun-095

ing, to demonstrate the effectiveness of our IAPT096

method. Notably, our method can consistently out-097

perform strong PEFT baselines with comparable098

tunable parameter budgets, especially the recent099

LoRA variants (Zhang et al., 2023b; Ding et al.,100

2023) and SOTA prompt tuning methods (Liu et al.,101

2022c; Wu et al., 2022; Liu et al., 2022b). We also102

use experiments and analysis to show that: (a) our103

method has significantly lower latency under the104

multi-tenant setting than the LoRA-based methods105

with comparable tunable parameters. (b) We pro-106

posed adding a self-attention pooling module in107

the prompt generator, which can help the differ-108

ent transformer layers share the projection layers,109

thus improving the parameter efficiency. (c) The110

activation functions are learned during fine-tuning,111

which improves the downstream performance.112

Our contributions are summarized as follows: 113

• we propose a novel PEFT method, IAPT, that 114

generates soft prompts conditioned on the in- 115

put instructions received by the LLMs. 116

• We propose to employ the self-attention mech- 117

anism to obtain high-quality information ag- 118

gregation of the input instructions, thus gener- 119

ating better soft prompts. 120

• We propose to learn the activation func- 121

tions for different prompt generators at differ- 122

ent Transformer layers, improving the down- 123

stream fine-tuning performance. 124

• We have conducted extensive experiments and 125

analysis showing that our IAPT framework is 126

(a) practical and outperforms the baselines 127

under comparable tunable parameter budgets. 128

(b) efficient during inference for LLMs. 129

2 Related works 130

2.1 Parameter-efficient fine-tuning (PEFT) 131

methods 132

Parameter-efficient fine-tuning (PEFT) is an ap- 133

proach of optimizing a small portion of parame- 134

ters when fine-tuning a large pretrained backbone 135

model and keeping the backbone model untouched 136

for adaptation (Ding et al., 2022; Zhang et al., 137

2023c). The addition-based methods insert addi- 138

tional neural modules or parameters into the back- 139

bone model. Representative works in this direction 140

are Adapter (Houlsby et al., 2019; Rücklé et al., 141

2020; Zhang et al., 2023c), Prefix tuning (Li and 142

Liang, 2021), Prompt tuning (Lester et al., 2021), 143

2

P-tuning V2 (Liu et al., 2022c). Another approach144

is called the specification-based approach, which is145

to specify the particular parameters to be tunable or146

prunable (Ben-Zaken et al., 2021; Guo et al., 2021;147

Zhao et al., 2020). The reparameterization-based148

methods have attracted much attention (Hu et al.,149

2021). This branch of approaches transforms the150

adaptive parameters during optimization into low-151

rank and parameter-efficient forms. This type of152

PEFT method is motivated by the observation that153

fine-tuning has a low intrinsic dimension (Agha-154

janyan et al., 2021). LoRA (Hu et al., 2021) hy-155

pothesizes that the change of weights during model156

tuning has a low intrinsic rank and optimizes the157

low-rank decomposition for the change of original158

weight matrices. PEFT methods are widely applied,159

especially with the popularization of open-sourced160

large language models (Zhao et al., 2023) and in-161

struction tuning with these models for different162

application scenarios (Taori et al., 2023; Dettmers163

et al., 2023).164

2.2 Prompt tuning methods165

Prompt tuning (Lester et al., 2021) and P-tuning166

(Liu et al., 2022c) insert soft prompts to word em-167

beddings only and can achieve competitive results168

when applied to supersized PTMs. Prefix-tuning169

(Li and Liang, 2021) and P-tuning v2 (Liu et al.,170

2021) insert prompts to every hidden layer of PTMs.171

IDPG (Wu et al., 2022) uses parameterized hyper-172

complex multiplication (Le et al., 2021) to param-173

eterize soft prompts, improving the parameter ef-174

ficiency. LPT (Liu et al., 2022b) improves upon175

IDPG by selecting an intermediate layer to insert176

soft prompts. SPT (Zhu and Tan, 2023) designs177

a mechanism to automatically decide which lay-178

ers to insert new soft prompts or keep the prompts179

propagated from the previous layer. Our work is180

different and compliments the existing literature181

in the following aspects: (a) The above works do182

not work with the current SOTA large language183

models and only experiment with relatively simple184

classification tasks. In comparison, by generating185

soft prompts conditioned on the input instructions186

received by the LLMs, our IAPT method works187

well with the currently best decoder-based LLMs188

in a wide collection of downstream tasks. (b) Our189

work can reduce the number of soft tokens from190

32-128 to 4 by improving the architectural design191

of the prompt generators. (c) our work improves192

the parameter efficiency by sharing the parameters193

of prompt generators across Transformer layers. 194

3 Methods 195

3.1 Preliminaries 196

Transformer model Currently, the most widely 197

used open-sourced (large) language models adopt 198

the stacked Transformer architecture (Vaswani 199

et al., 2017). Denote the total number of Trans- 200

former layers in the LLM as L. Each Transformer 201

block is primarily constructed using two key sub- 202

modules: a multi-head self-attention (MHA) layer 203

and a fully connected feed-forward (FFN) layer. 204

Task format Denote the task’s training set as 205

Dtrain = (xm, ym),m = 1, 2, ...,M , where M rep- 206

resents the number of samples. In this work, we 207

only consider the case where input xm and target 208

ym are both text sequences. Moreover, we expect 209

the language modeling head of LLMs to decode 210

ym during inference. That is, no additional lin- 211

ear prediction heads are considered for predicting 212

categorical or numerical values. 213

3.2 Motivation 214

Soft prompt tuning is a widely studied PEFT 215

method, which can achieve downstream task adap- 216

tations through a minimal number of tunable param- 217

eters compared to the (L)LM backbones. However, 218

soft prompt tuning is less applied or studied in the 219

era of large language models (Xu et al., 2023; Ding 220

et al., 2022; Xin et al., 2024) due to the following 221

drawbacks: 222

• Soft prompt tuning needs to concat a sequence 223

of soft prompts to the input sequence, which 224

inevitably increases the model complexity sig- 225

nificantly. According to the experiments in 226

(Zhu et al., 2023), P-tuning V2 (Liu et al., 227

2022c) has to set the soft prompts’ sequence 228

length to at least 32 to make the LLM’s down- 229

stream task performance to be close to LoRA 230

(Hu et al., 2021). 231

• Soft prompt tuning can not flexibly adjust the 232

tunable parameter numbers if the soft prompt 233

length is fixed, thus can not conveniently make 234

a tradeoff between the PEFT parameters’ ex- 235

pressiveness and the parameter efficiency. 236

• Most existing work on soft prompt tuning 237

methods assumes that the soft prompt is fixed 238

and shared across all samples within a task 239

or dataset. However, a task may encompass a 240

3

diverse range of samples, some of which are241

easy while others are challenging. Therefore,242

prompts need to exhibit sufficient diversity243

to effectively modulate the attention patterns244

of LLMs across different samples, thereby245

achieving better fine-tuning performance.246

Thus, in this work, we propose dynamically gen-247

erating prompt generators based on the given in-248

structions/prompts to address the above issues.249

3.3 Instruction aware prompt generators250

In this work, the prompt generators generate soft251

prompts based on the input instructions received252

by the LLMs. As shown in Figure 1, in order to253

generate responses, the input instructions have to254

go through the LLM backbone to obtain the hid-255

den representations. Denote the hidden state of the256

input instruction with length lins right before the257

current Transformer layer as h.3 The prompt gen-258

erator first down-projects h from dimension d to259

dimension m (m ≪ d) via a linear layer MLPdown.260

Then, it obtains the prompt p with a fixed length lsp261

through a pooling operation Pooler(). The pooled262

prompt will go through an activation function g and263

be up-projected to dimension d via another linear264

layer MLPup. Formally,265

p = MLPup(g(Pooler(MLPdown(h)))). (1)266

Then, the generated soft prompt p will be concate-267

nated to h and go through the calculations of the268

next Transformer layer.269

Note that the decoder-based causal language270

models (CLM) usually employ the KV cache mech-271

anism4 during generation to reduce computation272

complexity. Our prompt generators work seam-273

lessly with the KV cache mechanism since the soft274

prompts are generated when the input instruction275

(or prompt) is passed through the LLM for the276

first time. In the subsequent generation steps, the277

generated soft prompts will be combined into the278

KV caches and will be reused without repetitively279

calling the prompt generators. In comparison, the280

LoRA method provides reparameterizations to the281

model parameters, and it has to participate in the282

calculations during each generation step.283

3Note that the soft prompts propagated from the previ-
ous layer will be discarded. That is, each Transformer layer
uses newly generated prompts. We will use experiments to
demonstrate the validity of this setting.

4See the blog post for an in-depth explana-
tion of KV-cache: https://www.dipkumar.dev/
becoming-the-unbeatable/posts/gpt-kvcache/.

3.4 Self-attention based pooler 284

Our prompt generator must pool the input in- 285

structions of variable lengths to a fixed length. For 286

the pooling operation, the previous literature of- 287

ten chooses average pooling or max pooling (Kim, 288

2014; Zhu et al., 2021; Zhu, 2021a), which are 289

pointed out by the literature (Zhu, 2021b) that they 290

are prone to weaken important words when the 291

input sequence is long, thus dropping useful in- 292

formation during pooling. Thus, in this work, we 293

utilize the self-attention mechanism in our pooling 294

module Pooler(). Self-Attention assigns each to- 295

ken in the input instruction a weight to indicate the 296

importance of the token. A few crucial tokens to 297

the task will be emphasized, while the less impor- 298

tant tokens are ignored. Formally, we initialize a 299

learnable weight matrix Wsa ∈ Rm×lsp , then the 300

self-attention based pooler’s calculation processes 301

are: 302

U = hWsa, 303

A = Softmax(U), 304

p = A⊺h, (2) 305

where Softmax is the softmax function along the 306

first dimension, and ⊺ denotes matrix transpose. 307

In the above equations, each column of Wsa is 308

a trainable query vector designated to determine 309

the self-attention weights via dot products between 310

this query and each token. Then, the weights are 311

normalized across the sequence dimension via the 312

softmax normalization function. Corresponding to 313

different soft tokens, different query vectors in Wsa 314

can aggregate the input instructions in different as- 315

pects, thus providing a high-quality summarization 316

of the instruction’s semantic information. 317

3.5 Learned activation functions 318

The previous PEFT literature usually set the ac- 319

tivation functions in a PEFT module to be ReLU 320

(Mahabadi et al., 2021; Pfeiffer et al., 2021; Liu 321

et al., 2022b) and does not discuss whether this 322

setting is optimal. In addition, the PEFT modules’ 323

activation functions in different Transformer layers 324

are usually set to be identical. In our initial ex- 325

ploratory experiments (presented in Appendix H), 326

we find that (a) different downstream tasks require 327

different activation functions for the prompt gener- 328

ators in Equation 1. (b) it is beneficial for prompt 329

generators of different depths to have different acti- 330

vation functions. Thus, how can we find an optimal 331

4

https://www.dipkumar.dev/becoming-the-unbeatable/posts/gpt-kvcache/
https://www.dipkumar.dev/becoming-the-unbeatable/posts/gpt-kvcache/

setting for the prompt generators’ activation func-332

tions? Exhaustive hyper-parameter search is time333

and GPU-consuming. Thus, we are motivated to334

set the activation function to be learnable during335

training.336

We resort to rational activation functions to make337

the activation functions learnable. Empirically in-338

troduced as Padé Activation Units (Molina et al.,339

2019), rational activation functions are learnable340

and can approximate common activation functions341

and learn new ones. The rational activation func-342

tion R(x) of order m, n is defined as follows:343

R(x) =

∑m
j=0 ajx

j

1 + ∥
∑n

i=1 bix
i∥
, (3)344

where aj and bi are learnable parameters. The345

rational activation functions are integrated in im-346

age classification models (Molina et al., 2019), se-347

quence modeling (Delfosse et al., 2021a), the pol-348

icy and critic networks in reinforcement learning349

(Delfosse et al., 2021b), and Generative Adversar-350

ial Networks (Boull’e et al., 2020).351

Inspired by the above literature, we propose352

learning the activation functions in prompt gen-353

erators via the rational activation functions when354

finetuning a downstream task. Denote the set of355

parameters in the learnable activations as Θ and356

the other parameters in the prompt generators as Ω.357

Following DARTS (Liu et al., 2019), we consider358

Θ as architectural parameters and optimize them359

along with the prompt generators’ parameters Ω360

via bi-level optimization. Due to limited length, we361

introduced bi-level optimization to Appendix B.362

3.6 Cross-layer parameter sharing363

To improve our IAPT method’s parameter ef-364

ficiency, we propose sharing the parameters of365

prompt generators across Transformer layers. De-366

note the total number of Transformer layers in the367

LLM as L. We ask every Ls > 0 prompt generators368

to (a) share the parameters in MLPup, MLPdown,369

and the learnable activations, (b) but not to share370

the parameters in the self-attentional Pooler. We371

will use experiments to show that the self-attention372

Pooler is the key that parameters of prompt genera-373

tors can be shared across layers.374

4 Experiments375

In this section, we conduct a series of experi-376

ments and analysis to evaluate our IAPT method.377

4.1 Baselines 378

We compare our IAPT framework with the cur- 379

rent SOTA PEFT baseline methods. 380

Adapter-based tuning We consider the follow- 381

ing adapter tuning baselines: (1) Houlsby-Adapter 382

(Houlsby et al., 2019); (2) Parallel-Adapter pro- 383

posed by He et al. (2021); (3) AdapterDrop (Rücklé 384

et al., 2020); (4) Learned-Adapter (Zhang et al., 385

2023c). 386

LoRA and its variants we consider the follow- 387

ing LoRA variants as baselines: (a) the original 388

LoRA (Hu et al., 2021); (b) AdaLoRA (Zhang 389

et al., 2023b), which adaptively adjust the LoRA 390

ranks among different Transformer modules. 391

Prompt-based tuning For prompt-based tuning 392

methods, we compare with (a) P-tuning (Liu et al., 393

2021). (b) P-tuning v2 (Liu et al., 2021). (c) IDPG 394

(Wu et al., 2022). (d) LPT (Liu et al., 2022b). We 395

adjust the tunable parameters of these methods via 396

reparameterization so that their tunable parameters 397

are comparable to our IAPT methods. 398

Other PEFT methods We also compare: (a) Bit- 399

Fit (Ben-Zaken et al., 2021), which fine-tunes the 400

model by adding tunable bias terms to the linear 401

layers of LLMs. (b) (IA)3 (Liu et al., 2022a), which 402

multiplies learnable vectors to the hidden states in 403

different modules of the Transformer layer. (c) SSP 404

(Hu et al., 2022), which is a representative work 405

on combining different PEFT methods, including 406

LoRA and BitFit. 407

The baselines are implemented using their 408

open-sourced codes. We only adjust the hyper- 409

parameters related to tunable parameter numbers 410

to compare the baseline methods and our IAPT 411

method fairly. The hyper-parameter settings for the 412

baselines are detailed in Appendix F. 413

4.2 Datasets and evaluation metrics 414

We compare our approach to the baselines on 415

the following benchmark tasks: (a) four benchmark 416

question-answering tasks: SQuAD (Rajpurkar 417

et al., 2016) and three tasks from the SuperGLUE 418

benchmark(Wang et al., 2019) (BoolQ, COPA, 419

and ReCoRD). (b) three sentence level tasks from 420

GLUE benchmark (Wang et al., 2018), SST-2, RTE, 421

QNLI. (c) a constrained natural language genera- 422

tion task E2E (Novikova et al., 2017). (d) a math- 423

ematical solving dataset GSM8K (Cobbe et al., 424

2021). (e) a SQL generation task WikiSQL (Zhong 425

et al., 2017). (f) Alpaca dataset (Taori et al., 2023) 426

for general-purpose instruction tuning, and MT- 427

5

Method Tunable SST-2 RTE QNLI BoolQ COPA ReCoRD SQuAD
Params (acc) (acc) (acc) (acc) (acc) (f1-em) (f1-em)

Baselines
Housbly-Adapter 9.4M 92.9 80.6 92.4 84.5 90.4 89.8 87.3
Parallel-Adapters 9.4M 93.0 80.5 92.5 85.1 90.2 90.1 87.7

AdapterDrop 9.2M 92.7 80.1 92.3 84.5 89.8 89.8 87.4
Learned-Adapter 9.5M 93.6 81.5 92.4 86.2 90.4 90.1 87.6

LoRA 10.0M 93.6 82.6 92.5 86.7 90.7 90.2 87.7
AdaLoRA 10.0M 93.6 82.9 92.6 86.6 90.8 90.5 87.5

BitFit 10.9M 92.9 81.9 92.2 85.6 90.5 89.8 87.2
(IA)3 9.8M 93.0 82.7 92.5 86.4 90.7 90.1 87.6
SSP 8.6M 93.5 82.6 92.6 86.4 91.1 90.0 87.4

P-Tuning 9.4M 92.4 79.7 91.9 84.1 89.6 89.2 86.5
P-tuning v2 9.4M 92.8 80.6 92.1 85.2 90.1 89.4 86.9

IDPG 8.4M 92.6 80.8 92.2 85.3 90.1 89.6 87.2
LPT 8.4M 92.8 81.3 92.3 85.7 90.2 89.9 87.4

Our proposed methods
IAPT 8.4M 94.3 83.9 93.2 87.5 91.9 91.2 88.5

Table 1: The Overall comparison of the three GLUE tasks and four question-answering tasks. The backbone model
is LlaMA-2 7B. We report the median performance over five random seeds. Bold and Underline indicate the best
and the second-best results. The metric for each task is explained in Appendix C.7.

Bench (Zheng et al., 2023), to evaluate the instruc-428

tion tuning quality of LLMs. The dataset introduc-429

tions, statistics, and prompt-response templates for430

the above tasks are detailed in Appendix C. The431

above tasks’ evaluation metrics or protocols are in432

Appendix C.7.433

4.3 Experiment Settings434

Computing infrastures We run all our experi-435

ments on NVIDIA A40 (48GB) GPUs.436

Pretrained backbones The main experiments437

use the most recent open-sourced LLM, LlaMA-438

2 7B released by Meta (Touvron et al., 2023) as439

the pretrained backbone model. In the ablation440

studies, we will also use the GPT2-large model441

(Radford et al., 2019) and Pythia-1.4B (Biderman442

et al., 2023).443

Prediction heads When fine-tuning LlaMA-2444

7B, we only consider the supervised fine-tuning445

(SFT) setting (Ouyang et al., 2022). After receiv-446

ing a prompt or instruction, all the predictions are447

generated using the language modeling head (LM448

head). No additional prediction heads are installed449

for making categorical or numerical predictions.450

For decoding during inference, we use beam search451

with beam size 3.452

Hyper-parameters for the IAPT framework453

In our experiments, unless otherwise specified, we454

set: (a) the length of soft prompts is lsp = 4, (b)455

the bottleneck dimension m of the IAPT prompt456

generator is 256, (c) every Ls = 4 layers share457

the prompt generators’ parameters except for the 458

self-attention poolers, and (d) the hyper-parameters 459

of the rational activation are m = 6, n = 5, and 460

the learnable parameters aj and bi are initialized 461

by approximating the GeLU activation function. 462

Under the above settings, our IAPT method will 463

introduce 8.4M tunable parameters to the LlaMA-2 464

7B backbone. The hyper-parameters for training 465

are specified in Appendix F. 466

Reproducibility We run each task under five 467

different random seeds and report the median per- 468

formance on the test set of each task. 469

Due to limited length, other experimental set- 470

tings for the baseline methods and the training pro- 471

cedure are in Appendix F. 472

4.4 Main results 473

Results on the GLUE and SuperGLUE tasks 474

The experimental results on the three classification 475

tasks and 4 question answering tasks are presented 476

in Table 1. We present the number of tunable pa- 477

rameters in the second column of Table 1. Table 478

1 reveals that our IAPT method outperforms the 479

baseline methods across all seven tasks, with com- 480

parable or fewer tunable parameters. In particu- 481

lar, IAPT outperforms the previous SOTA prompt 482

tuning methods like P-tuning V2 and LPT and 483

the strong LoRA style baselines like LoRA and 484

AdaLoRA with comparable parameters. These re- 485

sults demonstrate that our method is good at down- 486

stream task adaptation of large language models. 487

6

Method E2E GSM8K WikiSQL
(rouge-l) (acc) (acc)

LPT 70.4 34.2 84.3
LoRA 70.7 35.1 85.4

AdaLoRA 70.8 35.2 85.2
IAPT 71.3 36.4 85.9

Table 2: Results for different PEFT methods on the E2E,
GSM8K, and WikiSQL benchmark. The backbone LM
is LlaMA-2 7B.

Method Avg GPT-4 score (↑) ROUGE-L (↑)
AdaLoRA 6.95 51.1

IAPT 7.19 52.8

Table 3: The performance of instruction tuning using
the AdaLoRA and IAPT methods. The backbone model
is LlaMA-2 7B. ↑ means the metric is higher the better.

Results on the three specialized generation task488

For the E2E, GSM8K, and WikiSQL benchmarks,489

the results are reported in Table 2. The results490

show that our IAPT method outperforms LoRA,491

AdaLoRA, and LPT on the three tasks.492

Results for general-purpose instruction tuning493

After the LlaMA-2 7B is fine-tuned on the Alpaca494

dataset with our IAPT and AdaLoRA methods, we495

utilize the 80 instructions in the MT-Bench as the496

test set. We follow the current standard practice497

of utilizing GPT-4 as an unbiased reviewer (Zheng498

et al., 2023). The protocol of utilizing GPT-4 as the499

reviewer and scorer is specified in Appendix C.7.500

The average score provided by GPT-4 is presented501

in Table 3, along with the ROUGE-L scores calcu-502

lated by considering the GPT-4’s answers as ground503

truth. Consistent with the previous experiments504

(Table 1 and 2), our IAPT method outperforms505

the AdaLoRA method in terms of the GPT-4 eval-506

uation scores and ROUGE-L, demonstrating that507

IAPT can enhance the instruction tuning quality of508

large language models. A case study of answers509

generated by different methods is presented in Ta-510

ble 9 of Appendix M, showcasing that IAPT leads511

to better instruction-tuned LLMs.512

4.5 Ablation studies and analysis513

Analysis of the inference efficiency To demon-514

strate the inference efficiency of our IAPT method,515

we now compare the GPU memory and gener-516

ation speed of IAPT and LoRA. In this experi-517

ment, LoRA parameters are not merged to the back-518

bone to mimic the single-LLM multi-tenant setting519

(Chen et al., 2023). The detailed settings for effi-520

ciency analysis are presented in Appendix G. We521

Method Beam size Speed (tps) Memory cost (MiB)

LoRA
1 25.1 14616
3 21.9 16104

IAPT
1 34.4 14490
3 27.9 15946

Table 4: The memory and speed of LlaMA-2 7B for
generating responses given the input instruction (Ap-
pendix G), with different PEFT methods.

present two metrics for measuring efficiency: (a) 522

peak memory cost during generation. (b) tokens 523

generated per second (tps). The results are pre- 524

sented in Table 4. 525

From Table 4, one can see that under beam sizes 526

1 and 3, the IAPT method has a comparable mem- 527

ory cost with LoRA, but the generation speed is 528

significantly higher. The speed advantages of IAPT 529

come from the following factors: (a) our method 530

only adds four soft tokens, which is relatively short 531

compared to the instructions received by the mod- 532

ern LLMs (Ouyang et al., 2022). (b) our prompt 533

generators are lightweight and efficient during in- 534

ference. (c) The soft prompts are only generated 535

once when an input instruction is passed to the 536

LLM and right before generating the first new to- 537

ken. The soft prompts are integrated into the KV 538

cache in the following generation steps. In contrast, 539

the LoRA method requires the model to call the 540

LoRA modules at each generation step, resulting 541

in higher latency. 542

Visualization of the learned activation functions 543

In Figure 4 of Appendix L, we visualize the learned 544

activation functions of the prompt generators for ev- 545

ery Ls = 4 Transformer layers after fine-tuning on 546

the Alpaca dataset. Rational GeLU is the rational 547

function approximating the GeLU activation and 548

is used to initialize the learnable activation func- 549

tions for the prompt generators. Rational GeLU 550

and GeLU are overlapping with each other. As 551

shown in Figure 4, we can see that (a) the learned 552

activation function differs from the GeLU activa- 553

tion function but still has a similar shape to GeLU. 554

(b) The learned activation functions are different 555

across different Transformer layers. We can see 556

that the learned activations adapted to the fine- 557

tuning dataset and can extract suitable features for 558

providing suitable soft prompts. 559

Ablation study of IAPT framework We now 560

consider the following variants of IAPT: (a) IAPT-1 561

substitutes the self-attention pooler to average pool- 562

ing. (b) IAPT-2 sets Ls = 16 and m = 1024. (c) 563

IAPT-3 sets Ls = 1 and m = 64. (d) IAPT-4 uses 564

7

(a) BoolQ (b) E2E

Figure 2: Performances under different tunable parameter budgets. The x-axis represents the number of tunable
parameters, and the y-axis represents the performance score.

the GeLU activation function for every prompt gen-565

erator. (e) IAPT-5 uses the ReLU activation func-566

tion for every prompt generator. (f) IAPT-6 uses567

ReLU for the first 16 layers’ prompt generators,568

and GeLU for the deeper 16 layers’. (h) IAPT-7569

uses GeLU for the first 16 layers’ prompt genera-570

tors, and ReLU for the deeper 16 layers’. The ex-571

perimental results on the BoolQ, E2E, and SQuAD572

tasks are reported in Table 7 of Appendix I. The re-573

sults show that IAPT under the default settings (as574

in Table 1) outperforms the four variants. In addi-575

tion, (a) comparing IAPT-1 to IAPT shows that the576

self-attention poolers provide more practical infor-577

mation aggregation. In addition, self-attention pool-578

ers provide adaptive feature extraction for cross-579

layer parameter sharing. (b) Comparing IAPT to580

IAPT-2 and IAPT-3 demonstrates that under the581

comparable tunable parameters, cross-layer param-582

eter sharing of prompt generators allows for higher583

values of m, thus improving the capacity of IAPT.584

However, aggressively sharing prompt generators585

across layers could hurt downstream performance.586

(c) Comparing IAPT to IAPT-4, IAPT-5, IAPT-6587

and IAPT-7 demonstrates the necessity of learning588

activation functions for the prompt generators.589

Comparisons under different budgets of tun-590

able parameters We vary the budget of tunable591

parameters for IAPT by modifying the values of592

m = 256 to {64, 128, 512, 1024, 2048, 4096}.593

We also vary the LPT and LoRA methods’ tunable594

parameter numbers. The experimental results on595

the BoolQ and E2E tasks are presented in Figure596

2(a) and 2(b). The results show that under differ-597

ent tunable parameter budgets, our IAPT method598

can consistently outperform the LoRA and LPT599

methods.600

Effects of different lengths of soft prompts We601

vary the length lsp from 4 to {1, 2, 8, 16, 32} for 602

IAPT and LPT. The experimental results on the 603

BoolQ task are presented in Figure 3 of Appendix 604

J. The results show that our IAPT method is less 605

sensitive to the prompt length in terms of down- 606

stream performance and performs better than the 607

LPT baseline under different prompt lengths. IAPT 608

effectively aggregates the semantic features of the 609

input instructions with the help of the self-attention 610

pooler and learnable activations, thus obtaining bet- 611

ter downstream performances. 612

Ablation on the pretrained backbones Our 613

main experiments are conducted on the LlaMA-2 614

7B model. To demonstrate the broad applicabil- 615

ity of our method, we now conduct experiments 616

on GPT2-large and Pythia-1.4b. The results are 617

reported in Table 8. We can see that on these two 618

backbones, our method can also outperform the 619

baseline methods. 620

5 Conclusion 621

This work presents the instruction aware prompt 622

tuning (IAPT) method, an innovative method for 623

the parameter-efficient fine-tuning of large lan- 624

guage models. Upon the hypothesis that different 625

input instructions require different soft prompts, we 626

propose to generate soft prompts from the input in- 627

structions. We propose three recipes for improving 628

our framework’s downstream performance: (a) self- 629

attention pooling; (b) learning different activation 630

functions during fine-tuning for different prompt 631

generators of different depth; (c) cross-layer param- 632

eter sharing of prompt generators. Our method is 633

convenient to implement and off-the-shelf. Experi- 634

ments on various tasks demonstrate that our IAPT 635

method outperforms the baseline methods, while 636

being efficient for inference. 637

8

Limitations638

We showed that our proposed method can greatly639

improve the performance of parameter-efficient tun-640

ing on diverse tasks and different pretrained mod-641

els (i.e., LlaMA-2 7B, RoBERTa-large and GPT2-642

large). However, we acknowledge the following643

limitations: (a) the more super-sized open-sourced644

LLMs, such as LlaMA-2 13B and 70B, are not ex-645

perimented due to limited computation resources.646

(b) Other tasks in natural language processing, like647

information extraction, were also not considered.648

But our framework can be easily transferred to649

other backbone architectures and different types of650

tasks. It would be of interest to investigate if the su-651

periority of our method holds for other large-scaled652

backbone models and other types of tasks. And we653

will explore it in future work.654

Ethics Statement655

The finding and proposed method aims to im-656

prove the soft prompt based tuning in terms of657

better downstream performances whiling pursu-658

ing efficiency. The used datasets are widely used659

in previous work and, to our knowledge, do not660

have any attached privacy or ethical issues. In this661

work, we have experimented with LlaMA-2 7B, a662

modern large language model. As with all LLMs,663

LlaMA-2’s potential outputs cannot be predicted664

in advance, and the model may in some instances665

produce inaccurate, biased or other objectionable666

responses to user prompts. However, this work’s in-667

tent is to conduct research on different fine-tuning668

methods for LLMs, not building applications to669

general users. In the future, we would like to con-670

duct further tests to see how our method affects the671

safety aspects of LLMs.672

References673

Armen Aghajanyan, Sonal Gupta, and Luke Zettle-674
moyer. 2021. Intrinsic dimensionality explains the675
effectiveness of language model fine-tuning. In Pro-676
ceedings of the 59th Annual Meeting of the Associa-677
tion for Computational Linguistics and the 11th Inter-678
national Joint Conference on Natural Language Pro-679
cessing (Volume 1: Long Papers), pages 7319–7328,680
Online. Association for Computational Linguistics.681

Elad Ben-Zaken, Shauli Ravfogel, and Yoav Gold-682
berg. 2021. Bitfit: Simple parameter-efficient683
fine-tuning for transformer-based masked language-684
models. ArXiv, abs/2106.10199.685

Stella Biderman, Hailey Schoelkopf, Quentin G. An- 686
thony, Herbie Bradley, Kyle O’Brien, Eric Halla- 687
han, Mohammad Aflah Khan, Shivanshu Purohit, 688
USVSN Sai Prashanth, Edward Raff, Aviya Skowron, 689
Lintang Sutawika, and Oskar van der Wal. 2023. 690
Pythia: A suite for analyzing large language models 691
across training and scaling. ArXiv, abs/2304.01373. 692

Nicolas Boull’e, Yuji Nakatsukasa, and Alex Townsend. 693
2020. Rational neural networks. ArXiv, 694
abs/2004.01902. 695

Lequn Chen, Zihao Ye, Yongji Wu, Danyang Zhuo, Luis 696
Ceze, Arvind Krishnamurthy University of Washing- 697
ton, and Duke University. 2023. Punica: Multi-tenant 698
lora serving. ArXiv, abs/2310.18547. 699

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 700
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 701
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 702
Nakano, Christopher Hesse, and John Schulman. 703
2021. Training verifiers to solve math word prob- 704
lems. ArXiv, abs/2110.14168. 705

Quentin Delfosse, Patrick Schramowski, Alejandro 706
Molina, and Kristian Kersting. 2021a. Recurrent 707
rational networks. arXiv preprint arXiv:2102.09407. 708

Quentin Delfosse, Patrick Schramowski, Martin Mundt, 709
Alejandro Molina, and Kristian Kersting. 2021b. 710
Adaptive rational activations to boost deep reinforce- 711
ment learning. 712

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and 713
Luke Zettlemoyer. 2023. QLoRA: Efficient Fine- 714
tuning of Quantized LLMs. arXiv e-prints, page 715
arXiv:2305.14314. 716

Ning Ding, Xingtai Lv, Qiaosen Wang, Yulin Chen, 717
Bowen Zhou, Zhiyuan Liu, and Maosong Sun. 2023. 718
Sparse low-rank adaptation of pre-trained language 719
models. In Conference on Empirical Methods in 720
Natural Language Processing. 721

Ning Ding, Yujia Qin, Guang Yang, Fu Wei, Zong- 722
han Yang, Yusheng Su, Shengding Hu, Yulin Chen, 723
Chi-Min Chan, Weize Chen, Jing Yi, Weilin Zhao, 724
Xiaozhi Wang, Zhiyuan Liu, Haitao Zheng, Jianfei 725
Chen, Yang Liu, Jie Tang, Juan Li, and Maosong 726
Sun. 2022. Delta tuning: A comprehensive study of 727
parameter efficient methods for pre-trained language 728
models. ArXiv, abs/2203.06904. 729

Demi Guo, Alexander Rush, and Yoon Kim. 2021. 730
Parameter-efficient transfer learning with diff prun- 731
ing. In Proceedings of the 59th Annual Meeting of the 732
Association for Computational Linguistics and the 733
11th International Joint Conference on Natural Lan- 734
guage Processing (Volume 1: Long Papers), pages 735
4884–4896, Online. Association for Computational 736
Linguistics. 737

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg- 738
Kirkpatrick, and Graham Neubig. 2021. Towards a 739
unified view of parameter-efficient transfer learning. 740
ArXiv, abs/2110.04366. 741

9

https://doi.org/10.18653/v1/2021.acl-long.568
https://doi.org/10.18653/v1/2021.acl-long.568
https://doi.org/10.18653/v1/2021.acl-long.568
https://api.semanticscholar.org/CorpusID:257921893
https://api.semanticscholar.org/CorpusID:257921893
https://api.semanticscholar.org/CorpusID:257921893
https://api.semanticscholar.org/CorpusID:214802374
https://api.semanticscholar.org/CorpusID:264590197
https://api.semanticscholar.org/CorpusID:264590197
https://api.semanticscholar.org/CorpusID:264590197
https://api.semanticscholar.org/CorpusID:239998651
https://api.semanticscholar.org/CorpusID:239998651
https://api.semanticscholar.org/CorpusID:239998651
https://api.semanticscholar.org/CorpusID:246430610
https://api.semanticscholar.org/CorpusID:246430610
https://api.semanticscholar.org/CorpusID:246430610
https://doi.org/10.48550/arXiv.2305.14314
https://doi.org/10.48550/arXiv.2305.14314
https://doi.org/10.48550/arXiv.2305.14314
https://api.semanticscholar.org/CorpusID:265294736
https://api.semanticscholar.org/CorpusID:265294736
https://api.semanticscholar.org/CorpusID:265294736
https://doi.org/10.18653/v1/2021.acl-long.378
https://doi.org/10.18653/v1/2021.acl-long.378
https://doi.org/10.18653/v1/2021.acl-long.378

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,742
Bruna Morrone, Quentin De Laroussilhe, Andrea743
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.744
Parameter-efficient transfer learning for nlp. In In-745
ternational Conference on Machine Learning, pages746
2790–2799. PMLR.747

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan748
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,749
and Weizhu Chen. 2021. Lora: Low-rank adap-750
tation of large language models. arXiv preprint751
arXiv:2106.09685.752

Shengding Hu, Zhen Zhang, Ning Ding, Yadao Wang,753
Yasheng Wang, Zhiyuan Liu, and Maosong Sun.754
2022. Sparse structure search for parameter-efficient755
tuning. ArXiv, abs/2206.07382.756

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei757
Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu,758
Chuancheng Lv, Yikai Zhang, Jiayi Lei, et al. 2023.759
C-eval: A multi-level multi-discipline chinese eval-760
uation suite for foundation models. arXiv preprint761
arXiv:2305.08322.762

Shibo Jie and Zhifang Deng. 2022. Convolutional by-763
passes are better vision transformer adapters. ArXiv,764
abs/2207.07039.765

Yoon Kim. 2014. Convolutional neural networks for766
sentence classification. In Conference on Empirical767
Methods in Natural Language Processing.768

Dawid Jan Kopiczko, Tijmen Blankevoort, and769
Yuki Markus Asano. 2023. Vera: Vector-based ran-770
dom matrix adaptation. ArXiv, abs/2310.11454.771

Tuan Le, Marco Bertolini, Frank No’e, and Djork-Arné772
Clevert. 2021. Parameterized hypercomplex graph773
neural networks for graph classification. In Interna-774
tional Conference on Artificial Neural Networks.775

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.776
The power of scale for parameter-efficient prompt777
tuning. arXiv preprint arXiv:2104.08691.778

Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang, Hai779
Zhao, Yeyun Gong, Nan Duan, and Timothy Bald-780
win. 2023. Cmmlu: Measuring massive multitask781
language understanding in chinese. arXiv preprint782
arXiv:2306.09212.783

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:784
Optimizing continuous prompts for generation. arXiv785
preprint arXiv:2101.00190.786

Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2019.787
Darts: Differentiable architecture search. ArXiv,788
abs/1806.09055.789

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mo-790
hta, Tenghao Huang, Mohit Bansal, and Colin Raffel.791
2022a. Few-shot parameter-efficient fine-tuning is792
better and cheaper than in-context learning. ArXiv,793
abs/2205.05638.794

Xiangyang Liu, Tianxiang Sun, Xuanjing Huang, and 795
Xipeng Qiu. 2022b. Late prompt tuning: A late 796
prompt could be better than many prompts. ArXiv, 797
abs/2210.11292. 798

Xiao Liu, Kaixuan Ji, Yicheng Fu, Zhengxiao Du, Zhilin 799
Yang, and Jie Tang. 2021. P-tuning v2: Prompt 800
tuning can be comparable to fine-tuning universally 801
across scales and tasks. ArXiv, abs/2110.07602. 802

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam, 803
Zhengxiao Du, Zhilin Yang, and Jie Tang. 2022c. 804
P-tuning: Prompt tuning can be comparable to fine- 805
tuning across scales and tasks. In Annual Meeting of 806
the Association for Computational Linguistics. 807

Rabeeh Karimi Mahabadi, James Henderson, and Se- 808
bastian Ruder. 2021. Compacter: Efficient low-rank 809
hypercomplex adapter layers. In NeurIPS. 810

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, 811
Younes Belkada, Sayak Paul, and Benjamin Bossan. 812
2022. Peft: State-of-the-art parameter-efficient fine- 813
tuning methods. https://github.com/huggingface/ 814
peft. 815

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and 816
Hannaneh Hajishirzi. 2021. Cross-task generaliza- 817
tion via natural language crowdsourcing instructions. 818
In Annual Meeting of the Association for Computa- 819
tional Linguistics. 820

Alejandro Molina, Patrick Schramowski, and Kristian 821
Kersting. 2019. Padé activation units: End-to-end 822
learning of flexible activation functions in deep net- 823
works. ArXiv, abs/1907.06732. 824

Nafise Sadat Moosavi, Quentin Delfosse, Kristian Ker- 825
sting, and Iryna Gurevych. 2022. Adaptable adapters. 826
In North American Chapter of the Association for 827
Computational Linguistics. 828

Jekaterina Novikova, Ondřej Dušek, and Verena Rieser. 829
2017. The E2E dataset: New challenges for end- 830
to-end generation. In Proceedings of the 18th An- 831
nual SIGdial Meeting on Discourse and Dialogue, 832
pages 201–206, Saarbrücken, Germany. Association 833
for Computational Linguistics. 834

OpenAI. 2023. GPT-4 Technical Report. arXiv e-prints, 835
page arXiv:2303.08774. 836

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, 837
Carroll Wainwright, Pamela Mishkin, Chong Zhang, 838
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 839
2022. Training language models to follow instruc- 840
tions with human feedback. Advances in Neural 841
Information Processing Systems, 35:27730–27744. 842

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, 843
Kyunghyun Cho, and Iryna Gurevych. 2021. 844
AdapterFusion: Non-destructive task composition 845
for transfer learning. In Proceedings of the 16th Con- 846
ference of the European Chapter of the Association 847
for Computational Linguistics: Main Volume, pages 848
487–503, Online. Association for Computational Lin- 849
guistics. 850

10

https://api.semanticscholar.org/CorpusID:9672033
https://api.semanticscholar.org/CorpusID:9672033
https://api.semanticscholar.org/CorpusID:9672033
https://api.semanticscholar.org/CorpusID:264172315
https://api.semanticscholar.org/CorpusID:264172315
https://api.semanticscholar.org/CorpusID:264172315
https://api.semanticscholar.org/CorpusID:248693283
https://api.semanticscholar.org/CorpusID:248693283
https://api.semanticscholar.org/CorpusID:248693283
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://api.semanticscholar.org/CorpusID:237421373
https://api.semanticscholar.org/CorpusID:237421373
https://api.semanticscholar.org/CorpusID:237421373
https://api.semanticscholar.org/CorpusID:196831891
https://api.semanticscholar.org/CorpusID:196831891
https://api.semanticscholar.org/CorpusID:196831891
https://api.semanticscholar.org/CorpusID:196831891
https://api.semanticscholar.org/CorpusID:196831891
https://doi.org/10.18653/v1/W17-5525
https://doi.org/10.18653/v1/W17-5525
https://doi.org/10.18653/v1/W17-5525
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39

Chengwei Qin, Aston Zhang, Zhuosheng Zhang, Jiaao851
Chen, Michihiro Yasunaga, and Diyi Yang. 2023. Is852
chatgpt a general-purpose natural language process-853
ing task solver? arXiv preprint arXiv:2302.06476.854

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,855
Dario Amodei, Ilya Sutskever, et al. 2019. Language856
models are unsupervised multitask learners. OpenAI857
blog, 1(8):9.858

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and859
Percy Liang. 2016. SQuAD: 100,000+ questions for860
machine comprehension of text. In Proceedings of861
the 2016 Conference on Empirical Methods in Natu-862
ral Language Processing, pages 2383–2392, Austin,863
Texas. Association for Computational Linguistics.864

Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman865
Beck, Jonas Pfeiffer, Nils Reimers, and Iryna866
Gurevych. 2020. Adapterdrop: On the efficiency867
of adapters in transformers. In Conference on Empir-868
ical Methods in Natural Language Processing.869

Victor Sanh, Albert Webson, Colin Raffel, Stephen H.870
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine871
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja,872
Manan Dey, M Saiful Bari, Canwen Xu, Urmish873
Thakker, Shanya Sharma Sharma, Eliza Szczechla,874
Taewoon Kim, Gunjan Chhablani, Nihal V. Nayak,875
Debajyoti Datta, Jonathan D. Chang, Mike Tian-876
Jian Jiang, Han Wang, Matteo Manica, Sheng Shen,877
Zheng-Xin Yong, Harshit Pandey, Rachel Bawden,878
Thomas Wang, Trishala Neeraj, Jos Rozen, Abheesht879
Sharma, Andrea Santilli, Thibault Févry, Jason Alan880
Fries, Ryan Teehan, Stella Biderman, Leo Gao, Tali881
Bers, Thomas Wolf, and Alexander M. Rush. 2021.882
Multitask prompted training enables zero-shot task883
generalization. ArXiv, abs/2110.08207.884

Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. 2022.885
Lst: Ladder side-tuning for parameter and memory886
efficient transfer learning. ArXiv, abs/2206.06522.887

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann888
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,889
and Tatsunori B. Hashimoto. 2023. Stanford al-890
paca: An instruction-following llama model. https:891
//github.com/tatsu-lab/stanford_alpaca.892

Hugo Touvron, Louis Martin, Kevin R. Stone, Peter893
Albert, Amjad Almahairi, Yasmine Babaei, Niko-894
lay Bashlykov, Soumya Batra, Prajjwal Bhargava,895
Shruti Bhosale, Daniel M. Bikel, Lukas Blecher, Cris-896
tian Cantón Ferrer, Moya Chen, Guillem Cucurull,897
David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin898
Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami,899
Naman Goyal, Anthony S. Hartshorn, Saghar Hos-900
seini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor901
Kerkez, Madian Khabsa, Isabel M. Kloumann, A. V.902
Korenev, Punit Singh Koura, Marie-Anne Lachaux,903
Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai904
Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,905
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew906
Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan907
Saladi, Alan Schelten, Ruan Silva, Eric Michael908

Smith, R. Subramanian, Xia Tan, Binh Tang, Ross 909
Taylor, Adina Williams, Jian Xiang Kuan, Puxin 910
Xu, Zhengxu Yan, Iliyan Zarov, Yuchen Zhang, An- 911
gela Fan, Melanie Kambadur, Sharan Narang, Aure- 912
lien Rodriguez, Robert Stojnic, Sergey Edunov, and 913
Thomas Scialom. 2023. Llama 2: Open foundation 914
and fine-tuned chat models. ArXiv, abs/2307.09288. 915

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob 916
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz 917
Kaiser, and Illia Polosukhin. 2017. Attention is all 918
you need. ArXiv, abs/1706.03762. 919

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman- 920
preet Singh, Julian Michael, Felix Hill, Omer Levy, 921
and Samuel R. Bowman. 2019. Superglue: A stickier 922
benchmark for general-purpose language understand- 923
ing systems. ArXiv, abs/1905.00537. 924

Alex Wang, Amanpreet Singh, Julian Michael, Felix 925
Hill, Omer Levy, and Samuel R. Bowman. 2018. 926
Glue: A multi-task benchmark and analysis plat- 927
form for natural language understanding. In Black- 928
boxNLP@EMNLP. 929

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, 930
Adams Wei Yu, Brian Lester, Nan Du, Andrew M. 931
Dai, and Quoc V. Le. 2021. Finetuned language mod- 932
els are zero-shot learners. ArXiv, abs/2109.01652. 933

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 934
Chaumond, Clement Delangue, Anthony Moi, Pierric 935
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, 936
et al. 2020a. Transformers: State-of-the-art natu- 937
ral language processing. In Proceedings of the 2020 938
conference on empirical methods in natural language 939
processing: system demonstrations, pages 38–45. 940

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 941
Chaumond, Clement Delangue, Anthony Moi, Pier- 942
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, 943
Joe Davison, Sam Shleifer, Patrick von Platen, Clara 944
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le 945
Scao, Sylvain Gugger, Mariama Drame, Quentin 946
Lhoest, and Alexander M. Rush. 2020b. Transform- 947
ers: State-of-the-art natural language processing. In 948
Proceedings of the 2020 Conference on Empirical 949
Methods in Natural Language Processing: System 950
Demonstrations, pages 38–45, Online. Association 951
for Computational Linguistics. 952

Zhuofeng Wu, Sinong Wang, Jiatao Gu, Rui Hou, Yux- 953
iao Dong, V. G. Vinod Vydiswaran, and Hao Ma. 954
2022. Idpg: An instance-dependent prompt gener- 955
ation method. In North American Chapter of the 956
Association for Computational Linguistics. 957

Yi Xin, Siqi Luo, Haodi Zhou, Junlong Du, Xiao- 958
hong Liu, Yue Fan, Qing Li, and Yuntao Du. 2024. 959
Parameter-efficient fine-tuning for pre-trained vision 960
models: A survey. ArXiv, abs/2402.02242. 961

Lingling Xu, Haoran Xie, Si-Zhao Joe Qin, Xiaohui 962
Tao, and Fu Lee Wang. 2023. Parameter-efficient 963

11

https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://api.semanticscholar.org/CorpusID:239009562
https://api.semanticscholar.org/CorpusID:239009562
https://api.semanticscholar.org/CorpusID:239009562
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:237416585
https://api.semanticscholar.org/CorpusID:237416585
https://api.semanticscholar.org/CorpusID:237416585
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://api.semanticscholar.org/CorpusID:267412110
https://api.semanticscholar.org/CorpusID:267412110
https://api.semanticscholar.org/CorpusID:267412110
https://api.semanticscholar.org/CorpusID:266362573
https://api.semanticscholar.org/CorpusID:266362573

fine-tuning methods for pretrained language mod-964
els: A critical review and assessment. ArXiv,965
abs/2312.12148.966

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen967
Chu, and Bo Li. 2023a. Lora-fa: Memory-efficient968
low-rank adaptation for large language models fine-969
tuning. ArXiv, abs/2308.03303.970

Qingru Zhang, Minshuo Chen, Alexander W. Bukharin,971
Pengcheng He, Yu Cheng, Weizhu Chen, and972
Tuo Zhao. 2023b. Adaptive budget alloca-973
tion for parameter-efficient fine-tuning. ArXiv,974
abs/2303.10512.975

Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q. Wein-976
berger, and Yoav Artzi. 2020. Revisiting few-sample977
bert fine-tuning. ArXiv, abs/2006.05987.978

Yuming Zhang, Peng Wang, Ming Tan, and Wei-Guo979
Zhu. 2023c. Learned adapters are better than man-980
ually designed adapters. In Annual Meeting of the981
Association for Computational Linguistics.982

Mengjie Zhao, Tao Lin, Fei Mi, Martin Jaggi, and Hin-983
rich Schütze. 2020. Masking as an efficient alterna-984
tive to finetuning for pretrained language models. In985
Proceedings of the 2020 Conference on Empirical986
Methods in Natural Language Processing (EMNLP),987
pages 2226–2241, Online. Association for Computa-988
tional Linguistics.989

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,990
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen991
Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen992
Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang,993
Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu,994
Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. 2023. A995
Survey of Large Language Models. arXiv e-prints,996
page arXiv:2303.18223.997

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan998
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,999
Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang,1000
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging1001
LLM-as-a-Judge with MT-Bench and Chatbot Arena.1002
arXiv e-prints, page arXiv:2306.05685.1003

Victor Zhong, Caiming Xiong, and Richard Socher.1004
2017. Seq2sql: Generating structured queries1005
from natural language using reinforcement learning.1006
ArXiv, abs/1709.00103.1007

Wei Zhu. 2021a. Autonlu: Architecture search for sen-1008
tence and cross-sentence attention modeling with re-1009
designed search space. In Natural Language Process-1010
ing and Chinese Computing: 10th CCF International1011
Conference, NLPCC 2021, Qingdao, China, October1012
13–17, 2021, Proceedings, Part I 10, pages 155–168.1013
Springer.1014

Wei Zhu. 2021b. AutoRC: Improving BERT based rela-1015
tion classification models via architecture search. In1016
Proceedings of the 59th Annual Meeting of the Asso-1017
ciation for Computational Linguistics and the 11th1018
International Joint Conference on Natural Language1019

Processing: Student Research Workshop, pages 33– 1020
43, Online. Association for Computational Linguis- 1021
tics. 1022

Wei Zhu and Ming Tan. 2023. SPT: Learning to se- 1023
lectively insert prompts for better prompt tuning. 1024
In Proceedings of the 2023 Conference on Empir- 1025
ical Methods in Natural Language Processing, pages 1026
11862–11878, Singapore. Association for Computa- 1027
tional Linguistics. 1028

Wei Zhu, Xiaoling Wang, Yuan Ni, and Guotong Xie. 1029
2021. Autotrans: Automating transformer design via 1030
reinforced architecture search. In Natural Language 1031
Processing and Chinese Computing, pages 169–182, 1032
Cham. Springer International Publishing. 1033

Wei Zhu, Xiaoling Wang, Huanran Zheng, Mosha Chen, 1034
and Buzhou Tang. 2023. PromptCBLUE: A Chinese 1035
Prompt Tuning Benchmark for the Medical Domain. 1036
arXiv e-prints, page arXiv:2310.14151. 1037

A Additional related works 1038

A.1 Adapter-based tuning. 1039

One of the most important research lines of 1040

PEFT is adapter-based tuning. Adapter (Houlsby 1041

et al., 2019) inserts adapter modules with bottle- 1042

neck architecture between every consecutive Trans- 1043

former (Vaswani et al., 2017) sublayers. Adapter- 1044

Fusion (Pfeiffer et al., 2021) only inserts sequential 1045

adapters after the feed-forward module. Adapter- 1046

based tuning methods have comparable results with 1047

model tuning when only tuning a fraction of the 1048

backbone model’s parameter number. Due to their 1049

strong performance, a branch of literature has in- 1050

vestigated the architecture of adapters in search 1051

of further improvements. He et al. (2021) ana- 1052

lyze a wide range of PETuning methods and show 1053

that they are essentially equivalent. They also pro- 1054

pose the general architecture of PEFT, and derive 1055

the Parallel Adapter which connects the adapter 1056

modules in parallel to the self-attention and MLP 1057

modules in the Transformer block. AdapterDrop 1058

(Rücklé et al., 2020) investigates the efficiency of 1059

removing adapters from lower layers. Adaptive 1060

adapters (Moosavi et al., 2022) investigate the acti- 1061

vation functions of adapters and propose to learn 1062

the activation functions of adapters via optimiz- 1063

ing the parameters of rational functions as a part 1064

of the model parameters. Compacter (Mahabadi 1065

et al., 2021) uses low-rank parameterized hyper- 1066

complex multiplication (Le et al., 2021) to com- 1067

press adapters’ tunable parameters. LST (Sung 1068

et al., 2022) improves the memory efficiency by 1069

forming the adapters as a ladder along stacked 1070

12

https://api.semanticscholar.org/CorpusID:266362573
https://api.semanticscholar.org/CorpusID:266362573
https://api.semanticscholar.org/CorpusID:266362573
https://api.semanticscholar.org/CorpusID:260683267
https://api.semanticscholar.org/CorpusID:260683267
https://api.semanticscholar.org/CorpusID:260683267
https://api.semanticscholar.org/CorpusID:260683267
https://api.semanticscholar.org/CorpusID:260683267
https://api.semanticscholar.org/CorpusID:257631760
https://api.semanticscholar.org/CorpusID:257631760
https://api.semanticscholar.org/CorpusID:257631760
https://api.semanticscholar.org/CorpusID:259858833
https://api.semanticscholar.org/CorpusID:259858833
https://api.semanticscholar.org/CorpusID:259858833
https://doi.org/10.18653/v1/2020.emnlp-main.174
https://doi.org/10.18653/v1/2020.emnlp-main.174
https://doi.org/10.18653/v1/2020.emnlp-main.174
https://doi.org/10.48550/arXiv.2303.18223
https://doi.org/10.48550/arXiv.2303.18223
https://doi.org/10.48550/arXiv.2303.18223
https://doi.org/10.48550/arXiv.2306.05685
https://doi.org/10.48550/arXiv.2306.05685
https://doi.org/10.48550/arXiv.2306.05685
https://api.semanticscholar.org/CorpusID:25156106
https://api.semanticscholar.org/CorpusID:25156106
https://api.semanticscholar.org/CorpusID:25156106
https://doi.org/10.18653/v1/2021.acl-srw.4
https://doi.org/10.18653/v1/2021.acl-srw.4
https://doi.org/10.18653/v1/2021.acl-srw.4
https://aclanthology.org/2023.emnlp-main.727
https://aclanthology.org/2023.emnlp-main.727
https://aclanthology.org/2023.emnlp-main.727
https://doi.org/10.48550/arXiv.2310.14151
https://doi.org/10.48550/arXiv.2310.14151
https://doi.org/10.48550/arXiv.2310.14151

Transformer blocks, and it enhances the adapter1071

module by adding a self-attention module to its1072

bottleneck architecture. (Sung et al., 2022; Jie and1073

Deng, 2022) try to add different encoding opera-1074

tions, like self-attention operations and convolu-1075

tions between the bottleneck structure of adapters,1076

and achieve better performances. Learned-Adapter1077

(Zhang et al., 2023c) builds upon the above adapter-1078

based methods and enhance the performance of1079

adapter tuning by automatically learning better ar-1080

chitectures for adapters.1081

A.2 Literature on the LoRA methods1082

Since LoRA is the most popular PEFT method1083

in the era of large language models, there are many1084

works that are orthogonal to AdaLoRA, SoRA and1085

our work that are devoted to improve LoRA on1086

many different aspects. QLoRA (Dettmers et al.,1087

2023) proposes a novel quantization method that1088

can significantly reduce the memory consumptions1089

of LLMs during LoRA fine-tuning. LoRA-FA1090

(Zhang et al., 2023a) freezes parts of the randomly1091

initialized LoRA matrices. (d) VERA (Kopiczko1092

et al., 2023) investigate whether one could froze1093

the randomly initialized LoRA matrices and only1094

learns a set of scaling vectors. Tying LoRA matri-1095

ces across layers are also investigated by VERA.1096

B Appendix: introduction to bi-level1097

optimization1098

The bi-level optimization (Liu et al., 2019) opti-1099

mize Θ conditioned on the optimized parameters1100

of Ω∗. Denote the training set as Dtrain, and the1101

validation set as Dval. The inner and outer levels1102

of optimization are conducted on these two sepa-1103

rate splits of the task dataset, which is analogous1104

to validating architectures trained on Dtrain using1105

a different split Dval to avoid over-fitting. Thus the1106

optimization objective is:1107

min
Θ

L(Dval,Ω
∗,Θ),1108

s.t. Ω∗ = argmin
Ω

L(Dtrain,Ω,Θ), (4)1109

where L() is the objective function on a given1110

downstream task, such as cross entropy loss. The1111

above bi-level optimization problem is approxi-1112

mated with an alternating optimization strategy.1113

The gradients of Ω are calculated with batches of1114

samples from Dtrain, and the gradients of Θ are1115

calculated on Dval.1116

C Appendix for the datsets and 1117

evaluation metrics 1118

C.1 Datasets from GLUE and SuperGLUE 1119

We experiment on three tasks from the GLUE 1120

(Wang et al., 2018) benchmark: (a) (a) a senti- 1121

ment classification task, SST-2. (b) two benchmark 1122

natural language inference tasks, RTE and QNLI. 1123

We also experiment with three question-answering 1124

tasks: (a) two question answering tasks in the for- 1125

mat of binary choices, COPA and BoolQ. (b) A 1126

SQuAD (Rajpurkar et al., 2016) style question an- 1127

swering task, ReCoRD. 1128

Since the original test sets are not publicly 1129

available for these tasks, we follow Zhang et al. 1130

(2020); Mahabadi et al. (2021) to construct the 1131

train/dev/test splits as follows to ensure a fiar com- 1132

parison: (a) for datasets with fewer than 10k sam- 1133

ples (RTE, COPA, BoolQ), we divide the original 1134

validation set in half, using one half for validation 1135

and the other for testing. (b) for larger datasets, we 1136

split 1k samples from the training set as the devel- 1137

opment set, and use the original development set 1138

as the test set. The detailed statistics of the GLUE 1139

and SuperGLUE benchmark tasks is presented in 1140

Table 5. 1141

C.2 The SQuAD task 1142

Stanford Question Answering Dataset (SQuAD) 1143

(Rajpurkar et al., 2016) is a reading comprehension 1144

dataset, consisting of questions posed by crowd- 1145

workers on a set of Wikipedia articles, where the 1146

answer to every question is a segment of text, or 1147

span, from the corresponding reading passage, or 1148

the question might be unanswerable. This task is 1149

one of the most widely studied question answering 1150

task in the field. 1151

In this work, we use the v1.1 version of SQuAD. 1152

Since the original test sets are not publicly avail- 1153

able for these tasks, we follow Zhang et al. (2020); 1154

Mahabadi et al. (2021) and split 1k samples from 1155

the training set as the development set, and use 1156

the original development set as the test set. The 1157

detailed statistics of this task is presented in Table 1158

5. 1159

C.3 E2E benchmark 1160

The E2E benchmark dataset for training end-to- 1161

end, data-driven natural language generation sys- 1162

tems in the restaurant domain. It asks a model to 1163

generate natural utterances based on a set of given 1164

13

Datasets #train #dev #test |Y| Type Labels Metrics
SuperGLUE tasks

BoolQ 9.4k 1.6k 1.6k 2 Question Answering True, False acc
COPA 0.4k 0.05k 0.05k 2 Question Answering choice1, choice2 acc

ReCoRD 101k 1k 7.4k - Question Answering - f1-em
GLUE tasks

SST-2 66k 1k 0.8k 2 sentiment classification positive, negative acc
RTE 2.5k 0.1k 0.1k 2 NLI entailment, not entailment acc

QNLI 104k 1k 5.4k 2 NLI entailment, not entailment acc
Other tasks

SQuAD 87k 1k 5.9k - Question Answering - f1-em
E2E 42k 4.6k 4.6k - NLG - rouge-l

GSM8K 7K 0.5K 1K - Math reasoning - acc
WikiSQL 61k 9K 17K - SQL generation - acc

Alpaca 50k 1k - - Instruction tuning - -
MT-Bench - - 80 - Instruction tuning - GPT-4 scores

Table 5: The dataset statistics of the GLUE and SuperGLUE benchmark tasks evaluated in this work. |Y| is the
number of classes for a classification task.

key contents. This dataset has a 42061/4672/46931165

train/dev/test split.1166

C.4 GSM8K benchmark1167

GSM8K is a dataset of 8.5K high quality linguis-1168

tically diverse grade school math word problems1169

created by human problem writers. The dataset1170

is segmented into 7.5K training problems and 1K1171

test problems. These problems take between 2 and1172

8 steps to solve, and solutions primarily involve1173

performing a sequence of elementary calculations1174

using basic arithmetic operations (+−×÷) to reach1175

the final answer. A bright middle school student1176

should be able to solve every problem. It can be1177

used for multi-step mathematical reasoning. We1178

randomly select 0.5k samples from the training set1179

to be the dev set.1180

C.5 WikiSQL dataset1181

WikiSQL consists of a corpus of 87,726 hand-1182

annotated SQL query and natural language ques-1183

tion pairs. These SQL queries are further split into1184

training (61,297 examples), development (9,1451185

examples) and test sets (17,284 examples). It can1186

be used for natural language inference tasks related1187

to relational databases. In this work, we will ask1188

the LLMs to generate SQL queries based on the1189

given natural language questions.1190

C.6 Instruction tuning1191

Instruction tuning is an important method to im-1192

prove the general capabilities of large language1193

models (Ouyang et al., 2022). With the rise of1194

large language models in the scale of 10B param- 1195

eters or more, like GPT-3, T5, PaLM, researchers 1196

have actively explored the few-shot or zero-shot 1197

capabilities of these models. (Mishra et al., 2021) 1198

find that fine-tuning these LLMs on a large scale 1199

datasets containing hundreds of NLP tasks signif- 1200

icantly improves the zero-shot performances on 1201

unseen tasks, establishing the scaling law of task 1202

numbers. The previous works like (Wei et al., 2021) 1203

and T0 (Sanh et al., 2021) establishes the instruc- 1204

tion tuning datasets by transforming the traditional 1205

NLP tasks into a unified prompt format. Instruct- 1206

GPT (Ouyang et al., 2022) conducts instruction 1207

tuning using the dataset constructed based the user 1208

queries from the OpenAI API users. Note that this 1209

work is also a seminal work for human feedback 1210

learning with reinforcement learning. However, the 1211

complete instruction tuning dataset from (Ouyang 1212

et al., 2022) remains closed. With the launch of 1213

ChatGPT, (Taori et al., 2023) (Alpaca) constructs 1214

an instruction tuning dataset with diverse topics 1215

using the self-instruct techniques. 1216

For our experiment, we employ the Alpaca 1217

dataset (Taori et al., 2023) for instruction tuning. 1218

Specifically, we employs its cleaned version5. This 1219

dataset comprises 51K instructions and demonstra- 1220

tions, and is suitable for instruction tuning. The 1221

cleaned version corrects multiple issues such as 1222

hallucinations, merged instructions, and empty out- 1223

puts. We set aside 1000 samples in the Alpaca 1224

dataset as the validation set. 1225

5https://huggingface.co/datasets/yahma/
alpaca-cleaned.

14

https://huggingface.co/datasets/yahma/alpaca-cleaned
https://huggingface.co/datasets/yahma/alpaca-cleaned

C.7 Evaluation metrics/protocols1226

For the three GLUE tasks we experiment on, we1227

report accuracy (denoted as acc). For ReCoRD, we1228

report the average of the F1 score and the exact1229

match score (denoted as f1-em). For the BoolQ1230

and COPA tasks, we report accuracy. The above1231

choices of evaluation metrics strictly follow (Wang1232

et al., 2018) and (Wang et al., 2019).1233

For the SQuAD dataset, we also report the av-1234

erage of the F1 score and the exact match score1235

(denoted as f1-em).1236

Following (Novikova et al., 2017), we report the1237

ROUGE-L metric (denoted as rouge-l). We rely on1238

the HuggingFace Evaluate package6 for computing1239

this metric.1240

For the GSM8K task, we will directly consider1241

the correctness of the final answers. Thus, we re-1242

port accuracy (denoted as acc).1243

For the WikiSQL, we will consider the correct-1244

ness of the generated SQL queries. A predicted1245

SQL query is correct if and only if it can be exe-1246

cuted and obtains the same results with the ground1247

truth.1248

For evaluating the quality of instruction tuned1249

LlaMA-2 7B, we follow the current common prac-1250

tice of utilizing GPT-4 as a unbiased reviewer1251

(Zheng et al., 2023). 80 instructions from the MT-1252

Bench is set as a test set. We generate model re-1253

sponses from a fine-tuned model with beam size 51254

with the generation function in Huggingface Trans-1255

formers (Wolf et al., 2020a). Then we compare1256

AdaLoRA and IAPT’s answers with GPT-4. For1257

each instruction in MT-Bench, GPT-4 (OpenAI,1258

2023) is asked to write a review for both answers1259

from the two methods, and assigns a quantitative1260

score on a scale of 10 to each response. The1261

prompts of instructing GPT-4 for evaluation is pre-1262

sented in Appendix E. ROUGE-L scores computed1263

by considering the answers generated by GPT-4 as1264

the ground truth.1265

D Prompt templates for fine-tuning1266

LlaMA-2 7B1267

Since we fine-tune LlaMA-2 7B without intro-1268

ducing task-specific prediction heads, we need to1269

transform all the tasks into a prompt-response for-1270

mat. First, following LlaMA-2 (Touvron et al.,1271

2023), we use a system prompting template, in1272

which <query> denotes the user input, <response>1273

6https://huggingface.co/docs/evaluate/index

denotes the assistants’ targeted responses. All the 1274

samples will be input into this template before be- 1275

ing fed to the LLMs. 1276

<s>[INST] <<SYS>> 1277

You are a helpful, respectful and honest 1278

assistant. 1279

<</SYS>> 1280

1281

<query>[/INST]<response></s> 1282

Now we present the prompt-response template 1283

for each task. 1284

Templates for RTE and QNLI Since these two 1285

tasks are NLI tasks, the samples in them consists 1286

of two input text, [sentence1] and [sentence1], and 1287

a label [label_name] (entailment or not entailment). 1288

Thus, we use the following templates: 1289

Template for prompt: 1290

sentence 1: [sentence1] 1291

sentence 2: [sentence1] 1292

Are sentence 1 and sentence 2 have 1293

entailment relation or not? 1294

Template for response: 1295

[label_name] 1296

Templates for SST-2 The samples in this task con- 1297

sists of one input text, [sentence], and a label [la- 1298

bel_name] (positive or negative). 1299

Template for prompt: 1300

[sentence] 1301

The sentiment of the given sentence is: 1302

Template for response: 1303

[label_name] 1304

Templates for BoolQ The samples in this task 1305

consists of a reference document, [doc], a query, 1306

[query], and a label [label_name] (yes or no). 1307

Template for prompt: 1308

Reference document: 1309

[doc] 1310

Question: 1311

[query] 1312

Template for response: 1313

[label_name] 1314

Templates for COPA The samples in this task con- 1315

sists of a premise, [premise], two choices, [choice1] 1316

and [choice2], a query, [query], and a label [la- 1317

bel_name] (1 or 2, indicating which choice is con- 1318

sistent with the premise). 1319

Template for prompt: 1320

15

https://huggingface.co/docs/evaluate/index

Premise:1321

[premise]1322

Choice 1: [choice1]1323

Choice 2: [choice2]1324

Question:1325

[query]1326

Template for response:1327

[label_name]1328

Templates for ReCoRD and SQuAD The sam-1329

ples in these two tasks consist of a context docu-1330

ment, [context], a question, [query], and a answer-1331

ing span, [answer].1332

Template for prompt:1333

Context:1334

[context]1335

Question:1336

[query]1337

Template for response:1338

[answer]1339

Templates for E2E The samples in this task con-1340

sists of a reference [ref], consisting required infor-1341

mation, and a targeted response, [target], which is1342

a customer review written according to the refer-1343

ence’s contents.1344

Template for prompt:1345

Reference:1346

[ref]1347

Generate a customer review following the1348

given reference.1349

Template for response:1350

[target]1351

Templates for GSM8K The samples in this task1352

consists of a math question [question], and a tar-1353

geted response, [target] which is the reasoning or1354

calculation steps for the math question.1355

Template for prompt:1356

Answer the following math quesition:1357

[ref]1358

Instruction: please think step by step.1359

Template for response:1360

[target]1361

Templates for WikiSQL The samples in this task1362

consists of a natural language query [query], and1363

information for the SQL table [table_info], and a1364

targeted response containing the SQL query, [tar-1365

get] which is the reasoning or calculation steps for1366

the math question.1367

Template for prompt:1368

Answer the following query by writing a 1369

SQL query on the given table: 1370

[query] 1371

Table information: 1372

[table_info]. 1373

Template for response: 1374

[target] 1375

E Prompt templates for GPT-4 1376

evaluations 1377

In this work, we utilize the powerful LLM GPT-4 1378

(OpenAI, 2023) as the evaluator for comparing the 1379

instruction tuning quality. As a reviewer, GPT-4 1380

will receive a query [query], two responses, [re- 1381

sponse1] and [response2], from two assistants. We 1382

will ask GPT-4 to write a review for each response, 1383

assessing the quality of the response, and then ask 1384

GPT-4 to assign a score on a scale of 10 to each 1385

response. 1386

Template for prompt: 1387

Task Introduction 1388

you will be given a query, and two responses 1389

from two assistants, 1390

could you compare the two responses, 1391

and do the following: 1392

(1) write a concise review for each 1393

assistant's response, on how well the 1394

response answers the query, and whether 1395

it will be helpful to humans users, and any 1396

issues in the response; 1397

(2) assigns a quantitative score on a scale 1398

of 10 to each response, reflecting 1399

your assessment of the two responses 1400

Query: 1401

[query] 1402

Response 1 from assistant 1: 1403

[response1] 1404

Response 2 from assistant 2: 1405

[response2] 1406

F Appendix for Experimental settings 1407

Here, we provide more details for experimental 1408

settings. 1409

Hyper-parameters for the baseline PEFT meth- 1410

ods For the P-tuning method, the soft prompts’ 1411

length is 64, and the soft prompts is first initialized 1412

with dimension 36, and then a learnable projection 1413

layer projects it to the same dimension with the 1414

LlaMA-2 backbone. For P-tuning V2, the number 1415

of prompt tokens at each layer is set to 64. For LPT 1416

16

and IDPG, the bottleneck dimension is set to 1024,1417

and the number of soft tokens is set to 4.1418

For the adapter-based methods, Houlsby-1419

Adapter and AdapterDrop, the bottleneck dimen-1420

sion is set to 18, and the adapter modules are added1421

on the self-attention and feed-forward module. For1422

the Parallel-Adapter and Learned-Adapter, the bot-1423

tleneck dimension is set to 36, and the adapter1424

modules are connected to the whole block.1425

For LoRA, the initial rank at each module is set1426

to 4. For AdaLoRA, the initial rank at each module1427

is set to 8, and half of the rank budget is pruned1428

during fine-tuning.1429

We adjust the sparsity for SSP so that the number1430

of tunable parameters is comparable with IAPT and1431

the other baselines. For BitFit, the bias vectors are1432

initialized with dimension 8, and then a learnable1433

projection layer projects it to the same dimension1434

with the LlaMA-2 backbone. For (IA)3, the acti-1435

vation adjusting vectors are added the Query, Key,1436

and Up activations. The adjusting vectors are ini-1437

tialized with dimension 16, and then a learnable1438

projection layer projects it to the same dimension1439

with the LlaMA-2 backbone.1440

Training settings for PEFT methods We use1441

the HugginFace Transformers (Wolf et al., 2020b),1442

PEFT (Mangrulkar et al., 2022), or the original1443

code repositories for implementing all the methods,1444

and for training and making predictions. For fine-1445

tuning LlaMA-2 7B model, the maximum sequence1446

length is set to 2048. The maximum training epoch1447

is set to 10. The batch size is set between 16 for1448

task with less than 10k training set, and 128 oth-1449

erwise. We use AdamW as the optimizer with a1450

linear learning rate decay schedule and 6% of the1451

training steps for warm-up. The learning rate is1452

set to 1e-4. For the bi-level optimizaiton of IAPT,1453

the validation set is the same with the dev set. The1454

hyper-parameters for calculating the gradients of1455

the architectural parameters are the same with the1456

normal training procedure, except that the learn-1457

ing rate is 1e-6. The other hyper-parameters are1458

kept the same with (Wolf et al., 2020b). In ev-1459

ery 200 steps, the model is evaluated on the dev1460

set. Patience is set to 10, that is, if the model does1461

not achieve a lower development set loss for 101462

evaluation runs, the training stops early. The best1463

checkpoint on the dev set is used to run predictions1464

on the test set.1465

G Appendix: settings for efficiency 1466

analysis 1467

In the Table 4 of the main contents, we conduct 1468

analysis on the IAPT and other PEFT methods’ 1469

memory and speed during inference. 1470

The example instruction we used in this analysis 1471

is presented below. 1472

Generate a blog post of 500 words or less 1473

that discusses the following news article: 1474

1475

The Department of Child Protection (DCP) 1476

must pay compensation and medical expenses 1477

to a youth worker who developed pericarditis 1478

after getting a Covid booster under a 1479

workplace vaccination directive, the South 1480

Australian Employment Tribunal has ruled. 1481

1482

In a decision handed down on 15 January 1483

2024, the Tribunal determined that Daniel 1484

Shepherd’s employment was “a significant 1485

contributing cause” to his injury, which 1486

has since rendered him incapable of 1487

performing his role at work. 1488

1489

Shepherd got a Covid booster in February 1490

2022 as a requirement for his ongoing 1491

employment with the DCP. The DCP admitted 1492

that Shepherd’s pericarditis had been 1493

caused by the booster, but denied 1494

responsibility for the injury, arguing that 1495

it did not arise from Shepherd’s employment, 1496

but from a lawful State Government Public 1497

Health Order (PHO), issued under the 1498

Emergency Management Act 2004 (EMA). 1499

We restrict the number of newly generated to- 1500

kens to be 32 under the method of beam search with 1501

beam size equal to 1 or 3. The length of the initial 1502

instruction is 278 after adding the soft prompts and 1503

special tokens under the IAPT method, and 274 1504

under the LoRA method. The LLM backbone is 1505

LlaMA-2 7B model. We run the generation process 1506

for 100 times to calculate the average metric values, 1507

reducing the randomness. 1508

H Appendix: pilot experiments 1509

We now conduct pilot experiments on the BoolQ 1510

and E2E tasks to demonstrate the necessity of learn- 1511

ing activation functions for the prompt generators. 1512

The other hyper-parameters or experimental set- 1513

tings are kept the same with Section 4.3 and F. 1514

17

Method BoolQ E2E SQuAD
(acc) (rouge-l) (f1-em)

IAPT 87.5 71.3 88.5
IAPT-gelu 86.7 70.6 87.8
IAPT-relu 86.4 70.7 87.7

IAPT-relu-gelu 86.8 70.7 88.0
IAPT-gelu-relu 86.6 70.5 87.9

Table 6: The experimental results for the pilot experi-
ments. The backbone model is LlaMA-2 7B.

We now compare three variants of IAPT: (a)1515

IAPT-relu, which is to set the activation function1516

of the prompt generators to ReLU. (b) IAPT-relu,1517

which is to set the activation function of the prompt1518

generators to GeLU. (c) IAPT-relu-gelu, which is1519

to set the activation functions of the prompt gener-1520

ators on the lower 16 Transformer layers to ReLU,1521

and set those on the 16 higher Transformer lay-1522

ers to GeLU. (d) IAPT-gelu-relu, which is to set1523

the activation functions of the prompt generators1524

on the lower 16 Transformer layers to GeLU, and1525

set those on the 16 higher Transformer layers to1526

ReLU. The results on the BoolQ and E2E tasks are1527

presented in Table 6.1528

The results demonstrate that: (a) different down-1529

stream tasks may favor different activation func-1530

tions for the prompt generators. (b) applying differ-1531

ent activation functions for different Transformer1532

layers may result in performance gains. The results1533

demonstrate that there is room for improvements if1534

we set the prompt generators’ activation functions1535

properly. However, such a setting is intractable to1536

be set manually.1537

I Ablation on the IAPT framework1538

In the main contents, we consider seven variants1539

of the IAPT method, and the experiments on the1540

BoolQ, E2E and SQuAD tasks are provided in 71541

J Ablation on the soft prompt length1542

We vary the prompt length lsp from 4 to {1, 2, 8,1543

16, 32} for IAPT and LPT, and present the results1544

on the BoolQ task in Figure 3.1545

K Ablation on the pretrained backbones1546

Our main experiments are conducted on the1547

LlaMA-2 7B model. To demonstrate that our1548

method works well regardless of the backbone mod-1549

els, we now conduct experiments on the GPT-21550

large (774M parameters) and Pythia-1.4b models.1551

Method BoolQ E2E SQuAD
(acc) (rouge-l) (f1-em)

IAPT 87.5 71.3 88.5
IAPT-1 86.9 70.7 88.0
IAPT-2 86.2 70.2 87.3
IAPT-3 87.2 71.0 88.1
IAPT-4 86.7 70.6 87.8
IAPT-5 86.4 70.7 87.7
IAPT-6 86.8 70.7 88.0
IAPT-7 86.6 70.5 87.9

Table 7: The comparison of IAPT’s variants on the
BoolQ, E2E, and SQuAD tasks. The backbone model
is LlaMA-2 7B.

Figure 3: Performances under different soft prompt
lengths.

Method BoolQ E2E SQuAD
(acc) (rouge-l) (f1-em)

Results for GPT-2 large
LPT 67.2 66.1 43.2

LoRA 67.5 66.6 43.8
AdaLoRA 67.6 66.5 43.7

IAPT 68.3 67.2 44.6
Results for Pythia-1.4b large

LPT 71.3 68.2 50.1
LoRA 71.6 68.4 50.4

AdaLoRA 71.5 68.5 50.4
IAPT 72.3 69.1 51.3

Table 8: Results for different PEFT methods on the
BoolQ, E2E and SQuAD benchmarks. The backbone
LMs are GPT2-large and Pythia-1.4b.

The other experimental settings are kept the same 1552

with the main experiments (Table 1). We conduct 1553

experiments on the BoolQ, E2E and SQuAD tasks. 1554

The results are reported in Table 8. 1555

18

L Visualization of the learned activation1556

functions1557

Now, we visualize the learned activation func-1558

tions of the prompt generator at different Trans-1559

former layers in Figure 4.1560

M Case studies of Instruction tuning1561

In the Section 4.4 of the main content, we present1562

the overall performance of IAPT and AdaLoRA1563

on the MT-Bench, after fine-tuning LlaMA-2 7B1564

on the Alpaca dataset. Now we present concrete1565

examples in Table 9 to showcase the Superiority of1566

IAPT.1567

19

Query

One morning after sunrise, Suresh was standing facing a pole. The shadow of
the pole fell exactly to his right. Can you tell me the direction towards which
the shadow was pointing - east, south, west, or north? Explain your reasoning
steps.

IAPT’s response

Responses

The shadow of the pole fell exactly to Suresh’s right, which means that the
shadow was pointing towards his left. Since the sun rises in the east and sets in
the west, the shadow of the pole was pointing towards the west. Therefore, the
direction towards which the shadow was pointing was west.

GPT-4’s
comments

Assistant 1 provides a clear and logical explanation. They correctly identify
that since the shadow falls to the right of Suresh, it means that he is facing
north, because the sun rises in the east and its light comes from that direction,
casting shadows towards the west. The assistant’s reasoning is accurate
considering that sunrise has been mentioned, thus we can deduce that Suresh
must be facing north for the shadow to fall on his right side (west). The
explanation is easy to understand and would be helpful to human users looking
for a clear answer with justification. However, there is an internal contradiction
in Assistant 1’s response; initially they state "the shadow was pointing towards
his left" which does not align with their correct conclusion or premise.

Score: 7/10 - While Assistant 1 reaches the correct conclusion (that the shadow
points west), they mistakenly describe how shadows fall relative to Suresh’s
position first (claiming it falls towards his left), which could confuse users.

GPT-4 score 7
AdaLoRA’s response

Responses
The shadow of the pole fell exactly to Suresh’s right, indicating that the sun was
rising in the east.

GPT-4’s
comments

Assistant 2 starts well by indicating where Suresh must be looking based on
where his shadow falls but fails to complete their reasoning. They point out
correctly that if a pole’s shadow falls exactly to someone’s right after sunrise,
it indicates that person must be facing north with sunlight coming from their
left (east), casting a shadow toward their right (west). However, Assistant 2
does not provide this final step of information—identifying explicitly what
direction this would make the shadow point—which makes their response
incomplete when answering directly what was asked in terms of cardinal
directions.

Score: 5/10 - Assistant 2 identifies an important piece of information regarding
how shadows are cast at sunrise but doesn’t fully answer what direction toward
which the shadow points nor do they offer any steps of reasoning beyond noting
sun placement at sunrise. This may leave human users somewhat unclear about
how they’ve reached any implicit conclusions or if additional reasoning should
follow.

GPT-4 score 5

Table 9: An example showcasing that the fine-tuning quality of IAPT is higher than AdaLoRA.

20

(a) 1st to 4-th layer (b) 5th to 8-th layer

(c) 9th to 12-th layer (d) 13th to 16-th layer

(e) 17th to 20-th layer (f) 21th to 24-th layer

(g) 25th to 28-th layer (h) 29th to 32-th layer

Figure 4: The learned activation functions for the prompt generators at different Transformer layers.

21

