
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MIND THE BUDGET: ACCELERATING DEEP REIN-
FORCEMENT LEARNING USING EARLY EXIT NEURAL
NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

The ”Bitter Lesson” from Richard S. Sutton emphasizes that AI methods leverag-
ing computation tend to outperform those relying on human insight, underscoring
the value of approaches that use computational resources efficiently. In deep rein-
forcement learning (DRL), this highlights the importance of reducing both training
and inference time. While early exit neural networks, models that adapt computa-
tion to input complexity, have proven effective in supervised learning, their use in
DRL remains largely unexplored. In this paper, we propose the use of Budgeted
EXit Actor (BEXA), which is a novel actor-critic architecture that integrates early
exit branches into the actor network. These branches are trained via the underly-
ing DRL method and use a constrained value-based criterion to decide when to
exit, allowing the policy to dynamically adjust its computation. BEXA is general,
easy to tune and compatible with any off-policy actor-critic method. We evaluate
BEXA using different DRL methods such as SAC and TD3 on a suite of MuJoCo
tasks. Our results demonstrate a substantial improvement in inference efficiency
with minimal or no loss in performance. These findings highlight early exits as a
promising direction for improving computational efficiency in DRL.

1 INTRODUCTION

Recent work has demonstrated favorable scaling properties of large neural networks (NNs) in deep
reinforcement learning (DRL), (Farebrother et al., 2024; Nauman et al., 2024; Obando-Ceron et al.,
2024). However, increasing network depth leads to higher computational costs, making DRL more
expensive to train and more difficult to deploy. This is particularly problematic in areas such as
robotics, where budget constraints on the inference time must be satisfied. Current methods in DRL
try to speed up inference by using model compression techniques like neural network pruning and
quantization, reducing the number of model computations while maintaining performance (Zhang
et al., 2023). Yet, these methods can be hard to tune and might lead to potential training overhead.

Importantly, a lot of compression methods fail to leverage an inherent property of function approx-
imation in DRL: the computational complexity required for selecting an optimal action varies with
the state. For illustration, in chess, finding the best move depends on the complexity of the position.
Some positions allow for quick detection of strong moves, while others require extensive computa-
tion. Thus, in DRL, where the policy is a neural network, we face a challenge: traditional neural
networks are static, performing the same computations regardless of the input. This can lead to
inefficiency, since for some inputs an action could be derived with significantly fewer computations.

Early exit neural networks (ENNs) are dynamic NNs that adapt their computational graph based
on the input. Originating in fields with high computational demand like computer vision (CV)
(Laskaridis et al., 2021) and natural language processing (NLP) (Xu & McAuley, 2023), they work
by adding side branches to the network, so-called exits. A gating mechanism decides on which exit
to take, adaptively controlling the network depth, enabling a trade-off between performance and
efficiency, and potentially improving generalization and interpretability (Han et al., 2022). In many
CV and NLP tasks, they have achieved performance comparable to that of their static counterparts
while using only a fraction of floating point operations (FLOPs).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Despite their advantages, dynamic neural networks like ENNs have been hardly explored in rein-
forcement learning (RL). A partial explanation is that naively applying such networks to RL is not
possible, as RL has some unique aspects compared to supervised learning. One of the biggest chal-
lenges is the lack of supervision, as the agent has to find the correct actions on its own. Typically,
early exit branches are trained directly on fixed ground truth data, whereas in RL the behavior of the
agent changes over time. In addition, the predicted actions influence the state distribution encoun-
tered by the agent. Poorly chosen actions of ENNs can therefore lead to learning instabilities.

In this work, we systematically investigate how to transfer ENNs into DRL. Based on our findings,
we propose a new method called Budgeted EXit Actor (BEXA), which introduces early exit NNs with
resource-constrained gating based on Q-values to speed up policy inference time during training and
evaluation. Our main contributions are as follows:

1. We present BEXA, a general off-policy actor-critic method, with careful adjustments for
using ENNs effectively in DRL for reducing the number of required FLOPs during training
and deployment.

2. A novel, budget-aware gating mechanism that selects early exits optimally via a linear
program, directly balancing expected return and computational cost.

3. We conduct extensive ablation studies to evaluate different design choices for early exit
networks in actor-critic methdos.

4. We benchmark our method on well-known DRL methods such as SAC (Haarnoja et al.,
2018) and TD3 (Fujimoto et al., 2018) and show the effectiveness of our method on differ-
ent MuJoCo tasks.

2 RELATED WORK

We divide related work into two categories: (i) early exit neural networks (ENNs), which have been
primarily explored in domains outside of deep reinforcement learning (DRL), and (ii) methods for
accelerating training and inference in DRL, such as model compression and software optimization.
Within the second category, we also highlight the few approaches that combine both directions in a
manner similar to our work.

2.1 EARLY EXIT NEURAL NETWORKS

Early exit neural networks (ENNs) belong to the family of dynamic neural networks (NNs). These
are models that change their computational graph based on the input they receive (Han et al., 2021).
Some instances adjust their depth using early exits, while others adjust their width by changing the
number of neurons or channels in each layer, or by changing their parameters. We focus on early exit
networks because they are conceptually straightforward and have been extensively studied (Scarda-
pane et al., 2020b). Here, we will present only a few noteworthy works and refer the interested
reader to comprehensive surveys (Laskaridis et al., 2021; Xu & McAuley, 2023; P et al., 2025).

The first works for these networks include conditional deep learning network (CDLN) (Panda et al.,
2016) and BranchyNet (Teerapittayanon et al., 2016). CDLN first trains the backbone network
and then adds linear early exits at multiple depths, retaining only those that improve performance.
BranchyNet integrates exits into known computer vision (CV) classifier networks and uses an
entropy-based criterion to terminate computation early. All exits are trained jointly with a weighted
cross-entropy loss. While effective in CV, such entropy criteria are not directly applicable to DRL,
where high policy entropy is beneficial for exploration.

More recent work goes beyond simple entropy-based criteria with alternative decision rules. Confi-
dence to exit can be defined by maximum class probability (Huang et al., 2018; Wang et al., 2022) or
by patience, exiting when several consecutive branches agree (Zhou et al., 2020; Zhu, 2021), a strat-
egy common in early exit transformers. Beyond heuristics, the decision to exit can also be learned:
Demir & Akbas (2024) jointly optimizes accuracy and efficiency to train exits and gates, while
Vashist et al. (2022) uses DRL to learn an exit policy using a deep Q-network (DQN), though the
underlying task is not a DRL one. The work presented here, can be seen as an extension to tuning the
exit selection process with DRL. However, rather than learning gate decisions with reinforcement

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

learning (RL), we formulate exit selection as a resource allocation problem: value estimates from
DRL are optimized under a budget constraint via a linear program, which supervises gate policy
learning.

Training strategies can also vary. The most common approach is to jointly optimize all exits under
a combined loss (Berestizshevsky & Even, 2019; Scardapane et al., 2020a). However, the modular
design of early exits also allows for a layer-wise training scheme (Hettinger et al., 2017), where a
subset of exits is trained at a time while keeping the rest frozen.

Finally, self-distillation (Zhang et al., 2019) is a variant of knowledge distillation in which knowl-
edge is transferred from a teacher model to one or more student models. Applied to an ENN, the
final output layer can be considered the teacher, while the intermediate outputs are the students.
These outputs are trained using a combination of a standard supervised loss and an additional imi-
tation loss that encourages the outputs to mimic the teacher’s predictions. Previous work has shown
that self-distillation can improve model accuracy (Zhang et al., 2022; Pham et al., 2022), and its
self-imitation perspective makes it a natural asset for DRL transfer.

2.2 ACCELERATING DRL

Two directions have emerged for accelerating training and inference in DRL. The first targets
system-level efficiency through software and hardware optimizations, such as parallelization and
the use of accelerators like GPUs. The second approach focuses on model-level efficiency, com-
pressing neural networks that represent policies, value functions and dynamics models.

On the system side, Weng et al. (2022) parallelizes environment simulation with a C++ backend,
reducing Python overhead and enabling high-throughput sampling. We adopt this setup in our ex-
periments as well. Pushing this further, Dalton & Frosio (2020) ports Atari to the GPU, yielding
even faster parallel roll-outs. Architecturally, IMPALA (Espeholt et al., 2018) decouples acting
from learning by running environments in separate processes, each with its own policy, and asyn-
chronously aggregates experience into a shared buffer. SEED RL (Espeholt et al., 2019) refines
this design by batching observations from many environments and evaluating a single policy on an
accelerator throughout training.

On the model side, NN compression techniques such as quantization (Nagel et al., 2021), knowledge
distillation (Hinton et al., 2015), and pruning (LeCun et al., 1989) have proven highly effective in
supervised learning for improving runtime. Recent works adapt these techniques to DRL. QuaRL
(Krishnan et al., 2022) quantizes policy parameters after each update from 32-bit floating point
to 8-bit integers, improving throughput with minimal accuracy loss. FastAct (Zhang et al., 2023)
generalizes this idea by supporting arbitrary compression schemes, while a scheduler ensures that
compression remains within acceptable limits to maintain performance.

One closely related line of work is RAPID-RL (Kosta et al., 2022), which integrates early exit
networks into DQN. It estimates confidence by checking whether an exit’s Q-value exceeds a fixed
fraction of the maximum Q-value, employs layer-wise training, and reports faster inference on Atari.
Our approach differs in three key aspects: (i) we target general actor–critic methods rather than
DQN, requiring early exits only for the actor and permitting more flexible critic architectures, (ii)
we introduce a novel resource-aware early exit criterion and train it jointly with all exits, and (iii)
whereas RAPID-RL primarily reduces deployment-time inference but incurs training overhead by
evaluating all exits, our method accelerates both training and inference.

3 PRELIMINARIES

Reinforcement learning (RL) problems are commonly formulated as Markov decision processs
(MDPs). An MDP consists of an agent interacting with an environment, where the agent follows
a policy π(a | s) that determines the next action given a state s. At each time step t, the agent
chooses an action at that is executed in the environment, which, in response, returns the next state
st+1 ∼ P (st+1 | st, at) according to the transition probability function P . Additionally, the agent
receives a reward rt = R(st, at) ∈ R, where R is the reward function. This reward is a scalar
value that describes the desirability of the given state and the chosen action. The cumulative sum
of rewards, known as the return, is defined as Gt =

∑∞
k=0 γ

krt+k where γ ∈ [0, 1] is the dis-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

State

La
ye
r

La
ye
r

La
ye
r

Exit Exit Exit

Gate Gate

...
Gate

Figure 1: Example of an actor represented as an early exit neural network (ENN). The input state is
processed layer-by-layer until a gate is reached. Based on a learned rule, a gate decides whether to
terminate early or proceed with the computation. Each exit produces an action distribution for the
current input state.

count factor that determines the importance of future rewards. We define the state-value function
Vπ(s) = Eπ[Gt | st = s] to calculate the expected return following some policy π. Similarly,
we define the action-value function Qπ(s, a) = Eπ[Gt | st = s, at = a] as the expected return
if first an initial action a is taken, after which the policy π is followed. Given an initial state dis-
tribution ρ0, the goal in RL is to find an optimal policy π∗ that maximizes the expected return
π∗ ∈ argmaxπ Es∼ρ0

[Vπ(s)].

In deep reinforcement learning (DRL), policies and value functions are typically represented by
deep neural network (NN): the policy (actor) πθ with parameters θ, and the action-value func-
tion (critic) Qϕ with parameters ϕ. Actor-critic methods jointly learn both networks, where the
policy typically maximizes an objective derived from the critic that is of the form Jπ(θ;Q

ϕ) =
Es∼D

[
Ea∼πθ(·|s)[Q

ϕ(s, a)]
]
, where D is a replay buffer collecting states from interactions with the

environment. Many state-of-the-art algorithms, such as SAC (Haarnoja et al., 2018) and TD3 (Fuji-
moto et al., 2018), are off-policy actor-critic methods, meaning they learn from data D collected by
past policies rather than requiring samples from the current policy.

4 METHOD

We now present our framework for integrating early exit neural network (ENN) into off-policy actor-
critic methods. The approach is general and can be applied to any actor-critic method with minimal
changes to the underlying architecture. We first introduce the early-exit actor architecture, then
describe how exit selection is formulated as a budget-constrained resource allocation problem, and
finally present the complete algorithm.

4.1 EARLY EXIT ACTOR

The key distinction in our approach is that we represent the actor as a deep ENN shown in Fig. 1.
During the forward pass, data is propagated sequentially through the network layers. At each side
branch, a gating policy decides whether to terminate the computation early. A stochastic gating rule
is used instead of a deterministic one to encourage exploration during training and ensure that each
exit is occasionally selected. If the gate activates, the corresponding early exit head is evaluated
and its prediction is returned without subsequent layers being evaluated, thereby saving computa-
tion. Otherwise, the computation continues and the exit is not calculated. To reduce computational
overhead, the gating function shares its hidden features with the actor.

We now formalize the architecture mathematically. First, we number the exits sequentially from
earliest to last and denote the sub-policy at each exit by πi for i = 1, . . . ,K. Additionally, each
exit before the final layer has a gate policy gi(· | s) = Bernoulli(pi(s)), where pi is a learned state-
dependent probability parameter; sampling 1 indicates taking the exit, while 0 means resuming.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

HalfCheetah-v4

Hopper-v4

Walker2d-v4
Ant-v4

Humanoid-v4
1.0

1.5

2.0

2.5

3.0

Av
er

ag
e

ex
it

ta
ke

n
Figure 2: Average selected exit during soft actor-critic (SAC) training with greedy selection of exits
based on learned Q-values. Results show the mean of the top five out of 200 agents per environment
with one standard deviation. The early exit network has three branches K = 3. Without a resource
constraint, later exits dominate.

Given a state s, the probability α that we terminate at exit i = 1, . . . ,K is given by

αi(s) := pi(s)
∏
j<i

(
1− pj(s)

)
, (1)

assuming that we define pK(s) = 1. The resulting policy π represented by the entire ENN is then a
mixture of the exit policies

π(a | s) :=
K∑
i=1

αi(s) πi(a | s).

4.2 LEARNING BUDGET-AWARE EARLY EXIT ACTORS

We now discuss how to learn the gating policies gi. In the supervised learning setting, ENNs typi-
cally rely on confidence-based exit rules such as measuring the entropy of the prediction, maximum
class probability or patience, a criterion that exits once at least n consecutive predictions align (Xu
& McAuley, 2023). These criteria are ill-suited for deep reinforcement learning (DRL), as high
entropy drives exploration, which is crucial for success. Applying confidence-based methods steers
behavior toward greedy action selection. Patience is also ineffective because DRL models are usu-
ally smaller than those in natural language processing (NLP) and offer much fewer exits. Such
methods also introduce task-specific hyperparameters like thresholds that are difficult to tune.

In our reinforcement learning (RL) setting, each exit defines a policy πi, and we can compare their
performance directly using the expected value Vπi

. A natural idea is to pick the exit that maximizes
the expected value in the current state, i.e., argmaxi Vπi

(s). However, this approach tends to favor
later exits, as they build upon the representations of previous layers and generally achieve higher
returns. This intuition is supported by an experiment shown in Fig. 2, where later exits are selected
disproportionately often, resulting in only minimal speedups. Moreover, this method provides little
explicit control over the trade-off between performance and computational cost. Thus, we need to
explicitly constrain the usage of later exits.

Optimal Budget-Aware Exit Selection. Different from approaches that rely on heuristics that are
potentially hard to tune, we propose a principled approach that formulates early exit selection as a
resource allocation problem. The key idea is that we maximize the expected value of the network’s
actions while enforcing a hard budget constraint on inference costs.

We assume that each exit policy πi has an associated Q-function Qi. Given a state s, let v =
[Q1(s, a1), . . . , QK(s, aK)]⊤ with ai ∼ πi(· | s) be an unbiased value estimate for each exit, and
let c = [c1, . . . , cK]⊤ denote the per-exit costs, e.g., their floating point operations (FLOPs). For a

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

given budget b ∈ R, we then solve the following linear program:

α⋆ = arg max

α ∈ RK
v⊤α (2a)

s.t. c⊤α ≤ b, α ≥ 0, 1⊤α = 1 (2b)

The optimal weighting vector α⋆ denotes the optimal probability distribution over exit choices that
maximizes the expected value while keeping the total cost within the budget. By rearranging Eq. 1
we obtain the optimal probabilities p⋆i for each gate. The cost definition corresponds to the resource
of interest, for example FLOPs with ci ∝ FLOPs(πi) though other choices are also possible. For
our approach we decided to use normalized FLOP counts with c1 = 0 and cn = 1 and scale the
intermediate costs linearly, while still satisfying c1 ≤ c2 ≤ · · · ≤ cn. The scalar budget b specifies
a limit on the usable resources. With normalized costs b ∈ [0, 1] becomes intuitive to scale. As b
approaches zero, the gate favors earlier exits, while for b approaching one, the gate prefers the later
exits. This yields a direct and tunable trade-off between speed and performance.

Lastly, we note that the linear program in Eq. 2 admits an efficient solution. Since K is small in
practice, we can enumerate and evaluate the candidate extreme points quickly. For batches of states
s with corresponding Q values, the computation parallelizes well on the GPU.

The BEXA Training Objective. Finally, we present the complete learning framework, which uses
the optimal gate probabilities p⋆i as a supervisory signal. To keep our approach general, we assume
that for a parameterized policy πθ and critic Qϕ the underlying actor-critic algorithm provides an
actor objective Jactor(θ;π

θ, Qϕ) that should be maximized with respect to the parameters θ.

For each exit policy πθ
i , we learn a corresponding critic Qϕ

πi
. Preliminary experiments indicated that

maintaining a separate critic per exit substantially improved learning stability. Since the underlying
method is off-policy, each critic can be learned from the same stream of data. To avoid the compu-
tational cost of K separate critics, we use a single critic with shared features and K heads, one per
exit, which adds only minor overhead. Importantly, we do not impose an early exit structure on the
critic, which can lead to significant instability during training.

The final Budgeted EXit Actor (BEXA) method trains the complete early exit actor by optimizing an
actor-critic objective Jactor and a gate loss Lgate at every exit. Thus, combined, we maximize the
following objective for the actor:

JBEXA(θ) =

K∑
i=1

(
Jactor(θ;π

θ
i , Q

ϕ
πi
)− λLgate(θ; p

θ
i , p

⋆
i)
)
.

The gate loss Lgate is a binary cross entropy loss between the predicted gate probabilities pθi and the
probabilities p⋆i obtained by solving the linear program from Eq. 2.

An illustrative pseudocode description of combining BEXA with SAC is provided in App. B.

5 EXPERIMENTS

To validate our proposed approach, Budgeted EXit Actor (BEXA), and to examine the efficiency
of different design choices for employing early exit neural networks (ENNs) within actor-critic
methods, we conduct two large-scale experiments based on soft actor-critic (SAC) (Haarnoja et al.,
2018) and twin delayed deep deterministic policy gradient (TD3) (Fujimoto et al., 2018).

Setup and Metrics. For both SAC and TD3, we refer to their variants with budgeted early exits
as BEXA-SAC and BEXA-TD3, respectively. Experiments are conducted on five MuJoCo (Todorov
et al., 2012) tasks: Ant, Humanoid, Hopper, Walker2d and HalfCheetah. We report training curves
with average return and actor inference speedups measured in floating point operations (FLOPs).
Actors and critics are represented by two-layer MLPs with 256 units each and ReLU activation.
For BEXA variants, we place an exit after every layer, yielding K = 3 exits in total. For each
method–environment pair we run 200 hyperparameter configurations, where specifications are equal
across methods where applicable. To minimize the effect of seed variance, we re-evaluate the top

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

BEXA-SAC BEXA-TD3 SAC TD3

0 2 4
Steps (1e5)

0

2500

5000

7500

10000
Av

er
ag

e
re

tu
rn

+12%

+109%

(a) HalfCheetah-v4

0 2 4
Steps (1e5)

0

1000

2000

3000

+269%

+130%

(b) Hopper-v4

0 2 4
Steps (1e5)

0

1000

2000

3000

4000

5000 +101%

+117%

(c) Walker2d-v4

0 2 4
Steps (1e5)

0

2000

4000

6000

Av
er

ag
e

re
tu

rn

+86%

+243%

(d) Ant-v4

0 2 4
Steps (1e5)

0

2000

4000

6000 +23%

+30%

(e) Humanoid-v4

Figure 3: Training curves across MuJoCo tasks. We performed one evaluation run every 10000
environment steps. Curves are smoothed for readability and shaded with 0.5 standard deviation
following Fujimoto et al. (2018). Green annotations indicate the average actor FLOP speedup of
BEXA variants relative to their baselines over the entire training.

5 runs per sweep with two additional seeds, giving us three seeds in total, and select the best by
mean return over the entire training. No further tuning was performed. Before averaging the return
over multiple environments, we normalize the return per environment. This and more details are
described in App. D.

Results. Results can be seen in Fig. 3. BEXAmatches or exceeds the vanilla baselines, with notable
gains on Ant and Humanoid. We hypothesize that these gains stem from a regularization effect of
early exits as actor capacity is reduced. Despite introducing new hyperparameters, BEXA required
no extra tuning budget relative to its baselines and the budget hyperparameter was straightforward
to adapt. Using early exits can accelerate actor inference tremendously with speedups up to +269%
while sampling in the environment, which accounts for a significant part of deep reinforcement
learning (DRL) training. For more complex tasks such as Humanoid, the speedup diminishes as the
entire network capacity is required to achieve high performance. However, using a more aggressive
budget constraint can yield higher speedups, albeit at the expense of performance.

5.1 COMPARISON TO EARLY EXIT ALTERNATIVES

BEXA improves both performance and speed compared to its baseline methods. It still raises the
question of how it compares to alternatives in the literature. As discussed in Related Work, direct
comparison is difficult as research on early exit networks in DRL is limited, with most of the existing
research being conducted in supervised learning. The approach that comes closest is that described
in Kosta et al. (2022), which augments DQN (Hosu & Rebedea, 2016) with early exits, but it tar-
gets discrete action spaces, whereas SAC and TD3 use continuous ones. Other DRL acceleration
methods, such as quantization and pruning, are orthogonal to our approach and can be combined
with it. Benchmarking against these methods offers little insight, especially since methods such as
quantization do not reduce FLOPs, but rather the type of operation.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Method Actor Speedup (↑) Mean Return (↑) Best Return (↑)

SAC TD3 SAC TD3 SAC TD3

Actor
Inference

Backbone 1.0× 1.0× 36.2± 5 33.6± 6 64.1± 16 78.7± 11

Ensemble 1.0× 1.0× 26.8± 6 32.7± 9 57.7± 22 73.2± 24

Exit
Training

Imitate 1.18× 1.14× 29.2± 7 34.0± 10 65.9± 23 71.7± 22

Gate
Training

Advantage 1.164× 1.179× 58.3± 12 40.5± 12 99.2± 14 79.6± 28

Softmax 1.11× 1.12× 50.3± 16 49.3± 11 98.7± 18 88.4± 21

Train
Strategy

Stepwise 1.48× 1.83× 27.8± 4 16.5± 4 40.4± 6 42.4± 23

BEXA 1.3× 1.35× 62.8± 17 38.7± 12 101.2± 13 72.2± 31

Table 1: Evaluation of alternative components for BEXA on MuJoCo using SAC and TD3. We
report normalized returns, averaged over tasks and 3 seeds, with error bars indicating one standard
deviation.

Instead, we propose baselines derived from early exit architectures in supervised learning, adapted
to DRL. To our knowledge, these baselines have not been studied in DRL, though they have been
effective elsewhere. We compare them in terms of performance, speed-up, and tuning effort.

Actor Inference. During sampling in the environment, we already employ the early exits of our
actor to achieve speedups during training. Two alternative inference schemes are also worth consid-
ering: (i) always use the final (backbone) exit, which often achieves the best performance and (ii)
form an ensemble over all exits as in Sun et al. (2021) leveraging the fact that each branch solves
the same task. However, both require full actor inference and thus miss out on acceleration.

Exit Training. Instead of using the same loss for every head, we adapt another strategy inspired
by self-distillation (Zhang et al., 2019). We train only the final exit (the backbone) with the stan-
dard objective and train all earlier exits to imitate its action distribution via an auxiliary imitation
loss. This reduces critic complexity, as only one critic is needed for the backbone, but introduces
a loss-scale imbalance between the normal loss and the imitation loss, which requires additional
hyperparameters.

Gate Training. The exit criterion critically affects performance, as it has to reliably pick the best
exit while balancing performance and speed for each state. As data sampling and learning are tightly
coupled, wrong exiting can lead to catastrophic updates. Common heuristics from literature, such
as maximum class probability, entropy thresholds and patience are ill-suited as previously discussed
due to exploration and smaller model sizes. We consider:

1. Advantage over backbone: Taking the exits that have higher value over the backbone. This
is similar to the strategy of taking the exit with maximum Q-value Kosta et al. (2022), but
prefers earlier exits.

2. Softmax over Q-values: Instead of taking a maximum, we take a softmax over the distribu-
tion of Q-values per exit. A temperature hyperparameter controls greediness. This softmax
defines the target decision distribution, which we map to gate probabilities via Eq. 1.

Importantly, in App. C we show that our optimal budget-aware exit selection approach allows for
direct and intuitive control in the number of FLOPs by selecting an according hard budget constraint.
This is significantly harder to achieve with the strategies mentioned above as ablations.

Training Strategy. We train all exits and gates simultaneously under a unified objective. Early
exit architectures also allow for alternative training schemes. Following Kosta et al. (2022), we also
evaluate a stepwise procedure that sequentially trains each exit branch while freezing the rest of the
network, starting with the earliest exit until the final one.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Setup. For a fair comparison, all methods were given the same hyperparameter search budget.
To better observe the effects of individual components, we drastically reduce network capacity to
4 − 16 hidden units per layer. The best configurations are re-run to obtain three seeds per setting.
Returns are normalized for each environment and then averaged across tasks. We compare speedups
of actors in terms of FLOPs during the whole training. See Table 1 for results.

Results. Using alternative actor inference yields no benefit: performance is similar for TD3 and
worse for SAC, and it provides no speedup during training unlike the usage of early exits. The
imitation-based training objective also underperforms. BEXA, which trains all heads using the un-
derlying DRL loss, consistently achieves higher returns. Gate-training results are mixed. As ex-
pected, for TD3 we observe higher returns as the greedier gating favors later exits, but at the cost
of reducing speedup and making the performance–efficiency trade-off difficult. For SAC, BEXA
improves both return and speed, suggesting that tighter budget constraints can also act as a form
of regularization, boosting performance as well. Lastly, we observe that stepwise training performs
poorly. It over-optimized for speedup at the expense of return, and training time increases drastically
due to additional gradient steps per iteration. Finally, TD3 and SAC diverge substantially at very
low actor capacity, we attribute this to a much narrower hyperparameter region.

6 CONCLUSION

We introduced Budgeted EXit Actor (BEXA), a generic method for off-policy actor-critic methods
that uses early exits in the actor to reduce the required number of computations under explicit budget
constraints. To guarantee that the budget constraints are satisfied, we reformulate the exit selection
as a resource allocation problem, which can be efficiently solved using linear programming. BEXA
is straightforward to tune and matches or even outperforms vanilla baselines and adapted early exit
alternatives from the literature across a range of tasks.

Limitations. BEXA inherits some limitations common to early exit architectures. Training time
can increase because all exits must be optimized. To circumvent this, asynchronous training archi-
tectures could be used to amortize such costs by decoupling sampling from learning. Furthermore,
dynamic branching makes efficient parallelization on GPUs challenging, a problem that affects the
broader early exit community, not just deep reinforcement learning (DRL).

Future Work. Despite these limitations, BEXA is widely applicable and can be used alongside
other acceleration techniques, such as pruning, quantization, and distillation. Future work includes
plans to integrate BEXA with additional reinforcement learning (RL) paradigms e.g. model-based
RL and scaling to large neural network architectures like ResNets or Transformers (Farebrother
et al., 2024), where the additional floating point operations (FLOPs) required by the gating mecha-
nism will be negligible small. In spirit with Sutton’s ”Bitter Lesson”, our aim is to provide general
and efficient methods that leverage computation rather than task-specific heuristics, providing a
practical foundation for faster and stronger DRL agents.

REFERENCES

Konstantin Berestizshevsky and Guy Even. Dynamically sacrificing accuracy for reduced com-
putation: Cascaded inference based on softmax confidence. In Igor V. Tetko, Vera Kurková,
Pavel Karpov, and Fabian J. Theis (eds.), Artificial Neural Networks and Machine Learning -
ICANN 2019: Deep Learning - 28th International Conference on Artificial Neural Networks,
Munich, Germany, September 17-19, 2019, Proceedings, Part II, volume 11728 of Lecture Notes
in Computer Science, pp. 306–320. Springer, 2019. doi: 10.1007/978-3-030-30484-3\ 26. URL
https://doi.org/10.1007/978-3-030-30484-3_26.

Steven Dalton and Iuri Frosio. Accelerating reinforcement learning through GPU atari em-
ulation. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
e4d78a6b4d93e1d79241f7b282fa3413-Abstract.html.

9

https://doi.org/10.1007/978-3-030-30484-3_26
https://proceedings.neurips.cc/paper/2020/hash/e4d78a6b4d93e1d79241f7b282fa3413-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e4d78a6b4d93e1d79241f7b282fa3413-Abstract.html

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Edanur Demir and Emre Akbas. Early-exit convolutional neural networks. CoRR, abs/2409.05336,
2024. doi: 10.48550/ARXIV.2409.05336. URL https://doi.org/10.48550/arXiv.
2409.05336.

Theresa Eimer, Marius Lindauer, and Roberta Raileanu. Hyperparameters in reinforcement learning
and how to tune them. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt,
Sivan Sabato, and Jonathan Scarlett (eds.), International Conference on Machine Learning, ICML
2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine Learn-
ing Research, pp. 9104–9149. PMLR, 2023. URL https://proceedings.mlr.press/
v202/eimer23a.html.

Lasse Espeholt, Hubert Soyer, Rémi Munos, Karen Simonyan, Volodymyr Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. IM-
PALA: scalable distributed deep-rl with importance weighted actor-learner architectures. CoRR,
abs/1802.01561, 2018. URL http://arxiv.org/abs/1802.01561.

Lasse Espeholt, Raphaël Marinier, Piotr Stanczyk, Ke Wang, and Marcin Michalski. SEED RL:
scalable and efficient deep-rl with accelerated central inference. CoRR, abs/1910.06591, 2019.
URL http://arxiv.org/abs/1910.06591.

Jesse Farebrother, Jordi Orbay, Quan Vuong, Adrien Ali Taı̈ga, Yevgen Chebotar, Ted Xiao, Alex
Irpan, Sergey Levine, Pablo Samuel Castro, Aleksandra Faust, Aviral Kumar, and Rishabh Agar-
wal. Stop Regressing: Training Value Functions via Classification for Scalable Deep RL, March
2024. URL http://arxiv.org/abs/2403.03950. arXiv:2403.03950 [cs, stat].

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In Jennifer G. Dy and Andreas Krause (eds.), Proceedings of the 35th Inter-
national Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden,
July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pp. 1582–1591.
PMLR, 2018. URL http://proceedings.mlr.press/v80/fujimoto18a.html.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. CoRR, abs/1801.01290,
2018. URL http://arxiv.org/abs/1801.01290.

Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, and Yulin Wang. Dynamic neural
networks: A survey. CoRR, abs/2102.04906, 2021. URL https://arxiv.org/abs/2102.
04906.

Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, and Yulin Wang. Dynamic neu-
ral networks: A survey. IEEE Trans. Pattern Anal. Mach. Intell., 44(11):7436–7456, 2022.
doi: 10.1109/TPAMI.2021.3117837. URL https://doi.org/10.1109/TPAMI.2021.
3117837.

Chris Hettinger, Tanner Christensen, Ben Ehlert, Jeffrey Humpherys, Tyler Jarvis, and Sean
Wade. Forward thinking: Building and training neural networks one layer at a time. CoRR,
abs/1706.02480, 2017. URL http://arxiv.org/abs/1706.02480.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network.
CoRR, abs/1503.02531, 2015. URL http://arxiv.org/abs/1503.02531.

Ionel-Alexandru Hosu and Traian Rebedea. Playing atari games with deep reinforcement learning
and human checkpoint replay. CoRR, abs/1607.05077, 2016. URL http://arxiv.org/
abs/1607.05077.

Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten, and Kilian Q. Wein-
berger. Multi-scale dense networks for resource efficient image classification. In 6th Inter-
national Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018. URL https:
//openreview.net/forum?id=Hk2aImxAb.

10

https://doi.org/10.48550/arXiv.2409.05336
https://doi.org/10.48550/arXiv.2409.05336
https://proceedings.mlr.press/v202/eimer23a.html
https://proceedings.mlr.press/v202/eimer23a.html
http://arxiv.org/abs/1802.01561
http://arxiv.org/abs/1910.06591
http://arxiv.org/abs/2403.03950
http://proceedings.mlr.press/v80/fujimoto18a.html
http://arxiv.org/abs/1801.01290
https://arxiv.org/abs/2102.04906
https://arxiv.org/abs/2102.04906
https://doi.org/10.1109/TPAMI.2021.3117837
https://doi.org/10.1109/TPAMI.2021.3117837
http://arxiv.org/abs/1706.02480
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1607.05077
http://arxiv.org/abs/1607.05077
https://openreview.net/forum?id=Hk2aImxAb
https://openreview.net/forum?id=Hk2aImxAb

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Adarsh Kumar Kosta, Malik Aqeel Anwar, Priyadarshini Panda, Arijit Raychowdhury, and
Kaushik Roy. RAPID-RL: A reconfigurable architecture with preemptive-exits for efficient
deep-reinforcement learning. In 2022 International Conference on Robotics and Automation,
ICRA 2022, Philadelphia, PA, USA, May 23-27, 2022, pp. 7492–7498. IEEE, 2022. doi:
10.1109/ICRA46639.2022.9812320. URL https://doi.org/10.1109/ICRA46639.
2022.9812320.

Srivatsan Krishnan, Max Lam, Sharad Chitlangia, Zishen Wan, Gabriel Barth-Maron, Aleksandra
Faust, and Vijay Janapa Reddi. Quarl: Quantization for fast and environmentally sustainable
reinforcement learning. Trans. Mach. Learn. Res., 2022, 2022. URL https://openreview.
net/forum?id=xwWsiFmUEs.

Stefanos Laskaridis, Alexandros Kouris, and Nicholas D. Lane. Adaptive inference through early-
exit networks: Design, challenges and directions. CoRR, abs/2106.05022, 2021. URL https:
//arxiv.org/abs/2106.05022.

Yann LeCun, John S. Denker, and Sara A. Solla. Optimal brain damage. In David S. Touretzky (ed.),
Advances in Neural Information Processing Systems 2, [NIPS Conference, Denver, Colorado,
USA, November 27-30, 1989], pp. 598–605. Morgan Kaufmann, 1989. URL http://papers.
nips.cc/paper/250-optimal-brain-damage.

Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart van Baalen, and
Tijmen Blankevoort. A white paper on neural network quantization. CoRR, abs/2106.08295,
2021. URL https://arxiv.org/abs/2106.08295.

Michal Nauman, Mateusz Ostaszewski, Krzysztof Jankowski, Piotr Milos, and Marek Cy-
gan. Bigger, regularized, optimistic: scaling for compute and sample efficient con-
tinuous control. In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela
Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), Advances in Neu-
ral Information Processing Systems 38: Annual Conference on Neural Information Pro-
cessing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15,
2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/
cd3b5d2ed967e906af24b33d6a356cac-Abstract-Conference.html.

Johan S. Obando-Ceron, Ghada Sokar, Timon Willi, Clare Lyle, Jesse Farebrother, Jakob Nico-
laus Foerster, Gintare Karolina Dziugaite, Doina Precup, and Pablo Samuel Castro. Mixtures of
experts unlock parameter scaling for deep RL. In Forty-first International Conference on Ma-
chine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=X9VMhfFxwn.

Haseena Rahmath P, Vishal Srivastava, Kuldeep Chaurasia, Roberto Gonçalves Pacheco, and Ro-
drigo S. Couto. Early-exit deep neural network - A comprehensive survey. ACM Comput.
Surv., 57(3):75:1–75:37, 2025. doi: 10.1145/3698767. URL https://doi.org/10.1145/
3698767.

Priyadarshini Panda, Abhronil Sengupta, and Kaushik Roy. Conditional deep learning for energy-
efficient and enhanced pattern recognition. In Luca Fanucci and Jürgen Teich (eds.), 2016 De-
sign, Automation & Test in Europe Conference & Exhibition, DATE 2016, Dresden, Germany,
March 14-18, 2016, pp. 475–480. IEEE, 2016. URL https://ieeexplore.ieee.org/
document/7459357/.

Minh Pham, Minsu Cho, Ameya Joshi, and Chinmay Hegde. Revisiting self-distillation. CoRR,
abs/2206.08491, 2022. doi: 10.48550/ARXIV.2206.08491. URL https://doi.org/10.
48550/arXiv.2206.08491.

Simone Scardapane, Danilo Comminiello, Michele Scarpiniti, Enzo Baccarelli, and Aurelio Uncini.
Differentiable branching in deep networks for fast inference. In 2020 IEEE International Con-
ference on Acoustics, Speech and Signal Processing, ICASSP 2020, Barcelona, Spain, May
4-8, 2020, pp. 4167–4171. IEEE, 2020a. doi: 10.1109/ICASSP40776.2020.9054209. URL
https://doi.org/10.1109/ICASSP40776.2020.9054209.

11

https://doi.org/10.1109/ICRA46639.2022.9812320
https://doi.org/10.1109/ICRA46639.2022.9812320
https://openreview.net/forum?id=xwWsiFmUEs
https://openreview.net/forum?id=xwWsiFmUEs
https://arxiv.org/abs/2106.05022
https://arxiv.org/abs/2106.05022
http://papers.nips.cc/paper/250-optimal-brain-damage
http://papers.nips.cc/paper/250-optimal-brain-damage
https://arxiv.org/abs/2106.08295
http://papers.nips.cc/paper_files/paper/2024/hash/cd3b5d2ed967e906af24b33d6a356cac-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/cd3b5d2ed967e906af24b33d6a356cac-Abstract-Conference.html
https://openreview.net/forum?id=X9VMhfFxwn
https://doi.org/10.1145/3698767
https://doi.org/10.1145/3698767
https://ieeexplore.ieee.org/document/7459357/
https://ieeexplore.ieee.org/document/7459357/
https://doi.org/10.48550/arXiv.2206.08491
https://doi.org/10.48550/arXiv.2206.08491
https://doi.org/10.1109/ICASSP40776.2020.9054209

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Simone Scardapane, Michele Scarpiniti, Enzo Baccarelli, and Aurelio Uncini. Why should we add
early exits to neural networks? CoRR, abs/2004.12814, 2020b. URL https://arxiv.org/
abs/2004.12814.

Tianxiang Sun, Yunhua Zhou, Xiangyang Liu, Xinyu Zhang, Hao Jiang, Zhao Cao, Xuanjing Huang,
and Xipeng Qiu. Early exiting with ensemble internal classifiers. CoRR, abs/2105.13792, 2021.
URL https://arxiv.org/abs/2105.13792.

Surat Teerapittayanon, Bradley McDanel, and H. T. Kung. Branchynet: Fast inference via early
exiting from deep neural networks. In 23rd International Conference on Pattern Recognition,
ICPR 2016, Cancún, Mexico, December 4-8, 2016, pp. 2464–2469. IEEE, 2016. doi: 10.1109/
ICPR.2016.7900006. URL https://doi.org/10.1109/ICPR.2016.7900006.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based con-
trol. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2012,
Vilamoura, Algarve, Portugal, October 7-12, 2012, pp. 5026–5033. IEEE, 2012. doi: 10.1109/
IROS.2012.6386109. URL https://doi.org/10.1109/IROS.2012.6386109.

Abhishek Vashist, Sharan Vidash Vidya Shanmugham, Amlan Ganguly, and Sai Manoj P. D. DQN
based exit selection in multi-exit deep neural networks for applications targeting situation aware-
ness. In IEEE International Conference on Consumer Electronics, ICCE 2022, Las Vegas, NV,
USA, January 7-9, 2022, pp. 1–6. IEEE, 2022. doi: 10.1109/ICCE53296.2022.9730182. URL
https://doi.org/10.1109/ICCE53296.2022.9730182.

Jue Wang, Ke Chen, Gang Chen, Lidan Shou, and Julian J. McAuley. Skipbert: Efficient inference
with shallow layer skipping. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.),
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022, pp. 7287–7301. Association
for Computational Linguistics, 2022. doi: 10.18653/V1/2022.ACL-LONG.503. URL https:
//doi.org/10.18653/v1/2022.acl-long.503.

Jiayi Weng, Min Lin, Shengyi Huang, Bo Liu, Denys Makoviichuk, Viktor Makoviychuk, Zichen
Liu, Yufan Song, Ting Luo, Yukun Jiang, Zhongwen Xu, and Shuicheng Yan. Envpool: A highly
parallel reinforcement learning environment execution engine. CoRR, abs/2206.10558, 2022.
doi: 10.48550/ARXIV.2206.10558. URL https://doi.org/10.48550/arXiv.2206.
10558.

Canwen Xu and Julian J. McAuley. A survey on dynamic neural networks for natural language
processing. In Andreas Vlachos and Isabelle Augenstein (eds.), Findings of the Association for
Computational Linguistics: EACL 2023, Dubrovnik, Croatia, May 2-6, 2023, pp. 2325–2336.
Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023.FINDINGS-EACL.
180. URL https://doi.org/10.18653/v1/2023.findings-eacl.180.

Hongjie Zhang, Haoming Ma, and Zhenyu Chen. Fastact: A lightweight actor compression frame-
work for fast policy learning. In International Joint Conference on Neural Networks, IJCNN
2023, Gold Coast, Australia, June 18-23, 2023, pp. 1–8. IEEE, 2023. doi: 10.1109/IJCNN54540.
2023.10191108. URL https://doi.org/10.1109/IJCNN54540.2023.10191108.

Linfeng Zhang, Jiebo Song, Anni Gao, Jingwei Chen, Chenglong Bao, and Kaisheng Ma. Be
your own teacher: Improve the performance of convolutional neural networks via self distillation.
CoRR, abs/1905.08094, 2019. URL http://arxiv.org/abs/1905.08094.

Linfeng Zhang, Chenglong Bao, and Kaisheng Ma. Self-distillation: Towards efficient and compact
neural networks. IEEE Trans. Pattern Anal. Mach. Intell., 44(8):4388–4403, 2022. doi: 10.1109/
TPAMI.2021.3067100. URL https://doi.org/10.1109/TPAMI.2021.3067100.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian J. McAuley, Ke Xu, and Furu Wei. BERT loses
patience: Fast and robust inference with early exit. CoRR, abs/2006.04152, 2020. URL https:
//arxiv.org/abs/2006.04152.

Wei Zhu. Leebert: Learned early exit for BERT with cross-level optimization. In Chengqing Zong,
Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the 59th Annual Meeting of the

12

https://arxiv.org/abs/2004.12814
https://arxiv.org/abs/2004.12814
https://arxiv.org/abs/2105.13792
https://doi.org/10.1109/ICPR.2016.7900006
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.1109/ICCE53296.2022.9730182
https://doi.org/10.18653/v1/2022.acl-long.503
https://doi.org/10.18653/v1/2022.acl-long.503
https://doi.org/10.48550/arXiv.2206.10558
https://doi.org/10.48550/arXiv.2206.10558
https://doi.org/10.18653/v1/2023.findings-eacl.180
https://doi.org/10.1109/IJCNN54540.2023.10191108
http://arxiv.org/abs/1905.08094
https://doi.org/10.1109/TPAMI.2021.3067100
https://arxiv.org/abs/2006.04152
https://arxiv.org/abs/2006.04152

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Association for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event, August 1-6,
2021, pp. 2968–2980. Association for Computational Linguistics, 2021. doi: 10.18653/V1/2021.
ACL-LONG.231. URL https://doi.org/10.18653/v1/2021.acl-long.231.

13

https://doi.org/10.18653/v1/2021.acl-long.231

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A USE OF LARGE LANGUAGE MODELS (LLMS)

In accordance with ICLR authorship guidelines, we disclose our use of LLMs. GitHub Copilot and
ChatGPT were used to provide coding assistance, especially for plotting scripts, and for language
editing of the paper. They were also used to identify related work and compare alternative design
ideas. All methodological choices, experiments, and analyses were conducted by the authors.

B PSEUDOCODE

In Alg. 1 we provide pseudocode for Budgeted EXit Actor (BEXA) using soft actor-critic (SAC) as
an example. As stated before, BEXA is agnostic with respect to the underlying actor-critic method,
which we denote as the base in the algorithm description. The critic updates shown here correspond
to those used in SAC.

Algorithm 1 Budgeted EXit Actor (BEXA)

Require: Off-policy base (e.g. SAC or TD3); budget b; early-exit actor with exits i = 1, . . . ,K;
sub-policies πi(· | s); gates gi∼Bernoulli(pθi (s)); critics Qϕ

i (s, a)
1: Initialize replay buffer D, parameters θ, ϕ
2: for environment step t = 1, 2, . . . do ▷ Act with early exits
3: Observe st
4: for i = 1..K do
5: Compute pθi (st) and sample gi∼Bernoulli(pθi (st))
6: if gi = 1 then
7: at ∼ πi(· | st); break
8: Step environment, observe (rt, st+1, dt)
9: Store (st, at, rt, st+1, dt) in D

10: for update step u = 1, . . . , U do ▷ Learn from replay
11: Sample minibatch B ⊂ D
12: (1) Critic update (base-agnostic). For each exit i = 1..K:

Compute a TD target y(base)
i per the chosen off-policy base, e.g. for SAC:

y(SAC)
i = r + γ(1− d)Ea′∼πi(·|s′)

[
min

m∈{1,2}
Qϕ̄m

i,m(s′, a′)− λ log πi(a
′ | s′)

]
.

Then update ϕ by a gradient step on 1
|B|

∑
(Qϕ

i (s, a)− y(base)
i)2.

13: (2) Linear program for exit mixture.

α⋆ = argmax
α∈RK

v⊤α s.t. c⊤α ≤ b, α ≥ 0, 1⊤α = 1

14: (3) Map mixture to target gate probabilities.
Using Eq. 1 to compute p⋆ recursively from α⋆:

p⋆1(s) = α⋆
1(s), p⋆i (s) =

α⋆
i (s)∏

j<i

(
1− p⋆j (s)

) for i = 2, . . . ,K.

15: (4) Actor update (BEXA objective).
16: θ ← θ + ηπ∇θ

1
|B|

∑
s∈B

JBEXA(θ; s, p
⋆)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C EFFECT OF THE BUDGET ON COMPUTATIONAL COST AND RETURN

Here, we investigate how we can control the numbers of required floating point operations (FLOPs)
using our resource allocation formulation. In Fig. 4 we see how the expected FLOPs linear scale
with the normalized budget. Furthermore, Fig. 5 highlights that the performance increases with the
allowed budget.

0 0.2 0.4 0.6 0.8 1
Budget

0

25

50

75

100

125

150
Ex

pe
ct

ed
 F

LO
Ps

 (×
10

³)

Figure 4: Average FLOPs for the actor in relation of budget b when using BEXA-SAC. Evaluated
on the Halfcheetah-v4 environment using ∼ 70 runs per bar. One standard deviation is plotted. This
shows that budget regulates flops explicitly and in a intuitive way.

0 0.2 0.4 0.6 0.8 1.0
Budget

0

2000

4000

6000

8000

10000

Be
st

 E
pi

so
di

c
Re

tu
rn

Figure 5: Best Return reported for the actor in relation of budget b when using BEXA-SAC. Evalu-
ated on the Halfcheetah-v4 environment using ∼ 70 runs per bar. One standard deviation is plotted.
Giving more budget allows for higher return.

D HYPERPARAMETERS

To follow best practices (Eimer et al., 2023), we list all relevant hyperparameters and search spaces
used in the experiments. For tuning the hyperparameters we used random search. For continu-
ous hyperparameters, we used q-log-uniform, which samples logarithmically and rounds to discrete
multiples of a step q.

In Tab. 2 and Tab. 3 we highlight the search spaces used for Fig. 3. For the ablation studies presented
in Tab. 1, we used the search spaces in Tab. 4 and Tab. 5. Furthermore, to facilitate comparison of
performance across environments, we normalize the return when aggregating results, see Tab. 6

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Hyperparameter Values / Range

batch size 256
learning starts 5000
policy frequency 2
autotune True
gamma 0.99
tau q-log-uniform (min: 1e-3, max: 1e-2, q: 1e-3)
policy lr q-log-uniform (min: 1e-4, max: 7e-4, q: 1e-4)
q lr q-log-uniform (min: 3e-4, max: 1e-3, q: 1e-4)
gate loss scale q-log-uniform (min: 1e-3, max: 1e-1, q: 1e-3)
budget [0.0, 0.2, 0.4, 0.6, 0.8, 1.0]
actor inference early exit
critic kind multi head
actor training all exits
gate training budget
training scheme jointly
total timesteps 500000

Table 2: Hyperparameter configuration used for comparison of SAC and BEXA-SAC.

Hyperparameter Values / Range

batch size 256
learning starts 25000
policy frequency 2
gamma 0.99
tau q-log-uniform (min: 1e-3, max: 1e-2, q: 1e-3)
lr q-log-uniform (min: 1e-4, max: 1e-3, q: 1e-4)
policy noise [0.1, 0.2, 0.3, 0.4]
exploration noise [0.1, 0.2, 0.3]
noise clip [0.1, 0.2, 0.3]
gate loss scale q-log-uniform (min: 1e-3, max: 1e-1, q: 1e-3)
budget [0.0, 0.2, 0.4, 0.6, 0.8, 1.0]
actor inference early exit
critic kind multi head
actor training all exits
gate training budget
training scheme jointly
total timesteps 500000

Table 3: Hyperparameter configuration used for comparison of TD3 and BEXA-TD3.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Hyperparameter Values / Range

batch size 256
hidden size [4, 8, 16]
learning starts 5000
policy frequency 2
autotune True
gamma 0.99
tau q-log-uniform (min: 1e-3, max: 1e-2, q: 1e-3)
policy lr q-log-uniform (min: 1e-4, max: 7e-4, q: 1e-4)
q lr q-log-uniform (min: 3e-4, max: 1e-3, q: 1e-4)
imitate loss scale q-log-uniform (min: 1e-2, max: 4e-1, q: 1e-2)
gate loss scale q-log-uniform (min: 1e-3, max: 1e-1, q: 1e-3)
gate loss freq [1, 2]
budget [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
gate softmax tmp q-log-uniform (min: 1e-1, max: 2.0, q: 1e-1)
actor inference [early exit, backbone, ensemble]
actor training [imitate, all exits]
gate training [budget, adv, softmax]
training scheme [stepwise, jointly]
total timesteps 500000

Table 4: Sweep configuration for BEXA-SAC and alternative ablation components.

Hyperparameter Values / Range

batch size 256
hidden size [4, 8, 16]
learning starts 25000
policy frequency 2
gamma 0.99
tau q-log-uniform (min: 1e-3, max: 1e-2, q: 1e-3)
lr q-log-uniform (min: 1e-4, max: 1e-3, q: 1e-4)
policy noise [0.1, 0.2, 0.3, 0.4]
exploration noise [0.1, 0.2, 0.3]
noise clip [0.1, 0.2, 0.3]
imitate loss scale q-log-uniform (min: 1e-2, max: 4e-1, q: 1e-2)
gate loss scale q-log-uniform (min: 1e-3, max: 1e-1, q: 1e-3)
gate loss freq [1, 2]
budget [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
gate softmax tmp q-log-uniform (min: 1e-1, max: 2.0, q: 1e-1)
kl eps q-log-uniform (min: 1e-1, max: 2.0, q: 1e-1)
actor inference [early exit, backbone, ensemble]
actor training [imitate, all exits]
gate training [budget, adv, softmax]
training scheme [stepwise, jointly]
total timesteps 500000

Table 5: Sweep configuration for BEXA-TD3 and alternative ablation components.

Environment Normalization (return)

HalfCheetah-v4 60.0
Walker2d-v4 30.0
Hopper-v4 30.0
Humanoid-v4 50.0
Ant-v4 40.0

Table 6: Normalization constants used to scale returns for MuJoCo tasks.

17

	Introduction
	Related Work
	Early Exit Neural Networks
	Accelerating DRL

	Preliminaries
	Method
	Early Exit Actor
	Learning Budget-Aware Early Exit Actors

	Experiments
	Comparison to Early Exit Alternatives

	Conclusion
	Use of Large Language Models (LLMs)
	Pseudocode
	Effect of the Budget on Computational Cost and Return
	Hyperparameters

