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Abstract: For robots to understand human instructions and perform meaningful
tasks in the near future, it is important to develop learned models that compre-
hend referential language to identify common objects in real-world 3D scenes.
In this paper, we introduce a spatial-language model for a 3D visual grounding
problem. Specifically, given a reconstructed 3D scene in the form of point clouds
with 3D bounding boxes of potential object candidates, and a language utterance
referring to a target object in the scene, our model successfully identifies the tar-
get object from a set of potential candidates. Specifically, LanguageRefer uses
a transformer-based architecture that combines spatial embedding from bounding
boxes with fine-tuned language embeddings from DistilBert [1] to predict the tar-
get object. We show that it performs competitively on visio-linguistic datasets
proposed by ReferIt3D [2]. Further, we analyze its spatial reasoning task per-
formance decoupled from perception noise, the accuracy of view-dependent ut-
terances, and viewpoint annotations for potential robotics applications. Project
website: https://sites.google.com/view/language-refer.
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Figure 1: Simplified overview of LanguageRefer. The LanguageRefer model takes as input a grounding
language description of a single object in the scene, a 3D point cloud of a scene, and bounding boxes of objects
in the scene and predicts the target object. Its four modules include: a classifier, a spatial embedder, a language
embedder, and a spatial-language model.

1 Introduction

For robots to communicate seamlessly with humans to perform meaningful tasks in indoor environ-
ments, they must understand natural language utterances and ground them to real-world elements.
Several recent advances have combined language and visual elements, producing methods for tasks
such as visual question and answering (VQA) involving spatio-temporal reasoning tasks [3, 4, 5],
embodied QA [6], and pre-training for visual recognition tasks with language descriptions [7]. Fur-
ther, embodied agents can follow visually grounded language instructions to perform embodied
tasks [8, 9]. However, for real robots to intelligently perform these tasks, we need 3D representa-
tions from raw sensor data; ReferIt3D [2] proposes a benchmarking dataset of language utterances
referring to objects in 3D scenes from the ScanNet [10] dataset.
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Our long-term goal is to enable robots to visually navigate indoor environments based on referential
instructions. In this paper we take a step towards this goal by leveraging the ReferIt3D dataset to
build a model that can identify the 3D object referred to in a language utterance.

Referential language to identify an object in real-world 3D scenes poses a challenging problem.
Consider the sample utterance“Facing the foot of the bed, the bed on the right” along with a 3D
scene as shown in Figure 1. Humans can easily follow the language clues, infer the point of view
of the speaker, locate all the referenced elements, and spatially reason to locate the bed in the scene
despite two instances of beds. However, viewpoint prediction, object identification, and spatial
reasoning remain open-ended research problems in robotics and vision. The 3D reference task
proposed by ReferIt3D is difficult because: (1) reconstructed 3D scenes of the real world in the
ScanNet dataset are noisy and lack fine details compared to 2D images or rendered 3D scenes, (2)
fine-grained class labels and expressions in natural language utterances are diverse and not exactly
matched, (3) view-dependent utterances often require guessing the original viewpoints, which deters
the model from properly learning spatial concepts, and (4) the combined complexity of multiple
challenges complicates efforts to analyze what the model learns or understands.

Inspired by the success of the methods in [11, 12] on CLEVR and CLEVRER domains for the spatial
reasoning task, we hypothesized that for the 3D reference task, decoupling the spatial-reasoning
from the perceptual task of identifying the objects in the 3D scene would improve performance and
clearly track the role of perception noise in performance. More specifically, instead of developing an
integrated multi-modal perception system, we assumed a pre-trained instance classification model
or ground-truth classes for the objects that informed the spatial reasoning task. We focused on how
the language model with spatial information could handle the reference task.

The ReferIt3D dataset includes two sub-datasets containing natural and synthetic language utter-
ances, namely Nr3D and Sr3D, respectively. In our experiments, our model achieved comparable
scores on both with predicted instance class labels. We observed high accuracy with ground-truth la-
bels in Sr3D, which indicates that our model better understood template-based language data. Since
our pipeline is modular and features multiple models (perceptual, spatial embedding, pre-trained
language embedding, and spatial-language), our approach is flexible and adaptable to different en-
vironments and object entities.

Another aspect of the 3D reference task is viewpoint prediction. The ReferIt3D dataset contains
utterances that can be grouped into view-independent (VI) and view-dependent (VD) categories.
An example of a VI utterance is “The lamp closer to the white armchair” and a VD utterance is
“The lamp on the right in-between the beds”. The VD utterance requires viewpoint prediction. This
distinction is crucial for robotics applications where the agent must infer the viewpoint to which the
speaker is referring. In the ReferIt3D dataset, some VD utterances lack information to guess the
valid orientation of the agent (who utters the language description), which prevents a model from
understanding the significance of spatial relationships such as ‘left of.’ This is due to the annotation
process of ReferIt3D datasets, where both a speaker and a listener can freely rotate the scene to
infer an ill-defined orientation in the utterance. Human annotators who are aware of spatial concepts
tend to validate otherwise arbitrary orientations. However, a data-driven model will suffer from
degraded learning when it cannot verify orientations as well as human annotators. Viewpoint-free
annotations may suit most robotics applications; nonetheless, predicting or verifying whether a given
statement and the viewpoint match remains important. To better train and investigate the agent in
view dependencies, we provide an extra collection of orientation annotations for VD utterances and
compare the models with and without viewpoint correction from them.

To summarize, the paper contributes: (1) a novel transformer-based spatial-language model in a
modular pipeline that better understands spatial relationships in a 3D visual grounding task. We
show that our model achieves comparable performance with state-of-the-art methods on the Nr3D
and Sr3D datasets. (2) analysis of the ReferIt3D dataset with viewpoint orientation annotations to
remove potential artifacts from implicit orientations. (3) ablation and additional experiments with
ground-truth classes that decouple the impact of perception noise in the spatial reasoning task.
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2 Related Work

2.1 Vision-and-Language Navigation and Robot Navigation

Vision-and-language navigation (VLN) has been extensively studied and made remarkable progress
over the last few years ([13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]). Given a language instruction
in the simulation environment, the goal is for an agent to reach the desired node on the pre-defined
traversal graph using images as input. The literature offers several extensions. ALFRED [8] pro-
poses an extended VLN task that grounds a sequence of sub-tasks to achieve a higher level task in
the AI2Thor environment [9]. ALFRED navigation sequences have (implicit) goals that are often
close to objects of interest in the subsequent sub-tasks, e.g., when an agent is asked to move in front
of the sink because it is going to clean a cup there. With high-level semantic tasks, object-centric
spatial understanding is of even greater importance.

In another direction, recent approaches have relaxed the constraint of discrete traversal in VLN into
continuous space ([24, 25, 26, 27, 28]). Here, an agent encounters more complex tasks involving
time and space. Thus, expanding the space representation to 3D can be an effective solution. In the
context of VLN, we consider the 3D visual grounding task as a proxy for 3D indoor navigation that
includes the full observability assumption and goal-oriented language descriptions. In particular,
our approach focuses on understanding spatial relationships among objects, which plays a key role
in VLN and robot navigation.

2.2 2D and 3D Visual Grounding

The 2D visual grounding task localizes an object or region in an image given a language description
about the object or region ([29, 30, 31]). Most methods use two-stage approaches: they first gen-
erate proposals and then compare the proposals to the language description to choose the grounded
proposal ([32, 33, 34, 35, 36]).

The 3D visual grounding task localizes a 3D bounding box from the point cloud of a scene given a
language description. Recently, ReferIt3D [2] and ScanRefer [37] were proposed as datasets for 3D
visual grounding tasks, with language annotation on the ScanNet [10] dataset. Most 3D grounding
approaches ([2, 37, 38, 39, 40]) follow a two-stage schemes similar to many 2D visual grounding
tasks. First, multiple bounding boxes are proposed or the ground-truth bounding boxes are used,
and then features from the proposals are combined or compared with features from the language
description. InstanceRefer [38] extracts attribute features both from point clouds and utterances
and compares them to select the object that best matches. FFL-3DOG [39] matches features from
language and point clouds with guidance from language and a visual scene graph. These methods
rely on specific designs, e.g., bird-eye-view mappings with different types of operations or intensive
language pre-processing for graph generation. In contrast, our approach leverages the language
embedding space from the pre-trained language model. Following the pipeline and general ar-
chitecture of the language model therefore requires minimal manual design compared to previous
works. SAT [40], like our approach, relies on transformer [41] models; it learns a fused embed-
ding of multi-modal inputs and uses auxiliary 2D images. In contrast, our approach uses a semantic
classifier to predict object class labels and takes these labels as input. It has a marginal cost of
learning fused embeddings compared to training multiple BERT models [42] from scratch in SAT
[40]. Even given only semantic information from point clouds, our model still achieved comparable
performance with state-of-the-art methods on Nr3D and Sr3D datasets. In addition, the decoupled
perception module makes our approach modular and thus transferable to different data.

3 Problem Statement and Methodology

Given a 3D scene S with a list of objects (O1, · · · , OM ) and a language utterance U , the problem is
to predict the target object OT , T ∈ IM = {1, · · · ,M} referred to in the language. A single object
Oi consists of a bounding box Bi ∈ B = R6 and corresponding point cloud Pi ∈ P = RNi×6 (xyz
positions and RGB values) in the bounding box with Ni number of points.

We propose an approach based on language models, called LanguageRefer, to solve a 3D visual
grounding task. Our model focuses on understanding spatial relationships between objects from
language descriptions and 3D bounding box information. We chose this approach due to (1) the high
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Figure 2: Detailed overview of LanguageRefer. A semantic classifier predicts class labels from a 3D point
cloud in each bounding box (using color and xyz positions). The language description or utterance (e.g.,
“Facing the foot of the bed, the bed on the right”) is transformed into a sequence of tokens. The input token
embedding in DistilBert [1] converts the tokens into embedded feature vectors (green squares). Bounding
box position and size information are positional-encoded to form encoded vectors using techniques from [41]
(orange squares); they are added to the corresponding embedded feature vectors (green squares). After the
addition, our reference model processes the modified features and feeds them to multiple tasks. The main task
is a reference task, i.e., it chooses the referred object from the object features. The instance classification task
is a binary classification, i.e., it determines whether the given object feature belongs to the target class. Finally,
the masking task, commonly used in language modeling, recovers the original token from a randomly replaced
token in the utterance.

dependency on spatial relationship descriptions in language, and (2) the holistic nature of spatial
relationship information, which differs from unary attribute information such as color and shape.
As shown in Figure. 2, we use a two-stage approach. First, we determine the class labels of objects
in the scene. Second, we use spatial-language embedding to identify the referenced object. The
following subsections describe these steps in detail.

Semantic Classification Model and Tokenization. For semantic classification of the point cloud
in a bounding box, we employed PointNet++ [43], which achieved 69% accuracy on average in the
test dataset. In training and inference, we use a sampled point cloud P ′i ∈ R1024×6 and PointNet++
predicts the semantic label l̂ ∈ L, where L is a set of class labels in text. Each scene has pairs of
predicted class labels and bounding box values ((l̂i, Bi) : l̂i ∈ L, Bi ∈ B) from objects. Predicted
labels are concatenated to the utterance U with a separator [SEP] and then split by a tokenizer into
a list of indices of tokens: U becomes (u1, · · · , ut), and each predicted class label l̂i becomes
(oi1, · · · , oin1

), where each token index is in ID and D is the size of the dictionary.

Language Model and Token Embedding Generation. Our model uses a pre-trained language
model, DistilBert, for the reference task. Transformers consider relationships among all pairs of
elements through attention, and they can be effectively leveraged to explain spatial relationships
between objects as discrete entities. In our formulation, predicted class labels are considered to be
sentences, so they are concatenated to the utterance with separation by [SEP]. Therefore, the final
sequence of token indices would be V = ([CLS], u1, · · · , ut, [SEP], o11, · · · , o1n1

, [SEP], · · · , [SEP],
oM1 , · · · , oMnM

, [SEP]). Though the token index sequence complies with the specification of Distil-
Bert, it violates the number of sentences. Then, we transform V into the token embedding sequence
W = (w1, · · · , wT ), wi ∈ R768 using DistilBert’s word embeddings. For concise notation, we de-
fine the indices of utterance tokens in V or W as a mask MU = (2, · · · , t+1) and the indices of first
tokens from objects (o11, · · · , oM1 ) as a mask MO. We also define a mask operator [·] to manipulate
specific elements in the sequence; for instance, W [MU ] = 0 empties all utterance embeddings in
W .

Spatial-Language Model and Spatial Embeddings. To combine spatial information from raw
bounding box values into the token embedding W , we employ sinusoidal positional encoding PE(·)
from [41] to transform the bounding box vector (center position and size) Bi ∈ B ⊂ R6 to bi =
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PE(Bi) ∈ R768, which is then added to W [MO].1 The token embedding W is then combined with
spatial information and finally transformed into the output embedding X = (x1, · · · , xT ), xi ∈
R768 by the reference model, which is fine-tuned from the pre-trained DistilBert. The final reference
task is performed by the reference classifier from X[MO], as explained in the following subsection.

Loss Functions. We use three tasks for training and corresponding loss values. First, we use the
reference loss, Lref , following the original proposal in [2]. We ask the model to choose one object
as the target instance from M candidates. We collect scalar values from X[MO] by a linear layer
and take the argmax on those values to choose the target instance.

Second, we add a binary target classification loss Lclf on X[MO] to determine whether a given
object belongs to the target class.

Last, we employ mask loss from language model pre-training, Lmask. We randomly replace the
tokens from nouns in the utterance with a probability of 15 %. The noun token is replaced by
[MASK] with an 80 % chance, by a random token with a 10 % chance, or it remains the same with
a probability of 10 %. Then, the model is asked to recover the original token index. We expect
the model to fill in the replaced tokens in the utterance by understanding the relationship between
objects. We use cross entropy loss for all tasks and compute the final loss as

L = Lref + 0.5Lclf + 0.5Lmask. (1)

At inference, we followed the approach of InstanceRefer [38] to filter out objects that do not belong
to the predicted target class. We used an extra DistilBert-based target classification model of 94
% accuracy that takes the language utterance as input to predict the target class. To reduce the
chance of removing the true target instance in the filtering process, the top-k class predictions (from
the semantic classifier) for each object are compared to the predicted target class. We use k = 4
throughout the experiments. For masking loss computation, we extracted nouns in the utterance. We
used flair [44] for part-of-speech (POS) tagging.

4 Experiments

4.1 Datasets

We evaluated our model on the reference task from ReferIt3D [2] with two datasets, Nr3D (Natural
reference in 3D) and Sr3D (Spatial reference in 3D, which contains spatial descriptions only). Both
datasets augment ScanNet [10], a reconstructed 3D indoor scene dataset with language descriptions.
Nr3D has 41,503 natural language utterances, and Sr3D contains 83,572 template-based utterances,
on 707 scenes following the official splits of ScanNet [10]. The datasets have 76 target classes and
are designed to have multiple same-class distractors in the scene.

4.2 Experiment Settings

ReferIt3D [2] provides the ground-truth bounding boxes of objects in the scene, point clouds of
the scene, utterances and corresponding target objects. We measured the accuracy of the model
by comparing the object selected from M candidates to the ground-truth target object. When the
number of same-class distractors exceeded two, we classified the instance as “hard” according to
[2]. The other cases were classified as “easy.”

We trained models with a learning rate of 0.0001 using AdamW optimization, warm-up and linear
scheduling. Our model was initialized with a pre-trained model of the cased Distilbert base [1] from
the Hugging Face implementation [45].

We compared the performance of our model with state-of-the-art methods on ReferIt3D ([2, 40, 37,
38, 39]) based on the reported numbers on the challenge website [46] and corresponding papers.
Since SAT [40] uses an extra 2D image dataset in their training, we separated it from non-SAT, their
baseline model that is not trained with the extra dataset.

1Each value in bi is extended to 128-dimensions by PE and then concatenated to form a 768-dimensional
vector.

5



Dataset Method Overall Easy Hard View-dep. View-indep.

Nr3D

ReferIt3D [2] 35.6 % 43.6 % 27.9 % 32.5 % 37.1 %
ScanRefer [37] 34.2 % 41.0 % 23.5 % 29.9 % 35.4 %

InstanceRefer [38] 38.8 % 46.0 % 31.8 % 34.5 % 41.9 %
FFL-3DOG [39] 41.7 % 48.2 % 35.0 % 37.1 % 44.7 %

non-SAT [40] 37.7 % 44.5 % 31.2 % 34.1 % 39.5 %
Ours 43.9 % 51.0 % 36.6 % 41.7 % 45.0 %

Nr3D w/ 2D images SAT [40] 49.2 % 56.3 % 42.4 % 46.9 % 50.4 %

Sr3D

ReferIt3D [2] 40.8 % 44.7 % 31.5 % 39.2 % 40.8 %
InstanceRefer [38] 48.0 % 51.1 % 40.5 % 45.4 % 48.1 %

non-SAT [40] 47.4 % N/A N/A N/A N/A
Ours 56.0 % 58.9 % 49.3 % 49.2 % 56.3 %

Sr3D w/ 2D images SAT [40] 57.9 % 61.2 % 50.0 % 49.2 % 58.3 %

Table 1: Accuracy on ReferIt3D [2]. Our model outperformed state-of-the-art models on both Nr3D and
Sr3D except for models with additional training data (SAT with 2D images). The average performance gap
between ours and other models on Sr3D (10.6%) is larger than that on Nr3D (6.3%) since our model uses only
spatial reasoning for the reference task.

4.3 Evaluation on ReferIt3D [2]

Table 1 shows the accuracy on Nr3D and Sr3D. Our model outperformed other models (without extra
training datasets) on both Nr3D and Sr3D. It achieved 43.9% on Nr3D with an +8.3% improvement
over the baseline method of ReferIt3D [2] and a 2.2% increase over the best accuracy from other
models in Nr3D. For Sr3D, our model achieved 56.0%, which is a 15.2% and 8.0% increase over
the baseline and the best accuracy in the Sr3D section, respectively. It is also comparable to the
accuracy of SAT (with a 1.9% difference), which was trained with additional 2D image training
data. These results prove that our model can accurately reason about spatial relationships from
spatial-language embeddings and outperforms other models on both datasets despite the loss of
information in appearance. In addition, less diverse language expressions and utterances only about
spatial reasoning can explain our model’s strong performance on Sr3D.

4.4 Evaluation with Ground-Truth Class Labels

We further investigated the model’s spatial reasoning ability by removing noise in class labels. We
replaced predicted class labels with ground-truth class labels, which was possible due to the explicit
usage of class labels in our model.

Table 2 shows the result with and without ground-truth class labels. The first and second columns
demonstrate the type of dataset in training and evaluation, respectively. For instance, the second
row shows the evaluation result of the model trained with the Nr3D dataset with ground-truth class
labels and evaluated on the Nr3D dataset with predicted class labels. When we trained and evaluated
our model with ground-truth labels on Nr3D and Sr3D (row 4 and 8), we achieved 54.3% and
91.1% accuracy, respectively. Compared to the accuracy of models trained and evaluated with noisy
labels, we realized an improvement is 10.4% and 35.1%, respectively, for each dataset. When we
evaluated with ground-truth labels the models trained with noisy labels, their performance increase
was 9.7% and 24.2%, respectively. Multiple reasons account for the difference in performance
on Nr3D and Sr3D: diversity in the natural language dataset, a higher portion of view-dependent
utterances or view-dependent utterances with no mention of orientation, and descriptions other than
spatial relationships, such as color or appearance.

In addition, we examined the accuracy given switched datasets, namely, when we train a model on
Nr3D and evaluate it using Sr3D, and vice versa. The last two rows in Table 2 show two switched
evaluation results: 40.0% and 37.6% on Sr3D and Nr3D, respectively. The 37.6% accuracy on Nr3D
from the model trained on Sr3D is comparable to the accuracy of non-SAT [40] and InstanceRefer
[38]. It shows our model’s generalizability of spatial reasoning and potential to transfer to different
perception modules and datasets.
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Dataset Overall Easy Hard View-dep. View-indep.Training Evaluation

Nr3D-pred Nr3D-pred 43.9 % 51.0 % 36.6 % 41.7 % 45.0 %
Nr3D-gt Nr3D-pred 41.4 % 48.0 % 34.6 % 38.1 % 43.0 %
Nr3D-pred Nr3D-gt 53.6 % 64.4 % 42.5 % 50.7 % 55.0 %
Nr3D-gt Nr3D-gt 54.3 % 65.5 % 42.8 % 49.1 % 56.8 %

Sr3D-pred Sr3D-pred 56.0 % 58.9 % 49.3 % 49.2 % 56.3 %
Sr3D-gt Sr3D-pred 52.1 % 53.8 % 48.2 % 43.9 % 52.5 %
Sr3D-pred Sr3D-gt 80.2 % 83.2 % 73.1 % 62.5 % 81.0 %
Sr3D-gt Sr3D-gt 91.1 % 93.1 % 86.2 % 67.0 % 92.1 %

Nr3D-pred Sr3D-pred 40.0 % 43.6 % 31.5 % 41.2 % 39.9 %
Sr3D-pred Nr3D-pred 37.6 % 45.3 % 29.6 % 34.5 % 39.0 %

Table 2: Ablation with ground-truth class labels. First and second columns show types of data used in
training and evaluation. The high overall accuracy (91.1% at row 8) of the model both trained and evaluated
with ground-truth class labels on Sr3D shows its spatial reasoning ability besides the perception noise. Ac-
curacy gaps between ground-truth and predicted class labels on Nr3D and Sr3D (9.7%, 24.2%, respectively)
indirectly tell us about language complexity and information loss due to classification. Transferring the model
trained with Sr3D to Nr3D evaluation shows an overall number (37.6% at row 10) comparable to those from
other methods. Our model can easily accommodate different classification models or datasets.

4.5 Ablation on Loss Terms

We trained models with different combinations of loss terms, and Table 3 shows the results. In
addition to three tasks, we examined the effect of a text classification task that predicts the target
class label l ∈ L from the tokens from utterance X[MU ].

We found that only the binary classification loss shows its effect clearly (+3.5% from Ref. to Ref.-
Clf., +3.9% from Ref.-Mask to Ref.-Mask-Clf., +1.0% from Ref.-Text to Ref.-Text-Clf.). The mask
loss was not effective, and the text classification loss degraded accuracy. One hypothesis here is that
the text classification loss does not help the model to transform the initial language embedding to a
spatial-language embedding. The model may not require strong language constraints because (1) it
already has a good initial language embedding, and (2) the text classification loss is independent of
the scene’s spatial configuration. Due to the performance drop, we chose our model without the text
classification loss.

Ref. Clf. Mask Text Overall Easy Hard View-dep. View-indep.

X - - - 40.6 % 48.2 % 32.8 % 38.5 % 41.6 %
X X - - 44.1 % 51.3 % 36.7 % 41.0 % 45.6 %
X - X - 40.0 % 47.2 % 32.5 % 36.8 % 41.5 %
X - - X 40.0 % 48.7 % 30.8 % 37.8 % 40.9 %
X X X - 43.9 % 51.0 % 36.6 % 41.7 % 45.0 %
X X - X 41.0 % 49.7 % 31.9 % 39.3 % 41.8 %
X X X X 40.0 % 48.2 % 31.5 % 38.9 % 40.6 %

Table 3: Ablation of loss terms on Nr3D. The classification loss was effective, the mask loss did
not significantly affect accuracy, and the text loss degraded accuracy. We chose the model without
text losses (fifth row, in blue).

4.6 Viewpoint Annotation

View-dependent utterances without information about original viewpoint make the reference task in
ReferIt3D [2] more challenging. For instance, utterances such as “The door is wood with the handle
on the left side.” assume specific orientations of the agent, and it is impossible to recover the true
orientation without knowing the referred object; this differs from view-dependent utterances with
explicit viewpoint information, such as “Facing the foot of the bed.” However, the original dataset
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Correction Overall Easy Hard View-dep. View-indep.Training Evaluation

X - 43.5 % 50.7 % 36.0 % 37.0 % 46.6 %
X X 49.0 % 56.0 % 41.8 % 54.4 % 46.4 %
- X 43.1 % 50.3 % 35.6 % 40.4 % 44.4 %
- - 43.9 % 51.0 % 36.6 % 41.7 % 45.0 %

Table 4: Comparison of accuracy with and without corrected orientations on Nr3D.

(a) An example of stan-
dard orientation 1.

(b) An example of stan-
dard orientation 2.

(c) An example of stan-
dard orientation 3.

(d) An example of stan-
dard orientation 4.

Figure 3: Examples of standard orientations for viewpoint annotation on Nr3D (a-d). We assume that the
robot is always inside the room except for cases specified by utterances.

of ReferIt3D [2] does not distinguish the utterances without orientation information from those with
it. Therefore, we split the view-dependent (VD) utterance category into two subcategories, VD-
explicit and VD-implicit, where VD-explicit has explicit viewpoint information in the utterance.
We then collected orientations from human annotators that validated the utterances. We set four
standard orientations assuming the agent is in the room (around the center of the scene) and asked
annotators to select all orientations that could be considered valid from the utterance. Figure 3
shows examples of the four orientations. We found that four orientations were sufficient to recover
the original viewpoints of the speakers. In total, 12,680 view-dependent utterances of the Nr3D
dataset were annotated; from these, 5,942 utterances were classified as VD-explicit. For train and
test split, 10,206 and 2,474 utterances were annotated, respectively.

From the orientation for view-dependent utterances, we revised the dataset with the corrected ori-
entation; we rotated the scene with respect to the annotation so all scenes remained valid at the
canonical orientation. For view-independent utterances, we randomly rotated the scenes since they
were valid in any direction. Table 4 shows the accuracy values for models trained with and without
corrected orientations. At inference, we evaluated each model with and without corrected orienta-
tions, as well. The second row shows the accuracy of the model that was trained and evaluated with
corrected orientations. Its overall accuracy was improved by +5.1% from the final model without
the correction that was used in Table 1 (the last row in Table 4). Note that the improvement on
view-independent utterances was marginal (+1.4%), but the improvement on view-dependent ones
was significant (+12.7%). The first row shows the accuracy of a model trained with corrected orien-
tations and evaluated on the test data without correction. This model achieved accuracy comparable
to the final model (−0.4%). This implies the correction helped the model to accurately interpret the
view-dependent scene when the orientation was consistently aligned, introducing no unwanted bias.

5 Conclusion

We proposed LanguageRefer, a spatial-language model for 3D visual grounding in a reference task.
LanguageRefer combines language embeddings from utterances and class labels with positional-
encoded spatial information for efficient learning of the spatial-language embedding space without
different modules for individual modality. Experimental results show that LanguageRefer outper-
formed state-of-the-art models on ReferIt3D with no additional training data. Analysis and ab-
lations we performed demonstrate the effects of 1) noisy class labels, 2) arbitrary viewpoints in
view-dependent utterances, 3) and the transfer of our model to different datasets for future robotics
applications.
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