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ABSTRACT

Image-based autoregressive next-token prediction offers a promising avenue for
developing world video simulators for autonomous driving. However, applica-
tions of these autoregressive models for common perception tasks such as ge-
ometric and semantic understanding remains under-explored, largely due to the
difficulty of applying discrete token modeling to perception tasks. In this paper,
we introduce PerceptionLM, an end-to-end framework that leverages autoregres-
sive world simulators to effectively improve Perception tasks. It consists of a
token-based pretraining stage and a novel fine-tuning stage that adapts discrete to-
kens to continuous embeddings for perception tasks. During pretraining, we lever-
age the world knowledge from Segment Anything and Depth Anything through
autoregressive next-token prediction to imbue the model with world knowledge
from multiple vision modalities. During fine-tuning, we propose a novel decoder
adaptor to fuse discrete tokens with continuous embeddings from image encoders,
which overcomes the limitations of discrete tokens. With PerceptionLM, we ob-
serve impressive scaling properties, where quality is consistently improved when
providing more training compute or longer temporal context. On multiple public
benchmarks including nuScenes, nuImages, Waymo Open Dataset, and Waymo
Open Motion Dataset, PerceptionLM demonstrates significant performance im-
provements for common perception tasks such as depth estimation and semantic
segmentation, highlighting its potential for scaling vision-only foundation models
for autonomous driving.

1 INTRODUCTION

Autoregressive Transformers, which perform next-token prediction based on previously observed
sequences, have emerged as a powerful class of generative models for language understanding (Rad-
ford et al., 2019; Kaplan et al., 2020; Touvron et al., 2023). Previous studies (Zhao et al., 2024; Team
et al., 2023; Radford, 2018) have shown that large language models pretrained on Internet-scale data
can encapsulate rich world knowledge, making them highly effective for a variety of downstream
tasks, including chat bots (Kalyan, 2023; Radford et al., 2019), image or audio comprehension (Pi
et al., 2024; Borsos et al., 2023), and code generation (Ugare et al., 2024).

Building upon these capabilities, autoregressive Transformer models have recently been extended
to autonomous driving for world modeling (Hu et al., 2023). Trained on large unannotated driving
videos that are tokenized into sequences of discrete tokens, these world models predict future image
tokens by autoregressively generating next tokens from prior token sequences. Although these mod-
els show great promise in generating realistic driving scenarios, prior research has predominantly
focused on visual quality. However, the extent to which such image-based autoregressive models in-
herently capture world knowledge, and how this knowledge can be effectively leveraged to improve
perception tasks, such as geometric and semantic understanding, remains under explored.

A major challenge in adapting autoregressive models for perception tasks lies in their reliance on
tokenized representations. While discrete tokens provide a compact and unified format for multi-
ple modalities, the tokenization process is inherently error-prone and often unsuitable for certain
perception tasks in autonomous driving. For example, tasks such as monocular depth estimation
with LiDAR ground-truth supervision involve handling sparse data, making it difficult to accurately
represent such signals using discrete tokens. This sparsity can lead to significant information loss
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during the tokenization process, limiting the model’s ability to reconstruct accurate depth maps. In
contrast, classical perception pipelines are more adept at learning sparse signals through their spe-
cialized decoders and masked losses, which preserve the integrity of sparse data throughout training.
If we can integrate the strengths of both approaches, we can potentially extend the autoregressive
world simulator to perform a wider range of tasks while leveraging its capacity to encode and reason
over rich world knowledge.

To address these challenges, we introduce PerceptionLM, i.e, Perception as Language Modeling,
a novel end-to-end framework that integrates continuous perception signals with an Autoregres-
sive Transformer to enhance perception tasks. PerceptionLM comprises two stages: a token-based
pretraining stage and a novel fine-tuning stage that bridges discrete tokens with continuous em-
beddings. During pretraining, we leverage world knowledge from existing models, such as Segment
Anything (Kirillov et al., 2023) and Depth Anything (Yang et al., 2024), through a next-token predic-
tion objective, enabling the model to incorporate rich visual information from multiple modalities.
In the fine-tuning stage, we employ a novel decoder adaptor that fuses discrete tokens with con-
tinuous embeddings from image encoders, overcoming the limitations of relying solely on discrete
tokens for perception tasks. Extensive experiments on public benchmarks, including nuScenes,
nuImages (Caesar et al., 2020), Waymo Open Dataset (Sun et al., 2020), and Waymo Open Mo-
tion Dataset (Chen et al., 2024) demonstrate that PerceptionLM achieves significant performance
improvements for both sparsely-supervised perception tasks, such as depth estimation, and densely-
supervised tasks, such as semantic segmentation. Our findings highlight the potential of Percep-
tionLM to scale vision-only foundation models for autonomous driving and utilize world knowledge
effectively for perception applications.

In summary, our contributions are:

• We propose a novel pretraining scheme which uses autoregressive future prediction for
long temporal sequences, operating on both tokenized images and outputs from foundation
models for depth and segmentation.

• We perform extensive scaling experiments to demonstrate the scaling property for our ar-
chitecture.

• We propose a novel lightweight adaptor that integrates the autoregressive world simulator,
which operates on discrete visual tokens, with a convolutional encoder-decoder network
for dense predictions.

• We conduct extensive experiments and ablations on the improvements provided by our
architecture for downstream tasks in depth estimation and semantic segmentation across
multiple datasets, demonstrating the efficacy of our model and the improvements provided
by scaling.

2 RELATED WORK

World Simulation Leveraging physical world simulation has benefited various computer vision
tasks. Early works such as MuZero (Schrittwieser et al., 2020) and DreamerV2 (Hafner et al.,
2020) laid the foundation by modeling latent dynamics for reinforcement learning, with DreamerV2
showing notable improvements by switching to discrete latents. VAE-RNN (Ha & Schmidhuber,
2018) further refines the world model paradigm by encoding observations with VAE and modeling
temporal dynamics with MDN-RNN (Graves, 2013). Recent work, like Drive-WM (Wang et al.,
2024) and DriveWorld (Min et al., 2024), adapt world models to visual forecasting and 4D scene
understanding, learning spatial-temporal representations to improve perception and planning. Other
advancements such as GAIA-1 (Hu et al., 2023) and Copilot4D (Zhang et al., 2023) apply discrete
token-based approaches to model sequences of sensor inputs for more effective future state pre-
diction in 2D and 3D spaces, respectively. In parallel, approaches like DreamTeacher (Li et al.,
2023) and Diffusion World Model (Ding et al., 2024) demonstrate how diffusion generative models
could be used for learning world models. These works underscore the growing importance of world
models in enabling scalable and robust world knowledge understanding for general perception tasks
across diverse visual domains.

Perception Task Fine-tuning It is usually helpful to fine-tune pretrained models on task-specific
datasets in order to improve performance of perception tasks. Traditional models like Mask R-
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Figure 1: PerceptionLM pretraining pipeline. Different modalities (image, depth, and edge) are
tokenized though a ViT-VQGAN tokenizer and flattened to one dimension. Tokens from multiple
consecutive time steps (t1, ..., tT ) are concatenated and used to pretrain the PerceptionLM backbone
through autoregressive next-token prediction. Best viewed in color.

CNN (He et al., 2017) and DETR (Carion et al., 2020) fine-tune pretrained vision backbones from
large datasets like ImageNet (Deng et al., 2009). LVM (Bai et al., 2024) pretrains a visual tokenizer
to generate discrete tokens, then fine-tunes the entire Autoregressive Transformer model for tasks
such as segmentation and pose estimation, leveraging the sequential nature of the pretraining. Mul-
tiMAE (Bachmann et al., 2022), on the other hand, conducts fine-tuning with task-specific decoders
for tasks like depth estimation and segmentation. In RoboLLM (Long et al., 2024), a pretrained
plain-backbone from a multi-modal language model is fine-tuned for robotic vision tasks, also with
task-specific heads introduced during fine-tuning to adapt the general pretrained backbone to spe-
cific tasks like object segmentation. VLMwRL (Zhai et al., 2024) combines reinforcement learning
with pretrained vision-language models, adding Chain-of-Thought (Wei et al., 2022) reasoning dur-
ing fine-tuning to enhance decision-making in goal-directed tasks. Each of these methods shows
how pretrained models can be adapted for downstream perception tasks through different strate-
gies, such as task-specific heads, reinforcement learning, or direct fine-tuning of the backbone. Our
method PerceptionLM differs by combining the discrete token-based world model with continuous
embeddings during fine-tuning, making it versatile for perception tasks requiring both geometric
and semantic understanding capabilities.

Autoregressive Visual Modeling Initially applied in language models like GPT (Vaswani et al.,
2023; Radford et al., 2019; Team et al., 2023) for next-token prediction, Autoregressive (AR) mod-
eling has extended to vision tasks, tokenizing images and videos into sequences for generation (Yu
et al., 2022; Sun et al., 2024; Ge et al., 2022). The AR universal learner paper (Malach, 2023) fur-
ther demonstrates that even simple autoregressive models can approximate complex functions like
those computable by Turing machines, highlighting the power of next-token prediction beyond just
architecture. To tackle scalability in high-resolution image generation tasks, VAR (Tian et al., 2024)
introduces multi-scale token prediction, improving efficiency and quality by predicting at different
image resolutions. Expanding into multi-modality, 4M and 4M-21 (Mizrahi et al., 2024; Bachmann
et al., 2024) extend order-agnostic masked AR models to handle a variety of tasks across multiple
modalities, enabling better generalization across tasks like text, image, and depth prediction through
masked modeling strategies. On the temporal front, VideoPoet (Kondratyuk et al., 2023) applies
next-token prediction for zero-shot video generation, generating coherent video sequences by pre-
dicting video tokens over time. Transfusion (Zhou et al., 2024) combines the diffusion loss with
autoregressive transformer to train on mixed-modality data. Inspired by the success of tokenized
pre-training in the large language domain, where discrete representations have proven effective in
capturing structured world knowledge, we aim to further explore the potential of discrete autore-
gressive pretraining for vision tasks with mixed discrete and continuous tokens.

3 METHOD

In this section, we detail our method, which consists of the PerceptionLM architecture, as well as
the pipeline to integrate PerceptionLM with a classical perception encoder-decoder model.
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Figure 2: PerceptionLM fine-tuning pipeline. In addition to the pretraining setup, during fine
tuning, an ImageNet-pretrained ConvNeXt model is adopted as vision encoder to extract task
specific multi-scale visual features. These features are aligned with multi-frame VQ tokens through
an encoder adapter. The flattened visual features are fed into the PerceptionLM causal Trans-
former along with a task specific token. The extracted features are passed to a decoder adapter
followed by a task-specific decoder head to produce the task outputs. Best viewed in color.

The pipeline includes pretraining and fine-tuning stages. During pretraining (Fig. 1), we first con-
struct visual tokens for driving videos with 1 billion images, and then use these tokens to pretrain
PerceptionLM with the next token prediction task. During fine-tuning (Fig. 2), besides the visual
tokens used in the pretraining stage, we also add task tokens and visual queries from a convolutional
encoder to perform perception tasks. In the rest of the section, we will provide more details about the
visual token construction (Sec. 3.1), model architecture (Sec. 3.2), and training regime (Sec. 3.3).

3.1 GENERATING A LARGE SCALE PRETRAINING DATASET WITH WORLD KNOWLEDGE

A high quality dataset is key to any large scale model training. In this work, we curate a large
scale private dataset of driving videos with 1 billion images, on top of which we generate additional
modalities from existing open-source foundation models, which we tokenize and combine with the
original images.

Imparting World Knowledge: While it has been shown that these models that predict future images
can learn to reason about the world beyond visual appearance, we posit that learning can be further
improved by adding other modalities such as geometry and semantics explicitly into the model train-
ing. In order to augment the reasoning into other modalities, we leverage existing foundation models
to generate high-quality pseudo-labels, facilitating the creation of large scale, aligned multi-modal
data. In particular, we posit that a strong, scalable perception model needs to be able to process both
geometric and semantic information about a scene. In this work, we propose to directly imbue the
model with this information by adding additional modalities which represent geometry and seman-
tics to the set of tokens our model reasons on. In particular, we adopt Depth Anything (Yang et al.,
2024) to generate relative depth maps in order to encode a geometric view of the scene, and Segment
Anything to produce segmentation masks, to encode a semantic view of the scene. As the order of
the masks is permutation invariant, we opt to instead produce edge maps (i.e. a binary mask for
edge region) from the segmentation masks in order to retain a consistent set of labels. While other
text-aligned foundation models like CLIP (Radford et al., 2021) are available, we opt to use dense
per-pixel models in order to retain a consistent output representation for tokenization. In order to
enable scaling of our model to billions of parameters, we curate an internal dataset with one billion
driving images, on which we generate the corresponding relative depth and edge maps.

Tokenization: To unify the representation space for multiple modalities, we adopt a pretrained ViT-
VQGAN (Esser et al., 2021; Yu et al., 2021) to convert each modality (image, depth, edge) into
a sequence of discrete tokens. For the depth and edge modalities, we broadcast along the channel
dimension to form a RGB image, and normalize the values to [0, 1] before tokenization. We carefully
select modalities for pretraining and fine-tuning to ensure that the fine-tuning task is either unseen
(e.g., semantic segmentation vs edge detection) or represented differently (e.g., absolute depth vs
relative depth). The tokenization process is pre-computed for reuse, resulting in a substantial corpus
of multi-modal visual token sequences.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.2 PERCEPTIONLM ARCHITECTURE

As shown in Fig. 2, PerceptionLM consists of a causal Transformer backbone that reasons about
the interactions between multi-modal temporal context and continuous visual signals, a canonical
encoder-decoder architecture for extracting continuous visual signals and performing a wide range
of perception tasks, and adapters that effectively align the discrete visual tokens and continuous
visual features.

Causal Transformer backbone: The causal Transformer processes three key inputs.

The first is a set of discrete visual tokens, which encodes multi-modal temporal cues. These tokens
are generated by the concatenation of the image, depth, and edge map tokens over multiple temporal
frames of our curated dataset. During pretraining, they are used as a supervision signal, where we
train the model on the next-token prediction task to efficiently encode the multi-modal temporal
information. In the fine-tuning phase, these tokens act as a prefix to provide additional multi-modal
and temporal context for historical frames.

The second and third inputs are learnable queries, providing the model with task-specific information
and visual cues. In this work, we use the intermediate features from a convolutional encoder as the
visual queries. As these features have a spatial correspondence, they can be thought of as input-
dependent position embeddings for each spatial location. These inputs are only provided during
fine-tuning, when the model is expected to produce outputs specific to each downstream task.

To combine the discrete and continuous tokens for the Transformer, all discrete tokens from the first
input are mapped to continuous embeddings via a learned lookup table. These embeddings are then
concatenated with the continuous task and visual query tokens, forming a unified sequence that is
input to the Transformer:

{q̂i}Li=1 = Transformer


φ
{{Iit}Li=1, {Di

t}Li=1, {Eit}Li=1}Tt=1︸ ︷︷ ︸
prefix

 , Qtask︸ ︷︷ ︸
task token

, {qi}Li=1︸ ︷︷ ︸
queries


 (1)

where {{Iit}Li=1, {Di
t}Li=1, {Eit}Li=1}Tt=1 are the visual tokens. {Iit}Li=1 is the set of tokens for image

modality with length L, {Di
t}Li=1 is the set of depth tokens, {Eit}Li=1 is the set of edge tokens and

T is the temporal length. {qi}Li=1 is the set of visual query embeddings and {q̂i}Li=1 is the updated
query features from the last layer of the Transformer block. φ represents the lookup table that maps
discrete token to continuous embeddings and Qtask is the task token that instructs the model to
perform tasks.

In this work, we focus on fine-tuning for a single task; however the framework is generalizable and
can be extended to instruct the model to perform multiple tasks simultaneously (Kondratyuk et al.,
2023). This extension is left for future work.

Vision Encoder-Decoder: For downstream tasks, we adopt a classical convolutional encoder-
decoder architecture. For the encoder, we use an off-the-shelf ConvNeXt (Liu et al., 2022) to extract
multi-scale visual features {Fi}Ni=1 where Fi ∈ RHi×Wi×Ci . These features are then fed into a
convolutional decoder to produce dense per-pixel outputs. In this work, the convolutional decoder
follows the architecture in Li et al. (2021) where multi-resolution feature maps are gradually up-
sampled and interacted with each other via concatenation and convolutions to produce the final
estimation.

Encoder Adapter: In order to augment this encoder-decoder with PerceptionLM, we propose
adapters for the encoder and decoder to fuse the two sets of embeddings. In the encoder, the dis-
crete token embeddings and the extracted visual features reside in distinct feature spaces. To align
these spaces, we introduce an adapter that projects the continuous visual embeddings into the dis-
crete token embedding feature space. More specifically, the multi-scale feature maps are resized
using bilinear interpolation to ensure a consistent feature size. These resized feature maps are then
concatenated along the channel dimension and passed through a few convolutional layers in En-
coderAdaptor for feature refinement:

Q = EncoderAdaptor
(
Concat

(
{Bilinear(Fi)}Ni=1

))
∈ RH×W×C (2)
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where Fi is the multi-scale features from encoder, N is the number of feature scales and HW is
equal to the sequence length L to match the spatial dimension in pretraining. The refined feature
map Q is subsequently flattened along the spatial dimension to form a sequence of continuous em-
beddings {qi}Li=1 in equation 1 and acts as the visual queries for the Transformer.

Decoder adapter: The updated query features {q̂i}Li=1 in equation 1 are reshaped back to a feature
map Q̂ ∈ RH×W×C . In order to imbue the world knowledge from the causal Transformer, we
concatenate the output feature Q̂ with the original multi-scale feature Fi from vision encoder. The
imbued features are then passed through a few convolutional layers in DecoderAdaptor to produce
the adapted feature F̂i for task-specific decoders.

F̂i = DecoderAdaptor
(
Concat

(
Fi,Bilinear

(
Q̂
)))

,∀i = 1, . . . , N (3)

3.3 TRAINING REGIME

Pretraining: Pretraining is essential to imbue the model with foundational knowledge for reasoning
generalizable feature representation, enabling it to capture complex visual patterns and relationships,
before fine-tuning on task-specific data. To this end, we pretrain the large vision model on our
internal dataset of large scale driving videos with image tokens and inferred depth and edge tokens.
As discussed in Sec. 3.1, all modalities are tokenized to form the visual tokens. The autoregressive
Transformer is then trained on the next-token prediction task, allowing the model to effectively learn
and reason about the interactions among these discrete tokens, utimately encapsulating rich world
knowledge within. In particular, we train the model to predict the discrete token ID of next token
via N-way classification and a cross-entropy loss.

Fine-tuning: After pretraining, we fine-tune the entire PerceptionLM in an end-to-end manner,
instructing the Transformer to perform downstream perception tasks that are usually challenging
for token-based architectures. Task-specific heads and corresponding loss functions are employed
to guide the learning process. For the depth estimation, LiDAR point clouds are projected onto
images as supervision signals, and an L1 loss is applied. For semantic segmentation, a sigmoid
focal cross-entropy loss is employed.

4 EXPERIMENTS

4.1 DATASETS

We evaluate our method on several autonomous driving datasets to verify the efficacy of both our
pretraining pipeline and its effects on downstream perception tasks in depth estimation and semantic
segmentation. For large scale pretraining, we curate an internal dataset for autoregressive next-token
prediction task learning and then fine tune and evaluate our method on open datasets for depth and
semantic segmentation tasks.

We evaluate our method on depth estimation on the nuScenes, WOMD, and WOD datasets. To do so,
we take the LiDAR scans corresponding to each image, and project each lidar point into the image
to establish a ground-truth depth for the corresponding pixel. We then train our model to predict
per-pixel depth where only sparse positions with ground-truth depth values will be used to supervise
the learning and evaluation. For semantic segmentation, we leverage the semantic segmentation
groundtruth in the nuImages dataset to directly supervise a multi-class classification model.

Pretraining dataset: To evaluate PerceptionLM autoregressive pretraining at scale, we curate an
internal dataset with one billion driving images at 5Hz without labels.

nuScenes: nuScenes is a public large scale 3D dataset for autonomous driving with 12 HZ images
and 2HZ annotation frequency. The dataset consists of 1,000 driving sequences, with 1.4 million
camera images and 390k LiDAR sweeps.

nuImages: nuImages is a public 2D autonomous driving dataset for image based detection and
semantic segmentation. The dataset contains 93k video clips with 13 frames each, spaced out at
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2Hz. Each video contains a single image labeled with segmentation masks, with 100k semantic
segmentation masks in total.

Waymo Open Dataset (WOD) The Waymo Open Dataset is a large scale autonomous driving
dataset with 1150 driving sequences with 5 camera images and paired LiDAR sweeps at each frame.
Each sequence consists of 20s of data recorded at 10Hz.

Waymo Open Motion Dataset (WOMD) In addition to the Waymo Open Dataset, we also evaluate
on the Waymo Open Motion Dataset. WOMD is a much larger dataset, consisting of over 100,000
scenes, each 20 seconds long at 10Hz. The dataset contains both camera sensor tokens and LiDAR
sweeps for each frame We asked Waymo for permission to access the raw images from WOMD and
regenerated the tokens for the fine-tuning tasks.

In this work, we resize all images to 256×256 and apply temporal subsampling, resulting in 5 HZ
for pretraining data, 6HZ for nuScenes, 2HZ for nuImages, 5HZ for WOD, and 5HZ for WOMD.

4.2 EXPERIMENTAL SETUP

Pretraining: We conduct experiments with 1, 2, 4, and 8 frames of temporal context window,
where each frame contains 3 modalities: image, depth and edge, and each modality is tokenized into
1024 tokens. The total number of input tokens are 3072, 6144, 12288, and 24576 for the 1, 2, 4, and
8-frame experiments, respectively, We use a decoder only Transformer with causal masking, RoPe
positional embedding and RMS normalization (Vaswani, 2017; Su et al., 2024; Zhang & Sennrich,
2019). To efficiently model long context lengths, we use a Blockwise Parallel Transformer with
block size 1024 (Liu & Abbeel, 2024) for our casual Transformer backbone, which reduces the
memory and time complexity from quadratic to linear with respect to input sequence length. For
scaling 1 and 2-frame models, we jointly scale hidden layer size=128×scale, intermediate size =
256×scale, and number of hidden layers = 4×scale, where scale ∈ [1, 2, 3, 4, 6, 8, 10, 12], leading
to models with 2.7M, 9.5M, 24.1M, 50.5M, 154M, 352M, 677M, and 1.1B parameters. For 4-frame
and 8-frame models, we scale model up to scale = 10 and 8 respectively.

Fine-tuning: ConvNeXt-S (Liu et al., 2022) is adopted as the vision backbone for both depth pre-
diction and semantic segmentation. ConvNeXt-S is very light-weight (50M params) and can be
easily integrated with PerceptionLM with negligible computation overhead, as compared with our
largest 1.1B model. In this work, we initialize our ConvNeXt model with the weights pretrained
on imageNet-22K and fine-tuned on ImageNet1-K (Deng et al., 2009). By default, we adopt three
modalities (image, relative depth, edge map) and eight frames to form the visual tokens. For con-
sistency with pretraining, the input image to ConvNeXt is resized to a shape of (256, 256, 3), and
the induced intermediate visual queries share the shape of (32, 32, C) where the C matches with the
Transformer’s hidden layer size. For experiments with PerceptionLM, we also initialize the visual
encoder and decoder weights with the encoder-decoder only model trained on the fine-tuning task.
All models are trained on 64 TPUv5e with per-device batch size 1. For ablation studies, we evaluate
the depth prediction on NuScenes dataset and semantic segmentation on nuImages dataset.

4.3 SCALING UP PRETRAINING.

We first systematically study the scaling properties of our pre-training in both model capacity and
temporal context length.

Beyond Model Parameters – Scaling Temporal Context: While model parameters are important,
scaling perception reasoning also critically depends on the length of the temporal context. Increasing
the number of temporal frames allows PerceptionLM to incorporate more contextual information
from the history. However, this increased reasoning capacity is not reflected in the sheer number
of parameters. To accurately capture PerceptionLM’s true capacity, we use model training FLOPs
(floating-point operations) as the metric. This measures the computational effort required to train
the model, which better reflects the ability to process longer temporal contexts.

Scaling Model Capacity: Table 1 shows the loss trend fitting. We fit the next token prediction
cross-entropy loss with respect to training GigaFLOPs to a power law, i.e., L = A/GFLOPsB+C,
where A and B captures the scaling trends and C indicates the irreducible loss. Similar to Large

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 3: Scaling trends for PerceptionLM pretraining. Evaluation loss is defined as the cross-
entropy loss of next-token prediction, shown in Figure 1. We fit the evaluation losses (dotted points)
to power law functions and display the corresponding fitted dashed line, as in Table 1. The right
top inserted figure shows the actual training loss curves for the 1-frame model, where only those red
dotted points on the lowest envelope are kept for the main figure. Best viewed in color.

Table 1: Temporal and model scaling fitting. Evaluation loss is fitted to a power law function
L = A/GFLOPsB + C with respect to the training GigaFLOPs. In general, longer temporal
context tends to have lower irreducible eval loss.

Num. of frames 1 2 4 8

Scaling curve L1 =
0.419

GFLOPs0.312
+ 3.01 L2 =

0.498

GFLOPs0.370
+ 2.81 L3 =

0.677

GFLOPs0.375
+ 2.65 L4 =

0.970

GFLOPs0.383
+ 2.50

Language Models, scaling the model capacity with more training FLOPs leads to lower next token
prediction loss.

Scaling Temporal Context: As indicate from both Figure 3 and Table 1, pretraining a Percep-
tionLM with high FLOPs only on a single frame leads to a higher irreducible loss (fitting parameters
C) 3.01 compared to pretraining with 2, 4, and 8 frames. This highlights the need for incorporating
longer visual context information to improve next token prediction.

Scaling PerceptionLM: Balancing Model and Temporal Context While increasing either model
capacity or temporal context can improve performance, our analysis reveals that a balanced approach
is crucial for optimal results. Surprisingly, simply expanding the context window with a small model
actually increases the evaluation loss. This is evident in the loss scaling factor (A), which grows
from 0.419 for the single-frame model to 0.498, 0.677, and 0.970 for the 2, 4 and 8-frame models,
respectively.

This behavior stems from the unique structure of PerceptionLM. Unlike traditional language mod-
els that process sequential tokens, PerceptionLM handles tokens from a four-dimensional space
(time, modality, row, and column). These tokens exhibit localized correlations within this multi-
dimensional space, with a token at position (t,m, r, c) being more closely related to its immediate
neighbors (t ± 1,m ± 1, r ± 1, c ± 1). While flattening these dimensions into a single sequence
simplifies next-token prediction, it disrupts these inherent relationships. Consequently, it’s essential
to scale both the model capacity and the temporal context length concurrently. This is further sup-
ported by the GFLOPs exponent (parameter B), where the 8-frame model exhibits a larger decaying
factor (0.383) compared to the single-frame model (0.312), indicating that scaling the model leads
to faster loss reduction with longer context lengths.

Compute optimal scaling: Based on fittings in Figure 3 and Table 1, we find 1, 2, 4, and 8 frames
model evaluation loss curves intersect exactly one time with each other, indicating the shifting of op-
timal training paradigm, i.e. for a small training budget < 1017 FLOPs, single frame model is more
compute optimal, while for a large training budget > 1019 FLOPs, 8-frame model is more efficient.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Benchmark results for depth prediction on nuScenes, WOD and WOMD datasets with
352M PerceptionLM and 8 frames.

Methods Datasets AbsRel↓ RMSE↓ RMSE log↓ δ1↑ δ2 ↑ δ3 ↑

ConvNeXt nuScenes 0.067 3.305 0.148 0.968 0.979 0.985
PerceptionLM w/o pretrain nuScenes 0.067 (0.0%) 3.382 (+2.3%) 0.146 (-1.4%) 0.97 0.981 0.986

PerceptionLM nuScenes 0.054 (-19.4%) 2.951 (-10.7%) 0.125 (-15.5%) 0.978 0.986 0.990

ConvNeXt WOMD 0.069 4.461 0.137 0.936 0.980 0.992
PerceptionLM w/o pretrain WOMD 0.063 (-9.4%) 4.267 (-4.3%) 0.131 (-0.9%) 0.945 0.982 0.992

PerceptionLM WOMD 0.057 (-17.4%) 3.940 (-11.7%) 0.121 (-11.7%) 0.955 0.985 0.993

ConvNeXt WOD 0.102 5.318 0.171 0.882 0.967 0.989
PerceptionLM w/o pretrain WOD 0.098 (-3.9%) 5.223 (-1.8%) 0.166 (-2.9%) 0.890 0.970 0.989

PerceptionLM WOD 0.089 (-12.7%) 4.948 (-7.0%) 0.156 (-8.8%) 0.908 0.974 0.990

Table 3: Semantic Segmentation
results on nuImage dataset.

Methods mIoU↑

ConvNeXt 65.21
PerceptionLM w/o pretraining 65.06

PerceptionLM 67.35

Table 4: Fine-tuning inputs study based on a Percep-
tionLM with 352M parameters and 8 frames.

Fine-tuning inputs AbsRel↓ RMSE↓ δ1 ↑

Discrete tokens only 0.062 3.159 0.972
Discrete tokens + continuous embeddings 0.054 2.951 0.978

This finding suggests that model capacity and temporal context should be scaled harmoniously to
maximize performance gains and minimize the training compute.

4.4 FINE-TUNING EXPERIMENTS

Main performance comparisons: Table 2 reports the benchmark results for depth prediction on the
nuScenes, WOD, and WOMD datasets, while Table 3 presents the semantic segmentation bench-
marks on nuImages. PerceptionLM demonstrates a substantial improvement over the baseline Con-
vNext model, suggesting that the proposed framework effectively extracts rich world knowledge to
enhance perception performance. In contrast, PerceptionLM without pretraining exhibits compa-
rable or slightly lower performance relative to the baselines, which we attribute to the limited size
of the available datasets. The discrete token context is represented as a sequence of integer values,
resulting in a highly compact representation. This makes pretraining on large-scale datasets crucial,
as the model otherwise struggles to extract meaningful information from these token streams due to
the constrained amount of training data.

Fine tuning architecture ablation: A naive alternative fine-tuning approach is to simply use
the same pre-training method that tokenize all inputs into discrete tokens, without adding the extra
ConvNeXt vision encoder with continuous embeddings in our PerceptionLM. In particular, one can
add a list of randomly initialized queries and rely on the discrete tokens from Prefix in Figure 2 to
produce all the necessary features for the decoder.

Table 4 compares these two approaches, where the baseline relies solely on discrete tokens but
our PerceptionLM relies on both discrete tokens from Prefix and continous embeddings from a
ConvNeXt vision encoder. Results show our PerceptionLM achieves much better quality than the
baseline, highlighting the importance of combining both scene dependent embeddings and discrete
tokens for Perception tasks.

Model scaling experiment: Table 5 presents the results of the scaling experiment during fine-
tuning. Increasing the model size generally leads to improved performance, demonstrating the strong
scalability of PerceptionLM.

Temporal context length: Table 6 examines the quality impact of temporal context length. Results
show that increasing the sequence length consistently improves model performance, indicating that
PerceptionLM effectively captures temporal cues to support downstream perception tasks.

Scaling ConvNeXt comparison: In Table 7, we investigate the performance gains from scaling a
specialized ConvNeXt model vs our proposed method. As shown in the table, ConvNeXt perfor-
mance peaks at around 203M parameters, without further gains when scaling to 357M parameters.
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Table 5: Model scaling with single frame.

Scale AbsRel↓ RMSE↓ δ1 ↑ mIoU↑

50M 0.063 3.178 0.971 66.38
352M 0.060 3.047 0.973 66.79
1.1B 0.059 2.997 0.973 67.08

Table 6: Influence of temporal context.
#Frames AbsRel↓ RMSE↓ δ1 ↑ mIoU↑

1 0.060 3.047 0.973 66.79
4 0.057 2.966 0.976 67.28
8 0.054 2.951 0.978 67.35

Table 7: ConvNeXt encoder scaling.

Model # Params RMSE↓

ConvNeXt-T 32M 3.541
ConvNeXt-S 53.6M 3.305
ConvNeXt-L 203M 3.167

ConvNeXt-XL 357M 3.212

ConvNeXt-S + PerceptionLM 448M 2.951

Table 8: Inputs modality ablations.

Image Edge Depth AbsRel↓ RMSE↓ δ1 ↑

0.067 3.305 0.968
X 0.064 3.204 0.971

X 0.063 3.183 0.971
X 0.060 3.076 0.972

X X X 0.057 2.966 0.976

Table 9: Fine-tuning strategy ablations. denotes trainable; denotes frozen. Fine-tuning all
weights leads to the best quality.

Encoder Deoder PerceptionLM AbsRel↓ RMSE↓ δ1 ↑

0.065 3.239 0.970
0.065 3.243 0.971
0.063 3.192 0.971
0.057 2.966 0.976

In contrast, our proposed method shows continued improvement in scaling as shown in Table 5,
further demonstrating its scalability.

Modality ablations: In classical computer vision, modalities that are more closely aligned with
the target task tend to contribute more significantly to the final performance. In PerceptionLM, all
multi-modal information is represented as discrete tokens, i.e., discrete integers. Table 8 investigates
whether this synergy persists for discrete modality inputs. The results indicate that relative depth
tokens contribute the most to absolute depth prediction, reflecting a similar relationship as observed
in classical vision tasks. Additionally, the model utilizing edge modality inputs outperforms the
one relying on raw image tokens. The best performance is achieved when incorporating all three
modalities, highlighting the effectiveness of multi-modal fusion in PerceptionLM.

Fine-tuning strategy: To identify the most effective training strategy for optimizing the alignment
between discrete token embeddings and continuous visual signals, we evaluate several configura-
tions: (1) frozen encoder, decoder, and Transformer with only the adapters being learnable, (2)
frozen encoder and Transformer with trainable adapters and decoder, (3) trainable encoder and de-
coder with a frozen Transformer, and (4) a fully trainable model. As shown in Table 9, the fully
trainable configuration of PerceptionLM achieves the highest performance, underscoring the impor-
tance of jointly training all model components to achieve optimal results.

4.5 CONCLUSION

In this work, we investigate how to leverage world simulation to enhance perception tasks that are
traditionally hard to be represented as discrete tokens. As a solution, we propose PerceptionLM, an
end-to-end framework that integrates continuous perception signals with an auto-regressive Trans-
former to enhance perception tasks. Extensive scaling experiments are conducted to understand the
scaling properties of PerceptionLM in terms of both model capacity and multi-modal temporal con-
text length. Comprehensive experiments on public datasets demonstrate significant improvements
when PerceptionLM is integrated.
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