
Uniform Wrappers: Bridging Concave to
Quadratizable Functions in Online Optimization

Mohammad Pedramfar
Mila - Quebec AI Institute/McGill University
mohammad.pedramfar@mila.quebec

Christopher J. Quinn
Iowa State University

cjquinn@iastate.edu

Vaneet Aggarwal
Purdue University

vaneet@purdue.edu

Abstract

This paper presents novel contributions to the field of online optimization, par-
ticularly focusing on the adaptation of algorithms from concave optimization to
more challenging classes of functions. Key contributions include the introduction
of uniform wrappers, a class of meta-algorithms that could be used for algorith-
mic conversions such as converting algorithms for convex optimization into those
for quadratizable optimization. Moreover, we propose a guideline that, given a
base algorithm A for concave optimization and a uniform wrapperW , describes
how to convert a proof of the regret bound of A in the concave setting into a
proof of the regret bound ofW(A) for quadratizable setting. Through this frame-
work, the paper demonstrates improved regret guarantees for various classes of
DR-submodular functions under zeroth-order feedback. Furthermore, the paper
extends zeroth-order online algorithms to bandit feedback and offline counter-
parts, achieving notable improvements in regret/sample complexity compared to
existing approaches.

1 Introduction

The optimization of continuous DR-submodular functions has become increasingly prominent in
recent years. This form of optimization represents an important subset of non-convex optimization
problems at the forefront of machine learning and statistics. These challenges have numerous real-
world applications like revenue maximization, mean-field inference, and recommendation systems,
among others [Bian et al., 2019, Hassani et al., 2017, Mitra et al., 2021, Djolonga and Krause, 2014,
Ito and Fujimaki, 2016, Gu et al., 2023, Li et al., 2023].

A natural starting point for DR-submodular maximization is to begin with a convex optimization
algorithm and adapt it to the setting of DR-submodular functions. Online Convex Optimization
(OCO) is extensively utilized across various fields due to its numerous practical applications and
robust theoretical underpinnings. The tools from the area of online convex optimization have been
applied to many online non-concave optimization algorithms, e.g., to converge to stationary points
in online non-concave optimization [Yang et al., 2018], or algorithms with approximation guaran-
tees for DR-submodular optimization [Chen et al., 2018, Niazadeh et al., 2020, Zhang et al., 2022,
Pedramfar et al., 2023].

In this paper, we focus on a large class of functions, namely the class of quadratizable functions,
first introduced in [Pedramfar and Aggarwal, 2024a]. Quadratizable functions includes special sub-
classes of non-convex/non-concave functions where the offline constrained optimization problem
is NP-hard to solve but we can find an α-approximation of the optimal value in polynomial time.
Indeed, it is shown that this class of online upper quadratizable optimization includes up-concave

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

optimization (a generalization of DR-submodular and concave optimization) in the following cases:
(i) monotone γ-weakly µ-strongly DR-submodular functions with curvature c over general convex
sets, (ii) monotone γ-weakly DR-submodular functions over convex sets containing the origin, and
(iii) non-monotone DR-submodular optimization over general convex sets.

Even though the tools from OCO have proven effective in more challenging classes, much of the
past work along these lines take inspiration from OCO and manually designing new algorithms and
analyzing them specific to each problem setting. This raises the following question

When and how can we adapt algorithms from the (simpler) setup of online convex
optimization into algorithms for online optimization over more general classes of
functions?

In this paper, we try to provide partial solutions to this question for adapting OCO algorithms to
algorithms for online quadratizable optimization. The notion of quadratizability is built upon a gen-
eralization of the defining condition f(x)− f(y) ≥ ⟨∇f(y),x−y⟩ of convex functions. This sim-
ilarity with convex functions is a starting point which allows us to define a class of meta-algorithms
called “uniform wrappers”. Uniform wrappers provide a straightforward way to convert OCO al-
gorithms into algorithms that can handle quadratizable functions. We also develop a guideline to
convert the existing proofs for regret bounds of the base algorithms in the convex setting into regret
bounds of the new algorithms over quadratizable functions.

We note that for a specific class of algorithms, this question was partly addressed in [Pedramfar and
Aggarwal, 2024a]. Specifically, as we will discuss in Appendix E, their result can be formulated
as a special case of ours, where they assume that the starting algorithm is a deterministic first order
online algorithm with semi-bandit feedback. This condition is too restrictive to facilitate adapting
many of the ideas in the OCO literature. For example, their result could not be applied to Follow-
The-Perturbed-Leader type algorithms, or more generally any algorithm that is not deterministic.
Another important setting where their result could not be applied is the setting with zeroth-order
feedback. Without using a zeroth-order algorithm as the base algorithm, we can obtain zeroth-order
results by converting first-order algorithms to zeroth-order ones. However, such conversion comes
at a cost. For example, in the convex case, taking an optimal first-order algorithm such as Online
Gradient Descent and converting it into a zeroth-order algorithm will result in sub-optimal O(T 3/4)
regret [Flaxman et al., 2005]. In contrast, using our framework, starting from a zeroth-order base
algorithm, we obtain O(T 2/3) regret for zeroth-order feedback. In particular, our approach recovers
the result of [Wan et al., 2023] while their approach could not. (See Table 1.)

In this paper, we take a step further and can handle broader classes of algorithms, including the
more challenging setting of zeroth order feedback. Note that, without limiting ourselves to classes
of algorithms such as the one discussed in [Pedramfar and Aggarwal, 2024a], there is not much hope
of obtaining a single theorem that captures conversions of any OCO algorithm (and proof) into one
for online quadratizable optimization. Instead, we provide a guideline that captures the process of
converting algorithms and proofs for convex optimization into ones for quadratizable optimization.

As an application of our framework, we propose a variant of a bandit convex optimization algorithm
that was introduced in [Saha and Tewari, 2011] as the base algorithm, namely Zeroth Order Fol-
low the Regularized Leader (ZO-FTRL) and demonstrate how it can be converted using uniform
wrappers (denoted byW) to obtain 3 algorithms for function classes (i)-(iii) mentioned above. See
Tables 1 and 2 for details. Note that ZO-FTRL andW(ZO-FTRL) are zeroth order, but they are
not bandit feedback algorithms. We also extend the results to those with bandit feedback, as well as
derive sample complexity guarantees for the offline algorithm.

We consider 3 classes of weakly DR-submodular functions, specifically (i) monotone γ-weakly
µ-strongly DR-submodular functions with curvature c over general convex sets, (ii) monotone γ-
weakly DR-submodular functions over convex sets containing the origin, and (iii) non-monotone
DR-submodular optimization over general convex sets. The main contributions in this work include:

1. We develop a general framework for converting algorithms and their regret guarantees from on-
line convex concave optimization to online quadratizable optimization. Conversion of the algo-
rithm could be applied to any online optimization algorithm, and the conversion of the proof is
described using a general guideline.

2

Table 1: Online up-concave maximization

F Set Feedback Reference Appx. # of queries logT (α-regret)

M
on

ot
on

e

0
∈
K

∇F
Full Information stoch.

[Zhang et al., 2022] (*) 1− e−γ 1 1/2
[Pedramfar et al., 2024a] 1− e−1 T θ(θ ∈ [0, 1/2]) 2/3− θ/3

[Pedramfar and Aggarwal, 2024a] (*) 1− e−γ 1 1/2

Semi-bandit stoch. [Pedramfar et al., 2024a] 1− e−1 - 3/4
[Pedramfar and Aggarwal, 2024a] (*) 1− e−γ - 2/3

F

Full Information

det. [Pedramfar and Aggarwal, 2024a] (*) 1− e−1 2 1/2
stoch. † Theorem 5 1− e−1 1 2/3

stoch. [Pedramfar et al., 2024a] 1− e−1 T θ(θ ∈ [0, 1/4]) 4/5− θ/5
[Pedramfar and Aggarwal, 2024a] (*) 1− e−γ 1 3/4

Bandit

det. [Wan et al., 2023] (*) 1− e−1 - 3/4
[Zhang et al., 2024] (*) 1− e−γ - 4/5

stoch.† Theorem 6 1− e−1 - 3/4

stoch. [Pedramfar et al., 2024a] 1− e−1 - 5/6
[Pedramfar and Aggarwal, 2024a] (*) 1− e−γ - 4/5

ge
ne

ra
l

∇F
Full Information stoch. [Pedramfar et al., 2024a] 1/2 T θ(θ ∈ [0, 1/2]) 2/3− θ/3

Semi-bandit stoch.
[Chen et al., 2018] (*) γ2/(1 + γ2) - 1/2

[Pedramfar et al., 2024a] 1/2 - 3/4
[Pedramfar and Aggarwal, 2024a] (*) γ2/(1 + cγ2) - 1/2

F

Full Information
det. [Pedramfar and Aggarwal, 2024a] (*) γ2/(1 + cγ2) 2 1/2

stoch. [Pedramfar et al., 2024a] 1/2 T θ(θ ∈ [0, 1/4]) 4/5− θ/5
Theorem 5 γ2/(1 + cγ2) 1 2/3

Bandit stoch.
[Pedramfar et al., 2024a] 1/2 - 5/6

[Pedramfar and Aggarwal, 2024a] (*) γ2/(1 + cγ2) - 3/4
Theorem 6 γ2/(1 + cγ2) - 3/4

N
on

-M
on

ot
on

e

ge
ne

ra
l

∇F
Full Information stoch.

[Pedramfar et al., 2024a] (1− h)/4 T θ(θ ∈ [0, 1/2]) 2/3− θ/3
[Zhang et al., 2024] (*) (1− h)/4 1 1/2

[Pedramfar and Aggarwal, 2024a] (*) (1− h)/4 1 1/2

Semi-bandit stoch. [Pedramfar et al., 2024a] (1− h)/4 - 3/4
[Pedramfar and Aggarwal, 2024a] (*) (1− h)/4 - 2/3

F

Full Information

det. [Pedramfar and Aggarwal, 2024a] (*) (1− h)/4 2 1/2
stoch. † Theorem 5 (1− h)/4 1 2/3

stoch. [Pedramfar et al., 2024a] (1− h)/4 T θ(θ ∈ [0, 1/4]) 4/5− θ/5
[Pedramfar and Aggarwal, 2024a] (*) (1− h)/4 1 3/4

Bandit

det. [Zhang et al., 2024] (*) (1− h)/4 - 4/5
stoch. † Theorem 6 (1− h)/4 - 3/4

stoch. [Pedramfar et al., 2024a] (1− h)/4 - 5/6
[Pedramfar and Aggarwal, 2024a] (*) (1− h)/4 - 4/5

This table compares different static regret results for the online up-concave maximization. The logarithmic
terms in regret are ignored. Here h := minz∈K ∥z∥∞. Rows marked with (*) are results in the literature
that are special cases of the results stated here and therefore fit within the framework described in this
paper. The rows describing results with stochastic feedback that are marked with † assume that the random
query oracle is contained with a cone, as detailed in Theorem 5. Note that such oracles cover deterministic
oracles as a special case.

2. To the best our knowledge, in all cases considered, our framework recovers all algorithms in
the literature for continuous DR-submodular maximization that are not Frank-Wolfe type. (See
Appendix B for more details.) This includes all results marked with (*) in Tables 1 and 2.

3. In all online optimization settings considered, our framework either beats the SOTA or success-
fully recovers it (see Table 1). Note that our framework also recovers all known results for
non-stationary DR-submodular maximization. (See Remark 11 and Table 3 in [Pedramfar and
Aggarwal, 2024a].)

4. In all offline optimization settings considered—except for deterministic first-order feedback and
the special case of γ-weakly non-monotone functions with γ < 1—our framework either beats
the SOTA or successfully recovers it. (See Table 2.)

5. When considering either deterministic or fully stochastic query oracles, we obtain superior regret
guarantees for 3 settings. Specifically, for online or offline zeroth order feedback, we improve
the SOTA for (ii) and for bandit feedback, we improve the SOTA for (iii). (See Tables 1 and 2)

6. We define a new notion of query oracles that are stochastic, but contained within a cone. (See
Section 8) When considering these types of oracles (together with deterministic and fully stochas-
tic query oracles), we improve SOTA for 6 more settings. Specifically, for online zeroth order,
offline zeroth order and bandit feedback settings for (i) and (iii). (See Tables 1 and 2)

To simplify the notation and statements, we define regret for maximization problems and focus on
concave maximization and DR-submodular maximization.

2 Background and Notation

For a setD ⊆ Rd, we define its affine hull aff(D) to be the set of αx+(1−α)y for all x,y inD and
α ∈ R. The relative interior of D is defined as relint(D) := {x ∈ D | ∃r > 0,Br(x) ∩ aff(D) ⊆
D}. All convex functions are continuous on any point in the relative interior of their domains. In this
work, we will only focus on (everywhere) continuous functions. If x ∈ relint(K) and f is convex

3

and is differentiable at x, then we have f(y) − f(x) ≥ ⟨∇f(x),y − x⟩, for all y ∈ K. More
generally, given µ ≥ 0, we say a vector o ∈ Rd is a µ-subgradient of f at x if f(y) − f(x) ≥
⟨o,y − x⟩+ µ

2 ∥y − x∥2. for all y ∈ K. Given a convex set K, a function f : K → R is µ-strongly
convex if and only if it has a µ-subgradient at all points x ∈ K. A function F : D → R+ is G-
Lipschitz continuous if for all x,y ∈ D, ∥F (x) − F (y)∥ ≤ G∥x − y∥. A differentiable function
F : D → R+ is L-smooth if for all x,y ∈ D, ∥∇F (x)−∇F (y)∥ ≤ L∥x−y∥. Given a continuous
monotone function f : K → R, its curvature is defined as the smallest number c ∈ [0, 1] such that
f(y+z)−f(y) ≥ (1−c)(f(x+z)−f(x)), for all x,y ∈ K and z ≥ 0 such that x+z,y+z ∈ K.
We define the curvature of a function class F as the supremum of the curvature of functions in F.

We say ∇̃f : K → Rd is a µ-strongly γ-weakly up-super-gradient of f if for all x ≤ y in K, we
have γ(⟨∇̃f(y),y− x⟩+ µ

2 ∥y− x∥2) ≤ f(y)− f(x) ≤ 1
γ (⟨∇̃f(x),y− x⟩ − µ

2 ∥y− x∥2). Then
we say f is µ-strongly γ-weakly up-concave if it is continuous and it has a µ-strongly γ-weakly up-
super-gradient. When γ = 1 and the above inequality holds for all x,y ∈ K, we say f is µ-strongly
concave. A differentiable function f : K → R is called continuous DR-submodular if for all x ≤ y,
we have ∇f(x) ≥ ∇f(y). More generally, we say f is γ-weakly continuous DR-submodular if for
all x ≤ y, we have ∇f(x) ≥ γ∇f(y). It follows that any γ-weakly continuous DR-submodular
functions is γ-weakly up-concave.

3 Problem setup

Online optimization problems can be formalized as a repeated game between an agent and an adver-
sary. The game lasts for T rounds on a convex domain K where T and K are known to both players.
In the t-th round, the agent chooses an action xt from an action set K ⊆ Rd, then the adversary
chooses a loss function ft ∈ F and a query oracle for the function ft. Then, for some kt ≥ 0, and
1 ≤ i ≤ kt, the agent chooses a points yt,i and receives the outputs of the query oracle.

To be more precise, an agent consists of a tuple (ΩA,Aaction,Aquery), where ΩA is a probability
space that captures all the randomness of A. We assume that, before the first action, the agent
samples ω ∈ Ω. The next element in the tuple, Aaction = (Aaction

1 , · · · ,Aaction
T) is a sequence of

functions such that At that maps the history ΩA × Kt−1 ×
∏t−1

s=1(K × O)ks to xt ∈ K where we
use O to denote range of the query oracle. The last element in the tuple, Aquery, is the query policy.
For each 1 ≤ t ≤ T and 1 ≤ i ≤ kt, Aquery

t,i : ΩA × Kt ×
∏t−1

s=1(K × O)ks × (K × O)i−1 is a
function that, given previous actions and observations, either selects a point yi

t ∈ K, i.e., query, or
signals that the query policy at this time-step is terminated. We may drop ω as one of the inputs
of the above functions when there is no ambiguity. We say the agent query function is trivial if
kt = 1 and yt,1 = xt for all 1 ≤ t ≤ T . In this case, we simplify the notation and use the notation
A = Aaction = (A1, · · · ,AT) to denote the agent action functions and assume that the domain of
At is ΩA × (K ×O)t−1.

A query oracle is a function that provides the observation to the agent. Formally, a query oracle for a
function f is a map Q defined on K such that for each x ∈ K, the Q(x) is a random variable taking
value in the observation space O. The query oracle is called a stochastic value oracle or stochastic
zeroth order oracle if O = R and f(x) = E[Q(x)]. Similarly, it is called a stochastic up-super-
gradient oracle or stochastic first order oracle if O = Rd and E[Q(x)] is a up-super-gradient of f
at x. In all cases, if the random variable takes a single value with probability one, we refer to it as
a deterministic oracle. Note that, given a function, there is at most a single deterministic gradient
oracle, but there may be many deterministic up-super-gradient oracles. We will use ∇ to denote the
deterministic gradient oracle. We say an oracle is bounded by B if its output is always within the
Euclidean ball of radius B centered at the origin. We say the agent takes semi-bandit feedback if
the oracle is first-order and the agent query function is trivial. Similarly, it takes bandit feedback
if the oracle is zeroth-order and the agent query function is trivial. If the agent query function is
non-trivial, then we say the agent requires full-information feedback.

An adversary Adv is a set such that each element B ∈ Adv, referred to as a realized adversary,
is a sequence (B1, · · · ,BT) of functions where each Bt maps a tuple (x1, · · · ,xt) ∈ Kt to a tuple
(ft,Qt) where ft ∈ F and Qt is a query oracle for ft. We say an adversary Adv is oblivious if
for any realization B = (B1, · · · ,BT), all functions Bt are constant, i.e., they are independent of
(x1, · · · ,xt). In this case, a realized adversary may be simply represented by a sequence of func-

4

tions (f1, · · · , fT) ∈ FT and a sequence of query oracles (Q1, · · · ,QT) for these functions. In this
work we also consider adversaries that are fully adaptive, i.e., adversaries with no restriction. Given
a function class F and i ∈ {0, 1}, we use Advf

i(F) to denote the set of all possible realized adver-
saries with deterministic i-th order oracles. If the oracle is instead stochastic and bounded by B, we
use Advf

i(F, B) to denote such an adversary. Finally, we use Advo
i (F) and Advo

i (F, B) to denote
all oblivious realized adversaries with i-th order deterministic and stochastic oracles, respectively.

In order to handle different notions of regret with the same approach, for an agentA, adversary Adv,
compact set U ⊆ KT , approximation coefficient 0 < α ≤ 1 and 1 ≤ a ≤ b ≤ T , we define regret
as

RA
α,Adv(U)[a, b] := sup

B∈Adv
E

α max
u=(u1,··· ,uT)∈U

b∑
t=a

ft(ut)−
b∑

t=a

ft(xt)

 ,

where the expectation in the definition of the regret is over the randomness of the algorithm and
the query oracle. We use the notation RA

α,B(U)[a, b] := RA
α,Adv(U)[a, b] when Adv = {B} is a

singleton. We may drop α when it is equal to 1. When α < 1, we often assume that the functions
are non-negative. Static adversarial regret or simply adversarial regret corresponds to a = 1, b = T
and U = KT

⋆ := {(x, · · · ,x) | x ∈ K}. When a = 1, b = T and U contains only a single element
then it is referred to as the dynamic regret [Zinkevich, 2003, Zhang et al., 2018]. Adaptive regret, is
defined as max1≤a≤b≤T RA

α,Adv(KT
⋆)[a, b] [Hazan and Seshadhri, 2009]. We drop a, b and U when

the statement is independent of their value or their value is clear from the context.

4 Uniform wrappers

We next introduce a class of meta-algorithms that will be a central element of our proposed frame-
work for adapting algorithms. At a high level, the meta-algorithms we consider wrap around the
base algorithm and translate each action and feedback signal between the base algorithm and the
adversary. The qualifier “uniform” highlights that the translations are one-to-one and independent
of time.
Definition 1. Given a function class F and a family of query oracles Q over F, we say a uniform
wrapper W = (Waction,W function,Wquery) is a tuple of maps where Waction : K → K, W function :
F → H for a function class H and for any f ∈ F and any query oracle Qf ∈ Q , Wquery(Qf) is
a query oracle forW function(f) ∈ H. 1 Given an oblivious adversary Adv choosing functions in F
and query oracles in Q, we defineW(Adv) to be the adversary over H where the selected function
and query by the adversary are transformed according toW function andWquery. 2 We sayW = Id if
all the maps inW are identity.

Meta-algorithm 1: Application of a uniform
wrapper to the base algorithm -W(A)
Input : horizon T , algorithm A, uniform wrapper

W
for t = 1, 2, . . . , T do

PlayWaction(xt) where xt is the action chosen
by Aaction

The adversary selects ft and a query oracleQt

for ft
for i starting from 1, while Aquery is not

terminated for this time-step do
Let yt,i be the query chosen by Aquery

Return ot,i =Wquery(Qt)(yt,i) as the
output of the query oracle to Aquery

end
end

In Section C we will discuss several exam-
ples of uniform wrappers for up-concave op-
timization. We drop the superscripts and
use W(x), W(f) and W(Qf) to denote
Waction(x), W function(f) and Wquery(Qf), re-
spectively, when there is no ambiguity.

Meta-algorithm 1 details the pseudo-code for
W(A) for a uniform wrapper W and an on-
line optimization algorithm A. Note that, when
W = Id, the meta-algorithm also reduces to
the identity meta-algorithm and we see that
W(A) = A. Note that in the special case where
A is an online algorithm with semi-bandit feed-
back, Meta-algorithm 1 reduces to Algorithm 1

1In generalWaction may map a point to a random variable taking values inK. In this work, we only consider
the cases whereWaction is deterministic.

2Recall that, in the case of non-oblivious adversary, each realized adversary B ∈ Adv is a function mapping
the history to the next choice of the adversary. In this case, given a history ht, we define W(B)(ht) to be
(W function(f̂t),Wquery(Q̂t)) where (f̂t, Q̂t) = B(Waction(ht)). When the adversary is oblivious, the output of
any realized adversary B does not depend on the history of actions ht and we may defineW(Adv) only using
W function andWquery.

5

in [Pedramfar and Aggarwal, 2024a]. See Ap-
pendix A for more details.

In this paper, we will design uniform wrappers that could convert algorithms for concave opti-
mization into algorithms for more general class of functions that contains many DR-submodular
functions. Specifically, we consider upper-quadratizable/linearizable functions which we will dis-
cuss in the following section.

5 Linearizable and quadratizable functions classes

We next define an important function class significantly generalizes concavity but preserves enough
structure that will enable us to obtain improved regret bounds for various problems.
Definition 2 ([Pedramfar and Aggarwal, 2024a]). Let K ⊆ Rd be a convex set, F be a function
class over K. We say the function class F is upper quadratizable if there are maps g : F×K → Rd

and h : K → K and constants µ ≥ 0, 0 < α ≤ 1 and β > 0 such that

αf(y)− f(h(x)) ≤ β

(
⟨g(f,x),y − x⟩ − µ

2
∥y − x∥2

)
. (1)

As a special case, when µ = 0, we say F is upper linearizable. By setting g(f,x) = ∇f(x),
h = IdK and α = β = 1, we see that the notion of upper linearizability generalizes concavity
and upper quadratizability generalizes strong concavity. It was shown in [Pedramfar and Aggarwal,
2024a] that several classes of DR-submodular (and up-concave) functions are upper quadratizable.
(see Lemmas 1, 2 and 3) A similar notion of lower-quadratizable/linearizable may be similarly
defined for minimization problems such as convex minimization 3.
Definition 3. We say F is upper quadratizable with a uniform wrapperW ifW(F) is defined and
differentiable over K and, for all f ∈ F, we have

αf(y)− f(W(x)) ≤ β

(
⟨∇W(f)(x),y − x⟩ − µ

2
∥y − x∥2

)
. (2)

Note that a uniform wrapper is not uniquely determined by h and g in the definition of upper quadra-
tizable functions as it also needs to describe transformations of query oracles. The special case with
α = β = 1, W = Id reduces to the definition of (strong) concavity. In Appendix C, we will
construct uniform wrappers for several classes of upper quadratizable functions, specifically, mono-
tone µ-strongly γ-weakly up-concave functions with bounded curvature (FM), monotone γ-weakly
up-concave functions over convex sets containing the origin (FM0), and non-monotone up-concave
functions over general convex sets (FNM).

6 When Is Concave Optimization Enough?

As can be seen in Meta-algorithm 1, we may apply a uniform wrapperW to any online optimization
algorithm A. However, even if the original algorithm has a sublinear regret over concave functions
and F is a function class that is upper quadratizable withW , this does not guarantee that the resulting
algorithmW(A) has a sublinear regret over F. In this section we discuss how we might convert the
proofs of the regret bound for A over concave functions into a proof of a similar regret bound for
W(A) over F. That starting point is to notice that a game played between W(A) and Adv is
mathematically equivalent to one played between A and W(Adv). Therefore we need to convert
the regret guarantees of A against a concave adversary into guarantees for A againstW(Adv). See
Appendix A for more details.

The guideline for converting proof for concave optimization into proofs for upper-quadratizable
optimization can be informally summarized in a few steps:

(0) Sometimes, if the algorithm A is the result of application of a meta-algorithm to another algo-
rithm B, e.g. A = SFTT(B) (the meta-algorithm SFTT converts algorithms that require full-
information feedback to ones that work with (semi)-bandit feedback; see Appendix M), we may

3We say F is lower quadratizable if αf(y) − f(h(x)) ≥ β
(
⟨g(f,x),y − x⟩+ µ

2
∥y − x∥2

)
. This gen-

eralizes the notion of convexity and strong convexity.

6

need to consider the base algorithm instead. For example, in the example of SFTT, we might
want to consider SFTT(W(B)) instead ofW(SFTT(B)) =W(A).

(1) Rewrite the parts of proof (after possibly adapting the algorithm) of the original regret bound
without assuming that the function class in concave, in order to isolate the use on concavity in the
proof. In this step, we hope to obtain a result that would only require a single use of an inequality
of the type f(y)− f(x) ≤ ⟨∇f(x),y − x⟩ − µ

2 ∥y − x∥2 to complete the proof for the concave
case. See Theorems 1, 3 (as an example of a family of zeroth order results), and 11 (as an example
of a family of first order results) for examples of this step.

(2) Verify that the results of the previous step could be adapted to upper-quadratizable setting. See
the proof of Theorems 2, 4, and 12 for examples of this step.

In the following section, we discuss a version of Follow The Regularized Leader (FTRL) algorithm
for concave optimization and adapt it to fit the guidelines discussed above. As another application
of the guideline, we refer to Appendix E for a discussion of applying this guideline to recover some
previous results in the literature, including all the results in Tables 1 and 2 that are marked with (*).

7 Examples

In this section, we provide examples of applying uniform wrappers and the guideline described
earlier. The first example is illustrative and recovers some existing results, while the second example
provides new results, as we will discuss in Section 8.

7.1 Online Gradient Ascent

Here we clarify the guideline in Section 6 by applying it to a simple base algorithm, namely Online
Gradient Ascent (OGA).

Note that this is only an illustrative example and a much more general result is proven in Appendix E.

Algorithm 2: Online Gradient Ascent (OGA)
Input : horizon T , convex set K, x1 ∈ K,

step-sizes {ηt}Tt=1

for t = 1, 2, . . . , T do
Play xt

The adversary selects ft and a query oracleQt

for ft
Observe ot, a sample ofQt(xt), an unbiased

estimate of∇ft(xt)
xt+1 ← PK(xt + ηtot)

end

In Algorithm 2, we use Qt to denote the
stochastic first order query oracle for ft which
returns unbiased estimates of ∇ft. The ef-
fect of Meta-algorithm 1 is that it transforms
the action of the base algorithm usingWaction

and query oracle of the base algorithm using
Wquery. If we apply the first-order to first-order
uniform wrapperWNM

1 (for non-monotone up-
concave functions over general convex sets; see
Appendix C.3 for additional details), we get a
first order algorithm for online optimization of
non-monotone DR-submodular function over
general convex sets. The resulting algorithm is detailed in Algorithm 3.

Algorithm 3: Application ofWNM
1 to Online

Gradient Ascent (WNM
1 (OGA))

Input : horizon T , convex set K, x1,x ∈ K,
step-sizes {ηt}Tt=1

for t = 1, 2, . . . , T do
Play (WNM

1)action(xt)
The adversary selects ft and a query oracleQt

for ft
Observe ot, a sample of
(WNM

1)query(Qt)(xt)
xt+1 ← PK(xt + ηtot)

end

By plugging in the definitions of (WNM
1)action

and (WNM
1)query as per Appendix C.3, we get

the Algorithm 4 which is Algorithm 1 in [Zhang
et al., 2024] for the case of non-monotone func-
tions.

The conversion of the regret bound is the fo-
cus of Section 6, in the form of a three-step
guideline. Since that is a guideline that depends
on the structure and the details of the original
proof, any explanation of the application of the
guideline requires an understanding of the orig-
inal proof. For OGA specifically, we may sim-
plify the proofs and the guideline in the follow-
ing manner:

7

Algorithm 4: Application ofWNM
1 to Online

Gradient Ascent (WNM
1 (OGA))

Input : horizon T , convex set K, x1,x ∈ K,
step-sizes {ηt}Tt=1

for t = 1, 2, . . . , T do
Play (xt + x)/2

Sample z according to ZNM (as defined in
Appendix C.3)

The adversary selects ft and a query oracleQt

for ft
Observe ot, a sample ofQt(

z
2
(xt − x) + x),

an unbiased estimate of
∇ft(z2 (xt − x) + x)

xt+1 ← PK(xt + ηtot)
end

As per Step 1 of the guideline, we first rewrite
a part of the proof of the OGA, in a way that
does not require concavity, but the proof of the
regret bound for the concave case can be re-
covered using the inequality f(y) − f(x) ≤
⟨∇ft(x),y − x⟩.
Theorem 1. For any differentiable func-
tion class F, with stochastic first-order
query oracles bounded by G and step-sizes
ηt = D

G
√
t
, the algorithm OGA guarantees

that maxx∈K
∑T

t=1 E[⟨∇ft(xt),x − xt⟩] ≤
3
2GD

√
T .

The proof of Theorem 1 is a simple rewriting
of the classical results. We include a proof in
Appendix D for completeness. Note that the boundedness of the stochastic first-order query oracle
by G implies that the gradients of functions in F are bounded by G, i.e., functions in F are G-
Lipschitz continuous.

In Step 2 of the guideline, we adapt the result of Theorem 1 to the upper-linearizable setting.

Theorem 2. If F is a function class over K that is upper-linearizable with 0 < α ≤ 1 and β ≥ 0
and a first-order uniform wrapper W , then with stochastic first-order query oracles bounded by
G and step-sizes ηt = D

G
√
t
, the algorithm W(OGA) guarantees that maxx∈K

∑T
t=1 E[ft(x) −

ft(Waction(xt))] ≤ 3
2GD

√
T .

We refer to Appendix D for a proof.

7.2 Zeroth Order Follow The Regularized Leader

Follow The Regularized Leader is a popular online optimization algorithm. When applied to a
sequence of vectors {gt}Tt=1 in K, FTRL outputs a sequence of points {xt}Tt=1, where

x1 = argmin
x∈K

Φ(x), xt+1 = argmin
x∈K

η

t∑
s=1

⟨−gs,x⟩+Φ(x). (3)

Algorithm 5: Zeroth Order Follow The Reg-
ularized Leader - ZO-FTRL
Input : Horizon T , smoothing radius δ, learning

rate η, ν-self-concordant barrier Φ
x1 ← argminx∈K Φ(x)
for t = 1, 2, . . . , T do

Play xt

The adversary selects ft and reveals a
zeroth-order query oracleQt for ft

Σt ←
(
∇2Φ(xt)

)−1/2

Draw vt uniformly from Sd−1

yt ← a sample of Qt at xt + δΣtvt

ot ← d
δ
ytΣ

−1
t vt

xt+1 ← argmin
x∈K

∑t
s=1−η⟨ot,x⟩+Φ(x)

end

Here Φ(x) is an arbitrary regularizer and η
is a parameter. In this paper, we use a self-
concordant barrier of K as the regularizer of
FTRL. Self-concordant barriers were first pro-
posed in the convex optimization literature,
with [Abernethy et al., 2008] the first use
in bandit feedback setting. We refer to Ap-
pendix H for an overview of the main ideas
present in FTRL, including the definition of
self-concordant barrier Φ, the Minkowski set
Kγ,x1 , and Σ-smoothing of function f to obtain
fΣ.

Here we propose a FTRL variant for zeroth-
order feedback, based on [Saha and Tewari,
2011], which will be a key base algorithm for
our framework. See Algorithm 5 for pseudo-
code.

The following theorems demonstrate how to apply the guideline described in the beginning of Sec-
tion 6 to the results of [Saha and Tewari, 2011]. The first step is to analyze the proof and modify the
base algorithm so that we could obtain a result that is valid for non-convex functions and would only
require a single use of an inequality similar to f(y) − f(x) ≤ ⟨∇f(x),y − x⟩ to obtain a regret
bound for concave case. By a small modification in the original algorithm, we get ZO-FTRL which

8

differs from the original in that it is no longer a bandit algorithm. While the agent plays xt it queries
the oracle at xt + δΣtvt ̸= xt. This modification allows us to obtain the following result.
Theorem 3. Let F be an M1-Lipschitz M2-smooth function class that is bounded by M0 and let
B0 ≥ M0. Also let B ∈ Advo

0(F, B0) be a realized adversary that returns f1, · · · , fT , let u∗ ∈
argmaxu∈K

∑T
t=1 ft(u) and û∗ ∈ argminx∈Kγ,x1

∥u∗ − x∥ where γ = T−1. Then, when running
Algorithm 5 against B, we have

T∑
t=1

E
[
ft(u∗)− ft(xt)

]
−O(δ2T) ≤

T∑
t=1

E
[
fδΣt
t (û∗)− fδΣt

t (xt)
]
,

and
T∑

t=1

E
[
⟨∇fδΣt

t (xt), û∗ − xt⟩
]
≤ O

(
ηδ−2T + η−1 log T

)
.

See Appendix J for the proof. Note that if f is concave, then we use use Lemma 5 to see that the
right hand side of the first inequality is bounded by the left hand side of the second inequality and
obtain the regret bound for the concave case. See Appendix K for the proof.
Theorem 4. Let F be an M1-Lipschitz M2-smooth function class over K that is upper-linearizable
with 0 < α ≤ 1, β ≥ 0 and a zeroth-order uniform wrapperW . Also assume thatWaction is M ′

1-
Lipschitz and M ′

2-smooth. If Adv is a zeroth order oblivious adversary over F such that for for any
f ∈ F and any query oracleQf returned by Adv,W(Qf) is a stochastic zeroth order query oracle
forW(f) that is bounded by B0, then

RW(ZO-FTRL)
α,Adv = O

(
ηδ−2T + η−1 log T + δ2T

)
,

In particular, by setting η = T−2/3 and δ = T−1/6, we see thatRW(ZO-FTRL)
α,Adv = Õ(T 2/3).

We emphasize that Theorems 3 and 4 correspond to steps 1 and 2 in the guideline discussed in
Section 6 respectively. Specifically, for step 1, we note that Theorem 3 is NOT for concave functions.
Moreover, if we assume that the functions are concave, then we may use Theorem 3 and the the
inequality

fδΣt
t (û∗)− fδΣt

t (xt) ≤ ⟨∇fδΣt
t (xt), û∗ − xt⟩

to immediately obtain a regret bound. For step 2, we note that Theorem 3 adapts the result of
previous step to uniform wrappers to obtain a regret bound for linearizable functions.

8 Applications

We next discuss some specific online and offline non-convex/non-concave optimization problems
for which we can use our new framework to derive improved regret and sample complexity bounds
respectively by applying uniform wrappers proposed in Section C to the zeroth order feedback OCO
base algorithm ZO-FTRL (Algorithm 5). We note that we can also apply our framework to other
base algorithms to recover many existing results in the literature. (See Section E for more details).

We start with a definition. For x ∈ K and C > 0, we say a zeroth order query oracle Qf is
contained in a (x, C) cone if we have |Qf (z) − f(x)| ≤ C∥z − x∥ for all z ∈ K. In other words,
the randomness of the query oracle approaches to zero at least linearly as we approach the point
x. We use the notation Advo

0(F,Cone(x, C)) to denote the oblivious adversary over F with query
oracles that are contained within this cone. Note that Qf ∈ Advo

0(F,Cone(x, C)) is equivalent to
WNM

0 (Qf) being bounded. See condition (iii) of Definition 5 for details. IfQf does not belong to a
cone as described above, we can see that the term

(
z
2

)−1
causesWNM

0 (Qf) to blow up. Similarly,
in the special case when x = 0 and f(0) = 0, it is also equivalent toWM0

0 (Qf) being bounded.

We begin by showing Õ(T 2/3) α-regret bounds for online optimization problems for the three func-
tion classes discussed in Section C under zeroth order feedback. See Section L for the proof.
Theorem 5. Let FM

0 , FM0
0 and FNM

0 denote the function classes described in Lemmas 1, 2 and 3
respectively and let αM, αM0 and αNM be the values of α. If the function classes are M1-Lipschitz
and M2-smooth, then for any C > 0 and B0 ≥M0 = maxx∈K f(x), the following are Õ(T 2/3):

RWM
0 (ZO-FTRL)

αM,Advo
0(F

M
0 ,B0)

, RWM0
0 (ZO-FTRL)

αM0,Advo
0(F

M0
0 ,Cone(0,C))

, RWNM
0 (ZO-FTRL)

αNM,Advo
0(F

NM
0 ,Cone(x,C))

.

9

Remark 1. For each function class, the SOTA for noisy zeroth order feedback achieved Õ(T 3/4)

α-regret bounds while we achieve Õ(T 2/3). For the special case of exact zeroth order feedback, the
SOTA is Õ(

√
T). All the SOTA algorithms mentioned are special cases of our framework.

We next show Õ(T 3/4) α-regret bounds for online optimization problems for the three function
classes discussed in Section C under bandit feedback. For full information zeroth order algorithms,
the query location may differ from the action taken. Here we convert them into bandit algorithms
using the meta-algorithm Stochastic Full-information To Trivial query (SFTT) from [Pedramfar
and Aggarwal, 2024a] (see Section M for details). The proof is in Section N.

Theorem 6. Under the assumptions of Theorem 5, the following are Õ(T 3/4):

RSFTT(WM
0 (ZO-FTRL))

αM,Advo
0(F

M
0 ,B0)

, RSFTT(WM0
0 (ZO-FTRL))

αM0,Advo
0(F

M0
0 ,Cone(0,C))

, RSFTT(WNM
0 (ZO-FTRL))

αNM,Advo
0(F

NM
0 ,Cone(x,C))

,

where SFTT is Algorithm 4 in [Pedramfar and Aggarwal, 2024a] with L = T 1/4.

Remark 2. Note that Algorithm 3 in [Wan et al., 2023] is in fact SFTT(WM0
0 (ZO-FTRL)). How-

ever, our analysis simplifies the proof and generalizes the result to allow for stochastic feedback.
Remark 3. For the class FNM of non-monotone up-concave functions over general convex sets,
our Õ(T 3/4) bound beats the SOTA Õ(T 4/5) bounds for exact and for noisy bandit feedback. For
the class FM0 of monotone γ-weakly up-concave functions over convex sets containing the origin,
our Õ(T 3/4) bound beats the SOTA Õ(T 4/5) bound for noisy bandit feedback and matches the
bound for exact bandit feedback. For the third class FM of monotone µ-strongly γ-weakly up-
concave functions with bounded curvature, our results match the SOTA. All of the SOTA algorithms
mentioned here are special cases of our framework.

Conversions of online algorithms to offline are referred to online-to-batch techniques and are well-
known in the literature (See [Shalev-Shwartz, 2012]). A simple approach is to simply run the online
algorithm and if the actions chosen by the algorithm are x1, · · · ,xT , return xt for 1 ≤ t ≤ T
with probability 1/T . We use OTB to denote the meta-algorithm that uses this approach to convert
online algorithms to offline algorithms.

We next show that using OTB conversion (on top of W(ZO-FTRL)), we obtain Õ(1/ϵ3) sample
complexity for finding an α-approximate solution in each function class under a noisy value oracle
model, beating the SOTA Õ(1/ϵ4) sample complexity. The proof is in Section O
Theorem 7. Under the assumptions of Theorem 5, the following is true.

(i) If the stochastic query oracle is bounded by B0, then the sample complexity of the offline
algorithm OTB(WM

0 (ZO-FTRL)) over FM
0 is Õ(ϵ−3).

(ii) If the stochastic query oracle is contained in the cone Cone(0, C), then the sample com-
plexity of the offline algorithm OTB(WM0

0 (ZO-FTRL)) over FM0
0 is Õ(ϵ−3).

(iii) If the stochastic query oracle is contained in the cone Cone(x, C), then the sample com-
plexity of the offline algorithm OTB(WNM

0 (ZO-FTRL)) over FNM
0 is Õ(ϵ−3).

9 Conclusion

We proposed a class of meta-algorithms that can be used to convert convex optimization algorithms
(with various types of feedback) into algorithms for quadratizable optimization. Using this frame-
work, we improved regret guarantees for various classes of DR-submodular functions under zeroth-
order feedback. Furthermore, we extended zeroth-order online algorithms to bandit feedback and
offline counterparts, achieving notable improvements in regret/sample complexity compared to ex-
isting approaches.

Acknowledgments

This work was in part supported by IVADO, CIFAR, and the National Science Foundation under
grants CCF-2149588 and CCF-2149617.

10

References
Jacob Abernethy, Elad E Hazan, and Alexander Rakhlin. Competing in the dark: An efficient

algorithm for bandit linear optimization. In 21st Annual Conference on Learning Theory, COLT
2008, pages 263–273, 2008.

An Bian, Kfir Levy, Andreas Krause, and Joachim M Buhmann. Continuous DR-submodular max-
imization: Structure and algorithms. In Advances in Neural Information Processing Systems,
2017a.

Andrew An Bian, Baharan Mirzasoleiman, Joachim Buhmann, and Andreas Krause. Guaranteed
Non-convex Optimization: Submodular Maximization over Continuous Domains. In Proceedings
of the 20th International Conference on Artificial Intelligence and Statistics, April 2017b.

Yatao Bian, Joachim Buhmann, and Andreas Krause. Optimal continuous DR-submodular maxi-
mization and applications to provable mean field inference. In Proceedings of the 36th Interna-
tional Conference on Machine Learning, June 2019.

Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a monotone submod-
ular function subject to a matroid constraint. SIAM Journal on Computing, 40(6):1740–1766,
2011.

Lin Chen, Hamed Hassani, and Amin Karbasi. Online continuous submodular maximization. In
Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics,
April 2018.

Lin Chen, Mingrui Zhang, and Amin Karbasi. Projection-free bandit convex optimization. In Pro-
ceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics,
pages 2047–2056. PMLR, 2019.

Shengminjie Chen, Donglei Du, Wenguo Yang, Dachuan Xu, and Suixiang Gao. Continuous non-
monotone DR-submodular maximization with down-closed convex constraint. arXiv preprint
arXiv:2307.09616, July 2023.

Josip Djolonga and Andreas Krause. From map to marginals: Variational inference in Bayesian
submodular models. Advances in Neural Information Processing Systems, 2014.

Maryam Fazel and Omid Sadeghi. Fast first-order methods for monotone strongly dr-submodular
maximization. In SIAM Conference on Applied and Computational Discrete Algorithms
(ACDA23), 2023.

Yuval Filmus and Justin Ward. A tight combinatorial algorithm for submodular maximization sub-
ject to a matroid constraint. In 2012 IEEE 53rd Annual Symposium on Foundations of Computer
Science, pages 659–668, 2012.

Abraham D Flaxman, Adam Tauman Kalai, and H Brendan McMahan. Online convex optimization
in the bandit setting: gradient descent without a gradient. In Proceedings of the sixteenth annual
ACM-SIAM symposium on Discrete algorithms, pages 385–394, 2005.

Dan Garber and Ben Kretzu. New projection-free algorithms for online convex optimization with
adaptive regret guarantees. In Proceedings of Thirty Fifth Conference on Learning Theory, pages
2326–2359. PMLR, 2022.

Shuyang Gu, Chuangen Gao, Jun Huang, and Weili Wu. Profit maximization in social networks
and non-monotone DR-submodular maximization. Theoretical Computer Science, 957:113847,
2023.

Hamed Hassani, Mahdi Soltanolkotabi, and Amin Karbasi. Gradient methods for submodular max-
imization. In Advances in Neural Information Processing Systems, 2017.

Hamed Hassani, Amin Karbasi, Aryan Mokhtari, and Zebang Shen. Stochastic conditional gradi-
ent++: (non)convex minimization and continuous submodular maximization. SIAM Journal on
Optimization, 30(4):3315–3344, 2020.

11

Elad Hazan and C. Seshadhri. Efficient learning algorithms for changing environments. In Pro-
ceedings of the 26th Annual International Conference on Machine Learning, ICML ’09, pages
393–400. Association for Computing Machinery, 2009.

Elad Hazan et al. Introduction to online convex optimization. Foundations and Trends® in Opti-
mization, 2(3-4):157–325, 2016.

Shinji Ito and Ryohei Fujimaki. Large-scale price optimization via network flow. Advances in
Neural Information Processing Systems, 2016.

M. Kirszbraun. Über die zusammenziehende und lipschitzsche transformationen. Fundamenta
Mathematicae, 22:77–108, 1934.

Duksang Lee, Nam Ho-Nguyen, and Dabeen Lee. Non-smooth, hölder-smooth, and robust submod-
ular maximization. arXiv preprint arXiv:2210.06061, 2023.

Yuanyuan Li, Yuezhou Liu, Lili Su, Edmund Yeh, and Stratis Ioannidis. Experimental design net-
works: A paradigm for serving heterogeneous learners under networking constraints. IEEE/ACM
Transactions on Networking, 2023.

Yucheng Liao, Yuanyu Wan, Chang Yao, and Mingli Song. Improved Projection-free Online Con-
tinuous Submodular Maximization. arXiv preprint arXiv:2305.18442, May 2023.

Siddharth Mitra, Moran Feldman, and Amin Karbasi. Submodular+ concave. Advances in Neural
Information Processing Systems, 2021.

Aryan Mokhtari, Hamed Hassani, and Amin Karbasi. Stochastic conditional gradient methods:
From convex minimization to submodular maximization. The Journal of Machine Learning Re-
search, 21(1):4232–4280, 2020.

Loay Mualem and Moran Feldman. Resolving the approximability of offline and online non-
monotone DR-submodular maximization over general convex sets. In Proceedings of The 26th
International Conference on Artificial Intelligence and Statistics, April 2023.

Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algorithms in convex program-
ming. SIAM, 1994.

Rad Niazadeh, Tim Roughgarden, and Joshua R Wang. Optimal algorithms for continuous non-
monotone submodular and DR-submodular maximization. The Journal of Machine Learning
Research, 21(1):4937–4967, 2020.

Rad Niazadeh, Negin Golrezaei, Joshua Wang, Fransisca Susan, and Ashwinkumar Badanidiyuru.
Online learning via offline greedy algorithms: Applications in market design and optimization.
Management Science, 69(7):3797–3817, July 2023.

Mohammad Pedramfar and Vaneet Aggarwal. From linear to linearizable optimization: A novel
framework with applications to stationary and non-stationary DR-submodular optimization. Ad-
vances in Neural Information Processing Systems, 37:37626–37664, 2024a.

Mohammad Pedramfar and Vaneet Aggarwal. A generalized approach to online convex optimiza-
tion. arXiv preprint arXiv:2402.08621, 2024b.

Mohammad Pedramfar, Christopher John Quinn, and Vaneet Aggarwal. A unified approach for
maximizing continuous DR-submodular functions. In Thirty-seventh Conference on Neural In-
formation Processing Systems, 2023.

Mohammad Pedramfar, Yididiya Y. Nadew, Christopher John Quinn, and Vaneet Aggarwal. Unified
projection-free algorithms for adversarial DR-submodular optimization. In The Twelfth Interna-
tional Conference on Learning Representations, 2024a.

Mohammad Pedramfar, Christopher Quinn, and Vaneet Aggarwal. A unified approach for maximiz-
ing continuous γ-weakly DR-submodular functions. optimization-online preprint optimization-
online:25915, 2024b.

12

Ankan Saha and Ambuj Tewari. Improved regret guarantees for online smooth convex optimization
with bandit feedback. In Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, pages 636–642. JMLR Workshop and Conference Proceedings, 2011.

Shai Shalev-Shwartz. Online learning and online convex optimization. Foundations and Trends®
in Machine Learning, 4(2):107–194, 2012.

Zongqi Wan, Jialin Zhang, Wei Chen, Xiaoming Sun, and Zhijie Zhang. Bandit multi-linear dr-
submodular maximization and its applications on adversarial submodular bandits. In International
Conference on Machine Learning, 2023.

Hassler Whitney. Analytic extensions of differentiable functions defined in closed sets. Transactions
of the American Mathematical Society, 36(1):63–89, 1934.

Bryan Wilder. Equilibrium computation and robust optimization in zero sum games with submodular
structure. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

Lin Yang, Lei Deng, Mohammad H Hajiesmaili, Cheng Tan, and Wing Shing Wong. An optimal
algorithm for online non-convex learning. Proceedings of the ACM on Measurement and Analysis
of Computing Systems, 2(2):1–25, 2018.

Lijun Zhang, Shiyin Lu, and Zhi-Hua Zhou. Adaptive online learning in dynamic environments. In
Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018.

Mingrui Zhang, Lin Chen, Hamed Hassani, and Amin Karbasi. Online continuous submodular
maximization: From full-information to bandit feedback. In Advances in Neural Information
Processing Systems, volume 32, 2019.

Qixin Zhang, Zengde Deng, Zaiyi Chen, Haoyuan Hu, and Yu Yang. Stochastic continuous submod-
ular maximization: Boosting via non-oblivious function. In Proceedings of the 39th International
Conference on Machine Learning, 2022.

Qixin Zhang, Zengde Deng, Zaiyi Chen, Kuangqi Zhou, Haoyuan Hu, and Yu Yang. Online learning
for non-monotone DR-submodular maximization: From full information to bandit feedback. In
Proceedings of The 26th International Conference on Artificial Intelligence and Statistics, April
2023.

Qixin Zhang, Zongqi Wan, Zengde Deng, Zaiyi Chen, Xiaoming Sun, Jialin Zhang, and
Yu Yang. Boosting gradient ascent for continuous DR-submodular maximization. arXiv preprint
arXiv:2401.08330, 2024.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
Proceedings of the 20th international conference on machine learning (icml-03), pages 928–936,
2003.

13

Table of Contents

1 Introduction 1

2 Background and Notation 3

3 Problem setup 4

4 Uniform wrappers 5

5 Linearizable and quadratizable functions classes 6

6 When Is Concave Optimization Enough? 6

7 Examples 7
7.1 Online Gradient Ascent . 7
7.2 Zeroth Order Follow The Regularized Leader . 8

8 Applications 9

9 Conclusion 10

Appendices 13

A How uniform wrappers work 15

B Additional Related Works 15

C Uniform wrappers for up-concave optimization 17

D Proof of Theorems 1 and 2 19

E Recovering previous results in the literature 20

F Proof of Theorem 11 21

G Proof of Theorem 12 23

H Follow The Regularized Leader 23

I Technical Lemmas 24

J Proof of Theorem 3 26

K Proof of Theorem 4 27

L Proof of Theorem 5 29

M Stochastic Full-information To Trivial query - SFTT 29

N Proof of Theorem 6 30

O Proof of Theorem 7 30

14

Agent Adversary

Figure 1: Effect of a uniform wrapper on the interaction between the agent and the adversary.

A How uniform wrappers work

Figure A demonstrates the effect of a uniform wrapper on the interaction of the agent and the ad-
versary. The vertical line depicts the uniform wrapper, acting as a translation layer, where any
information passing through is changed accordingly. The action of the agent is changed from xt to
Waction(xt) and the query oracle selected by the adversary is changed from Qt toWquery(Qt).
Remark 4. Note that neither Figure A, nor Meta-Algorithm 1 require W function. Thus, we define
an abstract uniform wrapper as a tuple of mapsW = (Waction,Wquery) whereWaction is defined as
before. On the other hand, Wquery is defined as a function that, for any query oracle Qf ∈ Q, the
value ofW(Qf) behaves similar to a query oracle, but is not necessarily one. Specifically, if i, j ≥ 0
and W is an i-order to j-order abstract uniform wrapper, then for any i-th order query oracle Qf ,
W(Qf) is just function from K to Rdj

. In particular, there may not exist a function F : K → R
such that DjF (x) = E[W(Qf)(x)], where Dj denotes the j-th order derivative. The generality of
abstract uniform wrappers allow for considering quadratizable function classes where g, as described
in Definition 2, might not satisfy g(f,x) = ∇F (x) for any function F : K → R. Note that, unlike
uniform wrappers, we may no longer be able to defineW(Adv) for abstract uniform wrappers.

The figure may be interpreted in two equivalent ways. If we think of W as a meta-algorithm that
wraps around the agent, then we get W(A), as described in Meta-Algorithm 1, playing against
the adversary Adv. Alternatively, we may think of W as wrapping around the adversary. In this
interpretation, the agentA is playing againstW(Adv) Since these two interpretations are equivalent,
we may use one to better understand the other. Specifically, we may modify the proof of the regret
bounds of the game between A and a concave adversary to bound the regret of A againstW(Adv)
and therefore use that to obtain regret bounds for W(A) against Adv. The guideline in Section 6
describes how this might be achieved.

B Additional Related Works

DR-submodular maximization Two of the main methods for continuous DR-submodular maxi-
mization are Frank-Wolfe type methods and Boosting based methods. This division is based on how
the approximation coefficient appears in the proof. To the best of knowledge, the only other algo-
rithms in the literature are those that are designed for specific choices of domain and use techniques
such as discretization and rely heavily on the detailed structures on the constraint set.

In Frank-Wolfe type algorithms, the approximation coefficient appears by specific choices of the
Frank-Wolfe update rules. (See Lemma 8 in [Pedramfar et al., 2024a]) The specific choices of the
update rules for different settings have been proposed in [Bian et al., 2017b,a, Mualem and Feldman,
2023, Pedramfar et al., 2023, Chen et al., 2023]. The momentum technique of [Mokhtari et al.,
2020] has been used to convert algorithms designed for deterministic feedback to stochastic feedback
setting. [Hassani et al., 2020] proposed a Frank-Wolfe variant with access to a stochastic gradient
oracle with known distribution. Frank-Wolfe type algorithms been adapted to the online setting using
Meta-Frank-Wolfe [Chen et al., 2018, 2019] or using Blackwell approachablity [Niazadeh et al.,
2023]. Later [Zhang et al., 2019] used a Meta-Frank-Wolfe with random permutation technique to
obtain full-information results that only require a single query per function and also bandit results.

15

Table 2: Offline up-concave maximization

F Set Feedback Reference Appx. Complexity
M

on
ot

on
e

0
∈
K

∇F stoch.

[Mokhtari et al., 2020] 1− e−γ O(1/ϵ3)
[Hassani et al., 2020] (*) 1− e−γ O(1/ϵ2)
[Zhang et al., 2022] (*) 1− e−γ O(1/ϵ2)

[Pedramfar and Aggarwal, 2024a] (*) 1− e−γ O(1/ϵ2)

F

det. [Pedramfar et al., 2024b] 1− e−γ O(1/ϵ3)
[Pedramfar and Aggarwal, 2024a] (*) 1− e−γ O(1/ϵ2)

stoch. † Theorem 7 1− e−γ Õ(1/ϵ3)

stoch. [Pedramfar et al., 2024b] 1− e−γ O(1/ϵ5)
[Pedramfar and Aggarwal, 2024a] (*) 1− e−γ O(1/ϵ4)

ge
ne

ra
l

∇F stoch.
[Hassani et al., 2017] (*) γ2/(1 + γ2) O(1/ϵ2)
[Pedramfar et al., 2024b] γ2/(1 + γ2) Õ(1/ϵ3)

[Pedramfar and Aggarwal, 2024a] (*) γ2/(1 + cγ2) O(1/ϵ2)

F

det. [Pedramfar et al., 2023] γ2/(1 + γ2) Õ(1/ϵ3)
[Pedramfar and Aggarwal, 2024a] (*) γ2/(1 + cγ2) O(1/ϵ2)

stoch.
[Pedramfar et al., 2023] γ2/(1 + γ2) Õ(1/ϵ5)

[Pedramfar and Aggarwal, 2024a] (*) γ2/(1 + cγ2) O(1/ϵ4)
Theorem 7 γ2/(1 + cγ2) Õ(1/ϵ3)

N
on

-M
on

ot
on

e

ge
ne

ra
l

∇F stoch.
[Pedramfar et al., 2024b] γ(1−γh)

γ′−1

(
1
2 −

1
2γ′

)
O(1/ϵ3)

[Zhang et al., 2024] (*) (1− h)/4 O(1/ϵ2)
[Pedramfar and Aggarwal, 2024a] (*) (1− h)/4 O(1/ϵ2)

F
det. [Pedramfar et al., 2024b] γ(1−γh)

γ′−1

(
1
2 −

1
2γ′

)
O(1/ϵ3)

[Pedramfar and Aggarwal, 2024a] (*) (1− h)/4 O(1/ϵ2)
stoch. † Theorem 7 (1− h)/4 Õ(1/ϵ3)

stoch. [Pedramfar et al., 2024b] γ(1−γh)
γ′−1

(
1
2 −

1
2γ′

)
O(1/ϵ5)

[Pedramfar and Aggarwal, 2024a] (*) (1− h)/4 O(1/ϵ4)

This table compares the different results for the number of oracle calls (complexity) within the constraint set for
up-concave maximization. We refer to [Pedramfar et al., 2024b] for a more comprehensive table that includes
results for deterministic first order feedback. Here h := minz∈K ∥z∥∞ and γ′ := γ+1/γ. Rows marked with
(*) are results in the literature that fit within the framework described in this paper. The rows describing
results with stochastic feedback that are marked with † assume that the random query oracle is contained with
a cone, as detailed in Theorem 5.

This was extended to another settings by [Zhang et al., 2023] and generalized to many different
settings with improved regret bounds by [Pedramfar et al., 2024a].

Some techniques construct an alternative function such that maximization of this function results
in approximate maximization of the original function. Given this definition, we may consider the
result of [Hassani et al., 2017, Chen et al., 2018, Fazel and Sadeghi, 2023] as the first boosting
based results. However, in the case of monotone DR-submodular functions over general convex
sets, the alternative function is identical to the original function. The term boosting in this context
was first used in [Zhang et al., 2022], based on ideas presented in [Filmus and Ward, 2012, Mitra
et al., 2021], for monotone functions over convex sets containing the origin. This idea has been used
later in [Wan et al., 2023, Liao et al., 2023] in bandit and projection-free full-information settings.
Finally, in [Zhang et al., 2024] a boosting based method was introduced for non-monotone functions
over general convex sets.

Up-concave maximization Not all continuous DR-submodular functions are concave and not all
concave functions are continuous DR-submodular. [Mitra et al., 2021] considers functions that are
the sum of a concave and a continuous DR-submodular function. It is well-known that continuous
DR-submodular functions are concave along positive directions [Calinescu et al., 2011, Bian et al.,
2017b]. Based on this idea, [Wilder, 2018] defined an up-concave function as a function that is
concave along positive directions. Up-concave maximization has been considered in the offline

16

setting before, e.g. in [Lee et al., 2023] and [Pedramfar and Aggarwal, 2024a]. In this work, we
focus on up-concave maximization which is a generalization of DR-submodular maximization.

C Uniform wrappers for up-concave optimization

In this section, we study three classes of up-concave functions and show that they are upper-
quadratizable with appropriate uniform wrappers.
Remark 5. As we will see in the following, all of these uniform wrappers fit into the following
pattern. There is a random variable Z taking values in [0, 1] and a parametrized family of functions
hz : K → K for z ∈ [0, 1], such that, for some α ∈ (0, 1] and β, µ ≥ 0, we have

αf(y)− f(h1(x)) ≤ β

(
⟨∇F (x),y − x⟩ − µ

2
∥y − x∥2

)
,

where F (x) = Ez∼Z [f(hz(x))− f(h0(x))]. If such hz and Z exist, we defineWaction = h1, and
W function(f) = F . We also need to defineWquery(Qf) such that it converts a query oracle for f
into a query oracle for F using the following equality.

∇F (x) = Ez∼Z [∇f(hz(x))Jhz
(x)−∇f(h0(x))Jh0

(x)].

Note that the identity wrapper, where F = f , can be recovered by choosing hz(x) := z ∗ x and
Z = δ1, the Dirac delta distribution with mass at 1.

C.1 Monotone µ-strongly γ-weakly up-concave functions with bounded curvature (FM)

For differentiable DR-submodular functions, the following lemma is proved for the case γ = 1
in [Fazel and Sadeghi, 2023] and for the case µ = 0 in [Hassani et al., 2017]. The general form we
use here is proved in Lemma 1 in [Pedramfar and Aggarwal, 2024a].

Lemma 1. Let f : [0, 1]d → R be a non-negative monotone µ-strongly γ-weakly up-concave
function with curvature bounded by c. Then, for all x,y ∈ [0, 1]d, we have

γ2

1 + cγ2
f(y)− f(x) ≤ γ

1 + cγ2

(
⟨∇̃f(x),y − x⟩ − µ

2
∥y − x∥2

)
,

where ∇̃f is an up-super-gradient for f .

Lemma 1, together with Definition 1 of uniform wrappers, immediately imply the following.

Theorem 8. Let FM be the class of functions overK where every f ∈ FM may be extended to a non-
negative differentiable monotone µ-strongly γ-weakly up-concave function with curvature bounded
by c defined over [0, 1]d. Then FM is upper-quadratizable with uniform wrapperWM = Id.

If A is one of the algorithm described in Theorem 12, using the above theorem recovers Theorem 2
in [Pedramfar and Aggarwal, 2024a] which itself is a generalization of Theorem 2 in [Chen et al.,
2018] and Theorem 3 in [Fazel and Sadeghi, 2023].

C.2 Monotone γ-weakly up-concave functions over convex sets containing the origin (FM0)

For differentiable monotone DR-submodular functions, the following lemma is proved in [Zhang
et al., 2022]. The general form here is proved in Lemma 2 in [Pedramfar and Aggarwal, 2024a].

Lemma 2. Let f : [0, 1]d → R be a non-negative monotone γ-weakly up-concave differentiable
function and let F : [0, 1]d → R be the function defined by F (x) :=

∫ 1

0
γeγ(z−1)

(1−e−γ)z (f(z∗x)−f(0))dz.
Then F is differentiable and (1− e−γ)f(y)− f(x) ≤ 1−e−γ

γ ⟨∇F (x),y − x⟩.

Let the random variable ZM0 ∈ [0, 1] be defined by the law ∀z ∈ [0, 1], P(ZM0 ≤ z) =∫ z

0
γeγ(u−1)

1−e−γ du. Then we have Ez∼ZM0

[
z−1(f(z ∗ x)− f(0))

]
= F (x). Moreover, for i ≥ 1, if

f is i times differentiable then we also have Ez∼ZM0

[
zi−1∇if(z ∗ x)

]
= ∇iF (x).

17

Definition 4. LetK ⊆ [0, 1]d be a convex set containing the origin and, for any i ≥ 0, let FM0
i be the

class of functions over K that are max{i, 1} times differentiable and where every f ∈ FM0
i may be

extended to a non-negative monotone γ-weakly up-concave function defined over [0, 1]d. We also as-
sume that f(0) = 0 for all f ∈ FM0

0 . We defineWM0
i := ((WM0

i)action, (WM0
i)function, (WM0

i)query)
to be the uniform wrapper with (i) (WM0

i)action := IdK; (ii) for any f ∈ FM0
i ,

(WM0
i)function(f) := x 7→ Ez∼ZM0

[
z−1(f(z ∗ x)− f(0))

]
: K → R; and

(iii) for any f ∈ FM0
i and any i-th order query oracle Qf for f , we have (WM0

i)query(Qf)(x) :=
zi−1 ∗Qf (z ∗ x), where z is sampled according to P(ZM0 ≤ z).

Remark 6. This wrapper fits into the pattern described in Remark 5 by defining hz(x) := z ∗ x and
Z = ZM0.

Theorem 9. For any i ≥ 0, the function class FM0
i defined above is upper-linearizable with the

uniform wrapperWM0
i .

Remark 7. The meta-algorithm A 7→ OMBQ(A,BQM0, Id), described in [Pedramfar and Aggar-
wal, 2024a], is identical to A 7→ WM0

1 (A). In other words, the results of Theorem 3 in [Pedramfar
and Aggarwal, 2024a] are about the first order uniform wrapper WM0

1 . Here we consider a more
general case where we are not necessarily limited to first order.

C.3 Non-monotone up-concave functions over general convex sets (FNM)

For differentiable monotone DR-submodular functions, the following lemma is proved in [Zhang
et al., 2024]. The general form we use is proven in Lemma 3 in [Pedramfar and Aggarwal, 2024a].

Lemma 3. Let f : [0, 1]d → R be a non-negative continuous up-concave differentiable function
and let x ∈ K. Define F : [0, 1]d → R as the function F (x) :=

∫ 1

0
2

3z(1− z
2)

3 (f(
z
2 ∗ (x− x) + x)−

f(x))dz, then F is differentiable and we have

1− ∥x∥∞
4

f(y)− f

(
x+ x

2

)
≤ 3

8
⟨∇F (x),y − x⟩.

Let the random variable ZNM ∈ [0, 1] be defined by the law ∀z ∈ [0, 1], P(ZNM ≤ z) =∫ z

0
1

3(1−u
2)3 du. Then we have Ez∼ZNM [(z2)

−1 ∗ (f(z2 ∗ (x− x) + x)− f(x))] = F (x). Moreover,

if i ≥ 1 and f is i times differentiable, then Ez∼ZNM [(z2)
i−1 ∗ ∇if(z2 ∗ (x− x) + x)] = ∇iF (x).

Definition 5. Let K ⊆ [0, 1]d be a convex set and, for any i ≥ 0, let FNM
i be the class of func-

tions over K where every f ∈ FNM
i may be extended to a non-negative up-concave function

defined over [0, 1]d. We also assume that FNM
i is max{i, 1} times differentiable for all i ≥ 0

and, for some known constant c ≥ 0 and all f ∈ FNM
0 , f(x) = c. For i ≥ 0, we define

WNM
i = ((WNM

i)action, (WNM
i)function, (WNM

i)query) to be the uniform wrapper with
(i) (WNM

i)action := x 7→ x+x
2

: K → K; (ii) for any f ∈ FNM
i ,

(WNM
i)function(f) := x 7→ Ez∼ZNM [(z2)

−1 ∗ (f(z2 ∗ (x− x) + x)− f(x))] : K → R; and
(iii) for any f ∈ FNM

i and any i-th order query oracle Qf for f ,

(WNM
i)query(Qf)(x) :=


(
z
2

)i−1 ∗Qf

(
z
2 ∗ (x− x) + x

)
if i ≥ 1(

z
2

)−1 ∗
(
Qf

(
z
2 ∗ (x− x) + x

)
− c
)

if i = 0

where z is sampled according to P(ZNM ≤ z).

Remark 8. This wrapper fits into the pattern described in Remark 5 by defining hz(x) :=
z
2 ∗ (x−

x) + x and Z = ZNM.

Theorem 10. For any i ≥ 0, the function class FNM
i defined above is upper-linearizable with the

uniform wrapperWNM
i .

Remark 9. The meta-algorithm A 7→ OMBQ(A,BQN,x 7→ x+x
2), described in [Pedramfar and

Aggarwal, 2024a], is identical to A 7→ WNM
1 (A). In other words, the results of Theorem 4 in [Pe-

dramfar and Aggarwal, 2024a] are about the first order uniform wrapperWNM
1 . Here we consider a

more general case where we are not necessarily limited to first order.

18

D Proof of Theorems 1 and 2

The proof of Theorem 1 is a simple rewriting of the classical results. We start with a lemma which
contains the main idea commonly used in the proof of the regret bound of Online Gradient Descent.
Lemma 4. Let x,x1 ∈ K, let G > 0 and let (gt)

T
t=1 be a sequence of vectors such that ∥gt∥ ≤ G.

Define the sequence (xt)
T
t=1 such that xt+1 ← PK(xt − ηtgt), where ηt =

D
G
√
t
. Then we have

T∑
t=1

⟨gt,xt − x⟩ ≤ 3

2
GD
√
T .

The following proof is copied from the proof of Theorem 3.1 in [Hazan et al., 2016].

Proof. Using Pythagorean theorem, we have
∥xt+1 − x∥2 = ∥PK(xt − ηtgt)− x∥2 ≤ ∥xt − ηtgt − x∥2.

Hence,
∥xt+1 − x∥2 ≤ ∥xt − x∥2 + η2t ∥gt∥2 − 2ηt⟨gt,xt − x⟩.

2ηt⟨gt,xt − x⟩ ≤ 1

ηt

(
∥xt − x∥2 − ∥xt+1 − x∥2

)
+ ηtG

2.

Summing this from t = 1 to T , and setting ηt =
D

G
√
t
, we see that

2

T∑
t=1

ηt⟨gt,xt − x⟩ ≤
T∑

t=1

[
1

ηt

(
∥xt − x∥2 − ∥xt+1 − x∥2

)
+ ηtG

2

]

=
1

η1
∥x1 − x∥2 +

T∑
t=2

∥xt − x∥2
(

1

ηt
− 1

ηt−1

)
+G2

T∑
t=2

ηt

≤ D2

 1

η1
+

T∑
t=2

(
1

ηt
− 1

ηt−1

)+G2
T∑

t=2

ηt

= D2 1

ηT
+G2

T∑
t=2

ηt

≤ 3DG
√
T ,

where the second inequality follows from the facts that diam(K) ≤ D and ηt is decreasing and
therefore 1

ηt
− 1

ηt−1
is always positive; and the last inequality follows from the facts that ηt = D

G
√
t

and
∑T

t=1
1√
t
≤ 2
√
T .

Using this lemma, we can easily prove Theorem 1.

Proof. By applying Lemma 4 to ot = −gt, (to account for the fact, unlike OGD, that we update
according to xt+1 ← PK(xt + ηtot)) we see that

T∑
t=1

⟨ot,x− xt⟩ ≤
3

2
GD
√
T .

If we take the expectation, we see that
T∑

t=1

E[⟨∇ft(xt),x− xt⟩] =
T∑

t=1

E[⟨E[ot|xt],x− xt⟩]

=

T∑
t=1

E[E[⟨ot,x− xt⟩|xt]]

=

T∑
t=1

E[⟨ot,x− xt⟩] ≤
3

2
GD
√
T .

19

Next we prove Theorem 2.

Proof. At first glance, it may seem that moving from Theorem 1 to Theorem 2 might be non-trivial.
However, as elaborated in Section A, whether we applyW(OGA) to an adversary Adv that selects
functions from F or apply OGA to the adversaryW(Adv), the sequence xt remains the same. Thus,
by using Theorem 1, we immediately see that

max
x∈K

T∑
t=1

E[⟨∇W(ft)(xt),x− xt⟩] ≤
3

2
GD
√
T .

Another way to arrive at this inequality is to follow the proof of Theorem 2 and adapt is here.
Specifically, for all x ∈ K, we have

T∑
t=1

E[⟨∇W(ft)(xt),x− xt⟩] =
T∑

t=1

E[⟨E[ot|xt],x− xt⟩]

=

T∑
t=1

E[E[⟨ot,x− xt⟩|xt]]

=

T∑
t=1

E[⟨ot,x− xt⟩] ≤
3

2
GD
√
T ,

where the last inequality follows from Lemma 4. Now we may use the definition of uniform wrap-
pers to complete the proof of Theorem 2.

E Recovering previous results in the literature

As mentioned in Remark 2, Algorithm 3 in [Wan et al., 2023] is in fact SFTT(WM0
0 (ZO-FTRL))

and therefore their result fits within our framework. The way the remaining results in the tables that
are marked with (*) is discussed in the following.

We demonstrate how to apply the guideline described in the beginning of Section 6 to Theorem 2
in [Pedramfar and Aggarwal, 2024b]. This allows us to obtain a generalized version of Theorems 1
in [Pedramfar and Aggarwal, 2024a]. As we will discuss below, this will allow us to recover all
the remaining results in Tables 1 and 2 that are marked with (*) and all the results of [Pedramfar
and Aggarwal, 2024a]. Note that the results of [Pedramfar and Aggarwal, 2024a] in non-stationary
setting are not discussed in this paper, but they are also recovered.

We start with some definitions. Given a function class F, we use the notation Fµ,g to denote the
class of functions q(y) := ⟨g(f,x),y − x⟩ − µ

2 ∥y − x∥2 : K → R, for all f ∈ F and x ∈ K. This
is the class of quadratic (or linear, when µ = 0) functions that form the upper bound in Equation 1.
Similarly, for any B1 > 0, we use the notation Qµ[B1] to denote the class of functions q(y) :=
⟨o,y − x⟩ − µ

2 ∥y − x∥2 : K → R, for all x ∈ K and o ∈ BB1(0). In the following theorems, we
will obtain results that allow us to reduce the problem of online optimization over F to the problem
of online optimization over the quadratic (or linear) function class Fµ,g.
Theorem 11. Let A be algorithm for online optimization with semi-bandit feedback. Also let F be
a differentiable function class over K and µ ≥ 0.Then the following are true.

• If query oracles in Adv are deterministic gradient oracles, then we have

sup
B∈Adv

E

max
u∈U

b∑
t=a

(
⟨∇ft(xt),ut − xt⟩ −

µ

2
∥ut − xt∥

) ≤ RA
1,Advf

1(Fµ,∇)
.

• On the other hand, if F is M1-Lipschitz and query oracles in Adv are stochastic gradient
oracles that are bounded by B1 ≥M1, then we have

sup
B∈Adv

max
u∈U

E

 b∑
t=a

(
⟨∇ft(xt),ut − xt⟩ −

µ

2
∥ut − xt∥

) ≤ RA
1,Advf

1(Qµ[B1])
.

20

See Appendix F for proof. Note that if ft are µ-strongly concave, then this result reduces to Theo-
rem 2 in [Pedramfar and Aggarwal, 2024b]. Next, we follow step (2) in the guideline to obtain the
following result.
Theorem 12. Let F be function class over K that is upper-quadratizable with µ ≥ 0, 0 < α ≤ 1
and β ≥ 0 and a first-order uniform wrapperW .

• IfW(∇) = ∇, i.e., it maps deterministic gradient oracles into deterministic gradient ora-
cles, then we haveRW(A)

α,Advf
1(F)
≤ βRA

1,Advf
1(Fµ,∇)

.

• If, for any f ∈ F and any query oracle Qf bounded by B1,W(Qf) is a stochastic query
oracle forW(f) that is bounded by B′

1, then we haveRW(A)
α,Advo

1(F,B1)
≤ βRA

1,Advf
1(Qµ[B′

1])
.

See Appendix G for proof. In this theorem, by using the uniform wrappers described in Section C,
in the special case of i = 1, we recover Theorems 2, 3 and 4 in [Pedramfar and Aggarwal, 2024a].
(See Remarks 7 and 9) In other words, we recover all meta-algorithms in [Pedramfar and Aggar-
wal, 2024a] that are used to convert concave optimization algorithms into up-concave optimization
algorithms.
Remark 10. Online Gradient Ascent requires semi-bandit feedback. Thus, Theorems 1 and 2 are
special cases of Theorems 11 and 12 respectively.
Remark 11. By applying these uniform wrappers to base algorithms SO-OGA ([Garber and Kretzu,
2022]) or IA ([Zhang et al., 2018]), we recover all the results of [Pedramfar and Aggarwal, 2024a].
In particular, we also recover the results for non-stationary regret described in Table 3 in [Pedramfar
and Aggarwal, 2024a].

F Proof of Theorem 11

Proof.

Deterministic oracle:

For any realization B = (B1, · · · ,BT) ∈ Adv ⊆ Advf
1(F), we define B′

t(x1, · · · ,xt) to be the
tuple (qt,∇) where

B′t(x1, · · · ,xt) := qt := y 7→ ⟨∇ft(xt),y − xt⟩ −
µ

2
∥y − xt∥2,

and B′ = (B′1, · · · ,B′T). Note that each B′t is a deterministic function of x1, · · · ,xt and therefore
B′ ∈ Advf

1(Fµ,∇). Since the algorithm uses semi-bandit feedback, the sequence of random vectors
(x1, · · · ,xT) chosen by A is identical between the game with B and B′. Hence

sup
B∈Adv

E

max
u∈U

b∑
t=a

(
⟨∇ft(xt),ut − xt⟩ −

µ

2
∥ut − xt∥2

)
= sup

B∈Adv
E

max
u∈U

 b∑
t=a

qt(ut)−
b∑

t=a

qt(xt)




≤ sup
B′∈Advf

1(Fµ,∇)

RA
1,B′ = RA

1,Advf
1(Fµ,∇).

Stochastic oracle:

Let ΩQ = ΩQ
1 × · · · × ΩQ

T capture all sources of randomness in the query oracles of Advo
1(F, B1),

i.e., for any choice of θ ∈ ΩQ, the query oracle is deterministic. Hence for any θ ∈ ΩQ and realized
adversary B ∈ Adv ⊆ Advf

1(F, B1), we may consider Bθ as an object similar to an adversary
with a deterministic oracle. However, note that Bθ does not satisfy the unbiasedness condition of
the oracle, i.e., the returned value of the oracle is not necessarily the gradient of the function at that
point. Recall that Bt maps a tuple (x1, · · · ,xt) to a tuple of ft and a stochastic query oracle for
ft. We will use EΩQ to denote the expectation with respect to the randomness of query oracle and

21

EΩQ
t
[·] := EΩQ [·|ft,xt] to denote the expectation conditioned on the action of the agent and the

adversary. Similarly, let EΩA denote the expectation with respect to the randomness of the agent.
Let ot be the random variable denoting the output of Q at time-step t and let

ōt := E[ot | ft,xt] = EΩQ
t
[ot] = ∇ft(xt).

Similar to the deterministic case, for any realization B = (B1, · · · ,BT) ∈ Adv and any θ ∈ ΩQ,
we define B′θ,t(x1, · · · ,xt) to be the pair (qt,∇) where

qt := y 7→ ⟨ot,y − xt⟩ −
µ

2
∥y − xt∥2.

We also define B′θ := (B′θ,1, · · · ,B′θ,T). Note that a specific choice of θ is necessary to make sure
that the function returned by B′

θ,t is a deterministic function of x1, · · · ,xt and not a random variable
and therefore B′θ belongs to Advf

1(Fµ[B1]).

Since the algorithm uses (semi-)bandit feedback, given a specific value of θ, the sequence of random
vectors (x1, · · · ,xT) chosen by A is identical between the game with Bθ and B′θ. Therefore, for
any u ∈ U , we have

E

 b∑
t=a

(
⟨∇ft(xt),ut − xt⟩ −

µ

2
∥ut − xt∥2

)
= E

 b∑
t=a

(
⟨E
[
ot | ft,xt

]
,ut − xt⟩ −

µ

2
∥ut − xt∥2

)
= E

 b∑
t=a

(
E
[
⟨ot,ut − xt⟩ −

µ

2
∥ut − xt∥2 | ft,xt

])
= E

 b∑
t=a

(
E
[
qt(ut)− qt(xt) | ft,xt

])
= E

 b∑
t=a

(
qt(ut)− qt(xt)

) .

Hence we have

max
u∈U

E

 b∑
t=a

(
⟨∇ft(xt),ut − xt⟩ −

µ

2
∥ut − xt∥

) = max
u∈U

E

 b∑
t=a

(
qt(ut)− qt(xt)

)
≤ E

 max
u=(u1,··· ,uT)∈U

b∑
t=a

(
qt(ut)− qt(xt)

)
= RA

B′
θ
(U)[a, b]

where the inequality follows from Jensen’s inequality. Therefore

sup
B∈Adv

max
u∈U

E

 b∑
t=a

(
⟨∇ft(xt),ut − xt⟩ −

µ

2
∥ut − xt∥

)
≤ sup

B∈Adv,θ∈ΩQ
RA

B′
θ

≤ sup
B′∈Advf

1(Fµ[B1])

RA
B′

= RA
Advf

1(Fµ[B1])

22

G Proof of Theorem 12

Proof.

(i):

We have

RW(A)

α,Advf
1(F)

= sup
B∈Advf

1(F)

E

 max
u=(u1,··· ,uT)∈U

b∑
t=a

(
αft(ut)− ft(W(xt))

)
≤ sup

B∈Advf
1(F)

max
u=(u1,··· ,uT)∈U

E

 b∑
t=a

β

(
⟨∇W(ft)(xt),ut − xt⟩ −

µ

2
∥ut − xt∥

)
= βRA

1,Advf
1(Hµ,∇).

(ii):

Since Adv is oblivious, the sequence of functions (f1, · · · , fT) is not random and we have

RW(A)
α,Advo

1(F,B1)
= sup

B∈Advo
1(F,B1)

E

 max
u=(u1,··· ,uT)∈U

b∑
t=a

(
αft(ut)− ft(W(xt))

)
= sup

B∈Advo
1(F,B1)

max
u=(u1,··· ,uT)∈U

E

 b∑
t=a

(
αft(ut)− ft(W(xt))

)
≤ sup

B∈Advo
1(F,B1)

max
u=(u1,··· ,uT)∈U

E

 b∑
t=a

β

(
⟨∇W(ft)(xt),ut − xt⟩ −

µ

2
∥ut − xt∥

)
= βRA

1,Advf
1(Qµ[B′

1])
.

H Follow The Regularized Leader

We start by defining the notion of self-concordant barrier.
Definition 6 ([Hazan et al., 2016]). Let K ∈ Rd be a convex set with non empty interior int(K).
We call a function Φ : int(K) −→ R a ν-self-concordant barrier of K if:

(i) Φ is three-times continuously differentiable, convex, and tends to infinity along any se-
quence of points approaching the boundary of K;

(ii) For every h ∈ Rd and x ∈ int(K), we have:

|∇3Φ(x)[h,h,h]| ≤ 2(∇2Φ(x)[h,h])3/2, |∇Φ(x)[h]| ≤ ν1/2(∇2Φ(x)[h,h])1/2

where the third-order differential is defined as ∇3Φ(x)[h,h,h] := ∂3

∂t1∂t2∂t3
Φ(x+ t1h+

t2h+ t3h)|t1=t2=t3=0.

Next we define the notion of local norm and dual norm with respect to a self-concordant barrier.
Definition 7. For every x ∈ int(K), the Hessian of the self-concordant barrier induces a local norm,
denoted as ∥ · ∥Φ,x, and a dual norm, denoted as ∥ · ∥Φ,x,∗, where for any v ∈ Rd,

∥v∥Φ,x =
√

vT∇2Φ(x)v, ∥v∥Φ,x,∗ =
√
vT (∇2Φ(x))−1v.

An important result for FTRL is the following theorem which was proved in [Abernethy et al.,
2008]. It shows that if we set the regularizer to be a self-concordant barrier of K and the algorithm
can access the unbiased estimator of gt, then the regret of the generated solution sequence {xt}Tt=1
can be bounded in terms of the local norm of the estimator.

23

Theorem 13 ([Abernethy et al., 2008]). Let K ⊆ Rd be a convex set, Φ(x) be a self-concordant
barrier on K, {gt}Tt=1 be a sequence of random vectors in Rd. Then running FTRL (described
in Equation 3) on a vector sequence {gt}Tt=1 in Rd with Φ(x) as the regularizer will produce a
sequence of point {xt}Tt=1 in K where

T∑
t=1

⟨gt,y − xt⟩ ≤ η

T∑
t=1

∥gt∥2Φ,xt,∗ +
Φ(y)− Φ(x1)

η
,

for any y ∈ K.

The ellipsoid gradient estimator was proposed in [Abernethy et al., 2008], where the authors use it
along with Theorem 13 to design an Õ(

√
T) regret algorithm for bandit linear optimization. For a

continuous function but possibly non-smooth f : Rd → R and an invertible matrix Σ ∈ Rd×d, we
define the Σ-smoothed version of f .

Definition 8. For function f(x) : Rd → R and invertible matrix Σ ∈ Rd×d, we call fΣ(x) a
Σ-smoothed version of f(x), where fΣ(x) = Ev∼Bd

[
f(x+Σv)

]
. Here v ∼ Bd means that v is

sampled from the unit ball Bd uniformly at random.

There is a surprising fact that there is an unbiased estimator of∇fΣ(x) for any x, and the estimator
uses only a single query to the value oracle of f .

Lemma 5 ([Abernethy et al., 2008]). Let Σ ∈ Rd×d be an invertible matrix, f(x) : Rd → R be an
arbitrary function. Then ∇fΣ(x) = dEv∼Sd−1

[
f(x+Σv)Σ−1v

]
. Here v ∼ Sd−1 means that v

is sampled from the (d− 1)-dimensional unit sphere Sd−1 uniformly at random.

If f is a linear function, fΣ(x) = f(x), so Lemma 5 provides a one-sample unbiased estimator of
the gradient of the linear function. The ellipsoid gradient estimator is usually used along with FTRL
with a self-concordant regularizer Φ of K. When the invertible matrix Σ is set to be (∇2Φ(x))−1/2

and x ∈ int(K), the sampled action x+ Σv is located in the surface of a so-called Dikin ellipsoid
centered at x, i.e. {x′ | ∥x′ − x∥Φ,x ≤ 1}. The fact that Dikin ellipsoid is entirely contained in K
allows us to define fΣ at x.

We finish this section with quick overview of the concept of the Minkowski function, the Minkowski
set and some of their useful properties.

Definition 9. Let K be a compact convex set, the Minkowski function πx : K → R parameterized
by a pole x ∈ int(K) is defined as πx(y) := inf{t ≥ 0 | x+ t−1(y − x) ∈ K}. Given δ ∈ R+ and
x1 ∈ int(K), we define the Minkowski set

Kγ,x1
:= {x ∈ K | πx1(x) ≤ (1 + γ)−1}.

Lemma 6 ([Abernethy et al., 2008]). Let K be a compact convex set, x ∈ int(K) with diameter D,
u∗ ∈ K and û∗ := argminz∈Kγ,x

∥z − u∗∥ be the projection of u∗ onto the Minkowski set Kγ,x,
then

∥u∗ − û∗∥ ≤ γD.

The following lemma provides an upper bound of the difference between the function value of a
self-concordant barrier at two different points.

Lemma 7 ([Nesterov and Nemirovskii, 1994]). Let Φ be a ν-self-concordant barrier over a compact
convex set K, then for all x,y ∈ int(K):

Φ(y)− Φ(x) ≤ ν log
1

1− πx(y)
.

I Technical Lemmas

This section provides some technical lemmas that will be used in the proofs later.

Lemma 8. Let K be a compact set and let f : K → Rd be an M2-smooth function. Then f may be
extended to an M2-smooth function f̃ : Rd → R.

24

Proof. The function ∇F is an M2-Lipschitz function defined on K. Therefore, according to
Kirszbraun theorem [Kirszbraun, 1934] it may be extended to a function g : Rd → Rd that is M2-
Lipschitz. Now the result follows directly from Whitney’s extension theorem [Whitney, 1934].

Parts (i)-(iii) of the following lemma are well-known in the literature. (See Lemma A.5 in [Wan
et al., 2023] for a proof). Here we provide a proof for part (iv).

Lemma 9. Following properties hold for Σ-smoothed version of a function f(x) for an invertible
matrix Σ.

(i) If f(x) is a monotone function, then so is fΣ(x).

(ii) If f(x) is M1-Lipschitz, then so is fΣ(x).

(iii) If f(x) is M2-smooth, then so is fΣ(x).

(iv) If f is upper-quadratizable with a uniform wrapperW and α, β and µ, then we have

αfΣ(y)− (f ◦W)Σ(x) ≤ β

(〈
∇(W(f))Σ(x),y − x

〉
− µ

2
∥y − x∥2

)
.

Proof. We have

αfΣ(y)− (f ◦W)Σ(x) = Ev∼Bd

[
αf(y +Σv)− f(W(x+Σv))

]
≤ Ev∼Bd

[
β

(
⟨∇W(f)(x+Σv),y − x⟩ − µ

2
∥y − x∥2

)]

= β

(〈
Ev∼Bd

[
∇W(f)(x+Σv)

]
,y − x

〉
− µ

2
∥y − x∥2

)
= β

(〈
∇Ev∼Bd

[
W(f)(x+Σv)

]
,y − x

〉
− µ

2
∥y − x∥2

)
= β

(〈
∇(W(f))Σ(x),y − x

〉
− µ

2
∥y − x∥2

)
.

Lemma 10. If f : K → R is M1-Lipschitz and M2-smooth and g : K → K is M ′
1-Lipschitz

and M ′
2-smooth, then f ◦ g is M ′′

1 -Lipschitz and M ′′
2 -smooth where M ′′

1 := M1M
′
1 and M ′′

2 :=

M1M
′
2 +M2M

′
1
2.

Proof. We have

∥D(f ◦ g)(x)∥ = ∥Df(g(x)) ·Dg(x)∥ ≤M1M
′
1,

and therefore for all x,y ∈ K, we have

∥D(f ◦ g)(x)−D(f ◦ g)(y)∥ = ∥Df(g(x)) ·Dg(x)−Df(g(y)) ·Dg(y)∥
≤ ∥Df(g(x)) ·Dg(x)−Df(g(x)) ·Dg(y)∥

+ ∥Df(g(x)) ·Dg(y)−Df(g(y)) ·Dg(y)∥
= ∥Df(g(x))∥∥Dg(x)−Dg(y)∥

+ ∥Df(g(x))−Df(g(y))∥∥Dg(y)∥
≤M1M

′
2∥x− y∥+M2M

′
1∥g(x)− g(y)∥

≤ (M1M
′
2 +M2M

′
1
2
)∥x− y∥.

25

J Proof of Theorem 3

Proof. We have
T∑

t=1

E
[
ft(u∗)− ft(xt)

]
=

T∑
t=1

E
[
fδΣt
t (û∗)− fδΣt

t (xt)
]
+

T∑
t=1

E
[
fδΣt
t (u∗)− fδΣt

t (û∗)
]

︸ ︷︷ ︸
(A)

+

T∑
t=1

E
[
ft(u∗)− fδΣt

t (u∗)
]

︸ ︷︷ ︸
(B)

+

T∑
t=1

E
[
fδΣt
t (xt)− ft(xt)

]
︸ ︷︷ ︸

(C)

(4)

Note that, for the terms above to be well-defined, we need to be able to define fδΣt
t over K which

requires computing ft over a set that is slightly larger than K. Using Lemma 8, we assume that all
functions ft are well-defined and M2-smooth over Rd.

Bounding (A): Since ft(x) is M1-Lipschitz continuous, fδΣt
t is also M1-Lipschitz continuous by

Lemma 9. Since ∥û∗ − u∗∥ ≤ γD by Lemma 6,
T∑

t=1

E
[
fδΣt
t (u∗)− fδΣt

t (û∗)
]
≤

T∑
t=1

E
[
|fδΣt

t (û∗)− fδΣt
t (u∗)|

]
≤

T∑
t=1

M1γD = M1γDT.

(5)

Bounding (B): Since ft(x) is M2-smooth, by Lemma 9, fδΣt
t is M2-smooth. Thus,

ft(u∗)− fδΣt
t (u∗) = Ev∼Bd

[
ft(u∗)− ft(u∗ + δΣtv)

]
≤ Ev∼Bd

[
−⟨∇ft(u∗), δΣtv⟩+

M2

2
∥δΣtv∥2

]
= Ev∼Bd

[
−⟨∇ft(u∗), δΣtv⟩

]
+ Ev∼Bd

[
M2

2
∥δΣtv∥2

]
= Ev∼Bd

[
M2

2
∥δΣtv∥2

]
≤ M2δ

2D2

2
.

Note that in the last inequality, we used the fact that the Dikin ellipsoid centered at xt is contained
in K which implies that xt +Σtv ∈ K and therefore ∥Σtv∥ ≤ D. It follows that,

T∑
t=1

E
[
ft(û∗)− fδΣt

t (û∗)
]
≤ M2δ

2D2T

2
. (6)

Bounding (C): Similarly,

fδΣt
t (xt)− ft(xt) = Ev∼Bd

[
ft(xt + δΣtv)− ft(xt)

]
≤ Ev∼Bd

[
−
〈
∇ft(xt), δΣtv

〉
+

M2

2
∥δΣtv∥2

]
≤ M2δ

2D2

2
.

Therefore,
T∑

t=1

E
[
fδΣt
t (xt)− ft(xt)

]
≤ M2δ

2D2T

2
(7)

26

Putting 5,6,7 in 4, we see that
T∑

t=1

E
[
ft(u∗)− ft(xt)

]
≤

T∑
t=1

E
[
fδΣt
t (û∗)− fδΣt

t (xt)
]

+ αM1γDT +
M2δ

2D2T

2
+

M2δ
2D2T

2
,

which completes the proof of the first claim.

To prove the second claim, we first use Lemma 5, with Σ = δΣt, to see that E
[
ot | xt

]
=

∇fδΣt
t (xt). On the other hand, since Qt is bounded by B0, we have

∥ot∥2xt,∗ =

∥∥∥∥dδ ytΣ−1
t vt

∥∥∥∥2
xt,∗

=
d2

δ2
|yt|2vT

t Σ
−1
t

(
∇2Φ(xt)

)−1

Σ−1
t vt ≤

d2

δ2
B2

0∥vt∥2 ≤
d2B2

0

δ2

Hence, using Theorem 13 with gt = ot and y = û∗, we see that
T∑

t=1

E
[
⟨∇fδΣq

t (xt), û∗ − xt⟩
]
=

T∑
t=1

E
[
⟨E
[
ot | xt

]
, û∗ − xt⟩

]
=

T∑
t=1

E
[
E
[
⟨ot, û∗ − xt⟩ | xt

]]

= E

 T∑
t=1

⟨ot, û∗ − xt⟩


≤ E

η T∑
t=1

∥ot∥2Φ,xt,∗ +
Φ(û∗)− Φ(x1)

η


≤ η

T∑
t=1

d2B2
0

δ2
+

Φ(û∗)− Φ(x1)

η

≤ ηd2B2
0T

δ2
+

ν log(1
1−(1+γ)−1)

η
,

where we used Lemma 7 in the last inequality.

K Proof of Theorem 4

Proof. LetB ∈ Adv be a realized adversary and let f1, · · · , fT be the sequence of functions selected
by B. Also let u∗ ∈ argmaxu∈K

∑T
t=1 ft(u) and û∗ ∈ argminx∈Kγ,x1

∥u∗ − x∥ where γ = T−1.
We have

RW(ZO-FTRL)
α,B =

T∑
t=1

E
[
αft(u∗)− ft(W(xt))

]
=

T∑
t=1

E
[
αfδΣt

t (û∗)− (ft ◦W)δΣt(xt)
]
+ α

T∑
t=1

E
[
fδΣt
t (u∗)− fδΣt

t (û∗)
]

︸ ︷︷ ︸
(A)

+ α

T∑
t=1

E
[
ft(u∗)− fδΣt

t (u∗)
]

︸ ︷︷ ︸
(B)

+

T∑
t=1

E
[
(ft ◦W)δΣt(xt)− ft(W(xt))

]
︸ ︷︷ ︸

(C)

As in the proof of Theorem 3, we use Lemma 8 to extend all functions ft to M2-smooth functions
over Rd and we bound the terms (A) and (B) by M1γDT and M2δ

2D2T
2 , respectively. To bound (C),

27

we first use Lemma 10 to see that ft ◦ W is M ′′
2 -smooth, where M ′′

2 = M1M
′
2 +M2M

′
1
2. Hence,

we see that

(ft ◦W)δΣt(xt)− ft(W(xt)) = Ev∼Bd

[
ft(W(xt + δΣtv))− ft(W(xt))

]
≤ Ev∼Bd

[
−
〈
∇ft(W(xt)), δΣtv

〉
+

M ′′
2

2
∥δΣtv∥2

]
≤ M ′′

2 δ
2D2

2
.

Therefore,

T∑
t=1

E
[
(ft ◦W)δΣt(xt)− ft(W(xt))

]
≤ M ′′

2 δ
2D2T

2

Putting the bounds for (A), (B) and (C) together, we see that

RW(ZO-FTRL)
α,B =

T∑
t=1

E
[
αft(u∗)− ft(W(xt))

]
≤

T∑
t=1

E
[
αfδΣt

t (û∗)− (ft ◦W)δΣt(xt)
]
+ αM1γDT +

(αM2 +M ′′
2)δ

2D2T

2

≤
T∑

t=1

E
[
β⟨∇(W(ft))

δΣt(xt), û∗ − xt⟩
]
+ αM1γDT +

(αM2 +M ′′
2)δ

2D2T

2
,

(8)

where the second inequality follows from Lemma 9.

To bound the remaining term, we use an argument similar to the one used in the proof of Theorem 3
again. Using Lemma 5 with Σ = δΣt and the fact that yt is an unbiased sample of W(ft) at
xt + δΣtvt, we see that E

[
ot | xt

]
= ∇(W(ft))

δΣt(xt). On the other hand, since W(Qt) is
bounded by B0, we have |yt| ≤ B0, which implies that

∥ot∥2xt,∗ =

∥∥∥∥dδ ytΣ−1
t vt

∥∥∥∥2
xt,∗

=
d2

δ2
|yt|2vT

t Σ
−1
t

(
∇2Φ(xt)

)−1

Σ−1
t vt ≤

d2

δ2
B2

0∥vt∥2 ≤
d2B2

0

δ2
.

Hence, using Theorem 13 with gt = ot and y = û∗, we see that

T∑
t=1

E
[
β⟨∇(W(ft))

δΣt(xt), û∗ − xt⟩
]
= β

T∑
t=1

E
[
⟨E
[
ot | xt

]
, û∗ − xt⟩

]
= β

T∑
t=1

E
[
E
[
⟨ot, û∗ − xt⟩ | xt

]]

= βE

 T∑
t=1

⟨ot, û∗ − xt⟩


≤ βE

η T∑
t=1

∥ot∥2Φ,xt,∗ +
Φ(û∗)− Φ(x1)

η


≤ βη

T∑
t=1

d2B2
0

δ2
+ β

Φ(û∗)− Φ(x1)

η

≤ βηd2B2
0T

δ2
+

βν log(1
1−(1+γ)−1)

η
,

28

where we used Lemma 7 in the last inequality. Plugging this into Equation 8 and using M ′′
2 =

M1M
′
2 +M2M

′
1
2 and γ = T−1, we see that

RW(ZO-FTRL)
α,B ≤ βηd2B2

0T

δ2
+

βν log(1
1−(1+γ)−1)

η

+ αM1γDT +

(
αM2 +M1M

′
2 +M2M

′
1
2
)
δ2D2T

2

= O
(
ηδ−2T + η−1 log T + δ2T

)
.

L Proof of Theorem 5

Proof. Note that in all three cases,Waction is 1-Lipschitz and 0-smooth. Now the result for the first
case follows immediately from the fact that WM = Id. Also note that for any zeroth order query
oracle Qf for a function f ∈ FM0 and any y ∈ K

|WM0(Qf)(y)| = |z−1Qf (z ∗ y)| ≤ z−1 · C∥z ∗ y∥ = ∥y∥ ≤ D.

Thus the query oracleW(Qf) is bounded by D and the assumptions of Theorem 4 are satisfied. The
proof of boundedness ofWNM(Qf) for any f ∈ FNM is similar.

M Stochastic Full-information To Trivial query - SFTT

In this section, we discuss the SFTT meta-algorithm (Algorithm 4 in [Pedramfar and Aggarwal,
2024a]) which converts algorithms that require full-information feedback into algorithms that have
a trivial query oracle. In particular, it converts algorithms require zeroth-order full-information
feedback into bandit algorithms.

We say a function class F is closed under convex combination if for any f1, · · · , fk ∈ F and any
δ1, · · · , δk ≥ 0 with

∑
i δi = 1, we have

∑
i δifi ∈ F.

Theorem 14 (Theorem 7 and Remark 1 and Corollary 6 in [Pedramfar and Aggarwal, 2024a]).
Let A be an online optimization algorithm with full-information feedback and with K queries at
each time-step where Aquery does not depend on the observations in the current round and A′ =
SFTT(A). Then, for any M1-Lipschitz function class F that is closed under convex combination
and any B1 ≥ M1, 0 < α ≤ 1 and 1 ≤ a ≤ b ≤ T , let a′ = ⌊(a − 1)/L⌋ + 1, b′ = ⌈b/L⌉,
D = diam(K) and let {T} and {T/L} denote the horizon of the adversary. If we also have
RA′

α,Advo
i(F,B)(K

T
⋆)[a, b] = O(BT η), K = O(1) and L = O(T

1−η
2−η), then

RA′

α,Advo
i(F,B)(K

T
⋆)[a, b] = O

(
BT

1
2−η

)
.

More generally, the above result holds even if the query oracles are not bounded. Specifically, what
we require is that the set of query oracles to be closed under convex combinations.

Algorithm 6: Stochastic Full-information To Trivial query - SFTT(A)
Input : base algorithm A, horizon T , block size L > K.
for q = 1, 2, . . . , T/L do

Let x̂q be the action chosen by Aaction

Let (ŷi
q)

K
i=1 be the queries selected by Aquery

Let (tq,1, . . . , tq,L) be a random permutation of {(q − 1)L+ 1, . . . , qL}
for t = (q − 1)L+ 1, . . . , qL do

if t = tq,i for some 1 ≤ i ≤ K then
Play the action xt = ŷi

q

Return the observation to the query oracle as the response to the i-th query
else

Play the action xt = x̂q

end
end

end

29

N Proof of Theorem 6

Proof. All three class of functions considered are closed under convex combination. Therefore we
may directly apply Theorems 5 and 14 to obtain this result for the first case.

For any sequence of functions f1, · · · , fk and query oraclesQ1, · · · ,Qk for these functions that are
contained within a cone Cone(0, C) and non-negative numbers δ1, · · · , δk such that

∑
i δi = 0, the

query oracle Q that uses Qi with probability δi is trivially a query oracle for
∑

i δifi that is also
contained within this cone. Therefore, we may apply Theorem 14 to obtain this result for the second
case as well. The proof of the last case is similar.

O Proof of Theorem 7

First we state the following simple result about OTB.
Theorem 15 (Theorem 8 in [Pedramfar and Aggarwal, 2024a]). If A is an online algorithm that
queries no more than K = T θ times per time-step and obtains an α-regret bound of O(T δ), then
the sample complexity of OTB(A) is Ω(ϵ−

1+θ
1−δ).

Proof of Theorem 7. This is an immediate corollary of Theorem 5 and the guarantees for the OTB
meta-algorithm stated in Theorem 15.

30

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes] Justification: The abstract and introduction accurately reflect the contribu-
tions and scope of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper includes discussion of limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Assumptions and complete proofs are included.

31

Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: There are no experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

32

Answer: [NA]
Justification: There are no experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: There are no experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [NA]
Justification: There are no experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

33

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: There are no experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper preserves anonymity and follows the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper focuses on the technical contributions and does not include a spe-
cific discussion of broader positive or negative societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

34

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks as no usage of pretrained models, image gen-
erators, or scraped datasets in the paper.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use the existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/
datasets has curated licenses for some datasets. Their licensing guide can help
determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

35

paperswithcode.com/datasets
paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

36

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/
2025/LLM) for what should or should not be described.

37

https://neurips.cc/Conferences/2025/LLM
https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background and Notation
	Problem setup
	Uniform wrappers
	Linearizable and quadratizable functions classes
	When Is Concave Optimization Enough?
	Examples
	Online Gradient Ascent
	Zeroth Order Follow The Regularized Leader

	Applications
	Conclusion
	Appendices
	How uniform wrappers work
	Additional Related Works
	Uniform wrappers for up-concave optimization
	Proof of Theorems 1 and 2
	Recovering previous results in the literature
	Proof of Theorem 11
	Proof of Theorem 12
	Follow The Regularized Leader
	Technical Lemmas
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5
	Stochastic Full-information To Trivial query - SFTT
	Proof of Theorem 6
	Proof of Theorem 7

