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Abstract

Modeling and re-rendering novel views of dynamic 3D scenes is a challenging problem in
3D vision. Employing implicit representations for the task, extending static NeRFs to
4D incurs high computational costs due to the numerous MLP evaluations, highlighting
the need for efficient representations of dynamic 3D scenes. Non-Nerf Methods such as
Niemeyer et al. (2019), Jiang et al. (2022), and Jiang et al. (2021) have primarily been applied
to idealized, single-subject scenes and have not yet been adapted for real-world camera
images. Cao and Johnson (2023) proposes using HexPlane, an explicit scene representation
method that factors a 4D volume into six feature planes. This paper attempts to verify
their claims and compare them with similar methods like Gaussian Splatting by Wu et al.
(2023) and K-planes by Fridovich-Keil et al. (2023). We conduct a thorough examination of
the architectural choices and design elements inherent in HexPlane and further incorporate
additional regularization to achieve a performance improvement.

1 Introduction

Reconstructing and re-rendering 3D scenes from a set of 2D images is a core vision problem that can enable
numerous AR/VR applications and amplify the field’s horizons. Significant advancements have been achieved
in reconstructing static scenes, but as we know, the real world is dynamic, and motion is the norm. Recent
works have started exploring this demanding problem of dynamic scene reconstruction.

Current methods of reconstructing dynamic scenes to address the core vision problem of re-rendering 3D
scenes from 2D images can be categorized into NeRF-based and Non-NeRF-based. Most recent works build
upon Neural Radiance Fields (NeRF) Mildenhall et al. (2020), utilizing implicit scene representations. They
train a large multi-layer perceptron (MLP) that takes as input the position of a point in space and time and
outputs either the point’s color or deformation to a canonical static scene. In either case, rendering images
from novel views is expensive since each generated pixel requires many MLP evaluations. Similarly, training
is also slow and computationally expensive, limiting the possibility of real-time application of these methods.

Non-NeRF-based representation methods like Niemeyer et al. (2019), Jiang et al. (2022), and Jiang et al.
(2021) were primarily tested on synthetic single-subject scenes with defined structures, some specifically
designed for human structures, unlike NeRF-based methods which have proven to handle real world, multi-
subject, crowded scenes captured using camera images. Hence, we lean on NeRF-based methods to stay
more relevant to current research demands and cater to real-world camera images.

Cao and Johnson (2023) proposes a novel method for explicitly representing dynamic scenes, HexPlane,
building upon Müller et al. (2022), Chen et al. (2022), which employ similar methods on static scenes.
The Hexplane authors have designed a spatial-temporal data structure that stores scene data. HexPlane
decomposes a 4D spacetime grid into six feature planes spanning each pair of coordinate axes (e.g., XY,
ZT). The fused feature vector is then passed to a tiny MLP that predicts the point’s color; novel views can
be rendered via volume rendering. They claim to achieve 100x speed-ups on prior methods tackling this
problem.
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HexPlane is increasingly adopted as a fundamental baseline in studies involving explicit representation
in 4D spaces. Given the rising prominence of Hexplane, particularly with subsequent methodologies like
4D Gaussian Splatting building upon it, we aim to comprehensively verify Hexplane’s components and
architectural decisions, which are crucial for ensuring its reliability as a baseline.

To this end, we contribute the following :

1. Successfully reproduced the work and verified all the claims made by Cao and Johnson (2023) by
thoroughly assessing the choice of architectural and design elements.

2. Demonstrated HexPlane’s robustness by experimenting with new datasets and benchmarking against
methods like Gaussian Splatting by Wu et al. (2023) and K-planes by Fridovich-Keil et al. (2023)

3. Achieved minor performance improvement by integrating temporal smoothness regularization.

2 Background and Related Work

2.1 Neural Scene Representation

NeRF and its variants Barron et al. (2021a), Barron et al. (2021b), employing neural networks to represent
3D scenes implicitly have shown impressive results on novel view synthesis and related fields in the 3D vision
space. Many recent papers propose hybrid representations that combine a fast explicit scene representation
with learnable neural network components to address the challenge of costly implicit neural representations,
providing significant speedups over purely implicit methods. Various explicit representation methods have
been studied, such as Huang et al. (2023), Yu et al. (2021), Chen et al. (2021), but they assume a static 3D
scene.

Inspired by the quality of results achieved by implicit scene representation methods on static scenes, Park
et al. (2021a) and Park et al. (2021b) have expanded the boundaries of novel view synthesis for dynamic
scenes. One line of research represents dynamic scenes by extending NeRF with an additional time dimension
(T-NeRF) Gao et al. (2021a) or additional latent code. Despite the ability to represent general topology
changes, they suffer from a severely under-constrained problem, requiring additional supervision like depths,
optical flows, or dense observations for decent results. Research has been conducted using an explicit voxel
grid to model temporal information, substantially accelerating the learning time for dynamic scenes. Methods
like Shao et al. (2023) and Wang et al. (2023) represent further advancements in faster dynamic scene learning
by adopting decomposed neural voxels. They treat sampled points in each timestamp individually. Though
these methods achieve fast training, real-time rendering for dynamic scenes is still challenging, especially for
monocular input.

2.2 Accelerating NeRF

Multiple works have been proposed to accelerate NeRFs at diverse stages by improving the inference speed by
optimizing the computation Fang et al. (2022a) or by reducing the training times by learning a generalizable
model Chen et al. (2021). Recently, substantial improvements have been observed in both training and
rendering durations by employing a hybrid model.

Several studies, such as Fridovich-Keil et al. (2022), have employed geometric representations to notably
reduce optimization times by using trilinear interpolation in a 3D grid. However, the scalability of these
explicit grid structures, similar to Sun et al. (2022), is limited as they expand exponentially with increasing
dimensions, posing challenges for high-resolution and 4D dynamic volumes.

Müller et al. (2022) introduced a compact, multiresolution voxel grid encoded implicitly through a hash
function, enabling rapid optimization and rendering. Similarly, Chen et al. (2022) enhanced speed and
compressed models by substituting the voxel grid with a tensor decomposition of planes and vectors. In a
generative context, Chan et al. (2021) implemented a spatial decomposition involving three planes, combining
their values to represent a 3D volume.
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Extensions of NeRF to accommodate dynamic scenes typically follow one of two approaches: (1) overlaying a
deformation field on a static canonical field [Du et al. (2021), Fang et al. (2022b), Li et al. (2021), Park et al.
(2021a), Pumarola et al. (2020), Tretschk et al. (2021), Yuan et al. (2021)], which simplifies separating static
and dynamic elements but struggles with topological changes, or (2) learning a time-conditioned radiance
field [Gao et al. (2021b), Li et al. (2022), Li et al. (2021), Park et al. (2021b), Xian et al. (2021)], which
complicates the separation of static and dynamic components. A third approach involves repeating a 3D
space representation at each timestep, as seen in Song et al. (2023). This can lead to overly large models
that fail to account for space-time interactions in lengthy videos.

In line with these ideas, HexPlane employs an explicit dynamic scene representation by factoring a 4D
spatial-temporal space into six feature planes and then using a tiny MLP at the end to decode the color and
opacity associated with the voxels.

2.3 Hexplane

2.3.1 Architecture

This paper aims to replicate the Hexplane approach of rendering novel views in dynamic 3D scenes, leveraging
a hybrid model that combines an explicit representation of the scene with a compact Multilayer Perceptron
(MLP) for only the decoder mechanism, as shown in figure 1. Following the paradigm established by NeRF,
the HexPlane model predicts color and opacity for points in spacetime, facilitating image rendering from
novel vantage points and moments through differentiable volumetric rendering.

Figure 1: Method Overview: HexPlane has six feature planes, each spanning coordinate axes pairs (e.g.,
XY, ZT). Point features are computed by multiplying vectors from paired planes, then concatenated and
multiplied by VRF. A compact MLP predicts RGB colors. Training is done via photometric loss minimization
between rendered and target images. (Cao and Johnson, 2023)

2.3.2 Factorization and Temporal Modelling

HexPlane proposes a factorization technique that addresses the issue of memory consumption in naıve repre-
sentations, where a 4D volume is represented as independent static 3D per time step. The standard method
used in some previous works, such as Chan et al. (2022), lacks information sharing across frames, which
is critical to counter the issue of sparse observations [Equation 1]. Volume Basis factorization enables in-
formation sharing by representing 3D volume Vt at time t as a weighted sum of shared 3D basis volumes{

V̂1, . . . , V̂Rt

}
[Equation 2 (i)]. Shared volumes are still not optimal, each requiring independent MXY

r , vZ
r ;

VM-T (Vector, Matrix, and Time) factorization allows the low-rank components to be further shared across
shared volumes, improving efficiency [Equation 3]. CANDECOMP Decomposition (CP Decom.) represents
4D volumes using vectors representing individual axes, instead of bi-axial matrices, thus decoupling the axes
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[Equation 2 (ii)].
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2.3.3 HexPlane Representation

These factorizations decouple the spatial and temporal modeling. However, real-world scenes often involve
intertwined spatial and temporal dynamics. This is addressed by the replacement of vZ

r ◦ f1(t)r in Equation
3 with a joint function of both time and space, represented akin to a piecewise linear function. Achieving
this involves bilinear interpolation into a learned tensor with dimensions Z×T ×R1. The 4D feature volume
V ∈ RXY ZT F , after applying the same transformation to similar terms, is represented as:

D =
R1∑

r=1
(MXY

r · MZT
r · v1

r ) +
R2∑

r=1
(MXZ

r · MYT
r · v2

r ) +
R3∑

r=1
(MYZ

r · MXT
r · v3

r ) (4)

Here, each MAB
r ∈ RAB is a learned plane of features.

Alternatively, the model can be represented as the function D mapping (x, y, z, t) to an F dimensional vector
as:

D(x, y, z, t) =
(

PXY R1
xy• ⊙ PZT R1

zt•

)
VR1F +

(
PXZR2

xz• ⊙ PY T R2
yt

)
VR2F +

(
PY ZR3

yz• ⊙ PXT R3
xt•

)
VR3F (5)

Where ⊙ is an elementwise product, the superscript of each bold tensor represents its shape, and • in a
subscript represents a slice, so each term is a vector-matrix product. PXY R1 stacks all MXY

r to a 3D tensor,
and VR1F stacks all v1

r to a 2D tensor; other terms are defined similarly. Coordinates x, y, z, t are real-valued,
so subscripts denote bilinear interpolation. We can stack all VRiF into VRF and rewrite the equation as:[

PXY R1
xy• ⊙ PZT R1

zt• ; PXZR2
xz• ⊙ PY T R2

yt• ; PY ZR3
yz• ⊙ PXT R3

xt

]
VRF (6)

2.3.4 Optimization and Regularization

The optimization strategies employed in the original research are utilized, including photometric loss for
model training and specific regularizers to address the ill-posed nature of dynamic 3D scene reconstruction.
We follow the outlined coarse-to-fine training scheme and incorporate the proposed regularizers, such as
Total Variation (TV) loss and depth smooth loss, as shown in Niemeyer et al. (2022), to enhance the quality
of the synthesized views and minimize artifacts.

3 Experiments

3.1 Objective

Our study aims to reproduce the experimental evaluation of HexPlane, an explicit representation proposed
for dynamic novel view synthesis. We sought to assess HexPlane’s design choices, performance, and efficiency
across challenging datasets, compare its outcomes to state-of-the-art methods, and validate its robustness
under various conditions. The primary goal was to examine the simplicity, generality, effectiveness, and
architectural choices of HexPlane. We begin with reproduction experiments followed by additional analysis
and minor improvements over the method.
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3.2 Datasets

To replicate the original experiments, we closely followed the described methods, concentrating on two
primary datasets:

Plenoptic Video Dataset (Li et al., 2022): A high-resolution, multi-camera dataset showcasing dynamic
content captured with 21 GoPro cameras at 2.7K resolution. This dataset incorporates complex motion and
fine details over extended videos to assess HexPlane’s representational capacity. The dataset consists of 6
scenes, each captured with 18 synchronized cameras. The cameras were arranged in a circle around the scene
so that each camera captured a slightly different view of the scene. Quantitative Metrics on this dataset are
provided in table 1.

Table 1: Quantitative Comparisons on Plenoptic Video Dataset
* represents the model with fewer training steps

Model Steps PSNR↑ LPIPS v↓
Ours Paper Ours Paper

HexPlane-all 650k 30.247 31.705 0.101 0.075
HexPlane-all* 100k 31.244 31.569 0.094 0.089

D-NeRF Dataset (Pumarola et al., 2020): A monocular video dataset featuring synthetic objects designed
to assess the model’s performance with extremely sparse observations and its capability to synthesize novel
views from monocular videos. This dataset contains 8 scenes on different contexts and objects. The scenes
contain objects undergoing rigid, articulated, and non-rigid motions, rendered from various viewpoints at
consecutive time steps. Quantitative Metrics on this dataset are provided in table 2.

3.3 Comparative Study

Various methods employing explicit representation of such scenes and a lightweight decoder have shown
promising results. The most notable works closely related to HexPlanes are K-planes Fridovich-Keil et al.
(2023) and 4D-Gaussian Splatting Wu et al. (2023). Here, we discuss the characteristics of these works in
the form of a comparative study.

K-Planes Similar to HexPlane, K-Planes also factor the 4D spatial-temporal scene into six feature planes. In
K-planes, plane features projected on all six planes are multiplied using the Hadamard product. In HexPlane,
two fusion mechanisms, multiplication followed by concatenation, are applied to the plane features. K-Planes
(explicit) uses a linear feature decoder for RGB and density values with a learned color basis instead of the
black-box MLP decoder in Hexplane for regressing RGB values. The K-Planes model employs simultaneous
queries through planes of varied spatial resolutions (e.g., 64, 128, 256, and 512) to make the model robust
at higher and lower resolutions. Hence, the main difference between the architectures of HexPlane and
K-Planes is how these models generate the feature vector from the six projections of the 4-D point(x, y, z,
t). It can be observed that both HexPlane and KPlane have similar architectures, resulting in comparable
performance metrics.

4D-Gaussian Splatting 4D-Gaussian Splatting(4D-GS) uses a novel explicit representation, containing
both 3D Gaussians and 4D neural voxels. A decomposed neural voxel encoding algorithm inspired by
HexPlane is proposed to build Gaussian features efficiently from 4D neural voxels. Then a lightweight
MLP is applied to predict Gaussian deformations at novel timestamps. The 4D-GS framework includes 3D
Gaussians ’G’ and Gaussian deformation field network ’F.’ The Gaussian deformation field network consists
of an efficient spatial-temporal structure encoder, ’H,’ and a Multi-head Gaussian Deformation Decoder, ’D.’
In the spatial-temporal structure encoder ’H,’ the neural voxel encoding scheme and a tiny MLP inspired by
HexPlanes are used to merge all the features of the input 3D Gaussians. Further in the Multi-head Gaussian
Deformation Decoder ’D’, taking the encoded features from the encoder ’H’ as input, the deformations of
the 3D Gaussians are decoded using separate MLPs, and a deformed 3D Gaussian are obtained at timestep
’t.’ The deformed Gaussians are then splatted to the rendered image.
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From a quantitative evaluation of these methods on the D-Nerf dataset 2, we observe that HexPlane has a
slightly better PSNR and LPIPS than K-Planes. 4D-GS is an improvement on HexPlane and has the best
scores. However, we analyze the base HexPlane model to verify the root model and approach and ensure its
reliability as a baseline.

The use of multiple spatial resolutions across the planes helps K-planes achieve robustness at both high and
low resolutions, making it well-suited for diverse scene complexities. The use of Gaussian deformations in
4D-GS allows for detailed and dynamic scene representation, which might explain its superior performance
on metrics like PSNR and LPIPS as compared to the other two models. The base model, HexPlane,
while sharing similar architecture to K-planes, utilizes two fusion mechanisms—multiplication followed by
concatenation—which may not be as efficient as the single-step Hadamard product used in K-planes.

Table 2: 4D-Gaussian Splatting and K-Planes Benchmark on D-Nerf Dataset
Scene Models PSNR↑ SSIM↑ LPIPS v↓
Bouncing Balls Gaussian Splatting 40.348 0.994 0.030

K-Planes 40.063 0.994 0.033
Hex-Plane 40.463 0.993 0.029

Hell Warrior Gaussian Splatting 28.983 0.974 0.047
K-Planes 24.681 0.954 0.082
Hex-Plane 24.338 0.944 0.074

Hook Gaussian Splatting 32.975 0.977 0.031
K-Planes 28.130 0.959 0.067
Hex-Plane 28.262 0.955 0.053

Jumping Jacks Gaussian Splatting 35.505 0.986 0.025
K-Planes 31.410 0.971 0.057
Hex-Plane 31.710 0.974 0.036

Lego Gaussian Splatting 25.150 0.938 0.062
K-Planes 25.412 0.941 0.043
Hex-Plane 25.144 0.940 0.042

Mutant Gaussian Splatting 37.197 0.987 0.022
K-Planes 32.582 0.987 0.046
Hex-Plane 33.686 0.980 0.025

Stand Up Gaussian Splatting 37.410 0.989 0.018
K-Planes 33.099 0.923 0.033
Hex-Plane 34.121 0.983 0.020

T Rex Gaussian Splatting 33.765 0.984 0.028
K-Planes 31.270 0.965 0.048
Hex-Plane 30.953 0.975 0.028

Average Gaussian Splatting 33.917 0.979 0.033
K-Planes 30.788 0.962 0.051
Hex-Plane 31.084 0.968 0.038

3.4 Factorization Design

Dynamic 3D scenes can naturally be modeled as a 4D volume. Still, significant challenges are encountered,
including its high memory usage and sparse observations due to the need for multiple frames per timestamp.
Several potential factorization techniques are proposed in the original study, including decomposing the
large original volume into smaller latent outputs to address this issue. Subsequently, we conduct assessments
employing the diverse factorization methodologies recommended on the D-NeRF dataset, as shown in 3.
From the empirical results of these variations, the choice of HexPlane representation is justified.

It is observed that the HexPlane factorization technique performs considerably better than others, with
significantly reduced training times. This demonstrates that HexPlane strikes a balance between shared
volumes, fewer parameters, and the coupling of axes.
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Table 3: Quantitative Results for Different Factorizations
R = 16 for Volume Basis, and R = 48 for the rest

Model PSNR↑ SSIM↑ LPIPS v↓ Training Time
Ours Paper Ours Paper Ours Paper Ours

Volume Basis 29.343 30.631 0.923 0.967 0.049 0.042 30m
VM-T 31.598 30.657 0.921 0.965 0.031 0.048 17m

CP Decom. 29.538 28.370 0.922 0.942 0.061 0.083 12m
HexPlane 31.084 31.042 0.968 0.970 0.025 0.039 12m

Table 4: Ablations on Feature Plane Designs
Model PSNR↑ SSIM↑ LPIPS v↓

Ours Paper Ours Paper Ours Paper
Spatial Planes 20.296 20.369 0.853 0.879 0.176 0.148

Spatial-Temporal Planes 20.323 21.112 0.934 0.879 0.123 0.148
DoublePlane (XY-ZT) 30.145 30.370 0.956 0.961 0.043 0.054

HexPlane-Swap 26.224 28.562 0.931 0.954 0.072 0.056
HexPlane 31.084 31.042 0.968 0.970 0.025 0.039

3.5 Feature Plane Designs

The hexagonal plane demonstrates excellent symmetry due to its inclusion of all pairs of coordinate axes,
both spatial planes PXY , PY Z , PZX and spatial-temporal planes PXT , PY T , PZT . Evaluation of the model’s
performance on different sets of planes by breaking this symmetry is provided i,n table 4.

As the table demonstrates, neither Spatial Planes nor Spatial-Temporal Planes alone could represent dynamic
scenes, highlighting the need to incorporate time and space for adequate representation. The DoublePlane
consists of solely one set of paired planes, namely PXY and PZT . On the other hand, the HexPlane-
Swap arranges planes in groups where axes are duplicated, such as PXY and PXT . Table 4 also shows the
performance for these choices of sets of planes.

Spatial-temporal planes offer distinct advantages, particularly in their ability to effectively model motion
within HexPlane using a modest basis number R. This results in enhanced efficiency compared to alterna-
tive approaches. As R increases for representation purposes, improved outcomes are achieved, albeit with
increased computational requirements.

3.6 Feature-Fusion Methods

This section explores HexPlane’s key attributes, emphasizing its notable performance in diverse design
choices. HexPlane employs various feature fusion mechanisms, including Multiply-Concat, Sum-Multiply,
and Multiply-Sum. A comprehensive analysis of fusion ablations is presented in Table 5, specifically focusing
on Fusion-One and Fusion-Two. This involves exploring combinations of fusion methods such as Concat,
Sum, and Multiply. Multiply-Concat produces the best results, while Sum-Sum or Sum-Concat provides
the worst results. Additionally, opacity features are sampled as 8-dimensional vectors from HexPlane and
regressed using another MLP.

It is crucial to note the significance of weight initializations for feature planes in different fusion designs. For
instance, Multiply-Multiply and Concat-Multiply require Gaussian noise initialization (mean 0.5, scale 0.9),
while others follow a mean 0.0 and scale 0.1 initialization. A scale of 0.1 or 0.9 implies that most features
being multiplied are lesser than 1. This observation is justified because the multiplication of values lesser
than one leads to even smaller values, thus requiring a greater Gaussian noise initialization.
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Table 5: Ablations on Feature Fusion Designs
* represents results of the original paper

FusionOne FusionTwo PSNR↑ SSIM↑ LPIPS a↓
Multiply Concat 30.513 0.934 0.043

* 31.042 0.968 0.039
Sum 31.400 0.964 0.033

* 31.023 0.967 0.039
Multiply 30.153 0.963 0.052

* 30.345 0.966 0.041
Sum Concat 24.104 0.924 0.100

* 25.428 0.931 0.084
Sum 24.046 0.913 0.122

* 25.227 0.928 0.090
Multiply 29.032 0.980 0.054

* 30.585 0.965 0.044

Table 6: Dynamic View Synthesis without MLPs
* represents results of the original paper

Model PSNR SSIM LPIPS-a LPIPS-v Training Time
Hexplane 31.084 0.968 0.025 0.038 11m 22s
HexPlane* 31.042 0.968 0.039 11m 30s
Hexplane-SH 29.169 0.955 0.036 0.053 10m 19s
HexPlane-SH* 29.284 0.952 0.056 10m 42s

3.7 Spherical Harmonics

In pursuing MLP-free designs, HexPlane-SH is utilized for Dynamic View Synthesis on the D-NeRF dataset.
This explicit model uses spherical harmonics (SH) coefficients as appearance features. By directly regressing
RGB values from these SH coefficients, HexPlane-SH achieves comparable results to Hexplane with MLP, as
shown in the tables 6 and 9. Spherical Harmonics Color Decoding is explored as an alternative to MLP-based
color regression, wherein SH coefficients are computed directly from HexPlanes and subsequently decoded to
RGBs using view directions. Spherical Harmonics are evaluated at unit directions, leveraging hardcoded SH
polynomials up to degree 4. SH values are computed based on input coefficients and directions. Although
this presents a marginal reduction in quality, it has faster rendering speeds.

3.8 HexPlane Slim

A Slim version of the Hexplane model is evaluated, which directly outputs density values for rendering rather
than using an MLP to convert a density feature vector from Hexplane to a single value output density. When
density-dim is set to 1 and DensityMode is set to "plain", densities are taken directly from the HexPlane
without MLPs. When density-dim is set to 8 and DensityMode is set to "general-MLP", densities undergo
MLP processing to predict scalar values as per the original implementation. We observe a slightly better
performance with the MLP’s, than the slim version. This shows that the MLP is needed as a functional
approximator to regress the outputs values from the feature plane outputs. Expecting the feature planes to
directly output values appears to overload the representation network.

3.9 iPhone Dataset

Due to several key factors, the iPhone dataset proposed in Gao et al. (2022) poses unique challenges compared
to general Dynamic Real Datasets. Typical datasets like D-NeRF and Plenoptic either contain frames that
teleport between multiple camera viewpoints at consecutive time steps, impractical to capture from a single
camera, or depict quasi-static scenes, which do not represent real-life dynamics. The iPhone captures diverse
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Figure 2: HexPlane is evaluated on iPhone-captured casual videos, demonstrating dynamic novel view
synthesis across various time steps and viewpoints.

Table 7: Performance Metrics for iPhone Dataset
Scene PSNR_test SSIM LPIPS_a LPIPS_v
apple 15.426 0.320 0.778 0.685
block 15.172 0.315 0.785 0.690
space-out 14.940 0.462 0.681 0.668
backpack 22.650 0.644 0.368 0.376
pillow 18.674 0.586 0.354 0.432
wheel 12.142 0.225 0.601 0.616
teddy 12.730 0.242 0.784 0.733
Average 15.867 0.399 0.622 0.600

real-life scenarios with non-repetitive motions, interactions, and occlusions, making it more challenging than
the controlled environments in these datasets.

The original paper needs quantitative metrics pertaining to the iPhone dataset, as the Hexplane author
refrains from providing such data. Instead, the author directs attention to GitHub, highlighting an issue
with the functionality of the data loader, suggesting that it does not operate as originally intended. We
fixed it and evaluated the model on 7 scenes for a more robust evaluation of the HexPlane model, as shown
in Table 7. We observe that the values are primarily different from those of the other datasets. This is
expected, as demonstrated by Gao et al. (2022) on other existing methods for dynamic scenes.

3.10 Space Only - Time Only Visualisation

In cases where the scenes are static, the model leverages features solely from the space planes, resulting
in efficient compression benefits. Moreover, the model allows for tracking temporal changes by visualizing
elements in the time-space planes that deviate from 1. This means that changes occurring over time are
explicitly captured. Therefore, the visualization of either space or time independently justifies the utilization
of both spatial and temporal planes, underscoring the model’s versatility in providing insights into the scene’s
static and dynamic aspects.

The distinct separation of space-only and space-time planes could demonstrate the model’s interpretability.
In cases where the scenes are static, the model leverages features solely from the space planes, resulting
in efficient compression benefits. This approach facilitates the identification and concise representation of
static regions. Moreover, the model allows tracking temporal changes by visualizing elements in the time-
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space planes alone. This means that changes occurring over time are explicitly captured. Therefore, the
visualization of either space or time independently, as in 3.10, justifies the utilization of both spatial and
temporal planes, underscoring the model’s versatility in providing insights into both static and dynamic
aspects of the scene.

Figure 3: We visualize the space and time planes individually by setting one of the planes to unity. The
first row depicts the "space-only" planes, while the latter is the corresponding "time-only" planes. It can be
easily observed that both complement each other in all four results.

3.11 Temporal Smoothness Loss

Inspired by (Fridovich-Keil et al., 2023), we apply the temporal smoothness regularization exclusively to
the temporal dimension of our space-time planes. The pursuit of temporal smoothness in space-time planes
plays a pivotal role in refining the visual coherence of dynamic scenes within video processing.

We promote smooth motion by employing an ID Laplacian filter, targeting the penalization of abrupt "ac-
celeration" over time. The filter operationalizes temporal smoothness by calculating the difference between
adjacent frames to obtain a ’first difference’ across the temporal dimension. It then computes the ’second dif-
ference’ by finding the difference between consecutive first differences. The measure of temporal smoothness
is the L2 norm of these second differences squared.

Lsmooth = 1
|C|n2

∑
c,i,t

||P i,t−1
c − 2P i,t

c + P i,t+1
c ||2

2 + λregLreg (7)

The resulting loss value serves as a quantification of temporal smoothness within the space-time planes.
By systematically tuning hyperparameters, we identified optimal values for lambda, as presented in the
accompanying table 8. Notably, the PSNR demonstrates an increasing trend with the elevation of lambda
until reaching 0.01. Beyond this threshold, the PSNR decreases, indicating that 0.01 serves as the optimal
value. However, the marginal improvement from the previous value (0.001) suggests that temporal loss
regularization has a limited impact on the overall results.

This regularization improved the model’s stability, reducing sudden accelerations and eliminating abrupt
jerks and unnatural jittering in movements. We recognize that such minor adjustments are essential to
enhance the output quality.

3.12 Limitations

Our replication efforts highlight a few limitations inherent to the HexPlane methodology:

10
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Table 8: Temporal Smoothness Regularization
Time Smoothness Weight(λ) PSNR

0 31.08
0.001 31.51
0.01 31.63
0.1 30.83
1 29.19
10 29.19

Performance with Sparse Observations: Unlike methods that leverage deformation and canonical fields for
dynamic 3D scene representation, HexPlane’s reliance on a basis-sharing mechanism, though innovative,
must be more robust in scenarios with highly sparse data. This is a critical area where its performance is
notably impacted.

Artifacts and Regularization Needs: Consistent with observations in the original HexPlane study, our repli-
cation process confirmed the occurrence of artifacts, such as color jittering in synthesized results. This
underscores the necessity for more robust regularization strategies to mitigate these issues and enhance
overall output quality.

3.13 Future Directions

Building on the foundational work of HexPlane, we propose several avenues for future research aimed at
overcoming these limitations and expanding the model’s applicability:

Enhanced Regularization Techniques: The development of specialized spacetime regularizations and the
adoption of additional loss functions, such as optical flow loss, may provide pathways to reduce artifacts and
improve the fidelity of synthesized scenes.

Basis Variation for Long Videos: Tailoring the basis representation to accommodate variations across different
video segments could yield more accurate and dynamic scene representations, addressing one of the core
limitations noted in our replication effort.

Utilization of Category-Specific Priors: Exploring the combination of HexPlane with category-specific mod-
els, such as 3DMM or SMPL, could offer targeted enhancements for specific scene types, thereby expanding
HexPlane’s versatility and accuracy in diverse applications.

4 Conclusion

Our replication affirms the original claims, demonstrating HexPlane’s ability to achieve comparable or su-
perior synthesis quality for dynamic novel view synthesis and notable accelerations exceeding hundreds of
times compared to implicit representations.

Our efforts involved verifying the claims and architectural choices, ensuring the robustness and reliability
of the HexPlane framework as a baseline. The reproduced findings confirm its potential to revolutionize
dynamic scene representation without introducing deformation, category-specific priors, or specific tricks.
We contribute the code for additional regularisation on Temporal Smoothness.

In conclusion, our reproduction of the HexPlane paper validates its efficacy and opens doors for future
research opportunities and applications in the broader field of 3D scene processing.
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A Appendix

Table 9: Performance Metrics for Different Scenes for Spherical Harmonics
Scene PSNR SSIM LPIPS-a LPIPS-v
Stand Up 32.059 0.973 0.017 0.029
Hook 26.731 0.940 0.044 0.068
Bouncing Ball 36.768 0.985 0.012 0.054
Hell Warrior 21.135 0.896 0.092 0.113
Lego 24.929 0.934 0.038 0.051
Jumping Jacks 29.846 0.966 0.032 0.046
Mutant 32.878 0.977 0.020 0.029
T-Rex 29.007 0.970 0.030 0.032
Average 29.169 0.955 0.036 0.053

Table 10: Performance Metrics for HexPlane_Slim on D-NeRF Dataset on different scenes.
Scenes PSNR SSIM MSSIM LPIPS-a LPIPS_v
Hell Warrior 24.514 0.944 0.968 0.049 0.074
Mutant 33.627 0.980 0.995 0.018 0.026
Hook 28.662 0.957 0.983 0.032 0.051
Bouncing Balls 39.634 0.991 0.994 0.008 0.032
Lego 25.124 0.939 0.961 0.033 0.044
T-Rex 30.653 0.975 0.986 0.026 0.028
Stand Up 34.382 0.984 0.995 0.013 0.020
Jumping Jacks 31.217 0.973 0.984 0.027 0.039
Average 30.977 0.968 0.984 0.026 0.039

Figure 4: Different fusion designs
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