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Abstract

As LLMs become capable of complex tasks, there is growing potential for person-1

alized interactions tailored to the subtle and idiosyncratic preferences of the user.2

We present a public benchmark, PersonalLLM, focusing on adapting LLMs to3

provide maximal benefits for a particular user. Departing from existing alignment4

benchmarks that implicitly assume uniform preferences, we curate open-ended5

prompts paired with many high-quality answers over which users would be ex-6

pected to display heterogeneous latent preferences. Instead of persona prompting7

LLMs based on high-level attributes (e.g., user race or response length) that yields8

homogeneous preferences relative to humans, we develop a method that can simu-9

late diverse preferences from a set of pre-trained reward models. Our dataset and10

generated personalities offer an innovative testbed for developing personalization11

algorithms that grapple with continual data sparsity—few relevant feedback from12

the particular user—by leveraging historical data from other (similar) users. We13

explore basic in-context learning and meta-learning baselines to illustrate the utility14

of PersonalLLM and highlight the need for future methodological development.15

1 Introduction16

The alignment of LLMs with human preferences has recently received much attention, with a focus17

on adapting model outputs to reflect universal population-level values. A typical goal is to take a18

pre-trained model that cannot reliably follow complex user instructions [32] and can easily be made19

to produce dangerous and offensive responses [25], and adapt it to the instructions of its user base20

[24] or train a generally helpful and harmless assistant [1]. By assuming a uniform preference across21

the population, recent successes [35, 24, 6] demonstrate the feasibility of learning and optimizing a22

monolithic preference (“reward model”). Alignment techniques have provided the basis for popular23

commercial applications like ChatGPT, as well as instruction-tuned open-source models [30].24

The rapid advancement in LLM capabilities opens the door to an even more refined notion of human25

preference alignment: personalization. A personalized model should adapt to the preferences and26

needs of a particular user, and provide maximal benefits as it accumulates interactions (see Figure 1).27

Given the expected data sparsity in this setting, beyond a particular user’s data, such personalized28

language systems will likely also rely on historical data from other (similar) users in order to learn29

how to learn from a small set of new user feedback. For instance, personalized learning experiences30

could be crafted by adapting educational chat assistants to the specific learning pace and style of31

individual students based on previous successful interactions with similar students. Customer support32

chatbots could offer more accurate and empathetic responses by drawing on a wealth of previous33

interactions, leading to quicker resolution times and higher customer satisfaction. In healthcare,34

personalized chatbots could provide tailored advice and support to patients based on their users with35

relevant medical history and communication preferences By discovering patterns across users, these36

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.



Figure 1: Standard LLMs require tedious re-prompting to learn a user’s preferences in each session.
PersonalLLM learns a unique user’s diverse preferences to maximize long-term satisfaction.

systems will be able to efficiently optimize their responses, ultimately leading to more effective and37

beneficial conversational AI.38

Departing from standard applications where prompts have a uniform notion of “ground truth” (e.g.,39

question answering), the study of true personalization requires open-ended prompts where among40

many high-quality answers, different users exhibit heterogeneous preferences. While personal41

preferences may vary according to simple features like user age [5, 4] and answer length and42

technicality [21], they also involve more abstract dimensions of culture, politics, and language [17],43

as well as aspects of personality that are difficult to explain [13]. A personalized LLM should be able44

to adapt to subtle, idiosyncratic, and sometimes sensitive differences between user tastes as it gathers45

more interactions.46

Inspired by the vision of a future with personalized AI, we introduce PersonalLLM, a public, open-47

source benchmark designed to adapt LLMs to provide maximal benefits for individual users. In order48

to explore complex differences in user tastes, our benchmark features a set of prompts with many49

high-quality LLM responses (from state-of-the-art LLMs like GPT-4o, Claude 3 Opus, and Gemini50

1.5 Pro), such that humans are expected to express diverse preferences over the responses. Such51

an approach to dataset-building stands in contrast to existing alignment datasets, where responses52

exhibit observable quality differences (see Figure 2). For each prompt and set of responses, our53

dataset also includes scores from a set of 10 reward models with heterogeneous preferences over those54

responses. We leverage these reward models to sample many new “users” (or personal preference55

models) via weighted ensembles of their preferences, and in doing so we are able to simulate an entire56

user base, which we argue to be a critical ingredient in a truly useful personalization benchmark.57

Through extensive analysis of the preferences of these users over our dataset, we show these simulated58

personal preference models to be diverse and non-trivial (e.g., with respect to length, formatting, or59

tone), and illustrate the difficulty of creating such an environment by comparing to the increasingly60

popular persona prompting baseline [4, 5, 15], which produces preferences only half as diverse as61

a set of PersonalLLM users across multiple metrics. Taken together, the prompts, responses, and62

personalities present in PersonalLLM offer an innovative tested for benchmarking personalization63

algorithms as they tailor interactions based on previous interactions with an individual user.64

While fine-tuning and reinforcement learning approaches [29, 26] are effective for aligning to65

population-level preferences, personalization requires a new algorithmic toolkit, as it is not practical66

to gather enough data or store a separate copy of the model or even low-rank adapter weights [12] for67

every user. PersonalLLM offers the versatility necessary to spur development across a range of new68

approaches to personalization: in-context learning (ICL) [3], retrieval augmented generation (RAG)69

[20], ranking agents, efficient fine-tuning, and other adaptation techniques. In our experiments, we70

highlight a particularly salient challenge inspired by the recommendations setting: since the space71

of “actions/responses” is prohibitively large to be able to explore based on interactions on a single72

2



user, we want to learn across users. We model this as a meta-learning problem, where the goal is to73

leverage a wealth of prior interactions from historical users to tailor responses for a new user who do74

not have a significant interaction history.75

Motivated by key methodological gaps in personalizing LLMs, here we summarize our contributions:76

• We release a new open-source dataset with over 10K open-ended prompts paired with 877

high-quality responses from top LLMs.78

• We propose a novel method for sampling “users” (i.e., personal preference models) that,79

unlike existing methods, creates diverse preferences and allows for the simulation of large80

historical user bases.81

• We illustrate new possibilities for algorithmic development in learning across users.82

Our goal in creating the open-source PersonalLLM testbed is to facilitate work on methods to83

personalize the output of an LLM to the individual tastes of many diverse users. We do not claim84

our simulated personal preference models provide a high-fidelity depiction of human behavior,85

but rather offer a challenging simulation environment that provides the empirical foundation for86

methodological innovation in capturing the complex array of human preferences that arise in practice.87

As an analogy, while ImageNet [27] is noisy and synthetic—e.g., differentiating between 120 dog88

breeds is not a realistic vision task—it provides a challenging enough setting that methodological89

progress on ImageNet implies progress on real applications. Similarly, we believe PersonalLLM is a90

reasonable initial step toward the personalization of language-based agents, building on the common91

reinforcement learning paradigm of benchmarking personalization algorithms with simulated rewards92

[34, 14].93

2 PersonalLLM94

Our PersonalLLM testbed is composed of two high-level components: 1) A dataset of prompts,95

each paired with a set of high-quality responses among which humans would be expected to display96

diverse preferences. 2) A method for sampling diverse personal preference models, such that we97

can test methods for personalization using these “personas” as our simulated users. Next, we will98

describe each of them in detail. Our data and code will be publicly available and actively maintained.99

Figure 2: Left: Existing alignment datasets contain prompts paired with multiple responses, where
the majority of people are expected to prefer one specific response (e.g., a harmless response). Right:
Meanwhile, our dataset consists of prompts paired with many high-quality responses, each favored
by different personas. Such a dataset induces diverse preferences in our personal preference models,
creating a testbed to build PersonalLLMs.
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2.1 Dataset100

Since our goal is to study diverse preferences, our first focus was the collection of open-ended101

prompts, similar to a chat setting. As a source of these open-ended prompts, we compiled 37,919102

prompts from Anthropic Helpful-online, Anthropic Helpful-base [1], Nvidia Helpsteer [31], and103

RewardBench [19]. From this set, prompts were filtered to those with a length of 2400 characters104

or fewer as most reward models are limited to 4096 context length. We then randomly drew 10,402105

prompts to form our final set. Our next aim was to collect many high-quality responses for each106

prompt. The hope is that responses vary not in terms of undesirable contents (like misinformation107

or toxicity) or obvious dimensions of helpfulness or length, as is typical in RLHF datasets, but108

instead with respect to interesting dimensions of personal preference like political viewpoint and109

culture, as well as difficult to describe latent features. To achieve this, we generated eight responses110

for each of these 10,402 prompts using a selection of the top models from ChatArena and other111

important benchmarks: GPT-4o, Claude 3 Opus, Gemini-Pro-1.5, Command-R-Plus, GPT-4-112

Turbo, Claude 3 Sonnet, Llama3-70B-Instruct, and Mixtral 8x22B. We split the resulting dataset113

into 9,402 training examples and 1,000 test examples.114

2.2 Simulating Personal Preference Models115

We design our approach to creating simulated PersonalLLM users with several goals in mind.116

First, we aim for PersonalLLM to allow for the simulation of a large number of users, enabling117

study of the full personalization paradigm for applications such as search engines and recommender118

systems [8, 7, 33, 11] wherein a historical database of user data is leveraged to personalize new119

interactions. Next, when applied to our dataset, our preference models should allow for the study120

of alignment based on diverse and complex latent preferences, as opposed to simple attributes121

such as answer length or sensitive and reductive user characteristics, for example race or gender.122

Finally, our evaluation should not rely on GPT4, which can be cost-prohibitive and less than ideal123

for research purposes given model opacity and drift. While human evaluation like that of Kirk et al.124

[17] is a gold standard, wherein fine-grained preference feedback is gathered from a representative125

sample of diverse, multicultural participants, it is impractical or even impossible to get this feedback126

throughout the methodology development cycle, meaning that synthetic personal preference models127

will ultimately be necessary.128

To overcome these challenges, we propose a solution based on a set of strong open-source RLHF129

reward models, which we find to have diverse preferences over our dataset given its differences130

relative to typical monolithic RLHF datasets. Since the number of existing top-quality reward models131

is much smaller than the number of users we would like to simulate, we propose to generate users by132

sampling weightings over the set of reward models, such that the reward score assigned to a (prompt,133

response) pair by a user is a weighted sum of the reward scores assigned by the pre-trained reward134

models. Technical details can be found in Section E.135

3 Scope of Study136

Given space limitations, the remainder of our study is deferred to the Appendix. In summary:137

• In Section A, we offer extensive analysis of simulated populations of PersonalLLM users.138

We find them to produce heterogeneous preferences over our dataset of prompts and re-139

sponses, display reasonable and diverse preferences with respect to syntactic and semantic140

content of prompts, and simulate a user base that better represents diverse human opinions141

than many popular LLMs, without resorting to explicit stereotyping.142

• In Section B, we perform experiments in personalized in-context learning and meta-learning143

personalization across users, highlight key questions and the need for new methodology.144

• In Section D, we discuss the opportunities, risks, and limitations of our work.145

4



References146

[1] Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma,147

Dawn Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath,148

Jackson Kernion, Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny149

Hernandez, Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine150

Olsson, Dario Amodei, Tom Brown, Jack Clark, Sam McCandlish, Chris Olah, Ben Mann,151

and Jared Kaplan. Training a helpful and harmless assistant with reinforcement learning from152

human feedback, 2022.153

[2] Steven Bird and Edward Loper. NLTK: The natural language toolkit. In Proceedings of the ACL154

Interactive Poster and Demonstration Sessions, pages 214–217, Barcelona, Spain, July 2004.155

Association for Computational Linguistics. URL https://aclanthology.org/P04-3031.156

[3] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,157

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel158

Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.159

Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz160

Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec161

Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.162

[4] Louis Castricato, Nathan Lile, Rafael Rafailov, Jan-Philipp Fränken, and Chelsea Finn. Persona:163

A reproducible testbed for pluralistic alignment, 2024. URL https://arxiv.org/abs/2407.164

17387.165

[5] Xin Chan, Xiaoyang Wang, Dian Yu, Haitao Mi, and Dong Yu. Scaling synthetic data creation166

with 1,000,000,000 personas, 2024. URL https://arxiv.org/abs/2406.20094.167

[6] Paul Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei.168

Deep reinforcement learning from human preferences, 2023.169

[7] Abhinandan S Das, Mayur Datar, Ashutosh Garg, and Shyam Rajaram. Google news per-170

sonalization: scalable online collaborative filtering. In Proceedings of the 16th international171

conference on World Wide Web, pages 271–280, 2007.172

[8] James Davidson, Benjamin Liebald, Junning Liu, Palash Nandy, Taylor Van Vleet, Ullas Gargi,173

Sujoy Gupta, Yu He, Mike Lambert, Blake Livingston, et al. The youtube video recommendation174

system. In Proceedings of the fourth ACM conference on Recommender systems, pages 293–296,175

2010.176

[9] Hanze Dong, Wei Xiong, Deepanshu Goyal, Rui Pan, Shizhe Diao, Jipeng Zhang, Kashun177

Shum, and Tong Zhang. Raft: Reward ranked finetuning for generative foundation model178

alignment. arXiv preprint arXiv:2304.06767, 2023.179

[10] Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos180

Guestrin, Percy Liang, and Tatsunori B. Hashimoto. Alpacafarm: A simulation framework for181

methods that learn from human feedback, 2024.182

[11] Michael Färber and Adam Jatowt. Citation recommendation: approaches and datasets. Interna-183

tional Journal on Digital Libraries, 21(4):375–405, August 2020. ISSN 1432-1300. doi: 10.184

1007/s00799-020-00288-2. URL http://dx.doi.org/10.1007/s00799-020-00288-2.185

[12] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,186

Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021.187

[13] EunJeong Hwang, Bodhisattwa Prasad Majumder, and Niket Tandon. Aligning language models188

to user opinions, 2023. URL https://arxiv.org/abs/2305.14929.189

[14] Eugene Ie, Chih wei Hsu, Martin Mladenov, Vihan Jain, Sanmit Narvekar, Jing Wang, Rui Wu,190

and Craig Boutilier. Recsim: A configurable simulation platform for recommender systems,191

2019. URL https://arxiv.org/abs/1909.04847.192

5

https://aclanthology.org/P04-3031
https://arxiv.org/abs/2407.17387
https://arxiv.org/abs/2407.17387
https://arxiv.org/abs/2407.17387
https://arxiv.org/abs/2406.20094
http://dx.doi.org/10.1007/s00799-020-00288-2
https://arxiv.org/abs/2305.14929
https://arxiv.org/abs/1909.04847


[15] Joel Jang, Seungone Kim, Bill Yuchen Lin, Yizhong Wang, Jack Hessel, Luke Zettlemoyer,193

Hannaneh Hajishirzi, Yejin Choi, and Prithviraj Ammanabrolu. Personalized soups: Per-194

sonalized large language model alignment via post-hoc parameter merging, 2023. URL195

https://arxiv.org/abs/2310.11564.196

[16] Jiaming Ji, Mickel Liu, Juntao Dai, Xuehai Pan, Chi Zhang, Ce Bian, Chi Zhang, Ruiyang Sun,197

Yizhou Wang, and Yaodong Yang. Beavertails: Towards improved safety alignment of llm via a198

human-preference dataset, 2023.199

[17] Hannah Rose Kirk, Alexander Whitefield, Paul Röttger, Andrew Bean, Katerina Margatina,200
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A Analyzing PersonalLLM264

Next, in order to validate our testbed, we explore the preferences exhibited by our simulated users265

over the PersonalLLM dataset.266

A.1 Preference Diversity and Comparison to Persona Prompting267

First, we examine whether populations of personal preference models sampled via the method268

outlined in Section 2.2 do in fact display heterogeneous preferences over the prompt/response pair in269

our dataset. In Figure 5 (left 3 columns), we provide experimental results for user bases of 1,000270

PersonalLLM personal preference models sampled with parameters α = [0.01, 0.05, 0.1] and applied271

to the PersonalLLM test set to choose winning responses among the 8 included. The top row displays272

the percentage of prompts in the dataset for which the most popular winning response according273

to the population receives no more than 50%, 75%, and 95% of the population vote; higher values274

indicate more diversity in preferred responses. The middle row shows the percentage of prompts that275

have a given number of responses with at least one winning vote across the population; heterogeneous276

population preferences induce higher concentration on the right side of each plot. On bottom, we the277

overall win rates for each LLM across all users and prompts.278

In the right column, we offer results for a persona prompting baseline. Persona prompting [4, 5, 15]279

is an emerging method for evaluating methods for LLM personalization, wherein an LLM, often280

GPT-4, is prompted to decide which response would be preferred by a person of a particular race,281

gender, age, profession, or other demographic category. While we could argue that such evaluation282

is prima facie discriminatory and reductive, and therefore not a desirable standard for algorithmic283

advancement, especially in sensitive areas, we are also interested in whether persona prompting meets284

the technical challenge of producing a simulation environment with a high degree of heterogeneity.285

For our baseline, we prompt the sfairXC/FsfairX-LLaMA3-RM-v0.1 reward model [9] to score286

responses with respect to 500 personas randomly sampled from PersonaHub Chan et al. [5], a recent287

effort at building a database of personas that are representative of a pluralistic population.288

Observing results in Figure 5, for PersonalLLM personas, we can see that the top response receives289

a majority user vote for only about half of the prompts, while that figure is closer to 90% for the290

persona prompting baseline. Also, for roughly 60% of prompts, at least 5 different answers are291

chosen as the best by at least 1 under our set of personas; for LLM persona prompting, it is roughly292

30%. Finally, our ensembled preference models have a fairly diffuse set of preferences over the293

response-generating LLMs, while persona prompting strongly prefers a subset of 4 models. With294

respect to changes across the left 3 columns, we can observe that as α increases, preferences become295

more uniform. However, if α is set too low, user preferences cluster very tightly around the base296

reward models; we observe this behavior for α = 0.01.297

Figure 3: Analysis of simulated user preferences with respect to prompt and response contents.

A.2 Effects of Semantics and Syntax298

We further analyze the effects of semantics and syntax on the preferences of a simulated user base299

(with α = 0.05 and 1,000 users). We use regression analysis to understand how different features may300

drive the preferences of different users, including semantic response features such as the formality or301

educational value or the expressions of certain emotions (approval, caring, excitement, joy, optimism),302
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as well as syntactic features like length and the use of different parts of speech and formatting. For303

each user, we gather their most and least preferred responses for each of the test prompts, and create304

a binary prediction problem to predict whether a given response is a winning or losing response.305

Responses are embedded using hand-crafted features (based on either syntax or semantics, which are306

studied separately), and a unique logistic regression model is trained for each user. Semantic features307

were captured using pretrained classifiers, while syntactic features were engineered using nltk [2].308

See Appendix XX complete details.309

In Figure 3 (left and middle), for each feature we show a box plot with the resultant regression310

coefficient for each feature across users. A positive coefficient suggests a feature associated with311

winning responses, while a negative coefficients suggests a feature’s role in losing response. A tight312

box indicates homogeneous preferences, while greater spread represents heterogeneity. Here, we313

can see a reasonable mix of heterogeneity and homogeneity across user preferences for different314

features. Semantically, users tend to prefer responses with educational value and dislike highly formal315

responses, although the size of these preferences varies. Encouragingly, syntactic preferences do not316

seem to be driven by uniform preferences for simple features like length or the presence of formatting317

list bullets or lists.318

In Figure 3 (right), we compare the entropy in the population preferences over the responses to319

a given prompt based on keywords, comparing words we would expect to inspire heterogeneity320

(e.g., imagine, opinion, poem) to prompts beginning with who, when, and where, which evoke more321

objective answers. We can see that the presence of these subjective cues leads to a more diverse322

set of preferences than those seeking simple entity or date responses. Such diversity among the323

prompts creates a setting where an algorithm must not only learn how to personalize, but also when324

to personalize.325

A.3 Comparison to Human Preferences326

Finally, to understand how our simulated personal preference models over relate to human preferences327

over text responses, we surveyed a population of our simulated personal preference models on a set of328

questions with responses where a large and diverse set of humans have given their preferences in the329

past, the OpinionQA dataset, emulating the work of [28]. OpinionQA is an appropriate validation set330

for our personas given that its broad coverage of topics (e.g., science, economics, politics, romance,331

and many other topics) aligns with the open-domain nature of our prompt set. Following this previous332

work, we calculate the representativeness score of the opinion distribution given by our simulated333

preference models using the Wasserstein distance of the synthetic population preferences from that334

of real human populations. To have a high representativeness score, our simulated user population335

would have to display heterogeneous preferences over question/response sets where humans do so,336

and produce homogeneous (and matching) preferences in cases where humans do the same.337

Our population of simulated users produces a score of 0.839 with respect to the overall population of338

the US, higher than any LLM in the original study and near as representative of the overall population339

as some real, large demographic group. Further, in Table 1 we can see that our simulated users340

produce opinions that better represent a wide range of important (and sometimes protected) groups341

according to demographic attributes such as race, political leaning, religion, marital status, and more.342

In fact, this is the case for 59 of 60 demographic groups in their study (see Appendix Section F).343

A.4 Summary of Analysis344

Taken together, these results show that our simulated user reward models: 1) produce heterogeneous345

preferences over our dataset of prompts and responses, considerably more so than persona prompting346

an LLM, 2) display reasonable and diverse preferences with respect to syntactic and semantic content347

of prompts, and 3) simulate a user base that better represents diverse human opinions than many348

popular LLMs, without resorting to explicit stereotyping.349

B Personalization Experiments350

The personalization setting is often plagued by a lack of data, as most users will have a relatively351

sparse interaction history, and many fewer datapoints than is required to effectively fine-tune an LLM.352

Two first-order problems emerge from such an environment: 1) how to best leverage small amounts of353
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AI21 Labs OpenAI PersonalLLM
Demographic j1-jumbo j1-grande-v2 ada text-davinci-003 Ours
Asian 0.814 0.806 0.819 0.708 0.839
Black 0.820 0.812 0.823 0.702 0.833
Hispanic 0.820 0.810 0.824 0.706 0.839
White 0.807 0.794 0.817 0.699 0.832
Conservative 0.796 0.780 0.810 0.684 0.817
Liberal 0.792 0.788 0.799 0.721 0.833
Democrat 0.800 0.795 0.804 0.719 0.834
Republican 0.791 0.776 0.805 0.680 0.812
Muslim 0.794 0.788 0.792 0.697 0.816
Roman Catholic 0.816 0.806 0.823 0.702 0.835
Less than $30,000 0.828 0.813 0.833 0.693 0.838
$100,000 or more 0.797 0.790 0.807 0.708 0.831
18-29 0.818 0.808 0.828 0.700 0.840
65+ 0.792 0.779 0.800 0.699 0.818
Divorced 0.809 0.796 0.817 0.696 0.830
Married 0.810 0.799 0.819 0.699 0.832

Table 1: Representativeness scores in relation to real human opinions from important demographic
groups for different LLMs, as well as our PersonalLLM population.

user-specific data for personalized adaptation and 2) how to lookup similar users based on language354

feedback.355

In order to illustrate how researchers might approach these problems, we perform experiments in two356

modal settings for LLM personalization research. First, we explore a scenario where we have access to357

a short but relevant interaction history for the user, and we aim to efficiently leverage that interaction358

history through ICL. Then, we explore a more complex setting that fully leverages the advantages359

of PersonalLLM, where the current user possibly has no relevant interaction history, and we must360

instead retrieve relevant interactions from similar users in a database. Overall, our results validate the361

solid empirical foundations of PersonalLLM while highlighting salient algorithmic questions and362

the fact that there is much room for improvement in terms of personalization performance.363

All experiments simulate a chatbot using in-context learning to personalize responses for a test set364

of new users. Our test set simulates 1,000 personal preference models (or “users”) drawn with365

α = 0.05 (as in the analysis in Section A), and each user is associated with one test prompt from366

the PersonalLLM test split. For a new user with an associated test prompt, the goal is to use367

ICL to produce a response to maximize the reward (and win rate vs. GPT4o) given by the user’s368

personal preference model (i.e., weighted ensemble of reward models). Our underlying chatbot is369

Llama3-8B-Instruct. Further details for each individual experiment are given below.370

B.1 Personalized In-Context Learning371

While ICL for broad alignment has been studied to some extent [22], the problem may be different372

when the underlying preference model is idiosyncratic and may cut against pretraining and RLHF373

dataset biases. In our initial set of experiments, we focus on a setting wherein we have a small set of374

useful data for the sake of personalizing the response to a given query, i.e., feedback gathered from375

the same user on similar prompts. By doing so, we can study key questions related to personalized376

inference with ICL, which may form the basis for more complex systems involving, e.g., looking up377

similar users.378

B.1.1 Experiment Details379

For each of our 1,000 test users, each with their own test prompt, we build a short but relevant interac-380

tion history by retrieving 5 other prompts based on embedding similarity. We build a winning/losing381

response pair for each prompt based on each user’s most and least preferred answers from the 8382

models in our dataset. In order to establish baseline results on key questions in personalization, we383

include several baselines for how these interaction samples are leveraged in-context during inference:384
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• Winning and Losing: Both the winning and losing responses are included.385

• Winning only: Only the winning response is included.386

• Losing only: Only the losing response is included.387

• Losing only (Mislabeled): Only the losing response is included, and it is mislabeled as a388

winning response.389

Inference is performed using 1, 3, and 5 such examples (see Appendix I for exact templates), and390

evaluated by scoring with each user’s (weighted-ensembled) preference model. We also compare to a391

zero-shot baseline, with no personalization.392

B.1.2 Results393

Results are shown in Figure 4. We can see that the best performance comes from ICL with only394

winning examples. This underlines the outstanding issue of training LLMs to not only mimic winning395

responses in-context, but also leverage the contrast between winning and losing responses, especially396

when the differences may not described in the model’s training data. Any amount of examples, even397

incorrectly labeled, are helpful relative to zero-shot; this may be unsurprising, as all 8 models in our398

dataset are stronger than our 8B parameter chat model. One interesting result lies in the comparison399

between Losing Only and Losing Only (Mislabeled). While the mislabeled examples may help400

performance versus a zero-shot baseline (once again because they are from a stronger underlying401

LLM), Llama-8B-Instruct gains more from having these relatively strong losing responses labeled as402

losing. Overall, our findings reflect that a model trained for broad alignment does have some of the403

necessary capabilities to do idiosyncractic personalization using only in-context examples, but that404

much work is left in order to fully leverage this language feedback.405

Figure 4: Results across different personalization algorithms. (Left) Test users are accompanied by a
relevant interaction history with pairwise preference feedback, and we explore the LLM’s ability to
exploit this information in context. (Right) Test users have interaction histories that are not relevant
to their test prompt, and we probe methods for embedding users based on language feedback to
retrieve useful examples for ICL.

B.2 Learning Across Users406

Having established some empirical foundations for in-context personalization with PersonalLLM, we407

next highlight a particularly significant challenge prevalent in practice that has been under-explored408
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in the LLM community: the cold-start problem. When a new user with limited prior interaction409

data arrives, or a user inquires about a new topic, prior user interactions alone cannot inform a410

satisfactory response. We model this challenge as a meta-learning problem, where the goal is to411

utilize a rich reservoir of prior interactions with a diverse set of users. We are motivated by real-world412

scenarios where we have access to a proprietary database containing extensive interaction histories413

from previous users. When a new user arrives, our goal is to utilize this rich, heterogeneous dataset414

to provide the best possible response to the new user’s query despite having only limited initial415

interactions with them that may not be relevant to the current query. This setting resembles typical416

recommendation systems, but ”actions” are now defined over the space of natural language outputs417

instead of a fixed set of items.418

B.2.1 Experiment Details419

For each of our 1,000 test users, we build a short but, in contrast to our first experiment, possibly420

irrelevant interaction history by retrieving 5 random prompts. Winning/losing response pairs (i.e.,421

preference feedback) are selected as before. In order to supplement these interaction histories, we422

sample a historical database of 10,000 users (also with α = 0.05), each with a set of 50 prompt,423

winning response, losing response triplets from the train set, where the prompts are selected randomly424

and the winning and losing responses are selected as the historical user’s highest and lowest scoring425

among the 8.426

We compare 3 methods for embedding users for lookup:427

• Winning minus Losing: Average direction in embedding space between winning and losing428

responses for each prompt.429

• Winning only: Average direction in embedding space for winning responses.430

• Losing only: Average direction in embedding space for losing responses.431

For each test user, we build a set of candidate prompt/feedback data by retrieving the 20 most similar432

historical users based on these embeddings, and then of the pool created by those users’ interaction433

histories, retrieving k = [1, 3, 5] examples for in-context learning based on prompt embedding434

similarity to the user’s test prompt. We compare to a Self-ICL baseline, where the test user’s possibly435

irrelevant prompt/feedback history is used for ICL. Evaluation is done as before.436

B.2.2 Results437

Our results are shown in Figure 4. We find that using the strongest user embedding method, which438

most fully exploits the available pairwise preference feedback, meta-learning can beat the self-ICL439

baseline. This positive result for meta-learning highlights the opportunity created by leveraging440

historical user data, and the feasibility of embedding users based on a small amount of language441

feedback. However, the gain from our relatively naive method is small, illustrating the need for442

methodological innovation in building such systems.443

C Related Work444

Preference Datasets Recent developments in large language models (LLMs) emphasize the im-445

portance of aligning LLMs based on preference feedback rather than merely pre-training on large446

corpora of language in a self-supervised manner. Consequently, there has been a surge in the creation447

of open-source datasets [1, 23, 18, 10, 19] designed to support research on alignment methodologies.448

A significant limitation in the existing datasets is that they mainly enable fine-tuning to a single449

high-level notion of alignment that is uniform across the population, such as instruction-following in450

RLHF [24] and helpfulness and harmlessness [1].451

Personalization Personalization has been extensively researched across different fields, with452

previous datasets primarily focusing on applications such as search engines and recommender453

systems [8, 7, 33, 11]. Recently, given the success of population-level alignment, researchers have454

begun to develop testbeds and methodology wherein the goal is to achieve a more granular level of455

personalized alignment for LLMs [4, 15, 17, 21]. Much of this work has focused on alignment for real456

or synthetic personas based on high-level attributes like race or occupation [4, 5], or high-level notions457
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of alignment with respect to response qualities like length, technicality, and style. For example, Jang458

et al. [15] decomposes personal preferences along a handful of easily observable dimensions and459

performs personalized generation by merging models trained with different preference data based on460

these dimensions. Evaluation is often done by prompting GPT4 to select the preferred response based461

on preferences stated in its prompt [15, 4]. In an effort to highlight the need for broad participation462

and representation in LLM alignment, the PRISM dataset collects user-profiles and personalized463

preference feedback from over 1,000 diverse human participants.464

D Discussion465

We present PersonalLLM, a dataset and benchmark meant to spur the development of algorithms466

for LLM personalization, a critical and under-explored area with significant potential for enhancing467

interaction quality. We discuss the potential of the empirical foundation we develop and highlight468

potential risks and limitations.469

Meta-Learning for Personalization We hope to encourage more work in the meta-learning470

setting, as exemplified by our experiments. This setting mirrors many real-world use cases where an471

organization has a large proprietary dataset from historical users but a very limited interaction history472

with this particular user. Prior work on cold-start problems has focused on the task of recommending473

discrete content items from a media (or other) library. Extending and developing these techniques for474

LLMs is an exciting direction for future research.475

Risks and Limitations We must consider the risks and limitations associated both with the release476

of our original benchmark dataset, as well as the larger goal of LLM personalization.477

With respect to PersonalLLM, we note all prompts and responses have not been manually inspected478

for quality or safety by a human, although prompts are sourced from existing, reputable datasets,479

and responses are generated from state-of-the-art language models that have (presumably in the case480

of black box models) undergone safety alignment. Our benchmark is also limited with respect to481

the realism of the personas created by weighting reward models, as there exists much analysis left482

undone as to the preferences being displayed.483

On a broader note, the goal of LLM personalization brings particular risks. One common concern is484

the creation of filter bubbles, where the model’s outputs become increasingly tailored to the user’s485

past existing preferences, potentially reinforcing political beliefs and biases, isolating the user from486

opposing viewpoints, and narrowing the diversity of information presented. Another potential issue is487

stereotyping, where the model may perpetuate or even amplify biases based on the user’s demographic488

information or behavior patterns. Feedback loops may also emerge, where the model behavior affects489

human behavior and vice versa, leading to negative personal and unknown societal consequences.490

Personification risks arise, as over time the user may develop a pseudo-personal relationship with491

the user, potentially fostering over-reliance on the LLM for advice or companionship. Finally, if492

used by malicious actors, personalized LLMs can be used to manipulate and extort individuals by493

exploiting personal levers. Given these and many other predictable (and unpredictable) potential494

risks, it is important that any efforts at LLM personalization are accompanied by research in robust495

transparency mechanisms and safeguards for personalization algorithms. Developing an empirical496

foundation for such efforts is another promising avenue for future work.497

Future Directions Given that LLMs have only recently reached a level of capabilities meriting their498

widespread adoption for industrial and personal use, the study of LLM personalization is necessarily499

in its earliest stages of development. It follows that there are many important and exciting avenues500

for future research, with respect to datasets, methodology, fairness, safety, and other aspects of501

responsible and reliable machine learning deployment. Since PersonalLLM is the first dataset to502

enable the study of complex personalized preferences expressed over many high-quality responses503

(to our knowledge) by a large, diverse user base, the benchmark can be extended in many ways. For504

example, one might imagine a distribution shift scenario, where over time, personal preferences shift,505

and the personalization algorithm must balance stability and plasticity. Also, we hope that our testbed506

drives the development of even more realistic personalization datasets and evaluation methods that507

more closely mirror the online and non-i.i.d. nature of the conversational setting and more closely508

capture the true nuance and diversity of human personal preferences. Finally, continued work in509

personalization algorithms must be accompanied by a proportional amount of work in personalization510
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safety, fairness, and reliability. Future research may consider different aspects of the deployment511

pipeline (e.g., model architecture, data collection) and interaction model (e.g., UI/UX) with these512

concerns in mind.513

E Details on Simulating Personal Preference Models514

For an input prompt x ∈ X , an LLM produces output response y ∈ Y , where X and Y are the set515

of all-natural language. Then, a preference model R : X × Y → R assigns a reward score to the516

response given to the prompt, with higher scores indicating better responses. Next, consider a set517

of B base reward models, denoted as RMb, b = 1, . . . , B, and a set of k B-dimensional weightings,518

which represent a set of personal preference models. Then, the preference model corresponding519

to user i is defined by an weighted average of these B base RM1,RM2, . . . ,RMB , with weights520

w1, w2, . . . , wB :521

Ri(x, y) =

B∑
b=1

wi
b · RMb(x, y) (1)

For our base reward models {RMb}Bb=1, we select 10 reward models with strong performance on522

RewardBench, an open source bnechmark for evaluating reward models. These reward models523

are built on top of popular base models such as Llama3, Mistral, and Gemma (see Appendix G).524

We evaluate each (prompt, response) pair in the train and test set with each model so that for any525

personality created in this manner, each (prompt, response) pair in the dataset can be scored via a526

simple weighting.527

There are many valid ways to sample the B-dimensional weighting vectors. As a simple starting point,528

we propose to sample preference models from a Dirichlet distribution with a uniform concentration529

parameter across all classes (w ∼ Dirichlet(α)). As α becomes very small, the preference models530

converge towards the 10 base reward models; as it becomes large, preferences become unimodal.531

Such a parameter allows us to simulate user bases with different underlying preference structures532

(see Section A for more details).533

F Additional Simulated User Analysis534

Tables 2 and 3 include representativeness scores across all 60 demographic groups in the OpinionQA535

study.536

G Additional Dataset Details537

G.1 Dataset538

We plan to open source a dataset with 10,402 rows of prompts, each with 8 diverse responses and539

accompanying scores from 10 reward models.540

G.2 8 Models Responses541

The 8 responses from each model were sampled with a temperature of 1.0, and a maximum length of542

512 from OpenRouter. We chose a maximum of 512 token length because some reward models have543

limited context length.544

G.3 Reward Models545

The 10 reward models we collected are from RewardBench.546

• weqweasdas/RM-Gemma-2B [9]547

• sfairXC/FsfairX-LLaMA3-RM-v0.1 [9]548

• OpenAssistant/reward-model-deberta-v3-large-v2549

• PKU-Alignment/beaver-7b-v1.0-cost [16]550
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Figure 5: Probing the heterogeneous preferences across PersonalLLM prompt/responses given
different settings of α, and comparing to a persona prompting baseline. Top: For a population of
simulated users, the percentage of each population’s vote share given to the most common winning
response for each prompt. Middle: A histogram showing the number of resonses that recieve at
least one vote from a simulated population for each prompt. Bottom: Average win rates across the
population for the 8 LLMs in our dataset.

• hendrydong/Mistral-RM-for-RAFT-GSHF-v0 [9]551

• OpenAssistant/oasst-rm-2-pythia-6.9b-epoch-1552

• OpenAssistant/oasst-rm-2.1-pythia-1.4b-epoch-2.5553

• weqweasdas/RM-Mistral-7B [9]554

• Ray2333/reward-model-Mistral-7B-instruct-Unified-Feedback555

• weqweasdas/RM-Gemma-7B [9]556

All the reward models are obtained from Huggingface on RewardBench’s leaderboard and are557

instantiated as per RewardBench’s codebase, where reward models are submitted and edited by the558

contributors themselves. https://huggingface.co/spaces/allenai/reward-bench [19]559

G.4 Additional Persona Analysis Details560

All features are scored using pre-trained models from Huggingface.561

• Formality is scored using: s-nlp/roberta-base-formality-ranker562

• Educational value is scored using: HuggingFaceFW/fineweb-edu-classifier563

• Emotion is scored using: SamLowe/roberta-base-go emotions564

H Additional Experiment Details565

For our meta-learning approach (Meta-Learning), we consider a database of previous interactions566

between users and the language model. Specifically, for a particular user, we have M interactions,567

each consisting of:568

1. A prompt given to the language model.569
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AI21 Labs OpenAI PersonalLLM
Demographic j1-jumbo j1-grande-v2 ada text-davinci-003 Ours
Northeast 0.811 0.802 0.819 0.704 0.838
Midwest 0.810 0.797 0.820 0.701 0.833
South 0.818 0.805 0.827 0.696 0.835
West 0.813 0.802 0.821 0.704 0.839
18-29 0.818 0.808 0.828 0.700 0.840
30-49 0.814 0.804 0.823 0.702 0.837
50-64 0.809 0.797 0.818 0.696 0.830
65+ 0.792 0.779 0.800 0.699 0.818
Male 0.814 0.802 0.826 0.697 0.837
Female 0.810 0.800 0.816 0.702 0.833
Less than high school 0.828 0.812 0.835 0.685 0.832
High school graduate 0.816 0.799 0.826 0.691 0.832
Some college, no degree 0.814 0.804 0.823 0.701 0.836
Associate’s degree 0.811 0.800 0.821 0.700 0.834
College graduate/some postgrad 0.802 0.794 0.810 0.710 0.833
Postgraduate 0.794 0.789 0.800 0.717 0.831
Yes 0.814 0.802 0.823 0.700 0.836
No 0.816 0.812 0.818 0.706 0.833
Married 0.810 0.799 0.819 0.699 0.832
Divorced 0.809 0.796 0.817 0.696 0.830
Separated 0.814 0.801 0.818 0.694 0.830
Widowed 0.800 0.785 0.807 0.694 0.819
Never been married 0.819 0.808 0.828 0.700 0.841
Protestant 0.810 0.797 0.820 0.694 0.828
Roman Catholic 0.816 0.806 0.823 0.702 0.835
Mormon 0.789 0.777 0.802 0.696 0.819
Orthodox 0.773 0.762 0.781 0.693 0.803
Jewish 0.792 0.785 0.800 0.707 0.824
Muslim 0.794 0.788 0.792 0.697 0.816
Buddhist 0.782 0.777 0.783 0.709 0.821
Hindu 0.796 0.794 0.789 0.707 0.816
Atheist 0.774 0.771 0.784 0.714 0.822
Agnostic 0.785 0.781 0.794 0.717 0.828
Other 0.794 0.790 0.801 0.703 0.824
Nothing in particular 0.815 0.802 0.824 0.700 0.839
More than once a week 0.807 0.793 0.816 0.690 0.824
Once a week 0.811 0.798 0.819 0.696 0.829
Once or twice a month 0.818 0.807 0.825 0.699 0.833
A few times a year 0.817 0.809 0.824 0.705 0.837
Seldom 0.811 0.800 0.821 0.703 0.835
Never 0.806 0.795 0.816 0.701 0.836

Table 2: Representativeness scores in relation to real human opinions from important demographic
groups for different LLMs, as well as our PersonalLLM population.

2. A response generated by one of the eight different language models (treated as eight different570

arms in bandit literature).571

3. Feedback provided by the user, representing true values from the user’s reward function572

(rather than binary ratings).573

Here, M is a random variable uniformly distributed over the integers in the interval [25, 50).574

Now, consider a new user u with a new prompt p. For this new user, we have limited interactions—m575

interactions, where m is a random variable uniformly distributed over the integers in the interval576

[1, 5]. Our goal is to use the previous user dataset and the interactions with the new user to generate a577

high-quality response for prompt p. We achieve this by finding the most similar and useful (prompt,578
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AI21 Labs OpenAI PersonalLLM
Demographic j1-jumbo j1-grande-v2 ada text-davinci-003 Ours
Republican 0.791 0.776 0.805 0.680 0.812
Democrat 0.800 0.795 0.804 0.719 0.834
Independent 0.812 0.801 0.821 0.701 0.838
Other 0.820 0.804 0.832 0.693 0.839
Less than $30,000 0.828 0.813 0.833 0.693 0.838
$30,000-$50,000 0.814 0.802 0.822 0.698 0.834
$50,000-$75,000 0.807 0.796 0.816 0.703 0.833
$75,000-$100,000 0.800 0.791 0.811 0.705 0.829
$100,000 or more 0.797 0.790 0.807 0.708 0.831
Very conservative 0.797 0.778 0.811 0.662 0.811
Conservative 0.796 0.780 0.810 0.684 0.817
Moderate 0.814 0.804 0.822 0.706 0.838
Liberal 0.792 0.788 0.799 0.721 0.833
Very liberal 0.785 0.782 0.791 0.712 0.825
White 0.807 0.794 0.817 0.699 0.832
Black 0.820 0.812 0.823 0.702 0.833
Asian 0.814 0.806 0.819 0.708 0.839
Hispanic 0.820 0.810 0.824 0.706 0.839
Other 0.801 0.783 0.807 0.681 0.818

Table 3: Representativeness scores in relation to real human opinions from important demographic
groups for different LLMs, as well as our PersonalLLM population.

response, rating) tuples in the dataset and appending them, along with the new user’s interactions579

(prompt, response, rating), to the context for the language model to generate the response.580

To enable efficient search and retrieval, we concatenate each (prompt, response, rating) tuple and581

feed it into the OpenAI API to generate an embedding of size 256. Assuming we have N users, the582

embedding table has a shape of (N, 49), where some entries are null because M is not always 49.583

We replace the null entries with zero vectors and create a mask to identify these null entries. This584

transforms the embedding table into a tensor of shape (N, 49, 256).585

For each of the m (prompt, response, rating) tuples of the new user, we compute the cosine similarity586

with this tensor table, apply the zero mask, and obtain a similarity score table of shape (N, 49). We587

then extract the top k entries with the highest similarity scores.588

This process ensures that we can effectively utilize historical interactions to enhance the response589

quality for new users, leveraging similarities in past prompts, responses, and user feedback.590

H.1 Hardware591

We used two nodes of 8x A100 GPUs each. The evaluation pipeline is tested to run on 1 A100 GPU592

with 80GB of VRAM.593
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I Example Dataset594

I.1 Sample Evaluation Preference Dataset595

person weight : [ 0.99999855, 2.16500320e-29,..., 1.0112404759e-90 ]
prompt 1 : What is the best way to search for a job?
response 1 a : There are several effective ways to search for a job...
response 1 b : There’s no single ”best” way to find a job, as the most effective approach depends ...
chosen 1 : b
...
prompt 5 : The fifth prompt given to the person.
response 5 a : The first response option for prompt 5.
response 5 b : The second response option for prompt 5.
chosen 5 : The chosen response for prompt 5.
user history length : 5
test prompt : What card games can suggest playing with my kids? They are 8 and 10.
best response : Here are some card games suitable for your children’s ages (8 and 10): 1. Uno...
best response model : 1. **Go Fish**: - **Objective**: Collect pairs of cards. - ...
best response reward : 2.3231
gpt4o response : The response generated by GPT-4
gpt4o reward : -0.1232
person id : 1

596

I.2 Sample Evaluation Reward Dataset597

person weight : [ 0.99999855, 2.16500320e-29,..., 1.0112404759e-90 ]
prompt 1 : What is the best way to search for a job?
response 1 : There are several effective ways to search for a job...
reward 1 : -0.1232
...
prompt 4 : The fifth prompt given to the person.
response 4 : The first response option for prompt 5.
reward 4 : The reward for prompt, response 5.
user history length : 4
test prompt : What card games can suggest playing with my kids? They are 8 and 10.
best response : Here are some card games suitable for your children’s ages (8 and 10): 1. Uno...
best response model : 1. **Go Fish**: - **Objective**: Collect pairs of cards. - ...
best response reward : 2.3231
gpt4o response : The response generated by GPT-4
gpt4o reward : -0.1232
person id : 1

598
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J Baselines Implementation599

J.1 Result Analysis600

Our baseline methods are demonstrably simple, aiming to showcase the utility and realism of our601

dataset, as well as its capacity to generate rewards for testing personalization algorithms. We have602

explored two families of such algorithms.603

We know that the output response is influenced by both the prompt and the method used to select604

previous interactions as context samples. An example is how ChatGPT utilizes Memory, which605

are summarized versions of conversations that are remembered and passed in as context in future606

conversations. Our baseline results are not groundbreaking due to the random selection of previous607

interactions. We encourage future methodological research to improve upon our Best-of-8 baseline,608

ideally using a small model.609

J.2 Non Meta Learning610

For non meta learning, we limit ourselves to using context from the same row. E.G., for one shot, we611

draw one past conversation from the previous interaction and pass that as context to the prompt.612

Example for three shots.613

prompt = "Below are some examples of the user’s past conversation614

history with a chosen response per prompt."615

history = []616

shots = 3617

for I in range(shots):618

past_prompt = row["prompt_" + str(I + 1)]619

chosen_response = row["chosen_" + str(I + 1)]620

history.append(621

"User: "622

+ past_prompt623

+ "\nAssistant: "624

+ chosen_response625

+ "\n\n"626

)627

# Check if the total length of the history exceeds the maximum token limit628

while len(’’.join(history)) > 6000:629

# If it does, remove the earliest history630

history.pop(0)631

prompt += ’’.join(history)632

prompt += "Use the contexts above to generate a good response for633

the user prompt below."634
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J.3 Meta Learning635

Below is an example of Embedding search meta-learning.636

# Initialize the Full Prompt with instructions and a heading for current user’s histories637

full_prompt = "Below are some examples of the user’s past conversation history"638

full_prompt += "###Current User Histories###\n\n"639

640

# Loop through each user interaction641

for each interaction in user_history:642

full_prompt += ’---Current User Interaction---\n\n’643

full_prompt += ’User:\n’ + past_prompt + ’\n\n’644

full_prompt += ’Assistant:\n’ + past_response + ’\n\n\n’645

646

# Extract similar pairs from the training data647

similar_pairs = extract_similar_pairs(training_data, current_interaction)648

649

# Randomly sample the similar pairs650

sampled_pairs = random_sample(similar_pairs, required_samples)651

652

# Append similar users’ interaction histories653

full_prompt += "###Most Similar Users’ Histories From Database###\n\n"654

for each pair in sampled_pairs:655

full_prompt += ’---Similar User Interaction---\n\n’656

full_prompt += ’User:\n’ + similar_prompt + ’\nAssistant:\n’ + similar_response + ’\n\n’657

658

# Finalize the prompt with instructions for generating a response659

full_prompt += "Use the above histories to generate a response for the following prompt"660

full_prompt += ’User:\n’ + test_prompt + ’\n\nYour Response:’661

662

# Return the full prompt663

return full_prompt664
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