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ABSTRACT

The ”Bitter Lesson” from Richard S. Sutton emphasizes that Al methods leverag-
ing computation tend to outperform those relying on human insight, underscoring
the value of approaches that use computational resources efficiently. In deep rein-
forcement learning (DRL), this highlights the importance of reducing both training
and inference time. While early exit neural networks, models that adapt computa-
tion to input complexity, have proven effective in supervised learning, their use in
DRL remains largely unexplored. In this paper, we propose the use of Budgeted
EXit Actor (BEX2), which is a novel actor-critic architecture that integrates early
exit branches into the actor network. These branches are trained via the underly-
ing DRL method and use a constrained value-based criterion to decide when to
exit, allowing the policy to dynamically adjust its computation. BEXA is general,
easy to tune and compatible with any off-policy actor-critic method. We evaluate
BEXA using different DRL methods such as SAC and TD3 on a suite of MuJoCo
tasks. Our results demonstrate a substantial improvement in inference efficiency
with minimal or no loss in performance. These findings highlight early exits as a
promising direction for improving computational efficiency in DRL.

1 INTRODUCTION

Recent work has demonstrated favorable scaling properties of large neural networks (NNs) in deep
reinforcement learning (DRL), (Farebrother et al.,2024; Nauman et al., [2024}; |Obando-Ceron et al.}
2024). However, increasing network depth leads to higher computational costs, making DRL more
expensive to train and more difficult to deploy. This is particularly problematic in areas such as
robotics, where budget constraints on the inference time must be satisfied. Current methods in DRL
try to speed up inference by using model compression techniques like neural network pruning and
quantization, reducing the number of model computations while maintaining performance (Zhang
et al.,[2023)). Yet, these methods can be hard to tune and might lead to potential training overhead.

Importantly, a lot of compression methods fail to leverage an inherent property of function approx-
imation in DRL: the computational complexity required for selecting an optimal action varies with
the state. For illustration, in chess, finding the best move depends on the complexity of the position.
Some positions allow for quick detection of strong moves, while others require extensive computa-
tion. Thus, in DRL, where the policy is a neural network, we face a challenge: traditional neural
networks are static, performing the same computations regardless of the input. This can lead to
inefficiency, since for some inputs an action could be derived with significantly fewer computations.

Early exit neural networks (ENNs) are dynamic NNs that adapt their computational graph based
on the input. Originating in fields with high computational demand like computer vision (CV)
(Laskaridis et al.,[2021)) and natural language processing (NLP) (Xu & McAuley, 2023)), they work
by adding side branches to the network, so-called exits. A gating mechanism decides on which exit
to take, adaptively controlling the network depth, enabling a trade-off between performance and
efficiency, and potentially improving generalization and interpretability (Han et al.,[2022). In many
CV and NLP tasks, they have achieved performance comparable to that of their static counterparts
while using only a fraction of floating point operations (FLOPs).
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Despite their advantages, dynamic neural networks like ENNs have been hardly explored in rein-
forcement learning (RL). A partial explanation is that naively applying such networks to RL is not
possible, as RL has some unique aspects compared to supervised learning. One of the biggest chal-
lenges is the lack of supervision, as the agent has to find the correct actions on its own. Typically,
early exit branches are trained directly on fixed ground truth data, whereas in RL the behavior of the
agent changes over time. In addition, the predicted actions influence the state distribution encoun-
tered by the agent. Poorly chosen actions of ENN’s can therefore lead to learning instabilities.

In this work, we systematically investigate how to transfer ENNs into DRL. Based on our findings,
we propose a new method called Budgeted EXit Actor (REX2), which introduces early exit NNs with
resource-constrained gating based on Q-values to speed up policy inference time during training and
evaluation. Our main contributions are as follows:

1. We present BEXA, a general off-policy actor-critic method, with careful adjustments for
using ENNGs effectively in DRL for reducing the number of required FLOPs during training
and deployment.

2. A novel, budget-aware gating mechanism that selects early exits optimally via a linear
program, directly balancing expected return and computational cost.

3. We conduct extensive ablation studies to evaluate different design choices for early exit
networks in actor-critic methdos.

4. We benchmark our method on well-known DRL methods such as SAC (Haarnoja et al.,
2018)) and TD3 (Fujimoto et al., | 2018)) and show the effectiveness of our method on differ-
ent MuJoCo tasks.

2 RELATED WORK

We divide related work into two categories: (i) early exit neural networks (ENNs), which have been
primarily explored in domains outside of deep reinforcement learning (DRL), and (ii) methods for
accelerating training and inference in DRL, such as model compression and software optimization.
Within the second category, we also highlight the few approaches that combine both directions in a
manner similar to our work.

2.1 EARLY EXIT NEURAL NETWORKS

Early exit neural networks (ENNs) belong to the family of dynamic neural networks (NNs). These
are models that change their computational graph based on the input they receive (Han et al.|[2021).
Some instances adjust their depth using early exits, while others adjust their width by changing the
number of neurons or channels in each layer, or by changing their parameters. We focus on early exit
networks because they are conceptually straightforward and have been extensively studied (Scarda-
pane et al.| [2020b). Here, we will present only a few noteworthy works and refer the interested
reader to comprehensive surveys (Laskaridis et al., 20215 | Xu & McAuleyl 2023; P et al., 2025).

The first works for these networks include conditional deep learning network (CDLN) (Panda et al.,
2016) and BranchyNet (Teerapittayanon et al.| [2016). CDLN first trains the backbone network
and then adds linear early exits at multiple depths, retaining only those that improve performance.
BranchyNet integrates exits into known computer vision (CV) classifier networks and uses an
entropy-based criterion to terminate computation early. All exits are trained jointly with a weighted
cross-entropy loss. While effective in CV, such entropy criteria are not directly applicable to DRL,
where high policy entropy is beneficial for exploration.

More recent work goes beyond simple entropy-based criteria with alternative decision rules. Confi-
dence to exit can be defined by maximum class probability (Huang et al., 2018} Wang et al., 2022) or
by patience, exiting when several consecutive branches agree (Zhou et al., 2020; [Zhu} 2021}, a strat-
egy common in early exit transformers. Beyond heuristics, the decision to exit can also be learned:
Demir & Akbas| (2024) jointly optimizes accuracy and efficiency to train exits and gates, while
Vashist et al.[(2022) uses DRL to learn an exit policy using a deep Q-network (DQN), though the
underlying task is not a DRL one. The work presented here, can be seen as an extension to tuning the
exit selection process with DRL. However, rather than learning gate decisions with reinforcement
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learning (RL), we formulate exit selection as a resource allocation problem: value estimates from
DRL are optimized under a budget constraint via a linear program, which supervises gate policy
learning.

Training strategies can also vary. The most common approach is to jointly optimize all exits under
a combined loss (Berestizshevsky & Even, 2019} Scardapane et al., [2020a)). However, the modular
design of early exits also allows for a layer-wise training scheme (Hettinger et al., 2017)), where a
subset of exits is trained at a time while keeping the rest frozen.

Finally, self-distillation (Zhang et al., 2019) is a variant of knowledge distillation in which knowl-
edge is transferred from a teacher model to one or more student models. Applied to an ENN, the
final output layer can be considered the teacher, while the intermediate outputs are the students.
These outputs are trained using a combination of a standard supervised loss and an additional imi-
tation loss that encourages the outputs to mimic the teacher’s predictions. Previous work has shown
that self-distillation can improve model accuracy (Zhang et al., |2022; Pham et al., [2022)), and its
self-imitation perspective makes it a natural asset for DRL transfer.

2.2  ACCELERATING DRL

Two directions have emerged for accelerating training and inference in DRL. The first targets
system-level efficiency through software and hardware optimizations, such as parallelization and
the use of accelerators like GPUs. The second approach focuses on model-level efficiency, com-
pressing neural networks that represent policies, value functions and dynamics models.

On the system side, [Weng et al.| (2022)) parallelizes environment simulation with a C++ backend,
reducing Python overhead and enabling high-throughput sampling. We adopt this setup in our ex-
periments as well. Pushing this further, |[Dalton & Frosio| (2020) ports Atari to the GPU, yielding
even faster parallel roll-outs. Architecturally, IMPALA (Espeholt et al., 2018) decouples acting
from learning by running environments in separate processes, each with its own policy, and asyn-
chronously aggregates experience into a shared buffer. SEED RL (Espeholt et al., 2019) refines
this design by batching observations from many environments and evaluating a single policy on an
accelerator throughout training.

On the model side, NN compression techniques such as quantization (Nagel et al.,2021), knowledge
distillation (Hinton et al.| [2015), and pruning (LeCun et al., [1989) have proven highly effective in
supervised learning for improving runtime. Recent works adapt these techniques to DRL. QuaRL
(Krishnan et al., 2022) quantizes policy parameters after each update from 32-bit floating point
to 8-bit integers, improving throughput with minimal accuracy loss. FastAct (Zhang et al.| [2023)
generalizes this idea by supporting arbitrary compression schemes, while a scheduler ensures that
compression remains within acceptable limits to maintain performance.

One closely related line of work is RAPID-RL (Kosta et al. [2022), which integrates early exit
networks into DQN. It estimates confidence by checking whether an exit’s Q-value exceeds a fixed
fraction of the maximum Q-value, employs layer-wise training, and reports faster inference on Atari.
Our approach differs in three key aspects: (i) we target general actor—critic methods rather than
DQN, requiring early exits only for the actor and permitting more flexible critic architectures, (ii)
we introduce a novel resource-aware early exit criterion and train it jointly with all exits, and (iii)
whereas RAPID-RL primarily reduces deployment-time inference but incurs training overhead by
evaluating all exits, our method accelerates both training and inference.

3 PRELIMINARIES

Reinforcement learning (RL) problems are commonly formulated as Markov decision processs
(MDPs). An MDP consists of an agent interacting with an environment, where the agent follows
a policy 7(a | s) that determines the next action given a state s. At each time step ¢, the agent
chooses an action a; that is executed in the environment, which, in response, returns the next state
St+1 ~ P(sg11 | 8¢, a¢) according to the transition probability function P. Additionally, the agent
receives a reward r; = R(s;,a;) € R, where R is the reward function. This reward is a scalar
value that describes the desirability of the given state and the chosen action. The cumulative sum
of rewards, known as the return, is defined as Gy = Y o 7*ri1, where v € [0,1] is the dis-
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Figure 1: Example of an actor represented as an early exit neural network (ENN). The input state is
processed layer-by-layer until a gate is reached. Based on a learned rule, a gate decides whether to
terminate early or proceed with the computation. Each exit produces an action distribution for the
current input state.

count factor that determines the importance of future rewards. We define the state-value function
Va(s) = Ex[G¢ | st = s] to calculate the expected return following some policy 7. Similarly,
we define the action-value function Q. (s,a) = E;[G: | st = s,a; = a] as the expected return
if first an initial action a is taken, after which the policy 7 is followed. Given an initial state dis-
tribution pg, the goal in RL is to find an optimal policy 7* that maximizes the expected return
€ argmax, Egop, [Vr(s)].

In deep reinforcement learning (DRL), policies and value functions are typically represented by
deep neural network (NN): the policy (actor) 7 with parameters @, and the action-value func-
tion (critic) Q¢ with parameters ¢. Actor-critic methods jointly learn both networks, where the
policy typically maximizes an objective derived from the critic that is of the form .J,(6; Q%) =
Eswp [anﬁe(.|s) [Q% (s, a)]] , where D is a replay buffer collecting states from interactions with the
environment. Many state-of-the-art algorithms, such as SAC (Haarnoja et al.,|2018)) and TD3 (Fuji-
moto et al.| 2018)), are off-policy actor-critic methods, meaning they learn from data D collected by
past policies rather than requiring samples from the current policy.

4 METHOD

We now present our framework for integrating early exit neural network (ENN) into off-policy actor-
critic methods. The approach is general and can be applied to any actor-critic method with minimal
changes to the underlying architecture. We first introduce the early-exit actor architecture, then
describe how exit selection is formulated as a budget-constrained resource allocation problem, and
finally present the complete algorithm.

4.1 EARLY EXIT ACTOR

The key distinction in our approach is that we represent the actor as a deep ENN shown in Fig. [T}
During the forward pass, data is propagated sequentially through the network layers. At each side
branch, a gating policy decides whether to terminate the computation early. A stochastic gating rule
is used instead of a deterministic one to encourage exploration during training and ensure that each
exit is occasionally selected. If the gate activates, the corresponding early exit head is evaluated
and its prediction is returned without subsequent layers being evaluated, thereby saving computa-
tion. Otherwise, the computation continues and the exit is not calculated. To reduce computational
overhead, the gating function shares its hidden features with the actor.

We now formalize the architecture mathematically. First, we number the exits sequentially from
earliest to last and denote the sub-policy at each exit by 7; for ¢ = 1,..., K. Additionally, each
exit before the final layer has a gate policy g;(- | s) = Bernoulli(p;(s)), where p; is a learned state-
dependent probability parameter; sampling 1 indicates taking the exit, while 0 means resuming.
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Figure 2: Average selected exit during soft actor-critic (SAC) training with greedy selection of exits
based on learned Q-values. Results show the mean of the top five out of 200 agents per environment
with one standard deviation. The early exit network has three branches K = 3. Without a resource
constraint, later exits dominate.

Given a state s, the probability « that we terminate at exit¢ = 1,..., K is given by
ai(s) = pils) [T (1= ps(s)), ()
j<i

assuming that we define p (s) = 1. The resulting policy 7 represented by the entire ENN is then a
mixture of the exit policies

m(a]s): Zal ) mi(a | s)

4.2 LEARNING BUDGET-AWARE EARLY EXIT ACTORS

We now discuss how to learn the gating policies g;. In the supervised learning setting, ENN’s typi-
cally rely on confidence-based exit rules such as measuring the entropy of the prediction, maximum
class probability or patience, a criterion that exits once at least n consecutive predictions align (Xu
& McAuley, 2023). These criteria are ill-suited for deep reinforcement learning (DRL), as high
entropy drives exploration, which is crucial for success. Applying confidence-based methods steers
behavior toward greedy action selection. Patience is also ineffective because DRL models are usu-
ally smaller than those in natural language processing (NLP) and offer much fewer exits. Such
methods also introduce task-specific hyperparameters like thresholds that are difficult to tune.

In our reinforcement learning (RL) setting, each exit defines a policy ;, and we can compare their
performance directly using the expected value V,. A natural idea is to pick the exit that maximizes
the expected value in the current state, i.e., arg max; V, (s). However, this approach tends to favor
later exits, as they build upon the representations of previous layers and generally achieve higher
returns. This intuition is supported by an experiment shown in Fig.[2] where later exits are selected
disproportionately often, resulting in only minimal speedups. Moreover, this method provides little
explicit control over the trade-off between performance and computational cost. Thus, we need to
explicitly constrain the usage of later exits.

Optimal Budget-Aware Exit Selection. Different from approaches that rely on heuristics that are
potentially hard to tune, we propose a principled approach that formulates early exit selection as a
resource allocation problem. The key idea is that we maximize the expected value of the network’s
actions while enforcing a hard budget constraint on inference costs.

We assume that each exit policy m; has an associated Q-function ;. Given a state s, let v =
[Qi1(s,a1),..., Q K(g T with a; ~ m;(- | s) be an unbiased value estimate for each exit, and
letc = [(:17 .. denote the per-exit costs, e.g., their floating point operations (FLOPs). For a



Under review as a conference paper at ICLR 2026

given budget b € R, we then solve the following linear program:

a* =argmax v'a (2a)
a e RE
s.t. cla<b, a>0 1la=1 (2b)

The optimal weighting vector o™ denotes the optimal probability distribution over exit choices that
maximizes the expected value while keeping the total cost within the budget. By rearranging Eq. [I]
we obtain the optimal probabilities p} for each gate. The cost definition corresponds to the resource
of interest, for example FLOPs with ¢; o« FLOPs(7;) though other choices are also possible. For
our approach we decided to use normalized FLOP counts with ¢; = 0 and ¢,, = 1 and scale the
intermediate costs linearly, while still satisfying ¢c; < ¢ < --- < ¢,,. The scalar budget b specifies
a limit on the usable resources. With normalized costs b € [0, 1] becomes intuitive to scale. As b
approaches zero, the gate favors earlier exits, while for b approaching one, the gate prefers the later
exits. This yields a direct and tunable trade-off between speed and performance.

Lastly, we note that the linear program in Eq. [2] admits an efficient solution. Since K is small in
practice, we can enumerate and evaluate the candidate extreme points quickly. For batches of states
s with corresponding Q values, the computation parallelizes well on the GPU.

The BEXA Training Objective. Finally, we present the complete learning framework, which uses
the optimal gate probabilities p} as a supervisory signal. To keep our approach general, we assume
that for a parameterized policy 7 and critic Q¢ the underlying actor-critic algorithm provides an
actor objective Jyetor (65 w?, Qd’) that should be maximized with respect to the parameters 6.

For each exit policy ﬂ'f , we learn a corresponding critic Qﬁq_ . Preliminary experiments indicated that
maintaining a separate critic per exit substantially improved learning stability. Since the underlying
method is off-policy, each critic can be learned from the same stream of data. To avoid the compu-
tational cost of K separate critics, we use a single critic with shared features and K heads, one per
exit, which adds only minor overhead. Importantly, we do not impose an early exit structure on the
critic, which can lead to significant instability during training.

The final Budgeted EXit Actor (BEX2) method trains the complete early exit actor by optimizing an
actor-critic objective Jactor and a gate 10ss Lgate at every exit. Thus, combined, we maximize the
following objective for the actor:

K
Jhk;x—s(e) - Z (Jactor (97 7Ti07 Qil) - A ‘Cgate(e;p?p?)) .

=1

The gate loss Lgatc 18 a binary cross entropy loss between the predicted gate probabilities p? and the
probabilities p} obtained by solving the linear program from Eq. 2]

An illustrative pseudocode description of combining BEXA with SAC is provided in App. [B]

5 EXPERIMENTS

To validate our proposed approach, Budgeted EXit Actor (BEX2), and to examine the efficiency
of different design choices for employing early exit neural networks (ENNs) within actor-critic
methods, we conduct two large-scale experiments based on soft actor-critic (SAC) (Haarnoja et al.,
2018)) and twin delayed deep deterministic policy gradient (TD3) (Fujimoto et al., [2018)).

Setup and Metrics. For both SAC and TD3, we refer to their variants with budgeted early exits
as BEXA-SAC and BEXA-TD3, respectively. Experiments are conducted on five MuJoCo (Todorov
et al |2012) tasks: Ant, Humanoid, Hopper, Walker2d and HalfCheetah. We report training curves
with average return and actor inference speedups measured in floating point operations (FLOPs).
Actors and critics are represented by two-layer MLPs with 256 units each and ReLU activation.
For BEXA variants, we place an exit after every layer, yielding K = 3 exits in total. For each
method—environment pair we run 200 hyperparameter configurations, where specifications are equal
across methods where applicable. To minimize the effect of seed variance, we re-evaluate the top
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Figure 3: Training curves across MuJoCo tasks. We performed one evaluation run every 10000
environment steps. Curves are smoothed for readability and shaded with 0.5 standard deviation
following [Fujimoto et al.[| (2018)). Green annotations indicate the average actor FLOP speedup of
BEXA variants relative to their baselines over the entire training.

5 runs per sweep with two additional seeds, giving us three seeds in total, and select the best by
mean return over the entire training. No further tuning was performed. Before averaging the return
over multiple environments, we normalize the return per environment. This and more details are
described in App.[D}

Results. Results can be seen in Fig.[3] BEXA matches or exceeds the vanilla baselines, with notable
gains on Ant and Humanoid. We hypothesize that these gains stem from a regularization effect of
early exits as actor capacity is reduced. Despite introducing new hyperparameters, BEXA required
no extra tuning budget relative to its baselines and the budget hyperparameter was straightforward
to adapt. Using early exits can accelerate actor inference tremendously with speedups up to +269%
while sampling in the environment, which accounts for a significant part of deep reinforcement
learning (DRL) training. For more complex tasks such as Humanoid, the speedup diminishes as the
entire network capacity is required to achieve high performance. However, using a more aggressive
budget constraint can yield higher speedups, albeit at the expense of performance.

5.1 COMPARISON TO EARLY EXIT ALTERNATIVES

BEXA improves both performance and speed compared to its baseline methods. It still raises the
question of how it compares to alternatives in the literature. As discussed in Related Work, direct
comparison is difficult as research on early exit networks in DRL is limited, with most of the existing
research being conducted in supervised learning. The approach that comes closest is that described
in [Kosta et al.| (2022)), which augments DQN (Hosu & Rebedeal, 2016) with early exits, but it tar-
gets discrete action spaces, whereas SAC and TD3 use continuous ones. Other DRL acceleration
methods, such as quantization and pruning, are orthogonal to our approach and can be combined
with it. Benchmarking against these methods offers little insight, especially since methods such as
quantization do not reduce FLOPs, but rather the type of operation.
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Method Actor Speedup (1) Mean Return (1) Best Return (1)

SAC TD3 SAC TD3 SAC TD3

Actor Backbone 1.0x 1.0x 36.2+5 33.6 £6 64.1 £ 16 78.7£11
Inference  Ensemble 1.0x 1.0x 26.8 £6 32.7+9 57.7£22 73.2+24

Exit Imitate 1.18x 1.14x 29247 34.0+10 65.9 + 23 71.7+22
Training

Gate Advantage 1.164x 1.179x 583+12 4054+12 99.2+14  79.6+28
Training  Softmax 1.11x 1.12x 50.3+16 49.3+11 98.7+18 88.4+21

Train Stepwise 1.48x% 1.83x 27.8+4 16.5 £4 40.4+6 42.4 4+ 23
Strategy

BEXA 1.3x 1.35% 628 +17 387+£12 101.2+13 722+31

Table 1: Evaluation of alternative components for BEXA on MuJoCo using SAC and TD3. We
report normalized returns, averaged over tasks and 3 seeds, with error bars indicating one standard
deviation.

Instead, we propose baselines derived from early exit architectures in supervised learning, adapted
to DRL. To our knowledge, these baselines have not been studied in DRL, though they have been
effective elsewhere. We compare them in terms of performance, speed-up, and tuning effort.

Actor Inference. During sampling in the environment, we already employ the early exits of our
actor to achieve speedups during training. Two alternative inference schemes are also worth consid-
ering: (i) always use the final (backbone) exit, which often achieves the best performance and (ii)
form an ensemble over all exits as in [Sun et al.| (2021) leveraging the fact that each branch solves
the same task. However, both require full actor inference and thus miss out on acceleration.

Exit Training. Instead of using the same loss for every head, we adapt another strategy inspired
by self-distillation (Zhang et al.| [2019). We train only the final exit (the backbone) with the stan-
dard objective and train all earlier exits to imitate its action distribution via an auxiliary imitation
loss. This reduces critic complexity, as only one critic is needed for the backbone, but introduces
a loss-scale imbalance between the normal loss and the imitation loss, which requires additional
hyperparameters.

Gate Training. The exit criterion critically affects performance, as it has to reliably pick the best
exit while balancing performance and speed for each state. As data sampling and learning are tightly
coupled, wrong exiting can lead to catastrophic updates. Common heuristics from literature, such
as maximum class probability, entropy thresholds and patience are ill-suited as previously discussed
due to exploration and smaller model sizes. We consider:

1. Advantage over backbone: Taking the exits that have higher value over the backbone. This
is similar to the strategy of taking the exit with maximum Q-value Kosta et al.| (2022), but
prefers earlier exits.

2. Softmax over Q-values: Instead of taking a maximum, we take a softmax over the distribu-
tion of Q-values per exit. A temperature hyperparameter controls greediness. This softmax
defines the target decision distribution, which we map to gate probabilities via Eq.

Importantly, in App. [C] we show that our optimal budget-aware exit selection approach allows for
direct and intuitive control in the number of FLOPs by selecting an according hard budget constraint.
This is significantly harder to achieve with the strategies mentioned above as ablations.

Training Strategy. We train all exits and gates simultaneously under a unified objective. Early
exit architectures also allow for alternative training schemes. Following [Kosta et al.|(2022), we also
evaluate a stepwise procedure that sequentially trains each exit branch while freezing the rest of the
network, starting with the earliest exit until the final one.
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Setup. For a fair comparison, all methods were given the same hyperparameter search budget.
To better observe the effects of individual components, we drastically reduce network capacity to
4 — 16 hidden units per layer. The best configurations are re-run to obtain three seeds per setting.
Returns are normalized for each environment and then averaged across tasks. We compare speedups
of actors in terms of FLOPs during the whole training. See Table|l|for results.

Results. Using alternative actor inference yields no benefit: performance is similar for TD3 and
worse for SAC, and it provides no speedup during training unlike the usage of early exits. The
imitation-based training objective also underperforms. BEXA, which trains all heads using the un-
derlying DRL loss, consistently achieves higher returns. Gate-training results are mixed. As ex-
pected, for TD3 we observe higher returns as the greedier gating favors later exits, but at the cost
of reducing speedup and making the performance—efficiency trade-off difficult. For SAC, BEXA
improves both return and speed, suggesting that tighter budget constraints can also act as a form
of regularization, boosting performance as well. Lastly, we observe that stepwise training performs
poorly. It over-optimized for speedup at the expense of return, and training time increases drastically
due to additional gradient steps per iteration. Finally, TD3 and SAC diverge substantially at very
low actor capacity, we attribute this to a much narrower hyperparameter region.

6 CONCLUSION

We introduced Budgeted EXit Actor (BEXA), a generic method for off-policy actor-critic methods
that uses early exits in the actor to reduce the required number of computations under explicit budget
constraints. To guarantee that the budget constraints are satisfied, we reformulate the exit selection
as a resource allocation problem, which can be efficiently solved using linear programming. BEXA
is straightforward to tune and matches or even outperforms vanilla baselines and adapted early exit
alternatives from the literature across a range of tasks.

Limitations. BEXA inherits some limitations common to early exit architectures. Training time
can increase because all exits must be optimized. To circumvent this, asynchronous training archi-
tectures could be used to amortize such costs by decoupling sampling from learning. Furthermore,
dynamic branching makes efficient parallelization on GPUs challenging, a problem that affects the
broader early exit community, not just deep reinforcement learning (DRL).

Future Work. Despite these limitations, BEXA is widely applicable and can be used alongside
other acceleration techniques, such as pruning, quantization, and distillation. Future work includes
plans to integrate BEXA with additional reinforcement learning (RL) paradigms e.g. model-based
RL and scaling to large neural network architectures like ResNets or Transformers (Farebrother
et al.l 2024), where the additional floating point operations (FLOPs) required by the gating mecha-
nism will be negligible small. In spirit with Sutton’s “Bitter Lesson”, our aim is to provide general
and efficient methods that leverage computation rather than task-specific heuristics, providing a
practical foundation for faster and stronger DRL agents.
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A USE OF LARGE LANGUAGE MODELS (LLMS)

In accordance with ICLR authorship guidelines, we disclose our use of LLMs. GitHub Copilot and
ChatGPT were used to provide coding assistance, especially for plotting scripts, and for language
editing of the paper. They were also used to identify related work and compare alternative design
ideas. All methodological choices, experiments, and analyses were conducted by the authors.

B PSEUDOCODE

In Alg.|l| we provide pseudocode for Budgeted EXit Actor (BEXA) using soft actor-critic (SAC) as
an example. As stated before, BEXA is agnostic with respect to the underlying actor-critic method,
which we denote as the base in the algorithm description. The critic updates shown here correspond
to those used in SAC.

Algorithm 1 Budgeted EXit Actor (BEXA)

Require: Off-policy base (e.g. SAC or TD3); budget b; early-exit actor with exits ¢ = 1,..., K;
sub-policies ; (- | 5); gates g; ~Bernoulli(p? (s)); critics Q¥ (s, a)
1: Initialize replay buffer D, parameters 6, ¢

2: for environment stept = 1,2,... do > Act with early exits
3: Observe s;

4: fori =1..K do

5: Compute p!(s;) and sample g; ~Bernoulli(pf (s))

6: if g; = 1 then

7: ay ~ m;(- | s¢); break

8: Step environment, observe (r¢, S¢41, dt)

9: Store (s¢, at, 14, St41,de) in D
10: for update stepu =1,...,U do > Learn from replay
11: Sample minibatch B C D
12: (1) Critic update (base-agnostic). For each exit: = 1..K:

Compute a TD target y** per the chosen off-policy base, e.g. for SAC:
Y = 1 4(1 - d) Eo/mms(-sn| min Qi%(s’, d') = Aogmi(d'| §')].

me{1,2}

Then update ¢ by a gradient step on ﬁ SQ? (s, a) — yP=)2,
13: (2) Linear program for exit mixture.

a*=argmax v'a st ¢ a<b a>0, 1Ta=1

a€RK

14: (3) Map mixture to target gate probabilities.
Using Eq.[I]to compute p* recursively from o*:
x a;(s) :
Pi(s) = ai(s),  pils) = —__ fori=2,....K.
Hj<i (1 —Dj (5))

15: (4) Actor update (BEX2 objective).
16: 0« 0 +n0:Vo 157 2 Jpexa(0ss,p")

seB

14
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C EFFECT OF THE BUDGET ON COMPUTATIONAL COST AND RETURN

Here, we investigate how we can control the numbers of required floating point operations (FLOPs)
using our resource allocation formulation. In Fig. 4 we see how the expected FLOPs linear scale
with the normalized budget. Furthermore, Fig. [5| highlights that the performance increases with the
allowed budget.
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Figure 4: Average FLOPs for the actor in relation of budget b when using BEXA-SAC. Evaluated
on the Halfcheetah-v4 environment using ~ 70 runs per bar. One standard deviation is plotted. This
shows that budget regulates flops explicitly and in a intuitive way.
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Figure 5: Best Return reported for the actor in relation of budget b when using BEXA-SAC. Evalu-
ated on the Halfcheetah-v4 environment using ~ 70 runs per bar. One standard deviation is plotted.
Giving more budget allows for higher return.

D HYPERPARAMETERS

To follow best practices (Eimer et al} [2023)), we list all relevant hyperparameters and search spaces
used in the experiments. For tuning the hyperparameters we used random search. For continu-
ous hyperparameters, we used g-log-uniform, which samples logarithmically and rounds to discrete
multiples of a step q.

In Tab. [2]and Tab. [3]we highlight the search spaces used for Fig.[3] For the ablation studies presented
in Tab. [I] we used the search spaces in Tab. @] and Tab.[5} Furthermore, to facilitate comparison of
performance across environments, we normalize the return when aggregating results, see Tab.[6]
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Hyperparameter Values / Range

batch_size 256

learning.starts 5000

policy_frequency 2

autotune True

gamma 0.99

tau g-log-uniform (min: le-3, max: le-2,q: le-3)
policy.1lr g-log-uniform (min: 1e—4, max: 7e-4,q: le—-4)
g-lr g-log-uniform (min: 3e-4, max: le-3,q: le-4)
gate_loss_scale g-log-uniform (min: 1e-3, max: le-1,q: 1le-3)
budget (0.0, 0.2, 0.4, 0.6, 0.8, 1.0]

actor_inference
critic_kind
actor_training
gate_training
training_scheme
total_timesteps

early_exit
multi_head
all exits
budget
jointly
500000

Table 2: Hyperparameter configuration used for comparison of SAC and BEXA-SAC.

Hyperparameter Values / Range

batch_size 256

learning_starts 25000

policy_frequency 2

gamma 0.99

tau g-log-uniform (min: 1e-3, max: 1e-2,q: 1le-3)
1lr g-log-uniform (min: le-4, max: 1e-3,q: le—-4)

policy.-noise
exploration_noise
noise_clip
gate_loss_scale
budget
actor_inference
critic_kind
actor_training
gate_training
training_scheme
total_timesteps

(0.1,
[0.1, 0.2, 0.3]

(0.1, 0.2, 0.3]

g-log-uniform (min: le-3, max: le-1,q: 1le-3)
(0.0, 0.2, 0.4, 0.6, 0.8, 1.0]
early._exit

multi_head

all_exits

budget

Jjointly

500000

0.2, 0.3, 0.4]

Table 3: Hyperparameter configuration used for comparison of TD3 and BEXA-TD3.

16



Under review as a conference paper at ICLR 2026

Hyperparameter Values / Range

batch_size 256

hidden_size [4, 8, 16]

learning.starts 5000

policy_frequency 2

autotune True

gamma 0.99

tau g-log-uniform (min: le-3, max: le-2,q: 1le-3)
policy.lr g-log-uniform (min: 1e—4, max: 7e-4,q: le—-4)
g-lr g-log-uniform (min: 3e-4, max: 1e-3,q: le—-4)
imitate_loss_scale g-log-uniform (min: 1e-2, max: 4e-1,q: 1le-2)
gate_loss_scale g-log-uniform (min: le-3, max: le-1,q: 1le-3)
gate_loss_freq [1, 2]

budget (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
gate_softmax_tmp g-log-uniform (min: 1e-1, max: 2.0, q: le-1)
actor_inference [early_exit, backbone, ensemble]
actor_training [imitate, all_exits]

gate_training [budget, adv, softmax]
training_scheme [stepwise, Jjointly]

total_timesteps 500000

Table 4: Sweep configuration for BEXA-SAC and alternative ablation components.

Hyperparameter Values / Range

batch_size 256

hidden_size [4, 8, 16]

learning_starts 25000

policy_frequency 2

gamma 0.99

tau g-log-uniform (min: 1e-3, max: 1e-2,q: 1le-3)
1lr g-log-uniform (min: le-4, max: 1e-3,q: le—-4)

policy-_noise
exploration_noise
noise_clip
imitate_loss_scale
gate_loss_scale
gate_loss_freqg
budget
gate_softmax_tmp
kl_eps
actor_inference
actor_training
gate_training
training_scheme
total_timesteps

[0.1, 0.4]
[0.1, 0.2, 0.3]

(0.1, 0.2, 0.3]
g-log-uniform (min: 1e-2, max
g-log-uniform (min: 1e-3, max
(1, 2]

(0.1, 0.2, 0.3,
g-log-uniform (min: 1e-1, max
g-log-uniform (min: 1e-1, max
[early_exit, backbone,
[imitate, all_exits]
[budget, adv, softmax]
[stepwise, jointly]
500000

0.2, 0.3,

0.4, 0.

tde-1,q: le-2)
cle-1,q: 1le-3)

5, 0.6, 0.7,
:2.0,q: 1e-1)
:2.0,q: 1le-1)
ensemble]

0.

8,

0.

9]

Table 5: Sweep configuration for BEXA-TD3 and alternative ablation components.

Normalization (return)

Environment

HalfCheetah-v4 60.0
Walker2d-vi4 30.0
Hopper-v4 30.0
Humanoid-v4 50.0
Ant-vi4 40.0

Table 6: Normalization constants used to scale returns for MuJoCo tasks.
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