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Abstract

Large language model (LLM) reasoning can001
be improved by scaling test-time compute with002
aggregation, i.e., generating multiple samples003
and aggregating over them. While improving004
performance, this strategy often reaches a satu-005
ration point beyond which additional compute006
provides no return. Refinement offers an al-007
ternative by using model-generated feedback008
to improve answer quality. However, refine-009
ment faces three key challenges: (1) Excessive010
refinement: Uniformly refining all instances011
can cause over-correction and reduce overall012
performance. (2) Inability to localize and ad-013
dress errors: LLMs struggle to identify and014
correct their own mistakes. (3) Insufficient re-015
finement: Stopping refinement too soon could016
leave errors unaddressed. To tackle these is-017
sues, we propose MAGICORE, a framework018
for Multi-Agent Iteration for Coarse-to-fine019
Refinement. MAGICORE mitigates excessive020
refinement by categorizing problems as easy021
or hard, solving easy problems with coarse-022
grained aggregation, and solving the hard ones023
with fine-grained multi-agent refinement. To024
better localize errors, we incorporate external025
step-wise reward model scores, and to ensure026
sufficient refinement, we iteratively refine the027
solutions using a multi-agent setup. We eval-028
uate MAGICORE on Llama-3-8B and GPT-029
3.5 and show its effectiveness across seven030
reasoning datasets. One iteration of MAGI-031
CORE beats Self-Consistency by 3.4%, Best-032
of-k by 3.2%, and Self-Refine by 4.0% even033
when these baselines use k = 120, and MAGI-034
CORE uses less than 50% of the compute. 1035

1 Introduction036

Imagine a person taking a math exam with prob-037

lems of varying difficulty; even before answering038

any question, an effective exam-taker might first039

distinguish between easier and more challenging040

1Code is provided with the supplementary materials.

problems, deciding how much effort to budget for 041

each one (Son and Metcalfe, 2000; Dodeen, 2015). 042

To maximize their score, the student would likely 043

spend minimal time on the easy problems and fo- 044

cus more on the harder ones, refining their answers 045

where needed. Misallocating effort could not only 046

waste time but even lower their score, as overthink- 047

ing simple problems might lead to mistakes; sim- 048

ilarly failing to dedicate enough thought to hard 049

problems will lead to poor results. For Large Lan- 050

guage Models (LLMs) performing reasoning tasks, 051

several test-time approaches dedicate more compu- 052

tation to improve performance. These approaches 053

sample multiple solutions to the same question and 054

aggregate over the resulting answers (e.g. Self- 055

Consistency (SC; Wang et al., 2022), Best-of-k 056

sampling (Lightman et al., 2023; Sun et al., 2024; 057

Wang et al., 2023)). However, applying aggrega- 058

tion strategies uniformly may waste computation 059

on easier problems where the performance satu- 060

rates quickly, and has diminishing gains on the 061

harder problems even when more samples are gen- 062

erated. Refinement – where solutions are instead 063

critiqued and improved upon during resampling – 064

offers a possible avenue for breaking out of the 065

aggregation rut. This mirrors human reasoning, 066

where incorporating feedback (rather than simply 067

retrying) can improve answers, often in an itera- 068

tive fashion. For example, a teacher might improve 069

a student’s understanding by providing multiple 070

rounds of feedback on a test (Pan and Sana, 2021; 071

Roediger and Karpicke, 2006; Wojcikowski and 072

Kirk, 2013). 073

While refinement seems promising, it faces three 074

key challenges that current work has yet to fully 075

address, as outlined in Fig. 1: (1) Excessive re- 076

finement: the LLM must know when to refine and 077

when not to. While refinement can help on in- 078

correctly solved problems, uniformly refining all 079

instances can cause over-refinement, where solu- 080

tions that were already correct before refinement 081
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Figure 1: Top: Three main issues in refinement: (1) Excessive refinement; (2) Inability to localize and address
errors; (3) Insufficient refinement. Bottom: Our joint solution to address these issues. MAGICORE adapts resource
allocation based on problem difficulty and refines only when encountering hard problems to avoid excessive
refinement. For hard cases requiring refinement, we employ a multi-agent setup that iteratively reviews and refines
the solutions based on targeted feedback generated with step-wise PRM scores.

are “overthought” and flipped to incorrect, reduc-082

ing the overall performance (Huang et al., 2024;083

Shridhar et al., 2024; Stechly et al., 2024). (2)084

Inability to localize and address errors: LLMs085

struggle to identify their own mistakes (i.e., steps086

needing refinement) and struggle to correct them087

without explicit instructions. (3) Insufficient Re-088

finement: deciding how much refinement is needed089

is non-trivial – stopping refinement early could090

leave errors unaddressed, i.e., hard problems might091

be “underthought” by a single refinement iteration.092

To enable better test-time scaling for aggregation093

and to address the three issues in refinement, we094

propose a unified solution, MAGICORE: Multi-095

Agent Iteration for Coarse-to-fine Refinement. As096

shown in Fig. 1, our approach leverages external097

global and local Reward Models (RMs) that en-098

hance both aggregation and refinement processes.099

To avoid excessive refinement, we perform selec-100

tive refinement (see Fig. 1(a)): we start by generat-101

ing multiple reasoning chains from the LLM and102

scoring them with the RMs, using the entropy of103

the final answer distribution to classify examples104

as easy or hard. Given LLMs’ general inability105

to localize errors (Tyen et al., 2024), we leverage106

step-by-step scores from a process reward model107

(PRM) to help the LLM pinpoint low-scoring steps108

(which are likely to be incorrect); this process is109

shown in Fig. 1(b). Moreover, to help LLMs refine110

effectively once the errors have been localized, we111

propose a multi-agent system consisting of three112

agents: the Solver, the Reviewer, and the Refiner.113

For each problem, the Solver generates reasoning114

chains, the Reviewer gives targeted feedback based 115

on step-by-step RM scores, and the Refiner im- 116

proves the solutions using this feedback. Finally, 117

to address the issue of insufficient refinement, we 118

iterate the review-refine process, using the quality 119

and the entropy of the answers at each iteration as a 120

stopping criterion (cf. Fig. 1(c)). While these three 121

issues – selective refinement, error localization, and 122

iterative refinement – might seem independent, ad- 123

dressing them jointly is more effective. Empirically, 124

MAGICORE consistently outperforms baselines 125

that tackle these issues in isolation, as confirmed 126

by our ablation studies in Table 5. 127

We evaluate MAGICORE on seven reasoning 128

datasets (including math, commonsense and logi- 129

cal reasoning) with two LLMs: Llama-3-8B and 130

GPT-3.5. Notably, MAGICORE shows consistent 131

improvements over all aggregation and refinement 132

baselines across datasets and models. Specifically, 133

just one iteration of MAGICORE on Llama-3-8B 134

already outperforms Best-of-k sampling (Lightman 135

et al., 2023) by 3.2% and Self-Consistency (Wang 136

et al., 2022) by 3.4%, while using roughly half 137

of the test-time compute. MAGICORE also out- 138

performs a combination of Self-Refine (Madaan 139

et al., 2023) and Self-Consistency by 4.0% and 140

these trends also hold true for GPT-3.5. More- 141

over, MAGICORE effectively decides when to use 142

refinement and when not to, leading to a 6.4% im- 143

provement over the strongest Best-of-k baseline 144

on MATH (Hendrycks et al., 2021b), whereas uni- 145

formly applying refinement to all samples can re- 146

sult in a drop of 5.2%, highlighting the key role 147
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played by selective refinement. MAGICORE also148

scales better with more iterations of refinement, and149

continues to improve while the baselines stagnate.150

2 Methodology151

In MAGICORE, we incorporate three types of mod-152

els: (1) an LLM interchangeably performing three153

roles: the Solver, the Reviewer, and the Refiner, (2)154

an Outcome Reward Model (ORM) for generating155

global, solution-level correctness score, and (3) a156

Process Reward Model (PRM) for generating local157

step-by-step correctness scores. Both the ORM and158

PRM contribute to (1) assessing problem difficulty159

and (2) final answer selection via Weighted Self-160

Consistency (Li et al., 2023) (see Appendix B).161

Overview. We present MAGICORE in Fig. 2.162

The process begins with the Solver generating k163

reasoning chains for each problem, followed by164

the ORM and PRM providing solution-level scores.165

Next, the input problem’s difficulty is classified166

based on two criteria (top-right of Fig. 2): (1) the167

quality of the majority answer and (2) the RMs’168

answer confidence. Refinement is initiated only169

when the problem is deemed difficult, which oc-170

curs when the majority answer receives a low aver-171

age RM score and the answer distribution is flat –172

indicating no single answer is significantly better173

than the others (i.e., low confidence). For these174

hard samples requiring refinement, we employ a175

multi-agent setup with three agents: the Solver, the176

Reviewer, and the Refiner (bottom of Fig. 2). The177

Reviewer uses the step-wise scores from the PRM178

to generate targeted feedback, and the Refiner then179

enhances the k solutions based on this feedback.180

The review-and-refine cycle can iterate multiple181

times to ensure sufficient and effective refinement.182

2.1 Classifying Problem Difficulty183

We categorize each problem’s difficulty as easy or184

hard using the following conditions (cf. Fig. 2).185

a) Is the Majority Answer of High Quality? The186

Solver generates k solutions for the input question187

and we group them by their final answers. From188

the largest cluster of solutions, we calculate the189

average RM score and normalize it by the aver-190

age score across all solutions, denoted as Savg. If191

Savg ≥ 0 after normalization, this condition will192

be true, meaning the majority answer is already193

high-quality (as measured by both ORM and PRM194

scores, see Appendix C), and hence no refinement195

is needed. Otherwise, we deem the example to be a196

possible candidate for refinement and evaluate the 197

second condition below. 198

b) Is Reward Models’ Answer Confidence High? 199

In this condition, we check if the RMs are confi- 200

dent in any single answer; if this is not the case, the 201

problem is a possible candidate for refinement. We 202

measure confidence via the entropy of the distribu- 203

tion over answers, obtained by weighting answer 204

clusters by their average RM scores, in line with 205

Weighted Self-Consistency (Li et al., 2023). 206

Coarse-to-Fine Decision. If either of the condi- 207

tions is met (the quality of the answer is high or 208

the RMs are confident on an answer), an instance 209

is marked as easy and delegated to the coarse- 210

grained method: Weighted Self-Consistency (Li 211

et al., 2023), using the sum of the solution-level 212

scores generated by both ORM and PRM. Con- 213

versely, if both conditions are not satisfied, the 214

instance is marked as hard and delegated to the 215

fine-grained method (as described in Section 2.2), 216

addressing Issue 1 (excessive refinement) by only 217

refining solutions for the hard problems. 218

2.2 Fine-Grained Multi-Agent Refinement 219

For hard instances that fail both conditions, we 220

need to employ refinement to unlock improvements 221

(see the bottom part of Fig. 2). Our refinement 222

setup has three agents: (1) the Solver, which gen- 223

erates the initial solution (2) the Reviewer, which 224

takes step-wise PRM scores and a reasoning chain 225

as input, and generates targeted feedback that pin- 226

points the errors within the chain, and (3) the Re- 227

finer, which takes the feedback generated by the 228

Reviewer to refine the previous chain. 229

Solver generates k solutions. The Solver is re- 230

sponsible for generating the initial k solutions. Re- 231

call that in Section 2.1, we assess problem difficulty 232

using k generated solutions. When a problem is 233

classified as easy, we aggregate the k solution with- 234

out refinement. When a problem is classified as 235

hard, we can directly re-use the k solutions already 236

generated by the Solver. 237

Reviewer generates targeted feedback. To assist 238

the Reviewer in generating useful feedback to local- 239

ize errors better (“Issue 2” in Fig. 1), we supply the 240

Reviewer with external step-wise PRM scores for 241

each step of the solution. The goal of the Reviewer 242

is to incorporate these step-wise correctness scores 243

to generate actionable feedback. We append these 244

scores to the end of each step and pass the result 245

to the Reviewer. That is, it takes a chain with the 246
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Figure 2: MAGICORE classify problem difficulty based on two conditions: (1) the quality of the majority answer
and (2) the RM’s answer confidence. A problem is considered hard when the majority answer receives a low average
RM score and the answer distribution is flat (i.e., low confidence). For these hard problems, we employ a multi-agent
setup – The Solver generates k reasoning chains, passing them to the PRM to pinpoint errors . The Reviewer
turns scores into targeted feedback, and the Refiner improves the k solutions using the Reviewer’s feedback. This
review-refine process repeats until either of the two conditions passes, or a maximum iteration is reached.

PRM scores as input, and is prompted to identify247

problematic steps that need refinement and possi-248

ble ways to fix them. The prompt for the Reviewer249

is shown in Appendix I.250

Refiner improves solutions w/ feedback. Inspired251

by the finding that LLM can resolve errors when ex-252

plicitly pointed out (Tyen et al., 2024), the Refiner253

agent focuses exclusively on how the step should254

be modified so as to resolve the error based on feed-255

back from the Reviewer. That is, the Refiner uses256

the targeted feedback generated by the Reviewer257

to refine the reasoning chain that was generated by258

the Solver. The prompt for the Refiner is shown in259

Appendix I.260

Iterating the refinement process. For some hard261

instances, one round of refinement may be insuf-262

ficient, as the Reviewer may have generated some263

irrelevant feedback or the Refiner may not have264

fixed the highlighted step adequately (“Issue 3” in265

Fig. 1). Thus, the Reviewer and the Refiner need266

to collaborate with each other over the course of267

multiple refinement iterations. To prevent exces-268

sive refinement, we re-evaluate the two conditions269

described in Section 2.1 in each iteration. The re-270

finement continues until (a) one of the conditions271

is met, or (b) a predefined maximum number of272

iterations is reached. 273

Final answer selection. The refinement process 274

described above operates on all k chains simul- 275

taneously, producing k refined chains in each it- 276

eration. At the end of each iteration, we use the 277

ORM to assess whether the refined solution has 278

improved based on its global correctness score. In 279

other words, by the end of each iteration, we have 280

2k reasoning chains – k initial and k refined – but 281

retain only the top k based on their global ORM 282

scores. Here we choose to base the decision on 283

the ORM score because the targeted feedback is 284

generated with PRM’s step-wise scores, so select- 285

ing the solution via another scoring model avoids 286

overfitting. Finally, the answer is selected using 287

Weighted Self-Consistency over these retained top 288

k chains, at the end of each iteration. 289

3 Experimental Setup 290

Implementation Details. We develop MAGI- 291

CORE with Llama3-8B-Instruct (AI@Meta, 292

2024) and GPT-3.5-Turbo (OpenAI, 2022) as the 293

base LLMs. Based on their strong performance 294

on standard reward modeling evaluations (Lambert 295

et al., 2024), we choose InternLM-7B (Cai et al., 296

2024) as the ORM, and Math-Shepherd-7B (Wang 297
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et al., 2023) as the PRM for computing the RM298

scores. By default, we sample k = 40 reasoning299

chains in each iteration for MAGICORE, and the300

decoding temperature is set to 0.8. The maximum301

number of iterations is set to 3, with additional anal-302

ysis in Fig. 3 and Table 12. We compare against303

different categories of strong baselines as follows,304

and leave more comparisons against prompting-305

based baselines to Table 7 in the Appendix.306

• Vanilla Prompting. The first baseline we com-307

pare to is zero-shot Chain-of-Thought (Wei et al.,308

2022); note that this only generates one reason-309

ing chain per question without aggregation.310

• Iterative Prompting. We also compare MAGI-311

CORE to an iterative prompting method, Self-312

Refine (SR) (Madaan et al., 2023), which refines313

the initial CoT answer via iteratively prompting314

the LLM to generate feedback and refine the pre-315

vious output accordingly.316

• Aggregation-based Methods. The third cate-317

gory generates multiple samples for each ques-318

tion. Here, we sample k solutions from the same319

LLM and select the final answer either via k-way320

Self-Consistency (SC) (Wang et al., 2022) or321

according to the highest ORM score (Best-of-k)322

(Lightman et al., 2023; Sun et al., 2024; Wang323

et al., 2023). Note that we give these baselines324

more samples than MAGICORE.325

• Iterative Baseline with Aggregation. To enable326

a fair comparison, we also report a stronger ver-327

sion of self-refine by combining Self-Refine and328

Self-Consistency (SR+SC), i.e., a baseline that329

is iterative, refines, and aggregates. Specifically,330

this baseline applies Self-Refine for k samples331

in parallel, and the final answer is derived by332

aggregating the k refined solutions.333

Datasets. We evaluate MAGICORE mainly on334

five math reasoning datasets. Later in Section 4.2,335

we further show MAGICORE’s effectiveness on336

commonsense (ARC-challenge; Clark et al. (2018))337

and logical reasoning (Date Understanding; Srivas-338

tava et al. (2022)) tasks. The first class of math339

datasets is math word problems: GSM8K (Cobbe340

et al., 2021), SVAMP (Patel et al., 2021), and341

MATH (Hendrycks et al., 2021b). GSM8K and342

SVAMP consist of grade school-level math prob-343

lems, with 1,312 and 1,000 test samples. MATH344

comprises high-school math competitions span-345

ning diverse topics and a total of 5,000 problems.346

Following previous works (Lightman et al., 2023;347

Wang et al., 2023), we evaluate MATH perfor-348

mance on a representative subset of 500 samples. 349

We also evaluate on math splits of general bench- 350

marks that test language models’ world knowledge 351

and problem-solving abilities over various subjects 352

such as MMLU-Math (Hendrycks et al., 2021a; 353

Yue et al., 2024) and SAT (Zhong et al., 2023) with 354

974 and 220 test instances respectively. 355

4 Results and Analysis 356

4.1 Main Results 357

MAGICORE outperforms all baselines at the 358

first iteration. We present our main results in 359

Table 1. First, one iteration of MAGICORE al- 360

ready outperforms all baselines. Compared to 361

aggregation-based methods, which generate mul- 362

tiple responses for each problem without refine- 363

ment, MAGICORE improves over Best-of-120 by 364

3.2% (absolute) averaged across the five datasets 365

on Llama-3-8B, despite using 2× fewer samples. 366

Note that our method’s first iteration only involves 367

40 samples for easy problems and 40 refined chains 368

for the subset of hard problems, making our k = 55 369

on average. When compared to 120-way SC, our 370

method shows an even greater average improve- 371

ment of 3.3% on Llama-3-8B and 3.2% on GPT- 372

3.5. Turning to refinement-based methods, we run 373

them with up to 5 iterations and only report the best 374

in Table 1 (denoted as “Best Iter”), leaving a more 375

detailed comparison in Fig. 3 and Table 12. On 376

average, MAGICORE shows 17.1% and 13.5% im- 377

provements over SR for Llama-3-8B and GPT-3.5. 378

As SR alone is a weaker baseline without aggregat- 379

ing multiple samples, we also compare to SR + SC, 380

and find that even with its best iteration, MAGI- 381

CORE outperforms SR + SC by 5.4% (Llama-3- 382

8B) and 4.9% (GPT-3.5) on average. This suggests 383

that adaptively addressing challenging instances 384

with targeted refinement improves overall perfor- 385

mance, while reducing compute for easy problems. 386

MAGICORE continues to improve with more 387

iterations. While MAGICORE already beats all 388

baselines after the very first iteration, in Table 1, we 389

also observe a clear upward trend in performance 390

as the number of iterations increases. We illustrate 391

this further in Fig. 3, which presents the accuracy 392

across successive iterations. Our comparison in- 393

cludes Best-of-k and SR + SC with k = 40, with 394

accuracy averaged across five datasets. We find that 395

while SR + SC fluctuates around the same range of 396

70%, MAGICORE continues to improve and stabi- 397

lize at the third iteration with 75.6% accuracy (with 398
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MMLU MATH SVAMP GSM8K SAT Avg.

Llama3-8B-Instruct

Zero-shot CoT 50.4 24.2 72.4 80.1 58.2 57.1
Self-Refine (Best Iter) 49.8 24.0 72.6 79.6 59.6 57.1
Best-of-k (k = 120) 62.6 41.4 88.7 90.1 72.4 71.0
k-way SC (k = 120) 63.0 40.6 89.8 90.3 70.5 70.8
Self-Refine + k-way SC (Best Iter) 62.3 41.0 89.2 90.3 68.0 70.2

MAGICORE (Iter=1) 67.3 46.0 91.4 91.1 75.0 74.2
MAGICORE (Iter=2) 68.4 47.2 91.1 92.3 76.4 75.1
MAGICORE (Iter=3) 68.9 (+5.6%) 47.8 (+5.2%) 91.3 (+1.7%) 91.6 (+1.3%) 78.2 (+5.8%) 75.6 (+4.3%)

GPT-3.5-Turbo

Zero-shot CoT 62.5 37.2 78.1 78.5 76.8 66.6
Self-Refine (Best Iter) 61.1 37.4 77.9 78.4 77.1 66.4
Best-of-k (k = 120) 70.1 50.6 87.7 90.5 87.8 77.3
k-way SC (k = 120) 70.4 51.2 86.9 89.8 87.6 77.1
Self-Refine + k-way SC (Best Iter) 70.1 49.4 88.1 88.1 84.5 76.0

MAGICORE (Iter=1) 73.7 57.2 89.4 91.1 90.1 80.3
MAGICORE (Iter=2) 73.3 57.8 90.1 91.1 90.9 80.6
MAGICORE (Iter=3) 73.6 (+3.5%) 58.6 (+8.0%) 90.1 (+2.4%) 91.4 (+0.9%) 90.9 (+3.1%) 80.9 (+3.6%)

Table 1: Performance comparison of methods and models. (+x%) is compared to the strongest baseline (Best-of-k)
shown in blue. Across models and datasets, MAGICORE consistently improves. Notably, MAGICORE surpasses
all baselines after the first iteration of refinement, even when the baselines use a larger sample size (k = 120).
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68
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72

74

76
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cu
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Figure 3: Comparison of our method with baselines
across iterations, averaged across five datasets with k =
40. See Table 12 for full results.

a noticeable 1.4% improvement compared to the399

first iteration). This highlights the importance of400

our iterative refinement and the ability to overcome401

insufficient refinement for hard instances.402

MAGICORE outperforms aggregation-based403

methods despite using less computation. In404

Fig. 4, we further compare the cost and perfor-405

mance of MAGICORE with Best-of-k and SC on406

MATH and MMLU using Llama-3-8B, studying407

how performance changes as we increase the num-408

ber of reasoning chains generated per question k.409

Note that we sample k reasoning chains per ques-410

tion for baselines, whereas, in our method, we add411

k more samples in each iteration for a subset of412
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Figure 4: Comparison of MAGICORE, k-way SC, and
Best-of-k with different k on MATH.

hard problems, and plot the average number of 413

samples in Fig. 4. The trend in Fig. 4 shows that 414

MAGICORE consistently outperforms k-way SC 415

and Best-of-k at any given k. Moreover, while SC 416

saturates and stops improving at around k = 40, 417

MAGICORE continues to improve with increas- 418

ing k. Notably, MAGICORE with k = 15 already 419

performs better than Best-of-120 and 120-way SC, 420

highlighting the cost-effectiveness of our method. 421

We also show that MAGICORE is also more cost- 422

efficient in terms of token count in Fig. 5. 423

4.2 Additional Analyses of MAGICORE 424

Selective refinement avoids over-correcting and 425

improves overall performance. In Section 1, we 426
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Method MMLU MATH

Aggregation-Only 64.7 44.0
Refinement-Only 60.9 38.8
MAGICORE 67.3 46.0

Table 2: Comparison when uniformly adopting aggrega-
tion (i.e., Weighted SC) or refinement to all instances.

noted that excessive refinement could potentially427

hurt performance by flipping correct answers to428

incorrect ones. Here, we provide a quantitative429

analysis of this claim. Recall that we have two430

methods: coarse aggregation (Weighted SC) and431

fine refinement (multi-agent iteration) which we432

apply selectively depending on predicted problem433

difficulty (c.f. Section 2.1). In Table 2, we mea-434

sure the performance of each method when applied435

uniformly to all instances, regardless of the prob-436

lem difficulty. We find that uniformly applying437

refinement actually degrades performance; com-438

paring Weighted SC (the “Aggregation-Only” in439

row 1) to refinement-only (row 2), we see that re-440

fining all samples leads to 3.8% and 5.2% drops441

on MMLU and MATH, respectively, pointing to442

the over-correction issue. Conversely, one iteration443

of our selective refinement (row 3) targets only the444

challenging instances where the weighted majority445

vote is unlikely to succeed, resulting in up to 2.6%446

improvement compared to uniformly applying ag-447

gregation (row 1). This demonstrates that our selec-448

tive refinement not only avoids over-correction but449

also enhances overall performance by effectively450

allocating more resources to harder problems.451

PRM-based feedback enables better refinement.452

Having demonstrated that selectively applying re-453

finement in MAGICORE is crucial for achieving454

improvements, we now compare the refinement455

process with and without using a PRM. To this end,456

without using a PRM, we ask the LLM to generate457

an updated solution based on its own previous rea-458

soning, referring to this as LLM Self-Refinement.459

Compared to the full MAGICORE in row 4 of Ta-460

ble 3, using LLM’s self-refinement (row 1) results461

in an average drop of 1.5%, indicating that using462

the LLM for refinement is less effective than us-463

ing a PRM. To further examine how sensitive the464

refinement process is to the score quality, in row465

2, we replace the actual PRM scores with random466

scores. The result is worse than row 4, indicating467

that PRM scores help in localizing errors. Finally,468

we test whether the global ORM score can offer469

a similar advantage as using the local PRM score.470

Refinement Variants MMLU MATH

LLM Self-Refinement 65.9 44.4
Random Step Score 66.4 43.8
ORM Score (No Step Score) 66.8 45.2
MAGICORE (PRM Step Score) 67.3 46.0

Table 3: Refinement variants in MAGICORE. Using
PRM scores for refinement performs the best.

Criterion for Refinement MMLU MATH

Prompt (classification) 65.2 45.0
Prompt (confidence) 64.7 44.4
Condition 1 only 66.4 43.6
Condition 2 only 66.1 44.2
Cond. 1 & Cond. 2 67.3 46.0

Table 4: Different ways of detecting hard problems (i.e.
criterion for refinement). Our two conditions, when
used together, are the most effective.

In row 3, instead of appending the step-wise score 471

in each step, we place the global ORM score at 472

the end of the response to generate the feedback. 473

Result shows that it performs slightly worse than 474

using the PRM score, suggesting that while global 475

correctness is also a strong signal, local correctness 476

scores help the LLM to identify and correct errors 477

more effectively. 478

The two conditions for classifying problem diffi- 479

culty are the most effective when used together. 480

In MAGICORE, we use reward models to classify 481

each instance as easy or hard. Given that the RMs 482

are also fine-tuned LLMs, we investigate whether 483

prompting the LLM to perform this classification 484

directly could replace the external RMs. We com- 485

pare two settings in the first two rows, where we 486

prompt Llama3-8B-Instruct to evaluate the dif- 487

ficulty of an instance. In the first setting (classi- 488

fication), the LLM generates a binary label. In 489

the second setting (confidence), it produces a confi- 490

dence score ranging from 0 to 1, indicating whether 491

refinement is required – that is, whether the exam- 492

ple is easy or hard. Results in Table 4 show that the 493

LLM is less effective at determining instance dif- 494

ficulty compared to a reward model, as evidenced 495

by a performance drop of 1.6%− 2.6%. In rows 3 496

and 4, we also examine the performance when only 497

one of the conditions of MAGICORE (c.f. Sec- 498

tion 2.1) is used to decide difficulty. Specifically, 499

when only condition 1 is applied, an instance is 500

classified as hard if the majority answer’s quality 501

is low. Conversely, when only condition 2 is ap- 502

plied, an instance is classified as hard if the RM’s 503
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Method MMLU MATH

Only Address Issue 1 64.7 44.0
Only Address Issue 2 65.9 45.4
Only Address Issue 3 60.3 36.4
MAgICoRE (Iter = 3) 68.9 47.8

Table 5: Ablation study on addressing each refinement
(c.f. Fig. 1) issue one at a time.

Method ARC Date

Zero-shot 66.5 52.5
40-way SC 85.5 72.5
120-way SC 86.0 72.5
MAgICoRE (Iter = 1) 87.5 79.5
MAgICoRE (Iter = 2) 88.0 79.5
MAgICoRE (Iter = 3) 88.5 80.5

Table 6: MAGICORE also generalizes to commonsense
reasoning and logical reasoning tasks.

answer confidence is low, regardless of the major-504

ity answer’s quality. Results indicate that while505

each condition individually outperforms LLM self-506

verification, combining both yields the best perfor-507

mance. Indeed, in Appendix E, we find that MAGI-508

CORE’s assessment of problem difficulty shows the509

highest agreement with human-annotated labels.510

All three issues must be addressed jointly. To511

investigate the importance of each refinement issue,512

we conduct an ablation study to address each issue513

individually in Table 5 under the following settings:514

(1) Only Address Issue 1 (Excessive Refinement):515

Here, we apply selective refinement only, without516

PRM step-wise scores for feedback generation and517

without iterations. (2) Only Address Issue 2 (Inabil-518

ity to Localize and Address Errors): Here, we use519

PRM scores for feedback generation and refine all520

instances uniformly (i.e. no selective refinement)521

for one iteration. (3) Only Address Issue 3 (Insuf-522

ficient Refinement): Here, we iteratively refine all523

samples without incorporating PRM scores (i.e. no524

error localization) and without performing selective525

refinement. The results show that only addressing526

one single refinement issue at a time leads to a per-527

formance drop, highlighting the need for a joint528

solution as we proposed in MAGICORE. We find529

that only addressing insufficient refinement (Issue530

3) causes the highest drop in performance, as it531

fails to efficiently localize errors (without the help532

of PRM) and also performs excessive refinement.533

MAGICORE generalizes to other domains.534

Table 1 shows the benefits of MAGICORE on535

math reasoning; however, LLMs have been ap-536

plied to a wide variety of tasks beyond math. Here, 537

we explore expanding MAGICORE to other do- 538

mains, specifically to a commonsense reasoning 539

task: ARC-Challenge (Clark et al., 2018), and a 540

logical reasoning task: Date Understanding (Srivas- 541

tava et al., 2022). We sample 200 instances from 542

each dataset and use GPT4o-mini as a PRM for 543

the experiments, as existing standalone PRMs gen- 544

erally only exist for math reasoning. Specifically, 545

we prompt GPT4o-mini to provide step-wise cor- 546

rectness scores without any textual explanations or 547

reasoning, acting the same as a PRM. The prompt is 548

provided in Appendix J. This approach ensures that 549

our agents do not have access to explanations from 550

a stronger model, and we manually verify that ex- 551

planations are not included with the scores. We con- 552

duct this experiment with Llama3-8B-Instruct as 553

the base LLM. Table 6 shows that MAGICORE 554

transfers to commonsense and logical reasoning, 555

outperforming 120-say SC by 2.5% and 8.0%, re- 556

spectively. 557

5 Conclusion 558

Building on the observation that different problems 559

require varying amounts of computation, we in- 560

troduced MAGICORE, a method that adaptively 561

allocates more computational resources to more 562

challenging problems and selectively applies refine- 563

ment where appropriate, i.e., on harder problems. 564

MAGICORE addresses three key issues in refine- 565

ment: excessive refinement on easy examples, the 566

inability of LLMs to detect and correct errors in 567

their reasoning, and insufficient refinement on hard 568

instances. Our approach tackles these issues by 569

employing both global and local external reward 570

models to decide which samples to refine. We then 571

incorporate local correctness scores to generate 572

targeted feedback and an iterative multi-agent com- 573

munication framework to refine solutions for hard 574

problems. Our results across five math datasets and 575

two models show that our coarse-to-fine method 576

consistently outperforms both coarse-grained ag- 577

gregation and fine-grained refinement alone at any 578

given budget and even outperforms baselines using 579

substantially more computation. In our ablations, 580

we demonstrate the importance of selective refine- 581

ment, showing that performance generally drops 582

when refining all samples uniformly. We also high- 583

light the role of iteration in our framework, show- 584

ing increased performance across iterations even 585

as baselines stagnate. 586
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Limitations587

Like all test-time scaling, MAGICORE improves588

performance by adding computation via additional589

samples, trading some efficiency for better perfor-590

mance. We show that MAGICORE makes better591

use of additional compute than the baselines by592

performing targeted refinement and thus better us-593

ing inference-time compute; indeed, while base-594

lines like Best-of-k and Self-Consistency stagnate595

with additional compute, MAGICORE continues596

to improve. Nevertheless, our method increases the597

computational cost of inference, and relies on start-598

ing with a base number of samples to establish the599

difficulty and quality of existing solutions. In addi-600

tion to requiring multiple solutions, MAGICORE601

uses feedback from both ORMs and PRMs to im-602

prove refinement. These models must be separately603

trained to provide rewards for a given domain and604

therefore do not exist for all problem types. How-605

ever, we also note that MAGICORE is modular,606

and thus allows for newer and better ORMs and607

PRMs to be swapped in as they become available.608

MAGICORE is designed to improve the reasoning609

of LLMs, and thus has no additional risks beyond610

those inherent to LLMs generally.611
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A Related Work884

Improving Reasoning by Aggregation. Self-885

Consistency (SC; Wang et al., 2022) generates k886

reasoning chains and marginalizes over the chains887

to obtain answer clusters; the most frequent answer888

is selected as the final prediction. While simple and889

effective, it generates k solutions for every sample,890

as both past work and our work show that SC satu-891

rates when k increases (Chen et al., 2024b; Li et al.,892

2024a). Several studies adaptively determine the893

number of samples (k) required for each instance to894

address this (Aggarwal et al., 2023; Li et al., 2024b).895

However, the performance of such approaches is896

upper-bounded by SC – they address the cost issue897

but do not enhance overall performance. To sur-898

pass SC, Yin et al. (2024) propose using the LLM899

to evaluate answer clusters, taking into account900

both frequency and the LLM-evaluated quality of901

the answers. Instead, we propose using external902

RMs to decide between coarse-grained aggrega-903

tion and fine-grained refinement, identify errors,904

and aid refinement; this allows us to improve over905

aggregation or refinement alone.906

LLM-based Verification and Refinement. Past907

work mostly uses RMs for verification purposes908

(Li et al., 2023; Khalifa et al., 2023; Cobbe et al.,909

2021; Lightman et al., 2023). Havrilla et al. (2024)910

considers local correctness for refinement in a non-911

adaptive way and requires specific data curation912

with fine-tuning, while our work is adaptive and913

uses off-the-shelf global and local models. An-914

other line of work has proposed using the LLM915

itself as a verifier, in place of an RM (Liu et al.,916

2024; Zhang et al., 2024; Aggarwal et al., 2023;917

Madaan et al., 2023). However, recent work shows918

the inability of LLMs to “self-verify” their own919

reasoning (Huang et al., 2024; Stechly et al., 2023;920

Kamoi et al., 2024; Tyen et al., 2024; Kamoi et al.,921

2024). Hence, MAGICORE uses external global922

and local reward models (Wang et al., 2023; Cai923

et al., 2024) for selective coarse-to-fine refinement.924

Shridhar et al. (2024) trained specific models to925

decide when to refine and when to trust refined926

solutions. This contrasts with our method, where927

the decision to refine is based on a coarse-to-fine928

resource allocation method that differentiates easy929

from hard problems (for which we use global and930

local reward models), and where refinement is done931

based on off-the-shelf models. We also iteratively932

refine guided by global correctness to ensure suf-933

ficient refinement, whereas Shridhar et al. (2024)934

refine only once. Wadhwa et al. (2024) propose a 935

multi-agent detect-critique-refine pipeline for gen- 936

eration tasks. MAGICORE instead focuses on rea- 937

soning tasks and uses external RMs for selective 938

coarse-to-fine refinement (whereas Wadhwa et al. 939

(2024)’s detection uses the same metric as their 940

evaluation, which is infeasible in reasoning where 941

the metric – accuracy – requires access to the gold 942

answer). 943

Multi-Agent Systems with LLMs. LLMs can be 944

used in multi-agent systems, where the agents in- 945

teract, collaborate, and compete (Wang et al., 2024; 946

Lu et al., 2024; Feng et al., 2024). Related to our 947

work, one line of multi-agent research focuses on 948

structured debates or discussions between LLM 949

agents, where the interaction helps refine and im- 950

prove previously generated solutions (Du et al., 951

2023; Liang et al., 2023; Yin et al., 2023; Chen 952

et al., 2024a). These studies show improvements 953

over single-agent systems, but a major challenge in 954

multi-agent systems is achieving a correct consen- 955

sus among LLMs; external feedback can help pre- 956

vent this consensus from aligning with the agents’ 957

internal and possibly erroneous outputs. Therefore, 958

MAGICORE’s multi-agent refinement incorporates 959

external RMs for more objective scoring, enabling 960

the generation of targeted feedback for better re- 961

finement. 962

B Self-Consistency and Weighted 963

Self-Consistency. 964

Self-Consistency (Wang et al., 2022) is a popular 965

decoding method that uses majority voting to ag- 966

gregate predictions from different reasoning chains, 967

thus marginalizing over chains. It generates k so- 968

lutions per question and selects the most frequent 969

final answer from these samples. While simple 970

and effective, this method assigns uniform weight 971

to each reasoning chain, which fails to account 972

for the quality of each solution. To address this 973

limitation, Li et al. (2023) propose Weighted Self- 974

Consistency, accounting for each solution’s qual- 975

ity. Formally, both Self-Consistency and Weighted 976

Self-Consistency choose a final answer via: 977

ŷ = argmax
y

k∑
i=1

1yi=yV(q; ri) 978

where V(·) is a constant 1 in Self-Consistency 979

and the quality measurement (e.g., RM score) in 980

Weighted Self-Consistency. In MAGICORE’s final 981
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answer selection, we use the sum of the solution-982

level scores generated by both ORM and PRM as983

V(·). Throughout MAGICORE, in cases where984

we need solution-level PRM scores (compatible985

with ORM scores), we accumulate the PRM step986

scores by taking their product (Sun et al., 2024),987

so that the aggregated PRM score corresponds to a988

solution.989

C Details of the Conditions990

Condition 1: Is the Majority Answer of High991

Quality? Given a problem q, to determine the992

difficulty of the problem at hand, the Solver gen-993

erates k solutions R = {r1, . . . , rk} and final an-994

swers A = {a1, . . . , ak} per question and cluster995

the solutions by their final answer. This produces a996

partition A with elements Ai, where Ai = {rj ∈997

R | aj = ai}. The majority cluster Ag has the998

most “votes”, i.e., Ag = argmaxi∈|A||Ai|. We999

evaluate the majority answer quality by both ORM1000

and PRM separately but with the same procedure,1001

as described below. First, we score every reason-1002

ing chain ri within the majority cluster Ag. Both1003

ORM and PRM are able to produce a solution-level1004

score, which we denoted as SRM
i . Note that we per-1005

form this check using ORM and PRM separately,1006

but for simplicity, we use the same notation for1007

solution-level score, which either comes from the1008

ORM or the PRM. We calculate the average of the1009

solution-level scores from the majority group:1010

SRM
avg =

1

|Ag|

|Ag |∑
i=1

SRM
i1011

This average score informs us of the majority an-1012

swer’s quality. To set a threshold, we normalize1013

SRM
avg by using the sample average RM scores (by1014

computing SRM
i for each sample and then take the1015

average of these scores). Importantly, this process1016

does not require any labeled data. After normaliza-1017

tion, if the average reward of the majority group1018

SRM
avg ≥ 0, indicating that the quality of the major-1019

ity answer is high, Condition 1 will be true. Oth-1020

erwise, if SRM
avg < 0, Condition 1 will be false,1021

suggesting that even the most frequent answer is1022

of poor quality and that the instance might benefit1023

from refinement.1024

Condition 2: Are Reward Models’ Answer Con-1025

fidence High? Besides the quality of the major-1026

ity answer, we also consider whether the RMs are1027

confident enough in any single answer among the1028

answer clusters. Again we evaluate both ORM and 1029

PRM’s answer confidence separately but with the 1030

same procedure, as described below. First, the an- 1031

swer distribution is formed by (1) the frequency of 1032

each unique answer and (2) the total RM score of 1033

each answer cluster. We estimate the RM’s confi- 1034

dence according to this distribution. If the distribu- 1035

tion is concentrated, meaning that only one answer 1036

cluster stands out, the RM’s answer confidence is 1037

treated as high. Conversely, if the distribution is 1038

diffused and the clusters’ scores are more uniform, 1039

then there is no single answer for which the RM 1040

has high confidence, i.e., the RM’s confidence is 1041

low. This motivates a targeted step-wise refinement 1042

process to select a more definite answer. Again we 1043

use both ORM and PRM to generate the solution- 1044

level score SRM
i . Given the k reasoning chains 1045

generated along with the solution-level score, we 1046

compute the RM’s answer confidence (denoted as 1047

C) using the entropy of the answer cluster weighed 1048

by the RM scores, passing the result through a sig- 1049

moid function to normalize it onto [0, 1]. Formally, 1050

the calculation of the entropy can be expressed as: 1051

H = −
n∑

i=1

p(Ai) log p(Ai), 1052

1053

p(Ai) =

∑|Ai|
i=1 SRM

i∑
Aj∈A

∑|Aj |
k=1 SRM

k

1054

where n is the number of unique answers among 1055

the k chains, Ai is the i-th answer cluster (a set 1056

of reasoning chains leading to the same answer) 1057

and A is the set of all clusters. Each answer in a 1058

cluster is weighed by its unnormalized solution- 1059

level score SRM
i . To normalize entropy onto a 1060

confidence scale, we invert it so that high entropy 1061

corresponds to low confidence. We then apply a 1062

sigmoid function σ(.), mapping the values to the 1063

range [0, 1]: C = σ(α ∗ (1 − H)). We set α to 1064

2 to let the distribution stretch more evenly be- 1065

tween 0 and 1. This transformation establishes 0.5 1066

as a natural threshold for differentiating low and 1067

high confidence, thereby eliminating the need for 1068

any threshold tuning. That is, if an instance has 1069

C ≥ 0.5, Condition 2 is true, meaning that the 1070

RMs are confident on a single answer cluster. Oth- 1071

erwise, if C < 0.5, Condition 2 is false, suggesting 1072

that the RMs’ uncertainty among the k chains is 1073

high, necessitating a finer refinement. 1074
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Method MMLU MATH SVAMP GSM8K SAT Avg.

120-way SC 63.0 40.6 89.8 90.3 70.5 70.8
120-way SC + PRM (Li et al., 2023) 65.4 44.6 90.8 90.7 72.5 72.8
Self-correct + 120-way SC (Kim et al., 2024) 62.1 38.6 86.2 88.1 65.6 68.1
Least-to-Most + 120-way SC (Zhou et al., 2023) 62.6 40.6 89.0 90.3 68.9 70.3
Multi-Agent Debate + SC (Du et al., 2023) 64.6 41.0 89.6 90.8 72.5 71.7

MAgICoRE (Iter=1) 67.3 46.0 91.4 91.1 75.0 74.2
MAgICoRE (Iter=2) 68.4 47.2 91.1 92.3 76.4 75.1
MAgICoRE (Iter=3) 68.9 47.8 91.3 91.6 78.2 75.6

Table 7: Performance comparison with additional baselines using Llama3-8B-Instruct. Notably, MAGICORE
with only one iteration outperforms all baselines despite using fewer samples.

D Additional Experimental Results1075

D.1 Comparison with additional baselines.1076

In addition to Table 1, we also compare with the1077

following baselines: (1) 120-way SC + PRM: The1078

product of step-wise PRM scores is used as the1079

solution-level score. This score is then employed1080

for weighted Self-Consistency, following (Li et al.,1081

2023). (2) Self-correct + 120-way SC: We use the1082

“Self-Correct RCI” prompt from (Kim et al., 2024)1083

to generate 120 solutions per question, which are1084

subsequently aggregated using Self-Consistency.1085

(3) Least-to-Most + 120-way SC: We use the zero-1086

shot Least-to-Most prompt from (Zhou et al., 2023)1087

to generate 120 solutions per question, followed1088

by aggregation via Self-Consistency. (4) Multi-1089

Agent Debate + SC: Following Du et al. (2023),1090

we conduct a three-agent debate over four rounds,1091

repeating this process ten times. The final answers1092

from these ten debates are aggregated using Self-1093

Consistency, yielding 120 generations per question.1094

We use Llama3-8B-Instruct as the base model.1095

Results show that a single iteration of MAGICORE1096

already outperforms methods that rely on PRM for1097

aggregation (120-way SC + PRM), as well as ap-1098

proaches like Self-Correction, advanced prompting,1099

and multi-agent debate. On average, MAGICORE1100

outperforms 120-way SC + PRM by 2.8% despite1101

using fewer samples, highlighting the limitations1102

of using PRM solely for aggregation. Addition-1103

ally, MAGICORE exceeds Least-to-Most by 5.3%,1104

showcasing superior adaptability to problem diffi-1105

culty. Finally, MAGICORE surpasses Multi-agent1106

Debate by 3.9%, indicating that our aggregation1107

and refinement mechanisms scale more effectively1108

at test time.1109

Aggregation MMLU MATH

ORM-Only 66.9 45.4
PRM-Only 66.1 45.0
Both 67.3 46.0

Table 8: Ablation study on the final answer selection,
using ORM-only, PRM-only or both.

Method Accuracy

Zero-shot 72.0
40-way SC 79.2
40-way SC + PRM 79.4
MAgICoRE (Iter = 1) 80.2
MAgICoRE (Iter = 2) 80.4
MAgICoRE (Iter = 3) 80.4

Table 9: MAGICORE can also improve GPT4o-mini on
MATH.

D.2 MAGICORE also improves stronger 1110

models like GPT4o-mini. 1111

Table 1 shows results with GPT-3.5-Turbo; here, 1112

we show that MAGICORE scales to larger and 1113

stronger models as well. Specifically, we run 1114

MAGICORE using GPT4o-mini on a subset of 1115

MATH data. Due to the high cost of running 1116

GPT4o-mini with k = 120 and the fact that 1117

Fig. 4 shows decreasing performance at k = 120 1118

for MATH, we only compare to the 40-way SC 1119

with the weighted variation that incorporates PRM 1120

scores for vote weighting (40-way SC + PRM). 1121

Appendix D.1 demonstrates that MAGICORE can 1122

also enhance stronger model’s performance, albeit 1123

with a smaller margin of improvement compared 1124

to Llama3-8B and GPT-3.5 shown in Table 1. 1125
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MMLU MATH

Joint Roles 66.7 44.8
Distinct Agents (Ours) 67.3 46.0

Table 10: MAGICORE’s separation of the Reviewer
and Refiner roles is more effective than combining them
into a single role.

D.3 Separating Reviewer and Refiner roles1126

outperforms combining these roles.1127

In Appendix D.2, we examine the effects of com-1128

bining the roles of Reviewer and Refiner by merg-1129

ing their prompts, instructing the model to simul-1130

taneously generate both feedback and a refined so-1131

lution. This method is referred to as “Joint Roles”.1132

In MAGICORE, the Reviewer and Refiner have1133

distinct, clearly defined roles, which we refer to1134

as the “Distinct Agents” approach. As before, the1135

performance comparison is based on the first iter-1136

ation, with all other variables held constant. Our1137

findings show that maintaining separate roles (as in1138

our multi-agent setup) leads to better performance,1139

with the “Joint Roles” configuration resulting in1140

a 0.6% drop in MMLU and a 1.2% decrease in1141

MATH. The larger drop in MATH suggests that1142

its problems are more complex and often require1143

extended reasoning, making the combined roles1144

less effective, whereas maintaining separate roles1145

proves to be more beneficial.1146

D.4 Ablations on reward models for final1147

answer selection.1148

We report MAGICORE up to three iterations in Ta-1149

ble 1 and only report the best-performing iteration1150

of Self-Refine + k-way SC. Here, we provide ex-1151

tended results in table Table 12. We also conducted1152

another ablation study to evaluate the performance1153

when using ORM, PRM, or a the summation of1154

both scores for final answer selection. As shown in1155

Appendix D.1, utilizing ORM’s global correctness1156

score yields better results than aggregating PRM’s1157

local correctness score. However, the best perfor-1158

mance is achieved when both scores are combined1159

for the final answer aggregation.1160

D.5 Reliable step-wise scores enable LLM1161

refinement.1162

To compare with an oracle PRM, we sample 5001163

instances from the Math-Shepherd dataset (Wang1164

et al., 2023), which includes gold label correctness1165

for each step. Besides the three settings we evalu-1166

Refinement Variants Accuracy

No feedback (LLM self-refine) 48.30
Random PRM score 49.60
PRM predicted score 51.20
Oracle PRM score 52.40

Table 11: Comparison of different refinement variants
in MAGICORE.

ated in Table 3, we also evaluate the oracle PRM 1167

score, where feedback uses the gold correctness 1168

labels. Appendix D.4 shows that the oracle PRM 1169

score performs the best, followed by the predicted 1170

PRM score, suggesting that given reliable stepwise 1171

scores, LLMs can effectively refine their solutions 1172

and improve. 1173
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MMLU MATH SVAMP GSM8K SAT Avg.

Llama3-8B-Instruct

Zero-shot CoT 50.4 24.2 72.4 80.1 58.2 57.1

Self-Refine (Iter=1) 49.6 24.6 72.0 79.0 57.7 56.3
Self-Refine (Iter=2) 50.2 23.8 72.8 79.6 59.3 57.1
Self-Refine (Iter=3) 49.8 24.0 72.6 79.6 59.6 57.1

Best-of-k (k = 120) 62.6 41.4 88.7 90.1 72.4 71.0
k-way SC (k = 120) 63.0 40.6 89.8 90.3 70.5 70.8

Self-Refine + k-way SC (Iter=0) 62.1 40.4 88.6 90.1 68.2 69.9
Self-Refine + k-way SC (Iter=1) 61.3 40.6 88.9 89.7 67.7 69.6
Self-Refine + k-way SC (Iter=2) 62.7 40.0 88.9 90.1 68.6 70.1
Self-Refine + k-way SC (Iter=3) 62.3 41.0 89.2 90.3 68.0 70.2
Self-Refine + k-way SC (Iter=4) 62.1 41.4 89.2 90.1 67.7 70.1
Self-Refine + k-way SC (Iter=5) 62.7 40.4 88.6 89.7 67.7 69.8

MAGICORE (Iter=1) 67.3 46.0 91.4 91.1 75.0 74.2
MAGICORE (Iter=2) 68.4 47.2 91.1 92.3 76.4 75.1
MAGICORE (Iter=3) 68.9 47.8 91.3 91.6 78.2 75.6
MAGICORE (Iter=4) 68.9 48.0 91.3 91.1 78.2 75.5
MAGICORE (Iter=5) 68.4 48.0 91.1 91.6 78.2 75.5

GPT-3.5-Turbo

Zero-shot CoT 62.5 37.2 78.1 78.5 76.8 66.6

Self-Refine (Iter=1) 62.4 37.4 77.7 77.4 77.3 66.4
Self-Refine (Iter=2) 61.6 37.6 78.6 77.9 76.9 66.5
Self-Refine (Iter=3) 61.1 37.4 77.9 78.4 77.1 66.4

Best-of-k (k = 120) 70.1 50.6 87.7 90.5 87.8 77.3
k-way SC (k = 120) 70.4 51.2 86.9 89.8 87.6 77.1

Self-Refine + k-way SC (Iter=0) 69.4 49.8 86.9 88.1 85.6 76.0
Self-Refine + k-way SC (Iter=1) 69.8 49.0 87.1 88.3 85.0 75.8
Self-Refine + k-way SC (Iter=2) 70.1 49.4 88.1 88.1 84.5 76.0
Self-Refine + k-way SC (Iter=3) 69.6 48.8 87.3 87.8 85.2 75.7
Self-Refine + k-way SC (Iter=4) 69.8 48.4 87.1 87.1 85.0 75.5
Self-Refine + k-way SC (Iter=5) 69.6 48.6 87.3 87.4 84.5 75.5

MAGICORE (Iter=1) 73.7 57.2 89.4 91.1 90.1 80.3
MAGICORE (Iter=2) 73.3 57.8 90.1 91.1 90.9 80.6
MAGICORE (Iter=3) 73.6 58.6 90.1 91.4 90.9 80.9
MAGICORE (Iter=4) 73.6 58.0 89.9 91.4 90.9 80.8
MAGICORE (Iter=5) 73.4 57.6 89.4 91.1 90.9 80.5

Table 12: Extended version of Table 1. Here we show all more iterations for Self-Refine + k-way SC and
MAGICORE. While SR + SC does not show a clear improvement with more iterations, MAGICORE continues to
improve, peaking at the third iteration.
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P R F1

Random 68.4 49.6 57.5
Prompt-based (classification) 65.9 10.3 17.8
Prompt-based (confidence) 0.0 0.0 0.0
MAGICORE 86.3 67.6 75.8

Table 13: The Precision (P), Recall (R) and F1 of the
model predicted problem difficulty.

E Model-Predicted vs. Human-Annotated1174

Problem Difficulty1175

We analyze the model’s prediction of problem dif-1176

ficulty. Specifically, we utilize the MATH dataset,1177

which includes human-annotated difficulty levels1178

ranging from 1 to 5, with higher levels indicating1179

increased problem complexity. For our analysis,1180

we split the problems as follows: (1) Easy: Levels1181

1 and 2 and (2) Hard: Levels 4 and 5. We exclude1182

Level 3 problems to create a clearer distinction be-1183

tween easy and hard categories. We compare the1184

overlap between our model’s predictions and these1185

human-annotated levels. We treat hard as the pos-1186

itive label. The results are presented in Table 13.1187

To provide a comparative analysis, we include: (1)1188

a random baseline that assigns easy and hard la-1189

bels at random, (2) a prompt-based baseline that1190

directly prompts the LLM to classify the problem1191

difficulty, and (3) another prompt-based baseline1192

that prompts the LLM to generate a confidence1193

score when answering, where a confidence score of1194

≥ 0.5 is classified as “easy”. Results show that our1195

conditions substantially outperform all baselines.1196

Interestingly, the prompt-based methods perform1197

worse than the random baseline, particularly the1198

one relying on confidence scores, which classifies1199

all problems as easy; this method scores 0 for both1200

precision and recall since we treat “hard” as the1201

positive label, so it has 0 true positives. This sug-1202

gests that our framework is highly effective at dis-1203

tinguishing true problem difficulty based on the1204

conditions outlined in our methodology.1205

F Dataset Statistics and Licenses.1206

We provide the sample sizes and licenses of the1207

datasets used in this work in Table 14. All the1208

datasets are in English and all datasets are used in1209

a fashion consistent with their intended use.1210

G Token Count Analysis 1211

In Fig. 4, we are mainly comparing the number of 1212

generations (k) per question with the baselines. To 1213

provide a more granular analysis, we break down 1214

the generations at the token level and compare costs 1215

in terms of token counts. The results are detailed 1216

in Fig. 5. For Self-Consistency, the input tokens 1217

are counted only once per question, as it uses the 1218

same input to generate k responses. In contrast, 1219

the input token count for MAGICORE includes all 1220

prompts across all agents – Solver, Reviewer, and 1221

Refiner. We also include the token count for the 1222

ORM and PRM in MAGICORE. Since the cost 1223

of input tokens is typically 0.25× that of output 1224

tokens2, we present the normalized total token cost 1225

as 0.25× input + 1× output. Results in Fig. 5 show 1226

that (1) scaling Self-Consistency from k = 40 to 1227

k = 120 largely increases token overhead while 1228

yielding marginal improvements. (2) MAGICORE 1229

exhibits superior scalability, achieving substantially 1230

higher performance gains with increased token us- 1231

age. On MMLU, MATH and SAT, we observe a 1232

clear upward trend with an increased token count; 1233

MAGICORE consistently improves with additional 1234

tokens (unlike SC which tends to stagnate). (3) The 1235

first iteration of MAGICORE outperforms 120-way 1236

SC fewer tokens. 1237

H Discussion of external reward models. 1238

External reward models play an important role 1239

MAGICORE and are used in the solutions to all 1240

three problems (excessive refinement, inability to 1241

localize and address errors, and insufficient refine- 1242

ment). While MAGICORE does utilize external 1243

reward models, our framework is modular and can 1244

readily incorporate new reward models as they 1245

emerge. As the community is actively advancing 1246

the performance of reward models evidenced by 1247

a benchmark for reward models (Lambert et al., 1248

2024), MAGICORE is thus complementary to and 1249

enhanced by progress in reward modeling, rather 1250

than constrained by it. While it is possible to train 1251

a custom error-identification model, this approach 1252

is often data-dependent and prone to obsolescence. 1253

In contrast, MAGICORE’s modular design over- 1254

comes this limitation by enabling the integration of 1255

new state-of-the-art models as they become avail- 1256

able. Moreover, our experiments in Table 6 indicate 1257

2See https://openai.com/api/pricing, https://
www.anthropic.com/pricing#anthropic-api, and https:
//ai.google.dev/pricing#1_5pro
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Sample Size License

MMLU-Math (Hendrycks et al., 2021a) 974 MIT License
MATH (Hendrycks et al., 2021b) 500 MIT License
SVAMP (Patel et al., 2021) 1,000 MIT License
GSM8K (Cobbe et al., 2021) 1,312 MIT License
SAT (Zhong et al., 2023) 220 MIT License
ARC-Challenge (Clark et al., 2018) 200 CC-by-SA-4.0
Date Understanding (Srivastava et al., 2022) 200 Apache License

Table 14: The statistics and licenses of the datasets used in this study.
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Figure 5: Token count comparison with Self-Consistency across different datasets. Scaling Self-Consistency from
k = 40 to k = 120 introduces substantial token overhead while providing marginal improvements. In contrast,
MAGICORE demonstrates superior scalability, delivering much higher performance gains with an increased token
count. Notably, the first iteration of MAGICORE consistently outperforms 120-way SC while using fewer tokens.

that when trained reward models are unavailable,1258

we can use sufficiently strong LLMs in place of1259

trained RMs. For example, we use GPT4o-mini1260

as a reward model for commonsense and logical1261

reasoning.1262
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I Prompt for the Reviewer and the Refiner 1263

Reviewer’s Prompt

Your task is to provide step-by-step feedback to the current solution.
You will be given a math problem and a current solution, along with the scores for each step based
on its correctness.
- You will find (Score: n/10) at the end of each step.
- The maximum (best) score is 10, which means that this step is 100% correct (and 0% incorrect).
- The minimum (worst) score is 0, which means that this step is 100% incorrect (and 0% correct).
- Pay attention to the steps having scores lower than 6, and carefully identify the errors in those steps.
- Provide your explanation of the error and how it can be fixed. DO NOT propose a new solution, just
the explanation.
Question:
{question}
Current Solution:
{solution}
Let’s review the steps with lower scores and identify the errors.
{feedback}

Refiner’s Prompt

Your task is to fix the error in the given solution, based on the teacher’s feedback.
- After reviewing the solution and feedback, provide a better solution to fix the mistakes you found.
Question:
{question}
Current Solution:
{solution}
Teacher Feedback:
{reviewer_feedback}
Revised Solution:
Let’s review the solution and the feedback, and then refine the current solution.
After reviewing the solution and feedback, let’s solve this math problem again.
{refined_solution}
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J Prompt for GPT4o-mini as PRM1264

GPT4o-mini as PRM Prompt

You will be given a question and its corresponding step-by-step solution.
Your task is to evaluate the correctness of each step in the solution by assigning a score between 1
and 10.
Your response should be formatted as follows:
score: <comma separated scores>
where the length of the list corresponds to the number of steps in the solution.
Each step is clearly separated in the solution by <Step 1:>, <Step 2:> ... <Step k:>, your output score
list should be the exact same length as k.
Question: {question}
Solution: {solution}
score:
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K Qualitative Examples of Refinement 1265

QUESTION: Josh decides to try flipping a house. He buys a house for $80,000 and then puts in $50,000
in repairs. This increased the value of the house by 150%. How much profit did he make? (Gold
answer: 70000)

SOLVER’S OUTPUT (BEFORE REFINEMENT):
Step 1: Calculate the value of the house after repairs. The house is worth 80,000 after repairs. It is
150% higher than before. So the value is (1 + 150/100) * 80,000. 80,000 * (3/2) is 120,000. So the
house is worth 120,000 after repairs. (Score: 2/10)
Step 2: Calculate the cost of repairs. The cost of repairs is 50,000. (Score: 2/10)
Step 3: Calculate the profit. The profit is the difference between the value after repairs and the cost
before repairs. 120,000 - 80,000 - 50,000 is 30,000 (incorrect).

REVIEWER’S OUTPUT:
Step 1: The low score of 2 suggests an error in this step. The problem states that the value of the house
increased by 150%, not that the value is 150% higher than before.
Step 2: The cost of repairs is indeed $50,000.
Step 3: The low score of 3 suggests an error in this step. The profit would be: 200,000 (value after
repairs) - 80,000 (cost before repairs) - 50,000 (cost of repairs) = 70,000

REFINER’S OUTPUT:
Step 1: Calculate the value of the house after repairs. The house is worth 80,000 after repairs. It is
increased by 150%. So the value is 80,000 x (1 + 150/100) = 80,000 x 2.5 = 200,000.
Step 2: Calculate the cost of repairs. The cost of repairs is 50,000.
Step 3: Calculate the profit. The profit is the difference between the value after repairs and the cost
before repairs. 200,000 - 80,000 - 50,000 is 70,000 (correct).

Table 15: A qualitative example of our multi-agent refinement on GSM8K using Llama3-8B-Instruct . The score
at the end of each step is provided by the PRM.
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QUESTION: The Greek army contained two types of soldiers: the upper class and the lower class
soldiers. If there were a total of 5 upper class soldiers, and 10 lower class soldiers in a certain part of
Athens, and the battle of Thermopylae demands a force of 4 upper class soldiers and 8 lower class
soldiers, how many different battalions can be sent? (Gold answer: 225)

SOLVER’S OUTPUT (BEFORE REFINEMENT):
Step 1: Find out the number of upper class soldiers left. We have 5 upper class soldiers and we need 4.
So we have 5 - 4 = 1 upper class soldiers left. (Score: 9/10)
Step 2: Find out the number of lower class soldiers left. We have 10 lower class soldiers and we need 8.
So we have 10 - 8 = 2 lower class soldiers left. (Score: 9/10)
Step 3: Find out the number of different battalions. We have 1 upper class soldier and 2 lower class
soldiers. The number of different battalions is the number of ways we can arrange 1 upper class soldier
and 2 lower class soldiers. This is 3. (Score: 5/10) (incorrect).

REVIEWER’S OUTPUT:
Step 1 and Step 2: The scores of 9/10 suggest that these steps are mostly correct. However, we should
be careful when calculating the number of upper and lower class soldiers left.
Step 3: The low score of 5 suggests an error in this step. The problem asks for the number of different
battalions, not the number of ways to arrange the soldiers. The correct solution is to find the number of
ways to choose 4 upper class soldiers from the available 5 and 8 lower class soldiers from the available
10.

REFINER’S OUTPUT:
Step 1: Find out the number of upper class soldiers needed. We need 4 upper class soldiers.
Step 2: Find out the number of lower class soldiers needed. We need 8 lower class soldiers.
Step 3: Find out the number of different battalions. We can choose 4 upper class soldiers from the 5
available in 5C4 = 5 ways. We can choose 8 lower class soldiers from the 10 available in 10C8 = 45
ways. The number of different battalions is the number of ways to choose 4 upper class soldiers and 8
lower class soldiers, which is 5 × 45 = 225. (correct).

Table 16: A qualitative example of our multi-agent refinement on MATH using Llama3-8B-Instruct . The score
at the end of each step is provided by the PRM.
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L Qualitative Examples of Over-Correction 1266

QUESTION: A new program had 60 downloads in the first month. The number of downloads in the
second month was three times as many as the downloads in the first month, but then reduced by 30%
in the third month. How many downloads did the program have total over the three months? (Gold
answer: 366)

SOLVER’S OUTPUT (BEFORE REFINEMENT):
Step 1: Determine the number of downloads for the second month. The number of downloads for the
second month was three times as many as the first month, so it was 60 * 3 = 180. (Score: 10/10)
Step 2: Determine the number of downloads for the third month. There was a reduction of 30%, so we
calculate 180 * (1 - 0.30) = 180 * 0.7 = 126. (Score: 10/10)
Step 3: Determine the total number of downloads for the three months. There were 60 downloads in
the first month, and 180 downloads in the second month. So the total number of downloads for the
first two months is 60 + 180 = 240. Then, there were 126 downloads in the third month. So the total
number of downloads over the three months is 240 + 126 = 366. (Score: 6/10) (correct).

REVIEWER’S OUTPUT:
Step 1-2: The high scores of 10 suggest that these steps are correct.
Step 3: The score of 6 suggests that this step is mostly correct. However, the improvement you could
make is to explicitly state the calculation for the total number of downloads, rather than just stating the
result.

REFINER’S OUTPUT:
Step 1: Determine the downloads in the second month. Three times 60 is 3 x 60 = 180. Then 30% of
180 is 180 x 0.3 = 54. 180 - 54 is 126. So 126 downloads in the second month.
Step 2: Determine the total downloads over the three months. 60 downloads in the first month, and 126
downloads in the second month, and 126 - 54 = 72 downloads in the third month. 60 + 126 + 72 is 258.
The answer is 258. (incorrect).

Table 17: A qualitative example of over-correction on GSM8K using Llama3-8B-Instruct.
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QUESTION: If f(x) = 3x−2
x−2 , what is the value of f(−2) + f(−1) + f(0)? Express your answer as a

common fraction. (Gold answer: 14
3 )

SOLVER’S OUTPUT (BEFORE REFINEMENT):
Step 1: Determine the values of f(−2), f(−1), and f(0) by plugging the values into the expression
for f(x).
f(−2) = 3(−2)−2

−2−2 = −6−2
−4 = −8

−4 = 2,

f(−1) = 3(−1)−2
−1−2 = −3−2

−3 = −5
−3 = 5

3 ,

f(0) = 3(0)−2
0−2 = 0−2

−2 = −2
−2 = 1. (Score: 10/10)

Step 2: Add the values of f(−2), f(−1), and f(0) to obtain f(−2) + f(−1) + f(0) = 2 + 5
3 + 1

6
3 + 5

3 + 3
3 = 14

3 .

Final Answer: The final answer is
14

3
. I hope it is correct. (Score: 7/10) (correct).

REVIEWER’S OUTPUT:
Step 1: The scores of 10/10 suggest that this step is correct.
Step 2: The high score of 7 suggests that this step is mostly correct. However, it might be beneficial to
include intermediate steps for clarity.

REFINER’S OUTPUT:
Step 1: We can calculate f(−2), f(−1), and f(0) using the given expression for f(x): f(−2) =
3(−2)−2
−2−2 = −4

−4 = 1,

f(−1) = 3(−1)−2
−1−2 = −3

−3 = 1,

f(0) = 3(0)−2
0−2 = −2

−2 = 1.
Step 2: Now we can add these values together: f(−2) + f(−1) + f(0) = 1 + 1 + 1 = 3

1

Final Answer: The final answer is
3

1
. I hope it is correct. (incorrect).

Table 18: A qualitative example of over-correction on MATH using Llama3-8B-Instruct .
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