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ABSTRACT

This paper introduces Quantum-PEFT that leverages quantum computations for
parameter-efficient fine-tuning (PEFT). Unlike other additive PEFT methods, such
as low-rank adaptation (LoRA), Quantum-PEFT exploits an underlying full-rank
yet surprisingly parameter-efficient quantum unitary parameterization. With the
use of Pauli parameterization, the number of trainable parameters grows only
logarithmically with the ambient dimension, as opposed to linearly as in LoRA-
based PEFT methods. Quantum-PEFT achieves vanishingly smaller number of
trainable parameters than the lowest-rank LoRA as dimensions grow, enhancing
parameter efficiency while maintaining a competitive performance. We apply
Quantum-PEFT to several transfer learning benchmarks in language and vision,
demonstrating significant advantages in parameter efficiency.

1 INTRODUCTION

Fine-tuning large pre-trained models is a cost-effective method to adapt a general-purpose model to
additional domains and tasks in computer vision and natural language processing (Devlin et al., 2018;
Liu et al., 2019; He et al., 2020; Radford et al., 2019; Brown et al., 2020; Dubey et al., 2024). Yet, even
the practice of fine-tuning for each application can be costly as models scale to billions or trillions of
parameters. The substantial memory requirements, such as GPT-3’s 350GB footprint (Brown et al.,
2020), can pose significant resource challenges, restricting practical deployment.

Parameter-efficient fine-tuning (PEFT) addresses the resource challenges of task specialization
for massive pre-trained networks without the need to fine-tune parameters in full model weights
dimensions (Aghajanyan et al., 2020; Hu et al., 2021; Edalati et al., 2022). For instance, low-rank
adaptation (LoRA) (Hu et al., 2021) uses low-rank decompositions to modify weights, whereby
reducing the number of trainable parameters. Despite its efficiency, there are limitations to the number
of parameters, which include a compression ratio constrained by rank-1 decompositions and a linear
scaling of trainable parameters with weight matrix dimensions.

We introduce Quantum-PEFT, a novel framework that achieves extremely parameter-efficient fine-
tuning beyond LoRA-variants, e.g., (Zhang et al., 2023; Qiu et al., 2023; Liu et al., 2023b; Yeh et al.,
2024), by leveraging quantum unitary parameterizations (Biamonte et al., 2017; Schuld et al., 2015).
Quantum circuits are a way to represent unitary matrices as a product of smaller unitary matrices
(i.e., quantum gates) with a total number of parameters growing logarithmically with the dimension,
offering an extremely efficient framework for effective PEFT parameterizations. The core idea is to
reparameterize the layers of pre-trained networks as generalized quantum circuits capturing complex
transformations, which then only require a logarithmic number of trainable parameters. The ultra
parameter efficiency is enabled by parameterizing the low-rank subspaces via Kronecker products of
generalized Pauli rotations. The key contributions of our work include:

• We introduce new quantum-inspired modules based on generalized Pauli parametrization
and quantum tensor network.

• We propose a novel framework, named Quantum-PEFT, that leverages quantum uni-
tary parameterizations for extremely parameter-efficient fine-tuning, achieving orders-of-
magnitudes higher compression rates over state-of-the-art PEFT methods.

• Quantum-PEFT with Pauli parameterization enables logarithmic scaling of trainable param-
eters with respect to the ambient dimension of the model, realizing even smaller number of
parameters than the lowest-rank LoRA.
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Figure 1: Overview of Quantum-PEFT compared to LoRA and AdaLoRA for PEFT. W is the frozen
pretrained weight, green boxes represent trainable parameters. LoRA updates W by training the
low-rank matrices A,B. AdaLoRA introduces the SVD trainable form U,Λ, V with regularizer∥∥U⊤U − I

∥∥2 + ∥∥V ⊤V − I
∥∥2. In Quantum-PEFT, the matrices U, V are not trainable parameters,

but rather computed through quantum mappings of orders-of-magnitude smaller intrinsic parameters.
Contrary to AdaLoRA, U, V are left-orthogonal by construction in Quantum-PEFT.

• Through extensive experiments on language and vision tasks, we show Quantum-PEFT’s
significant advantage in parameter efficiency, achieving 5 to 25-fold reduction in trainable
parameters compared to LoRA, yet maintaining competitive performance.

2 RELATED WORK

Parameter-efficient fine-tuning (PEFT) Parameter-efficient fine-tuning (PEFT) methods allow
significantly lower model training cost for different downstream tasks. A plethora of methods have
been proposed for PEFT (Houlsby et al., 2019; Aghajanyan et al., 2020; Hu et al., 2021; Edalati
et al., 2022; Lester et al., 2021; Li and Liang, 2021; He et al., 2021a; Karimi Mahabadi et al., 2021;
Chen et al., 2022; Jie and Deng, 2023; Hao et al., 2022; Houlsby et al., 2019; Pfeiffer et al., 2021),
among which reparameterization-based techniques (Aghajanyan et al., 2020; Hu et al., 2021; Edalati
et al., 2022) bear the most relevance to our study, where the model architecture is not changed but
reparametrized with a lower number of trainable parameters. Low-rank adaptation (LoRA) (Hu et al.,
2021) has shown promising results by updating the pretrained weight matrix through the addition
of a product of two low-rank matrices with widespread adoption (Zi et al., 2023; Chavan et al.,
2023; Hayou et al., 2024; Zhu et al., 2024). Many variants were introduced, e.g., tensor factorization
(Edalati et al., 2022; Bershatsky et al., 2024; Chen et al., 2024a), nonlinear mappings (Liu et al.,
2023a), Hadamard (Yeh et al., 2024) and Kronecker product (Edalati et al., 2022), layer sampling
(Pan et al., 2024), embedding finetuning (Wu et al., 2024), and high-rank updates (Jiang et al., 2024b;
Chen et al., 2024b). Additional discussions are given in Appendix A.6.

Unitary-constrained PEFT AdaLoRA (Zhang et al., 2023) introduces dynamic rank adjustment
during fine-tuning, with additional regularizer for orthogonality. Unlike AdaLoRA with inexact
orthogonality and extra regularization, we directly parameterize full-rank unitary matrices via efficient
quantum circuit embeddings. Orthogonal fine-tuning (OFT) (Qiu et al., 2023; Liu et al., 2023b)
employs a unitary matrix to transform the pretrained weights. OFT typically requires more trainable
parameters and rely on expensive Cayley transform, highlighting the need for more efficient methods.

Unitary-constrained machine learning Unitary constraints have been explored extensively in ML
due to their potential to make training more stable and improve generalization, e.g., (Arjovsky et al.,
2016; Jing et al., 2017; Chang and Wang, 2021). Different parametrizations have been used, e.g.,
orthogonal weight matrices through the Cayley transform (Helfrich et al., 2018) and Householder
reflection (Mhammedi et al., 2017; Huang et al., 2022). Optimization over the Stiefel manifold in
ML has been studied in multiple works (Wisdom et al., 2016; Bansal et al., 2018; Li et al., 2019).
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Figure 2: QML components of Quantum-PEFT. (a) Simplified two-design ansatz visualizing (2).
It alternates RY rotations and CZ gates, i.e., it represents a product of small unitary matrices. (b)
Generalized quantum-inspired network for our unitary node. It generalizes the two-design ansatz to
arbitrary dimensions by employing SU(N ′) blocks.

Riemannian optimization has been considered for low-rank neural networks (Schotthöfer et al., 2022;
Zangrando et al., 2024; Schotthöfer and Laiu, 2024), where they directly optimize the low-rank factors
of network weights with manifold optimization. Our approach differs as we do not optimize over the
orthogonal factors directly, but rather parameterize them through trainable intrinsic parameters.

Quantum machine learning Main relevant concepts in quantum machine learning (QML) include
expressibility and entangling (Sim et al., 2019; Pérez-Salinas et al., 2020). Variational principles
for quantum neural networks (QNNs) were studied in (Farhi and Neven, 2018), with extensions for
quanvolutional networks (Henderson et al., 2020), quantum autoencoders (QAEs) (Romero et al.,
2017), quantum support vector machines (QSVMs) (Suykens, 2013; Rebentrost et al., 2014), quantum
graph neural networks (QGNNs) (Zheng et al., 2021), and quantum generative adversarial networks
(QGANs) (Lloyd and Weedbrook, 2018; Dallaire-Demers and Killoran, 2018). Quantum circuits can
be analytically differentiable enabling stochastic gradient optimization of QNN (Schuld et al., 2019).

3 PRELIMINARIES

Notations: Let SU(N), suN , SO(N), O(N), and VK(N) denote the special unitary Lie group of
size N , its Lie algebra, special orthogonal group, orthogonal group, and real-valued Stiefel manifold
having orthonormal K frames VK(N) = {X ∈ RN×K |X⊤X = IK}, respectively. We denote I , R,
⊗, [·]⊤, and ȷ as identity matrix of proper size, real numbers field, Kronecker product, transpose, and
imaginary number, respectively. Let L, q, N ′, K ′ be the number of alternating entanglement layers,
the number of qubits, orthogonal node size, and intrinsic rank, respectively. We denote the derived
unitary matrices as Q, e.g, QP denotes the unitary Pauli-parameterizated matrix. θ represents angles
in Pauli parametrization, which are trainable parameters. RY(θ) and CZ represent the quantum RY
rotation gate and controlled-Z gate, respectively. Detailed list of symbols is provided in Appendix A.7.

In QML, neural network modules are realized by embedding classical data and weight values as
quantum variational parameters such as Pauli rotation angles to control measurement outcomes.
QML provides universal approximation property (Pérez-Salinas et al., 2020) and exponentially rich
expressibity (Sim et al., 2019). Any quantum circuit can be decomposed (Kitaev, 1997) into a series
of single-qubit rotations and two-qubit entanglements.

Pauli matrices Pauli operators play an important role to generate any unitary rotations up to a
global phase. The group SU(N)—the Lie group of unitary N × N matrices having determinant
1—can be generated by the Lie algebra suN , i.e., the set of N ×N skew-Hermitian matrices. For
single-qubit rotations over SU(2), the Lie algebra is a span of {ȷX, ȷY, ȷZ}, with Pauli matrices:
X = [ 0 1

1 0 ], Y =
[ 0 −ȷ
ȷ 0

]
, Z =

[
1 0
0 −1

]
. The exponential mapping of its linear combinations generates

SU(2). For example, quantum RY rotation gate is given as

RY(θ) = exp(−ȷ θ2Y ) = exp

([
0 −θ/2
θ/2 0

])
=

[
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

]
, (1)

which alone spans the special orthogonal group SO(2) and forms O(2) along with a reflection Z.
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Quantum circuits and matrix operations A quantum circuit consists of a sequence of quantum
gates applied to a quantum state. Mathematically, a quantum circuit can be viewed as a unitary
matrix transforming one state (i.e., a tensor) to another tensor. The quantum circuit is a product of
smaller unitary matrices (individual gates). We primarily employ two gates: single-qubit rotations RY
gates, represented by 2× 2 unitary matrices, and entangling 2-qubit CZ gates (4× 4 diagonal unitary
matrices). A quantum circuit is built from a series of gates and can represent any unitary matrix.

Two-design ansatz In QML, two-design ansatz (Cerezo et al., 2021) use a small number of
parameters in order of O[log2(N)] to represent unitary matrices SU(N) whose statistical properties
are identical to ensemble random unitaries. This property suggests that gradient optimization can
uniformly adjust few-parameter Pauli rotation angles along the unitary group SU(N). Comparing to
the full degree of freedoms of dim[SU(N)] = N2−1 for any skew-Hermitian matrices, the QML has
a great potential to realize parameter-efficient representation in its logarithmic order. In the following,
we introduce a generalized framework to extend the QML features for extremely parameter-efficient
neural network modules, which constitute the building blocks of Quantum-PEFT.

4 QUANTUM-PEFT

We propose to parameterize the matrix added to the pretrained weights W by leveraging an ultra
compact representation based on quantum unitary parameterizations. Similarly to AdaLoRA (Zhang
et al., 2023), we reparametrize the weight updates as a product of unitary matrices U ∈ VK(N) ⊂
RN×K , V ∈ VK(M) ⊂ RM×K and a diagonal matrix Λ ∈ RK×K . Specifically, the weight update
∆W for a weight matrix W ∈ RN×M is given by: ∆W = UΛV ⊤. In Quantum-PEFT, the low-rank
U, V are not optimization variables, but rather are expressed via efficient unitary parameterizations,
i.e., Kronecker products of generalized Pauli rotations. In this way, the number of trainable parameters
depends on the chosen underlying unitary parametrization. Our PEFT pipeline is shown in Figure 1.

4.1 QUANTUM-PEFT: PAULI, ORTHOGONAL AND DIAGONAL NODES

In this section, we introduce generalized quantum-inspired modules as the core building blocks of
Quantum-PEFT, i.e., product of RY and CZ gates for trainable orthogonal nodes (akin to generalized
RY modules), and trainable diagonal nodes (akin to generalized CZ modules). We additionally show
how to solve the power-of-two scaling limitation of QML and address efficient computation.

Pauli parameterization The simplified two-design ansatz (Cerezo et al., 2021) visualized in
Figure 2a in Appendix uses an alternating circuit composed of RY and controlled-Z (CZ) entangling
gates: CZ = diag[1, 1, 1,−1], which is an element of reflection groups O(1)4 = {±1}4. This
ansatz is suited for neural networks as they are real-valued quantum operations over SO(N), i.e., not
complex-valued operations over SU(N) arising when using RZ or RX rotations. In Quantum-PEFT,
we propose to use the Pauli parameterization based on this construction, as given below:

QP =

L∏
l=1

((
I ⊗

(
CZ⊗ q−1

2

q⊗
k=2

RY(θk,2l+1)
))((

CZ⊗ q−1
2

q−1⊗
k=1

RY(θk,2l)
)
⊗ I

)) q⊗
k=1

(
RY(θk,1)

)
,

(2)

where L is the number of alternating entanglement layers, and q = log2(N) is the number of qubits;
in (2) q is odd s.t. (q− 1)/2 is integer and the q even case can be trated similarly. In (2), the trainable
parameters are the rotation angles θk,l associated with the employed RY gates (1). The θk,l for each
RY gates is trainable, where the RY gate (1) has a single parameter. This Pauli parameterization
therefore has (2L+ 1) log2(N)− 2L parameters, increasing only logarithmically with the matrix
size N . The entangling capacity is controlled by L and is further discussed in Appendix A.4. While
the tensor rank is 2, thanks to the alternating CZ entanglement, the effective rank of the matrix QP is
of full N contrary to low-rank AdaLoRA (Zhang et al., 2023). Not only parameter efficient, but Pauli
parametrization is also computationally efficient as it takes O[N log2(N)L] operations compared to
quadratic complexity for unitary matrix rotations. Motivated by this quantum-inspired network, we
further generalize the parameterization from SU(2) to SU(N ′) with an arbitrary size of N ′ > 2 as
shown in Figure 2b as a building block to represent a large unitary matrix SU(N) with a smaller
number of unitary factors SU(N ′) in a logarithmic scale of O[logN ′(N)]. To this end, we show how

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(a) Trainable mapping
to Stiefel manifold

K

N ′

K ′

N ′

N ′ Q

N ′

K K N ′
B −B⊤ Map Truncate

Parameter Skew-Symmetry Unitary Stiefel

Exponential,
Taylor

(b) Trainable diagonal
nodes

K

Diagonal Parameter

{+1,−1}K

K KMap

Identity,
Rademacher

Figure 3: Quantum-PEFT modules with corresponding tensor diagrams. (a) Trainable mapping onto
the Stiefel manifold VK(N ′). Intrinsic rank K ′: top K ′ columns are trainable parameters in B. (b)
Generalized CZ modules for diagonal nodes on either O(1)N

′
or RN ′

.

to (i) generalize RY gates by generating unitary matrices from skew-symmetric matrices, and (ii)
use recursive cosine-sine decomposition to allow non-power-of-two N .

Mapping to Stiefel manifold Arbitrary unitary rotations of size N ′ can be realized by mapping
skew-Hermitian matrices for SU(N ′) or skew-symmetric matrices for SO(N ′). We consider mapping
methods for orthogonal nodes below. Let B ∈ RN ′×N ′

be a strictly lower-triangular matrix with non-
zero trainable parameters from BK ∈ RN ′×K with K ≤ N ′(N ′ − 1)/2. Given a skew-symmetric
matrix A = B −B⊤ ∈ RN ′×N ′

, we can generate a corresponding unitary (orthogonal) matrix, e.g.,
with exponential mapping or Taylor series

Q′
E = exp(A), Q′

T =

P∑
p=0

1

p!
Ap, (3)

where the mapping Q′
T is an approximated version of Q′

E up to a polynomial order P to avoid matrix
exponentiation. Diverse unitary parameterizations are possible, e.g., Cayley transform, Householder
reflection, Givens rotation; we focus on Q′

T as it shows a good trade-off between accuracy, speed,
and parameter efficiency. We refer to Appendix A.1 for detailed comparisons and discussions.

Figure 3(a) illustrates the pipeline to generate matrices on the Stiefel manifold VK(N ′) from train-
able parameters through the exponential/Taylor mapping. After mapping skew-symmetric matrix,
truncating the square unitary matrix as Q:K,: generates a right-orthogonal matrix. As all the mappings
described above are differentiable, the Lie algebra can be trained via gradient methods, and we
use PyTorch’s autograd to compute the backward pass gradient. QML literature has employed the
gradient method successfully (You et al., 2023; Bermejo et al., 2024) and we empirically observed no
issues in loss convergence. While most mapping methods are studied in other literature (Qiu et al.,
2023; Liu et al., 2023b; Chang and Wang, 2021; Wisdom et al., 2016; Bansal et al., 2018; Li et al.,
2019), in a PEFT context we can further reduce the number of parameters by masking out the Lie
parameters. For example, only the top K ′ columns of BK are trainable, while the other parameters
are frozen or null-out. We call K ′ an intrinsic rank to cover a subset of VK(N ′).

A naive implementation of the above mapping pipeline can use redundant memory before truncation.
We resolve the memory redundancy by tensor contraction ordering (Pfeifer et al., 2014), except
for Q′

E, e.g., multiplying unitary matrix with a feature vector x ∈ RN ′
is recursively contracted

as Q′
Tx =

∑
p

1
p! (B − B⊤)px, which does not require the full matrix Q′

T but only a series of
low-rank multiplications with B. Computational complexity of the mapping and numerical accuracy
considerations are discussed in the next subsection.

Overcoming the power-of-N ′ limitation The pipeline in Figure 3(a) can be seen as generalized
RY modules for SU(N ′), then assembled to construct a larger unitary node SU(N) as visualized in

5
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Figure 4: Tensor diagram
of LoRA variants.

Table 1: Memory requirements to store trained LoRA and QP

weights for DeBERTaV3 base, Llama 3.1 405B, and GPT-4.

LoRA Quantum-PEFT
Rank # Parameters Required Bytes # Parameters Required Bytes

B
A

S
E 1 36.9K 0.14MB 3.69K 0.01MB

16 589.8K 2.25MB 3.98K 0.02MB
256 9437.2K 36.00MB 9.7K 0.04MB

L
L

A
M

A 1 8.26M 31.51MB 60.7K 0.23MB
16 132.1M 0.50GB 64.5K 0.25MB
256 2188.2M 8.35GB 127.3K 0.49MB

G
P

T-
4 1 36.7M 140MB 269.7K 1.03MB

16 586.6M 2.24GB 286.4K 1.09MB
256 9385.6M 35.80GB 565.1K 2.15MB

Figure 2b, meant to be used within QP s.t. Quantum-PEFT can handle arbitrary dimensions N ′ > 2.
However, N should be a power of N ′. Using quantum Shannon decomposition (QSD) (Shende et al.,
2005) i.e. recursive cosine-sine decomposition (CSD), any unitary matrix SU(N) can be constructed
by SU(N1) and SU(N2) for lower dimensions such that N1 ≥ N2 and N1 +N2 = N for N > 1:

U =

[
U1 0
0 U2

][C −S 0
0 0 I
S C 0

] [
V1 0
0 V2

]
, (4)

where U ∈ SU(N), U1, V2 ∈ SU(N1), U2, V1 ∈ SU(N2), diagonal cosine and sine matrices such
that C2 + S2 = I ∈ RN2×N2 . Hence, power-of-N ′ rotations such as Kronecker products of Pauli
rotations can be still used for arbitrary size of matrices. It hence can solve the power-of-N ′ limitation.
Example 4.1. In the simple case N ′ = 2, N1 and N2 are adjustable parameters s.t. N = N1 +N2

with non-power-of-two N . For example, when N = 12, we can use N1 = 8 = 23 and N2 = 4 = 22,
where we can use four power-of-two unitary matrices of U1, U2, V1, V2 as well as cos-sine RY
rotations. QSD allows recursive decomposition. For example, when N = 28, we apply cos-sin
decomposition twice to have N = 24 + 23 + 22, where the first (N1, N2) = (24, 23 + 22) and the
second CSD for the N2 part will be further decomposed as (N1, N2) = (23, 22).

Diagonal node Generalizing CZ modules provides a few options: trainable diagonal matrix
in any real number RK , discrete number, and binary {±1}K . Trainable discrete diagonal ma-
trix can be realized e.g. by Gumbel softmax or ReinMax trick (Liu et al., 2024). We refer to a
trainable binary diagonal matrix as Rademacher mapping, which can create perfect unitarity and
reflection group in O(1)K . Specifically, Rademacher mapping with ReinMax trick is given as
QR = diag[ReinMaxτ ([Λ,−Λ])× [+1,−1]] with a temperature τ and diagonal parameter Λ ∈ RK .
Fig. 3(b) illustrates diagonal nodes and its tensor diagram. When identity map is used, it can be used
as singular values of any matrices under its singular-value decomposition (SVD). Therefore, the use
of both trainable unitary matrices and diagonal matrices is sufficient for general representation of any
matrix through its SVD , solving the only-unitarity limitation of typical QML.

4.2 QUANTUM-PEFT: ANALYSIS

Quantum-PEFT leverages a parameter-efficient network by exploiting the new modules: trainable
small orthogonal matrices parameterized by the Lie algebra to generate Stiefel manifold VK(N) via
our generalized RY modules; trainable diagonal nodes either on RK or O(1)K via our generalized
CZ modules; and the Pauli parameterization. We now analyze the orders-of-magnitude improvements
in parameter efficiency w.r.t. existing LoRA variants and give more discussions.

Parameter efficiency LoRA uses two K-rank matrices, having 2NK parameters. This is known as
2-mode tensor train decomposition (TTD). AdaLoRA uses approximated SVD, where unitarity is not
perfectly imposed, leading to K(K + 1) redundant parameters and extra regularization terms. From
the tensor network perspective, AdaLoRA falls under Canonical Polyadic (CP) decomposition which
does not strictly assume orthogonality. Using the Lie algebra, Quantum-PEFT can readily realize the
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non-redundant parameterization for trainable SVD (i.e., 2-mode Tucker decomposition: TD). In this
form, the number of trainable parameters depends on the chosen underlying parametrization for the
orthogonal matrices. Specifically, the Taylor parametrization Q′

T for the maximum decomposition
size N ′ = N,K ′ = K yields 2NK − K2 trainable parameters, and the Pauli parametrization
QP achieves an extremely compact representation with only O(2((2L + 1) log2(N) − 2L) + K)
parameters , scaling logarithmically with the matrix dimension N . The underlying parameterizations
induced by our generalized RY modules spanning orthogonal group can effectively capture a full-
rank weight update. This contrasts with AdaLoRA (Zhang et al., 2023), which uses approximate
orthogonality imposed by regularization terms in optimization, failing to reduce the number of
trainable parameters being limited by the low-rank decomposition. Consequently, Quantum-PEFT
enables orders-of-magnitude parameter reduction compared to conventional LoRA-based approaches.
The theoretical memory requirements of PEFT applied to query/value weights in comparison to
LoRA are shown in Table 1 and Figure 4 shows tensor diagrams under tensor network interpretation.
More discussions of other tensor networks are found in Appendix A.3.

Computational complexity Regarding computational complexity of computing the mapping, Pauli
parameterization QP has runtime O((L+ 1)N log2(N)) with the efficient Kronecker Shuffle algo-
rithm (Plateau, 1985), while the number of trainable parameters scales logarithmically with N . This
shows that, up to small constant factors (e.g., L can be set to 1 for PEFT with sensitivity analysis in Ap-
pendix A.4), the computational complexity remains highly competitive with LoRA’s O(2NK) even
with the mapping. Contrary to LoRA, the logarithmic scaling of parameters allowed by our construc-
tion translates to a substantial reduction in memory footprint, which becomes increasingly important
when dealing with very large models. The Taylor mapping Q′

T has complexity O(2(P + 1)NK),
yielding a comparable time complexity order with LoRA O(2NK) at N = N ′,K = K ′. We remark
that the Taylor parameterization can be used independently, namely QT, to generate orthogonal
matrices from underlying small trainable weights as in Figure 3(a), which is computationally cheap
and results in O(2NK −K2) parameters. This setup is preferred for reduced training time when
more memory bandwidth is available, while QP provides the highest parameter savings.

Quantization To further save memory, we can use a standard integer quantization for trainable
parameter: θ: θq = round((θ−µ)/β)β+µ, where scale value β = (θmax−θmin)/(2

n−1) and zero
value µ = θmin for n-bit quantization. The maximum θmax and minimum values θmin are obtained
in a chunk of group size g. When the quantization is applied on the Lie parameters, we employ the
straight-through trick for quantization-aware training (QAT), i.e., θ := θq + θ − θ.detach(), where
.detach() means no gradient passing. Once trained, the required memory will be n+ 32/g bits per
Lie parameter when β and µ use floating-point (FP) 16 bits precision.

5 EXPERIMENTS

We evaluate our Quantum-PEFT for DeBERTaV3 (He et al., 2021b), GPT-2 (Radford et al., 2019),
ViT (Dosovitskiy et al., 2020), and Mistral-7B (Zhang et al., 2023) on diverse fine-tuning. We fine-
tune (1) DeBERTaV3 and Mistral-7B on the General Language Understanding Evaluation (GLUE)
benchmark (Wang et al., 2019); (2) GPT-2 Medium on E2E Challenge following the original LoRA
paper (Hu et al., 2021); and (3) ViT on CIFAR10 (Krizhevsky et al., 2009). Our experiments are not
to claim that Quantum-PEFT always improves accuracy w.r.t. LoRA, but to show that Quantum-PEFT
can maintain a competitive level of accuracy with orders-of-magnitude fewer parameters.

5.1 GLUE BENCHMARK

The experiment is conducted on the GLUE benchmark, which consists of NLP understanding tasks.
Our experiment follows the set-up in (Zhang et al., 2023). The fine-tuning is applied on DeBERTaV3-
base (He et al., 2021b). We compare Quantum-PEFT with the following baselines: Full parameters
fine-tuning (FT), LoRA (Hu et al., 2021), BitFit (Zaken et al., 2022), adapter tuning with Houlsby
adapter (HAdapter) (Houlsby et al., 2019), adapter tuning with Pfeiffer adapter (PAdapter) (Pfeiffer
et al., 2021), AdaLoRA (Zhang et al., 2023), LoKr (Yeh et al., 2024), LoHa (Hao et al., 2022), MORA
(Jiang et al., 2024b), and QuanTA (Chen et al., 2024b). We fine-tune the query/key/value projection
matrices, the output projection in the attention block, and the weight matrices in two-layer MLPs. For
all of the baselines, we follow the hyperparameters in (Zhang et al., 2023). For Quantum-PEFT, we
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Table 2: Results with DeBERTaV3 base on GLUE benchmark. We present the Matthew’s correlation
for CoLA, the average correlation for STS-B, and the accuracy for other tasks. In each column, the
best-performing PEFT approach is highlighted in bold and the second best is underlined.

Method # Trainable
Parameters

SST-2 CoLA RTE MRPC STS-B Avg. Memory

FT 184M 95.63 69.19 83.75 89.46 91.60 85.93 14200×

BitFit 0.1M 94.84 66.96 78.70 87.75 91.35 83.92 7.69×
HAdapter 0.61M 95.30 67.87 85.56 89.22 91.30 85.85 46.92×
PAdapter 0.60M 95.53 69.48 84.12 89.22 91.52 85.97 46.15×
HAdapter 0.31M 95.41 67.65 83.39 89.25 91.31 85.40 23.85×
PAdapter 0.30M 94.72 69.06 84.48 89.71 91.38 85.87 23.08×
LoRA 0.33M 94.95 68.71 85.56 89.71 91.68 86.12 25.38×
AdaLoRA 0.32M 95.80 70.04 87.36 90.44 91.63 87.05 24.62×
LoHa 0.33M 95.50 66.52 80.43 89.95 89.46 84.37 25.38×
LoKr 0.073M 95.07 69.46 85.20 89.71 90.76 86.04 5.62×
MORA 0.49M 95.79 67.13 85.19 89.08 90.13 85.46 37.87x
QuanTA 0.093M 95.30 67.75 84.48 89.22 91.01 85.55 7.15x

Quantum-PEFT 0.013M 95.85 67.85 86.57 90.78 91.06 86.42 1×

Table 3: Results for different adaptation methods on the E2E benchmark and GPT2 Medium model.
Quantum-PEFT achieves similar performance as LoRA with 4 times less trainable parameters and
better performance than LoKr with same parameters.

Method # Trainable
Parameters

BLEU NIST METEOR ROUGE-L CIDEr

FT 354.92M 68.2 8.62 46.2 71.0 2.47

LoRA 0.39M 66.88 8.55 45.48 68.40 2.31
AdaLoRA 0.38M 64.64 8.38 43.49 65.90 2.18
LoHa 0.39M 65.03 8.45 43.76 66.54 2.22
LoKr 0.098M 63.90 8.27 42.35 65.22 2.04

Quantum-PEFT 0.098M 67.46 8.58 45.02 67.36 2.31

use QP with L = 1 in all tasks. We select the best learning rate by parameters sweep. We conduct five
runs with different random seeds and report the mean. We use the same number of training epochs as
in AdaLoRA. Due to limited computing resources, we focus on tasks with training instances less than
100k, including SST-2, CoLA, RTE, MRPC, and STS-B. Detailed setups are given in Appendix B.

The results are summarized in Table 2. We can see that in both SST-2 and MRPC tasks, Quantum-
PEFT can outperform AdaLoRA. On other tasks, Quantum-PEFT can still achieve comparable
performance with other baselines. Notably, Quantum-PEFT only requires 0.013 million parameters,
which are 25 times fewer than LoRA.

5.2 E2E BENCHMARK

We fine-tune GPT-2 (Radford et al., 2019) Medium on the common E2E natural language generation
benchmark (Novikova et al., 2017), following the setups of (Hu et al., 2021). GPT2-Medium has
354M parameters with 24 transformer layers. The E2E benchmark consists of 42,200 samples
for training, 4,600 for validation, and 4,600 for testing. We compare LoRA (Hu et al., 2021),
AdaLoRA (Zhang et al., 2023), LoKr (Yeh et al., 2024), LoHa (Hyeon-Woo et al., 2022), and full FT
with Quantum-PEFTwith the simple independent Taylor parameterization QT, P = 3 for efficient
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Table 4: Efficiency comparison on GPT2-Medium.

Resource LoRA AdaLoRA LoHa LoKr Quantum-PEFT

Training Time (ms/batch) 1719.06 1795.91 1874.04 1790.24 1723.39
Memory Ratio 4.03× 4.03× 4.03× 1× 1×

Table 5: Results with Mistral-7B on GLUE Benchmark. The reported metrics are as in Table 2.

Method # Trainable
Parameters

SST-2 CoLA RTE MRPC STS-B Avg.

LoRA 3.54M 96.21 68.83 87.46 87.74 90.70 86.19
AdaLoRA 3.54M 96.90 70.38 87.53 89.52 90.96 87.06
Quantum-PEFT 0.758M 96.67 70.61 88.10 89.94 91.63 87.39

computations at larger model size. Full FT results are sourced from prior works (Zi et al., 2023). For
fair comparison, we use the same training settings and hardware, i.e., 4 NVIDIA A100 GPUs, for all
methods. We train the baselines using the code provided by the respective authors or using the peft
library from Hugging Face. We apply PEFT to the query and value projection layers in each attention
block and use the same number of training epochs, batch size, and LoRA scaling, except different
learning rate. Table with all hyperparameters is provided in Appendix B.

Table 3 shows the results for E2E Challenge dataset. Quantum-PEFT’s performance is on par or better
than LoRA with approximately 4 times less trainable parameters, and significantly beats LoKr with
the same number of parameters. For the BLEU metric, our method obtains 0.58 gain compared with
LoRA, with comparable results on the other metrics. We report results from the final epoch, whereas
Hu et al. (2021) presented the best performance observed during training, and used 4 GPUs rather
than 1 due to time constraints, which may contribute to the observed variances w.r.t. the reported
performance in (Hu et al., 2021). These results demonstrate that Quantum-PEFT can achieve a
comparable level of accuracy to the baselines while using significantly fewer parameters. In Table 4,
we evaluate the training time and memory benefits of our method over LoRA while fine-tuning
GPT2-Medium. We find that using Quantum-PEFT results in similar training time to LoRA. W.r.t.
memory requirements, we observe a 4x reduction in storage with Quantum-PEFT on GPT2-Medium.

5.3 LARGE-SCALE FINE-TUNING

To assess the effectiveness of Quantum-PEFT at larger model scales, we fine-tune the Mistral-7B
model (Jiang et al., 2024a). Mistral-7B is a recent language model exhibiting strong performance at
its size, outperforming the larger Llama 2-13B on many benchmarks (Jiang et al., 2024a; Zhang and
Pilanci, 2024). We experiment our method with this new language model on the GLUE benchmark
for natural language understanding problems. We use the LoRA-related hyperparameters as with the
DeBERTaV3 experiments. We use the optimization setups from (Zhang and Pilanci, 2024), where for
all methods we use 4-bit quantization, employ AdamW optimizer over 5 epochs, and also fine-tune
the gate projection matrices. Table 5 presents the results. Quantum-PEFT significantly outperforms
the strongest methods on GLUE from Section 5.1 on almost all datasets, while using 4.67x fewer
trainable parameters than LoRA. This further highlights Quantum-PEFT’s parameter efficiency and
even superior-than-LoRA performance when scaling to billion-scale large language models.

5.4 IMAGE CLASSIFICATION BENCHMARK

We evaluate a transfer learning task of the ViT model (google/vit-base-patch16-224)
pre-trained on ImageNet-21k (Deng et al., 2009) towards CIFAR10 dataset (Krizhevsky et al., 2009).
Detailed settings are found in Appendix B. The base model is frozen after being quantized with
3 bits, and adapters for query and value projections are updated. For Quantum-PEFT, we use QP

parameterization for K = L = 1. Table 6 shows the comparison of full FT, LoRA, and Quantum-
PEFT. When no fine-tuning was applied, the classification accuracy of the original ViT is poor, and
thus fine-tuning is important. Compared to the full FT which requires 95.81M parameters, PEFT
can significantly reduce the required number of trainable parameters, especially with our Quantum-
PEFT. For example, Quantum-PEFT has 21-hold fewer parameters than LoRA with rank 4. More
importantly, Quantum-PEFT shows superior performance despite the fact of the fewest parameters.
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Table 6: Results for ViT transfer learning from ImageNet-21k to CIFAR10. Base ViT is quantized
with 3 bits.

Method Original FT LoRAK=1 LoRAK=2 LoRAK=4 Quantum-PEFT

# Parameters — 85.81M 0.037M 0.074M 0.147M 0.007M
Accuracy 76.21% 98.05% 98.14% 98.30% 98.39% 98.46%

Table 7: Quantization impact on Lie parameters with Taylor parameterization for ViT transfer learning
from ImageNet-21k to CIFAR10. Base ViT is not quantized.

Quantization FP32 INT8 INT4 INT3 INT2 INT1

# Bits per parameter 32 8.25 4.25 3.25 2.25 1.25
Accuracy (Uniform Bit Loading) 98.81% 98.79% 98.78% 98.75% 98.67% 97.96%
Accuracy (Adaptive Bit Loading) 98.81% 98.78% 98.87% 98.80% 98.77% 98.64%

Quantization Table 7 shows the QAT performance with different number of bits per the Lie
parameter for Taylor parameterization (QT, K = K ′ = 4 and P = 18). Here, the base ViT model is
not quantized, while only adapters are quantized. We use g = 128 and FP16 for scale and zero values
β and µ. We observe that reducing the precision for the Lie parameterization can gradually degrade.
Nevertheless, thanks to QAT, no significant loss can be seen even with 1-bit integer quantization
from FP32: i.e., 0.65% degradation. We also evaluate the performance of mixed-precision Taylor
parameterization. One can see that adaptive bit loading can significantly improve the performance at
few-bit quantization regimes. For instance, adaptive 1-bit quantization of Lie parameters has just
0.17% loss from FP32 and 0.28% improvement from uniform 1-bit quantization. This may come
from the effective pruning gain. More details of quantization are given in Appendix A.3 and A.5.

Sensitivity analysis of intrinsic rank Our introduced intrinsic rank K ′ can reduce the trainable
parameters than the specified rank K, by masking the top K ′ columns of Lie parameters. In Table 8,
we show the impact of varying K ′ in the same settings as Table 7 on the ViT transfer learning task.
Decreasing K ′ gradually reduces the required number of parameters. While the subspace rank is
K = 8, the number of parameters can be effectively K ′ ≤ K. The performance degradation from
K ′ = 8 to K ′ = 1 is only 0.49%, and more importantly the accuracy is still better than LoRA in
Table 6. For example, LoRA with K = 1 has an accuracy of 98.14%, while Quantum-PEFT QT

parameterization with K = 8 and K ′ = 1 has 98.38%, at the comparable number of parameters. It
shows the great potential of masking out the Lie parameters while keeping higher subspace rank.

Table 8: Impact of intrinsic rank K ′ for ViT transfer learning from ImageNet-21k to CIFAR10.

Intrinsic rank K′ 1 2 3 4 5 6 7 8

# Parameters 0.037M 0.074M 0.111M 0.147M 0.184M 0.221M 0.257M 0.294M
Accuracy 98.38% 98.52% 98.76% 98.74% 98.63% 98.79% 98.81% 98.87%

6 CONCLUSIONS

In this work, we introduced Quantum-PEFT, a novel framework leveraging quantum machine learning
principles to achieve extremely parameter-efficient fine-tuning of large pre-trained models. Through
reparameterization as generalized quantum circuits, Quantum-PEFT represents weight updates using
highly compact unitary matrix embeddings. Quantum-PEFT achieves even lower parameter number
than the lowest-rank LoRA; unlike prior low-rank adaptation methods which are bottlenecked by
linear parameter growth, the employed Pauli parametrization scales logarithmically with the model
size. By use of QSD, our unitary node can use non-power-of-two dimensions. Our experiments across
language and vision benchmarks validate Quantum-PEFT’s excellent capabilities, achieving orders-
of-magnitudes higher compression rates than LoRA while maintaining competitive performance.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning. arXiv preprint arXiv:2012.13255, 2020.

Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks. In
International conference on machine learning, pages 1120–1128. PMLR, 2016.

Nitin Bansal, Xiaohan Chen, and Zhangyang Wang. Can we gain more from orthogonality regular-
izations in training deep CNNs? In Proceedings of the 32nd International Conference on Neural
Information Processing Systems, pages 4266–4276, Red Hook, NY, USA, 2018. Curran Associates
Inc.

Pablo Bermejo, Borja Aizpurua, and Román Orús. Improving gradient methods via coordinate
transformations: Applications to quantum machine learning. Physical Review Research, 6(2):
023069, 2024.

Daniel Bershatsky, Daria Cherniuk, Talgat Daulbaev, and Ivan Oseledets. LoTR: Low tensor rank
weight adaptation. arXiv preprint arXiv:2402.01376, 2024.

Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd.
Quantum machine learning. Nature, 549(7671):195–202, 2017.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Renan Cabrera, Traci Strohecker, and Herschel Rabitz. The canonical coset decomposition of unitary
matrices through Householder transformations. Journal of Mathematical Physics, 51(8), 2010.

Marco Cerezo, Akira Sone, Tyler Volkoff, Lukasz Cincio, and Patrick J Coles. Cost function
dependent barren plateaus in shallow parametrized quantum circuits. Nature communications, 12
(1):1791, 2021.

Hao-Yuan Chang and Kang L Wang. Deep unitary convolutional neural networks. In Artificial Neural
Networks and Machine Learning–ICANN 2021: 30th International Conference on Artificial Neural
Networks, Bratislava, Slovakia, September 14–17, 2021, Proceedings, Part II 30, pages 170–181.
Springer, 2021.

Arnav Chavan, Zhuang Liu, Deepak Gupta, Eric Xing, and Zhiqiang Shen. One-for-all: Generalized
LoRA for parameter-efficient fine-tuning. arXiv preprint arXiv:2306.07967, 2023.

Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu Wang, Yibing Song, Jue Wang, and Ping Luo.
AdaptFormer: Adapting vision transformers for scalable visual recognition. Advances in Neural
Information Processing Systems, 35:16664–16678, 2022.

Xiangyu Chen, Jing Liu, Ye Wang, Matthew Brand, Guanghui Wang, Toshiaki Koike-Akino, et al.
SuperLoRA: Parameter-efficient unified adaptation of multi-layer attention modules. arXiv preprint
arXiv:2403.11887, 2024a.

Zhuo Chen, Rumen Dangovski, Charlotte Loh, Owen M Dugan, Di Luo, and Marin Soljacic.
QuanTA: Efficient high-rank fine-tuning of LLMs with quantum-informed tensor adaptation. In
The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024b. URL
https://openreview.net/forum?id=EfpZNpkrm2.

Pierre-Luc Dallaire-Demers and Nathan Killoran. Quantum generative adversarial networks. Physical
Review A, 98(1):012324, 2018.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pages 248–255. Ieee, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

11

https://openreview.net/forum?id=EfpZNpkrm2


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
is worth 16x16 words: Transformers for image recognition at scale. In International Conference
on Learning Representations, 2020.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Ali Edalati, Marzieh Tahaei, Ivan Kobyzev, Vahid Partovi Nia, James J Clark, and Mehdi
Rezagholizadeh. Krona: Parameter efficient tuning with Kronecker adapter. arXiv preprint
arXiv:2212.10650, 2022.

Edward Farhi and Hartmut Neven. Classification with quantum neural networks on near term
processors. arXiv preprint arXiv:1802.06002, 2018.

Tianxiang Hao, Hui Chen, Yuchen Guo, and Guiguang Ding. Consolidator: Mergable adapter with
group connections for visual adaptation. In The Eleventh International Conference on Learning
Representations, 2022.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. LoRA+: Efficient low rank adaptation of large models.
arXiv preprint arXiv:2402.12354, 2024.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards
a unified view of parameter-efficient transfer learning. In International Conference on Learning
Representations, 2021a.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. DeBERTa: Decoding-enhanced bert
with disentangled attention. arXiv preprint arXiv:2006.03654, 2020.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. DeBERTaV3: Improving DeBERTa using electra-
style pre-training with gradient-disentangled embedding sharing. arXiv preprint arXiv:2111.09543,
2021b.

Kyle Helfrich, Devin Willmott, and Qiang Ye. Orthogonal recurrent neural networks with scaled
Cayley transform. In International Conference on Machine Learning, pages 1969–1978. PMLR,
2018.

Maxwell Henderson, Samriddhi Shakya, Shashindra Pradhan, and Tristan Cook. Quanvolutional neu-
ral networks: powering image recognition with quantum circuits. Quantum Machine Intelligence,
2(1):2, 2020.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
NLP. In International Conference on Machine Learning, pages 2790–2799. PMLR, 2019.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. LoRA: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2021.

Huaibo Huang, Xiaoqiang Zhou, and Ran He. Orthogonal Transformer: An Efficient Vision Trans-
former Backbone with Token Orthogonalization. In Advances in Neural Information Processing
Systems, October 2022.

Nam Hyeon-Woo, Moon Ye-Bin, and Tae-Hyun Oh. Fedpara: Low-rank hadamard product for
communication-efficient federated learning. In International Conference on Learning Representa-
tions, 2022. URL https://openreview.net/forum?id=d71n4ftoCBy.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024a.

12

https://openreview.net/forum?id=d71n4ftoCBy


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ting Jiang, Shaohan Huang, Shengyue Luo, Zihan Zhang, Haizhen Huang, Furu Wei, Weiwei
Deng, Feng Sun, Qi Zhang, Deqing Wang, and Fuzhen Zhuang. Mora: High-rank updating for
parameter-efficient fine-tuning, 2024b. URL https://arxiv.org/abs/2405.12130.

Shibo Jie and Zhi-Hong Deng. Fact: Factor-tuning for lightweight adaptation on vision transformer.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pages 1060–1068,
2023.

Li Jing, Yichen Shen, Tena Dubcek, John Peurifoy, Scott Skirlo, Yann LeCun, Max Tegmark, and
Marin Soljačić. Tunable efficient unitary neural networks (EUNN) and their application to RNNs.
In International Conference on Machine Learning, pages 1733–1741. PMLR, 2017.

Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. Compacter: Efficient low-rank
hypercomplex adapter layers. Advances in Neural Information Processing Systems, 34:1022–1035,
2021.

A Yu Kitaev. Quantum computations: algorithms and error correction. Russian Mathematical Surveys,
52(6):1191, 1997.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pages 3045–3059, 2021.

Jun Li, Fuxin Li, and Sinisa Todorovic. Efficient Riemannian Optimization on the Stiefel Manifold
via the Cayley Transform. In The 8th International Conference on Learning Representations,
September 2019.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pages 4582–4597, 2021.

Jing Liu, Toshiaki Koike-Akino, Pu Wang, Matthew Brand, Ye Wang, and Kieran Parsons. LoDA:
Low-dimensional adaptation of large language models. NeurIPS’23 Workshop on on Efficient
Natural Language and Speech Processing, 2023a.

Liyuan Liu, Chengyu Dong, Xiaodong Liu, Bin Yu, and Jianfeng Gao. Bridging discrete and
backpropagation: Straight-through and beyond. Advances in Neural Information Processing
Systems, 36, 2024.

Weiyang Liu, Zeju Qiu, Yao Feng, Yuliang Xiu, Yuxuan Xue, Longhui Yu, Haiwen Feng, Zhen
Liu, Juyeon Heo, Songyou Peng, Yandong Wen, Michael J. Black, Adrian Weller, and Bernhard
Schölkopf. Parameter-Efficient Orthogonal Finetuning via Butterfly Factorization. In The Twelfth
International Conference on Learning Representations, October 2023b.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Seth Lloyd and Christian Weedbrook. Quantum generative adversarial learning. Physical review
letters, 121(4):040502, 2018.

Zakaria Mhammedi, Andrew Hellicar, Ashfaqur Rahman, and James Bailey. Efficient orthogonal
parametrisation of recurrent neural networks using Householder reflections. In International
Conference on Machine Learning, pages 2401–2409. PMLR, 2017.
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A FURTHER DETAILS AND DISCUSSIONS ON QUANTUM-PEFT

To further elaborate on Quantum-PEFT, we provide the tensor network diagrams in Figure 5 exempli-
fying its mechanism w.r.t. other LoRA-based methods.

N K N LoRA (TTD)
2NK

N K N
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Figure 5: Tensor diagrams of Quantum-PEFT and LoRA variants in tensor network perspectives for
a matrix size of N and rank K. The number of parameters are also present. Circle denotes dense
multi-linear tensor node. Slashed open circles denote diagonal node. Half-closed circles denote
unitary node. Delay symbols denote nonlinear nodes.

A.1 COMPARISONS OF DIVERSE UNITARY MAPPINGS

Unitary mappings Various methods to generate unitary matrices from skew-symmetric matrices are
possible. In Section 4.1, we focused on exponential and Taylor mappings. Given a skew-symmetric
matrix A = B − B⊤ ∈ RN ′×N ′

, we can generate a corresponding unitary (orthogonal) matrix,
e.g., with exponential mapping, Cayley transform, Householder reflection, Givens rotation and those
variants, respectively, as follows:

QE = exp(A), QC = (I +A)(I −A)−1, QH =
K∏

k=1

(
I − 2N[B:,k]N[B:,k]

⊤), (5)

QG =

K∏
k=1

N∏
n=k+1

Gn−k(Bn,k), QT =

P∑
p=0

1

p!
Ap, QN = (I +A)

P∑
p=0

Ap, (6)

where N[·] is a normalization operator for canonical coset decomposition (CCD) (Cabrera et al., 2010),
and Gn(θ) denotes the Givens matrix which is identity except that the n and (n + 1)-th diagonal
block is replaced with RY rotation. The mappings of QT and QN are respectively approximated
versions of QE and QC to avoid matrix exponentiation and inversion via Taylor series and Neumann
series approximations up to a polynomial order P . Note that QP, QE and QG are identical to RY at
N ′ = 2.

Comparison of unitary mappings Fig. 6 shows the comparison of different unitary mapping
methods over different matrix size N for a rank of K = 4. We examined the unitarity test and speed
bench on RTX6000 GPU for forward and backward processing. The unitarity error measures an
averaged ℓ∞ norm of ∥QQ⊤ − I∥∞ over a batch size of 32 and 10 random seeds. The exponential
mapping uses torch.linalg.matrix_exp, and matrix inversion for Cayley transform uses
torch.linalg.solve. We assume P = 18 polynomial order for Taylor and Neumann series. It
was found that Neumann series and exponential mapping become inaccurate as the matrix size is
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Figure 6: Unitarity error analysis and speed bench including forward and backward passes for
different unitary mapping methods as a function of matrix size of N for a rank of K = 4 on an
NVIDIA RTX6000 GPU 24GB.

increased. While Pauli parameterization has relatively higher error than the rest of methods, it can be
much faster in large matrix size. Householder reflections and Givens rotations had slower behaviors
due to sequential nature. Although Rademacher diagonal matrix of {±1}K has a low complexity and
perfect unitarity (here, we used ReinMax trick), it alone does not cover the Stiefel manifold VK(N).
Overall, Taylor series method showed a good trade-off between accuracy and speed. Note that most
large foundation models use thousands for a matrix size of N per weight. Therefore, the accuracy and
speed at large matrix size regimes are important. With these trade-offs in mind, in the experiments
we evaluate the Taylor QT and Pauli QP parametrizations, where Pauli gives logarithmic number of
trainable parameters in the ambient dimension and Taylor shows satisfactory speed for larger models.

A.2 QUANTUM-INSPIRED PEFT MODULES

Generalized measurements As well as generalized-RY gates and CZ gates, we introduce gen-
eralized measurement module. Although quantum operation is linear, quantum measurement can
be nonlinear in general. Hence, motivated from the quantum measurement to solve the linearity
constraint, we can impose nonlinearity using activation functions. Using log-softmax after squaring
corresponds to measuring quantum state probability. For our case, such nonlinear activations can
be imposed at any mid-circuit operations. In Fig. 5, we introduce a new tensor diagram with delay
symbols representing the nonlinear node. Nonlinear mapping can be also trainable when using
another multi-layer perceptron (MLP) as used in LoDA. Letting f(·) be such a nonlinear function,
tensor contraction can be done via nonlinear Einstein sum: fout(

∑
f in(

∏
Q

[k]
i,j)) for parent tensor

nodes {Q[k]}, where fout and f in denote outer nonlinearity and inner nonlinearity, respectively. Note
that the nonlinear nodes can only pass the data after tensor contraction from all ancestor nodes.

A.3 TENSOR NETWORK IMPLICATION

Fig. 5 shows tensor diagrams for various LoRA variants. Our Quantum-PEFT framework can unify
them with reduced number of parameters by exploiting trainable orthogonal nodes, trainable diagonal
nodes, and trainable nonlinear nodes. As mentioned, LoRA uses 2-mode tensor train decomposition
(TTD) which is also known as matrix product state (MPS) tensor network. LoDA introduced the
nonlinear node in tensor network. AdaLoRA is based on CP decomposition, which has parameter
redundant. LoTR extends LoRA towards higher-mode TTD. SuperLoRA uses another tensor network
based on higher-oder Tucker decomposition (TD), while nonlinear mapping is optionally introduced.
In fact, TTD and TD can be normalized except one node, and hence our Quantum-PEFT based on the
Lie algebra can eliminate the redundant parameters to improve the efficiency for LoRA, LoTR and
SuperLoRA. Similarly, our framework provides parameter-efficient unitary nodes in most other tensor
networks including tensor ring decomposition (TRD), hierarchical Tucker decompostion (HTD)
a.k.a. tree tensor network (TTN), multi-scale entanglement renormalization ansatz (MERA), and
projected entangled pair states (PEPS). As descussed, Pauli parameterization based on STD ansatz
can further reduce the number of parameters for those tensor networks into a logarithmic scale. Note
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Figure 7: STD renormalization step example when N ′ = N1/3. The total number of parameters is
reduced from 729 to 180 for a unitary node when K = 1, N = 36, N ′ = 32, L = 1.

Table 9: Accuracy on the ViT CIFAR10 transfer learning task with varying entanglement layers L.

L 1 2 3 4 8 16 32

Accuracy 96.09% 96.54% 96.71% 96.71% 96.71% 96.71% 96.71%

that STD parameterization can be regarded as a renormalization step of each orthogonal node in
tensor networks. Fig. 7 shows an example of the STD renormalization step when N is 3-folded into
N ′ = N1/3. The total number of parameters to represent the unitary node for VK(N) can be reduced
in a logarithmic order of logN ′(N). When K = 1, N = 39, N ′ = 32, L = 1, it becomes 180 from
729. Reducing the size of N ′ can further improve the parameter efficiency.

Table 10 shows an example result for ViT CIFAR10 transfer learning task, using Taylor parameteriza-
tion (with K = K ′ = 4 and P = 18) for different tensor networks, including CP, TRD, HTD (TTN),
TD, and TTD (MPS). We find that all tensor networks offer competitive performance to LoRA.

A.4 FURTHER ANALYSIS OF ENTANGLEMENT LAYERS

The relationship between circuit depth and entanglement capacity has been explored in quantum
information theory, providing insights into the expressive power of quantum circuits. For instance,
Sim et al. (2019) analyzed the entangling capabilities of various quantum circuits, establishing a
connection between the number of layers L and entanglement. It was shown that generally deeper
circuits exhibit an increased entanglement capacity, which can contribute to richer representations in
the context of quantum machine learning. In our proposed Quantum-PEFT framework, the number of
alternating entanglement layers L in the Pauli parametrization QP (Equation (2)) governs the circuit
depth. Deeper circuits, while potentially more expressive, they also introduce additional trainable
parameters and computational overhead. Our empirical findings suggest that circuits with L = 1
provides a good balance between performance and efficiency for PEFT tasks. Increasing L can lead to
moderate performance improvements, but the gains tend to diminish with larger values of L, indicating
a saturation effect. To further investigate the impact of L, we conducted a sensitivity analysis on
the ViT CIFAR10 transfer learning task described in Section 5.4 We evaluated the performance of
Quantum-PEFT across various values of L, while keeping other hyperparameters fixed and with the
base ViT model quantized to 2 bits. The results, summarized in Table 9, demonstrate the saturation
behavior, as no further gain is attained beyond L = 3. Overall, the optimal value of L is task-
dependent, depending on the complexity of the target task, where the trade-off between performance
gains and increased computational complexity needs to be carefully considered.

A.5 BROADER IMPACTS AND FUTURE WORK

It is interesting to investigate how we can further reduce the memory for trainable parameters by
employing quantization or pruning.
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Table 10: Different tensor network results with Taylor parameterization for ViT transfer learning
from ImageNet-21k to CIFAR10. Base ViT is not quantized.

Method CP TRD HTD (TTN) TD TTD (MPS)

# Parameters 0.074M 0.147M 0.026M 0.074M 0.111M
Accuracy 98.53% 98.14% 98.11% 98.05% 98.81%
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Figure 8: Mixed-precision Quantum-PEFT in 3-dimensional TRD tensor network. Each tensor node
and tensor parameter can have non-uniform bit assignments. Adaptive bit loading depends on group
range ∆. Assignment of 0 bit corresponds to adaptive structural pruning.

Mixed-precision tensor network One could consider a mixed-precision tensor network, where
each tensor node and its parameter group can have different precisions. Fig. 8(a) shows an example
of Quantum-PEFT in 3-dimensional TRD tensor network. The TRD is formulated by 3 unitary nodes
{Q[k]} and 1 diagonal node Λ. Specifically the (i, j, k)-th element is given by nonlinear Einstein
sum: Wi,j,k = fout(

∑
l,m,n f

in(Q
[1]
l,i,mQ

[2]
m,j,nΛn,nQ

[3]
n,k,l)). As shown in Fig. 8(b), each node has

trainable parameters θ, and we can adaptively assign more bits or fewer bits depending on the group
range ∆i = θi,max − θi,min for the i-th group. For example, the bit loading may use the following
strategy: qi = round(q log2(∆

κ
i /∆̄)) with an average range ∆̄ = E[∆κ

i ] where qi bits are assigned
for the i-th group with an exponent κ >= 0. When κ = 0, it reduces to uniform bit loading: i.e.,
qi = q for all group i. More sophisticated but time-consuming strategy is to consider the quantization
error of the weight matrix min |Wq −W |, which requires combinatorial optimization.

When the bit allocation is zero (i.e., ∆i is close to zero) as shown in Fig. 8(c), it corresponds to
structural pruning except that the masked group can still hold non-zero values µ. Further fine-grained
pruning is also possible by nulling out θ if the value magnitude is smaller than a threshold. Therefore,
it can accomplish an adaptive rank mechanism similar to AdaLoRA.

Pretrained model compression In fact, Quantum-PEFT framework can also be applicable to
compress the pretrained model before adaptation. Tensor rank decomposition, quantization and
pruning can be applied to pretrained model before transfer learning tasks, similar to Q-LoRA, R-
LoDA, and S-LoDA. For ViT transfer learning task, we evaluated 3-bit quantization of pre-trained
models.

A.6 FURTHER COMPARISONS WITH RELATED WORK

We provide the following remarks elaborating on the difference between the proposed Quantum-PEFT
method with recent related works on PEFT. Several recent works explore alternative approaches
to parameter-efficient fine-tuning. Quantum-PEFT is a new technique for low-rank based PEFT.
Some recent works explore alternative approaches to LoRA-based fine-tuning. For example, Pan
et al. (2024) fine-tune some important sampled layers while freezing the rest for some certain
iterations, an orthogonal approach to LoRA. Their results show that Pan et al. (2024) share similar
memory requirements as LoRA; in contrast, Quantum-PEFT achieves significantly higher parameter
efficiency than LoRA. Other works adapt the intermediate embeddings learned by the models, which
differs from LoRA-based methods that adapt the weights directly. In this sense, Wu et al. (2024)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

intervene on a low-rank subspace of the intermediate model embeddings rather than model weights.
One disadvantage of this method is that it creates multiple additional hyperparameters, i.e., prefix
and suffix positions to intervene on and which layers to intervene on, creating a combinatorial
growth of hyperparameters. Therefore, their claimed higher efficiency comes at the cost of higher
computational burden of hyperparameter tuning for each task. On the other hand, Quantum-PEFT
mainly considers two hyperparameters, i.e., the intrinsic rank K ′ and the number of entanglement
layers L. Quantum-PEFT considers highly-efficient unitary quantum paramatrization, which is
effectively full-rank. Recent work (Jiang et al., 2024b) has investigated high-rank fine-tuning. It
employs a learnable square matrix M ∈ RK̂×K̂ for full-rank fine-tuning and compatibility mappings
to ensure that the dimensions match with the weight W ∈ RN×M . They set K̂ = ⌊

√
(N +M)K⌋

to achieve the highest rank with square matrix at the same total number of trainable parameters
of LoRA with rank K. (Jiang et al., 2024b) is therefore not able to have a lower-than-LoRA
scaling, which is instead achieved by Quantum-PEFT. (Chen et al., 2024b) is a tensor-network-
inspired parameterization without consideration of unitary gain, where their parameterization leads to
parameter redundancy. Our Pauli parameterization under Lie algebra can strictly maintain unitary
constraint without parameter redundancy. In fact, (Chen et al., 2024b) is based on tensor folding,
requiring in principle that the matrix size is factorizable as d = d1 × d2 × · · · × dN . Therefore, it is
not readily compatible for arbitrary size. For example, if the matrix size is d = 257, it is difficult
to fold into multiple axis. We clearly provided the way to solve this issue by quantum Shannon
decomposition, which enables to decompose into sum of powers-of-two: i.e., N1 = 256 and N2 = 1.
Furthermore, Quantum-PEFT provides more general applicability and insight to any arbitrary tensor
network to reduce the parameter number as shown in Figures 5 and 7, and provides more flexibility
with adjustable entangling layer size L, which is not explored in (Chen et al., 2024b).

A.7 LIST OF SYMBOLS

For ease of reference, we provide a table of notations used in this work in Table 11.

B DETAILED EXPERIMENTAL SETUPS

B.1 GLUE BENCHMARK

Below, we provide a summary of the tasks in the GLUE benchmark that are used in this work.

• SST-2: stands for The Stanford Sentiment Treebank, a dataset on sentiment analysis tasks
with two labels. The size of the training set is 67k, and the size of the test set is 1.8k.

• CoLA, represents The Corpus of Linguistic Acceptability, a dataset on sentence classification
with two labels. It consists of 8.5k training data and 1k test data.

• RTE: stands for The Recognizing Textual Entailment, including 2.5k training data points
and 3k test data points.

• MRPC: represents The Microsoft Research Paraphrase Corpus, a dataset on pairwise text
classification with 3.7k training points and 1.7k test points.

• STS-B: represents The Semantic Textual Similarity Benchmark, a task on measuring text
similarity with 7k training points and 1.4k test points.

We select the same number of epochs for Quantum-PEFT as in AdaLoRA. We perform a hyper-
parameters sweep for the learning rate over {0.01, 0.03, 0.06, 0.001, 0003, 0.006}. We select the
best learning rate and the best checkpoints over each epoch. We present the hyperparameters for
Quantum-PEFT in Table 12.

B.2 E2E BENCHMARK

Table 14 lists hyperparameters for the experiment on transfer learning task of E2E benchmark.
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Table 11: List of symbols.

Notation Description

SU(N) Special unitary group of size N
su(N) Lie algebra of SU(N)
SO(N) Special orthogonal group of size N
O(N) Orthogonal group of size N
VK(N) Stiefel manifold of K orthonormal frames in RN

IN Identity matrix of size N
R Field of real numbers
⊗ Kronecker product
[·]⊤ Transpose
ȷ Imaginary number
Am:n,: Submatrix of A with rows m to n
A:,k k-th column of matrix A
diag[·] Creates a diagonal matrix
L Number of alternating entanglement layers
q Number of qubits
N ′ Orthogonal node size
K ′ Intrinsic rank
P Taylor expansion order
QP Pauli-parameterizated unitary matrix
Q′

E Unitary matrix from exponential mapping
Q′

T Unitary matrix from Taylor series expansion
RY(θ) Quantum RY rotation gate with angle θ
CZ Quantum controlled-Z gate
W Pre-trained weight matrix
∆W Weight update matrix
U Left singular vector matrix
V Right singular vector matrix
Λ Diagonal matrix of singular values
B, BK Lower triangular matrix and its parameter matrix
C, S Cosine and sine diagonal matrices from CSD
n Number of bits for quantization
g Quantization group size
β, µ Quantization scale and zero-point
θ Trainable parameter
θq Quantized trainable parameter

Table 12: Hyperparameter configurations for Quantum-PEFT on the GLUE benchmark.

Hyperparameter SST-2 CoLA RTE MRPC STS-B

# GPUs 1 1 1 1 1
Optimizer AdamW AdamW AdamW AdamW AdamW
Learning Rate Schedule Linear Linear Linear Linear Linear
Weight Decay 0.01 0.01 0.01 0.01 0.01
Batch Size 256 128 128 128 128
Epochs 24 25 50 30 25
Warmup ratio 0.1 0.1 0.1 0.1 0.1
Max sequence length 128 64 320 320 128
Rank K 3 3 3 3 3
α 32 32 32 32 32
Learning Rate 0.006 0.01 0.06 0.01 0.03
Unitary Parametrization QP (L = 1) QP (L = 1) QP (L = 1) QP (L = 1) QP (L = 1)
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Table 13: CIFAR-10 transfer learning for ViT.

Hyperparameter LoRA Quantum-PEFT

# GPUs 1 1
Optimizer AdamW AdamW
Learning Rate
Schedule

Constant Constant

Weight Decay 0.01 0.01
Batch Size 32 32
Epochs 100 100
Patience 5 5
Rank K 1,2,4 1, 4
Learning Rate 0.001 0.003
Unitary
Parametrization

— QP (L = 1),
QT (P = 18)

Table 14: E2E benchmark for GPT2 Medium.

Hyperparameter LoRA Quantum-PEFT

# GPUs 4 4
Optimizer AdamW AdamW
Learning Rate
Schedule

Linear Linear

Weight Decay 0.01 0.01
Batch Size 8 8
Epochs 5 5
Warmup Steps 500 500
Label Smooth 0.1 0.1
Rank K 4 2 (K ′ = 1)
α 32 32
Learning Rate 0.0002 0.002
Unitary
Parametrization

— QT (P = 3)

B.3 VIT CIFAR10 TASK

Table 13 lists hyperparameters for the experiment on transfer learning task of ViT. The base ViT model
(google/vit-base-patch16-224)1 pretrained on ImageNet-21k has 12 layers of multi-head
attention modules, each of which has 12 heads, 768 features, and a token length of 769. CIFAR10
is an image classification dataset having 10 classes of 32 × 32 colored images with 50k training
samples and 10k test samples. We use up-sampling to 224× 224 resolutions with random resized
cropping and horizontal flip. The original classifier head has 1000 class output, and we selected 10
outputs based on the prediction score of CIFAR10 training data in prior to PEFT process. All weights
and biases of the base ViT model including the classifier head are frozen after being quantized with
3-bit integers via rounding as described in Appendix A.5. Therefore, the base model is compressed
from floating-point 32 bits to integer 3 bits (with auxiliary scale and zero values β and µ for g = 128
group), i.e., from 330MiB to 34MiB storage. It was confirmed that less than 3-bit quantization for the
base ViT model compression had poor performance: 56.0% accuracy with 1 bit and 97.4% with 2
bits. The required run-time on GPU A40 40GB was about 3.37 second per iteration, and 5284.16
second per epoch.

1https://huggingface.co/google/vit-base-patch16-224
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