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Abstract

Recently, pre-trained language models (PLMs)001
have shown effectiveness in domain transfer002
and task adaption. However, two major chal-003
lenges limit the effectiveness of transferring004
PLMs into math problem understanding tasks.005
First, a math problem usually contains a textual006
description and formulas. The two types of in-007
formation have a natural semantic gap. Second,008
textual and formula information is essential to009
each other, it is hard but necessary to deeply010
fuse the two types of information. To address011
these issues, we enrich the formula informa-012
tion by combining the syntax semantics of the013
text to construct the math syntax graph, and014
design the syntax-aware memory networks to015
deeply fuse the characteristics from the graph016
and text. With the help of syntax relations,017
the token from the text can trace its semantic-018
related nodes within the formulas, which is019
able to capture the fine-grained correlations be-020
tween text and formulas. Besides, we also de-021
vise three continual pre-training tasks to further022
align and fuse the representations of the text023
and graph. Experimental results on four tasks024
in the math domain demonstrate the effective-025
ness of our approach.026

1 Introduction027

Understanding math problems via automated meth-028

ods is a desired machine capacity for artificial in-029

telligence assisted learning. Such a capacity is the030

key to the success of a variety of education appli-031

cations, including math problem retrieval (Reusch032

et al., 2021), problem recommendation (Liu et al.,033

2018), and problem solving (Huang et al., 2020).034

To automatically understand math problems, it035

is feasible to learn computational representations036

from problem statement texts with pre-trained lan-037

guage models (PLMs) (Shen et al., 2021; Peng038

et al., 2021). Pre-trained on the large-scale gen-039

eral corpus, PLMs (Devlin et al., 2018) can be040

effectively transferred into new domains or tasks041

Math Problem: Given that sin x is equal to 0.6 and x is an
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Figure 1: Illustration of a math problem with its textual
description and math syntax graph.

by continual pre-training on task-specific datasets. 042

Different from traditional text comprehension tasks, 043

as shown in Figure 1, math problems usually in- 044

volve a complex mixture of mathematical symbols, 045

logic and formulas, which becomes a barrier to the 046

accurate understanding of math problems. 047

However, previous works (Reusch et al., 2021; 048

Shen et al., 2021) mostly oversimplify the issues 049

of math problem understanding. They directly con- 050

catenate the formulas with the textual description 051

as an entire sentence, and then perform continual 052

pre-training and encoding without special consider- 053

ations. Therefore, two major shortcomings that are 054

likely to affect the understanding of math problems. 055

First, formulas (the most important elements of the 056

problem) contain complex mathematical logic, and 057

modeling them as plain text may incur the loss of 058

valuable information. Second, the textual descrip- 059

tion contains essential explanations or hints about 060

the symbols and logic within the formulas, hence 061

it is necessary to accurately capture fine-grained 062

correlations between words from description text 063

and symbols from math formulas. 064

To better model the formulas, operator trees 065

have been introduced to represent the math for- 066

mulas (Zanibbi and Blostein, 2012), which are sub- 067
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sequently encoded by graph neural network (GNN).068

Although these methods can improve the compre-069

hension capacity to some extent, there exists a se-070

mantic gap between graph encoding and text en-071

coding due to the heterogeneity of formulas and072

texts. Even with concatenation and self-attention073

mechanisms (Peng et al., 2021), it is still hard to074

capture the fine-grained associations among tokens075

and symbols, e.g., the dependency relation between076

math symbols and corresponding explanation to-077

kens.078

In order to better fuse the information from for-079

mulas and texts, our solutions are twofold. First, we080

construct a syntax-aware memory network based081

on a structure called math syntax graph (Figure 1),082

which integrates operator trees from formulas and083

syntax trees from texts. The key point lies in that084

we store the node embeddings from the GNN and085

dependency relation embeddings as entries of mem-086

ory networks, and then design the corresponding087

read and write mechanism by taking token em-088

beddings from the PLM (for formulas) as queries,089

which can effectively associate the representation090

spaces of text and formulas. Second, we devise spe-091

cific continual pre-training tasks to further enhance092

and fuse the text and graph data. These tasks not093

only improve the understanding of math symbols094

in text and formulas logic in the syntax graph, but095

also directly align and unify the representations of096

the text and graph.097

To this end, we propose COMUS, to continually098

pre-train language models for math problem099

understanding with syntax-aware memory network.100

In our approach, we first encode the textual de-101

scription and math syntax graph via PLM and GAT,102

respectively. Then, we add syntax-aware memory103

networks between the last k layers of PLM and104

GAT. In each layer, we first conduct the multi-view105

read and write operation to interact and fuse the106

token and node representations, respectively, and107

then consolidate the fused representation by pass-108

ing the next layers from PLM and GAT. All param-109

eters of our model will be initialized from PLMs110

and be continually pre-trained by our devised three111

tasks, namely masked language model, memory112

triplet completion and text-graph contrastive learn-113

ing. Experimental results on four tasks in the math114

domain have demonstrated the effectiveness of our115

approach, especially when training data is limited.116

Our contributions can be summarized as follows:117

(1) We construct a novel syntax-aware memory118

network to capture the fine-grained interactions 119

between the text and formulas. (2) We design three 120

continual pre-training tasks to further align and 121

fuse the representations of the text and graph data. 122

(3) Experiments on four tasks in the math domain 123

demonstrate the effectiveness of our model. 124

2 Preliminaries 125

Problem Statement. Generally, a math problem 126

consists of a textual description d and several for- 127

mulas {f1, f2, · · · , fm}. The textual description 128

provides necessary background information for the 129

math problem. It is formally denoted as a sequence 130

of tokens q = {t1, t2, · · · , tl}, where ti is either 131

a word token or a mathematical symbol (e.g., a 132

number or an operator). The formulas describe the 133

relationship among mathematical symbols, which 134

is the key to understand and solve the math problem. 135

Each formula consists of a sequence of mathemati- 136

cal symbols, denoted as fi = {s1, · · · , sn}. 137

Based on the above notations, this work focuses 138

on continually pre-training a PLM on unsupervised 139

math problem corpus for domain adaptation. After 140

that, the PLM can be fine-tuned on various tasks 141

from the math domain (e.g., knowledge point pre- 142

diction), and improve the task performance. 143

Math Syntax Graph. The understanding of math- 144

ematical text and formulas requires capturing the 145

complex correlations within words, symbols and 146

operators. Inspired by previous works (Mansouri 147

et al., 2019; Peng et al., 2021), we construct a syn- 148

tax graph, where the textual description is repre- 149

sented as a syntax dependency tree and the formu- 150

las are represented as operator trees (OPT). 151

Specifically, given a math problem consisting 152

of a textual description d and several formulas 153

{f1, f2, · · · , fm}, we first utilize the toolkit Tan- 154

gentS1 to convert each formula into an OPT, and 155

Stanza2 to convert the textual description into a 156

syntax dependency tree. Then, we add a special 157

token “[MATH]” to link each OPT with a specific 158

slot in the syntax dependency tree, to construct the 159

syntax graph G of the math problem. Let N and 160

R denote the set of nodes and relations on G, re- 161

spectively. We further extract dependency triplets 162

from G, where a dependency triplet (h, r, t) de- 163

notes there exists an edge with the relation r ∈ R 164

to link the head node h ∈ N to the tail node t ∈ N . 165

1https://github.com/BehroozMansouri/TangentCFT
2https://stanfordnlp.github.io/stanza/
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3 Methodology166

As shown in Figure 2, our approach aims to effec-167

tively encode textual description and formulas, and168

fuse the two kinds of information for understanding169

math problems. In what follows, we first present170

the base models for encoding math problems, and171

then introduce our improvements on syntax-aware172

memory networks and continual pre-training tasks.173

3.1 Base Models174

Encoding Math Text. We use BERT (Devlin et al.,175

2018) as the PLM to encode the math text, i.e., the176

textual description d. Given d = {t1, t2, · · · , tL}177

of a math question, the PLM first projects these to-178

kens into corresponding embeddings. Then, a stack179

of Transformer layers will gradually encode the em-180

beddings to generate the l-th layer representations181

{h(l)
1 ,h

(l)
2 , · · · ,h(l)

L }. Since the textual description182

q may contain specific math symbols that were not183

seen during pre-training, we add them into the vo-184

cabulary of the PLM and randomly initialize their185

token embeddings. Such new embeddings will be186

learned during continual pre-training.187

Encoding Math Syntax Graph. We incorporate a188

graph attention network (GAT) (Veličković et al.,189

2018) to encode the math syntax graph, it is com-190

posed of an embedding layer and a stack of graph191

attention layers. Given a math syntax graph G with192

N nodes, GAT first maps the nodes into a set of193

embeddings {n1,n2, · · · ,nN}. Then each graph194

attention layer aggregates the neighbourhood’s hid-195

den states using multi-head attentions to update the196

node representations as:197

n
(l+1)
i =

K

∥
k=1

σ(
∑
j∈Ni

αk
ijW

(l)
k n

(l)
j ). (1)198

where n
(l+1)
i is the representation of the i-th node199

in the l + 1 layer, ∥ denotes the concatenation op-200

eration, σ denotes the sigmoid function, K is the201

number of attention heads and Ni is the neighbor-202

hoods of node i in the graph, W(l)
k is a learnable203

matrix. αk
ij is the attention value of node i to its204

neighbour j in attention head k.205

3.2 Syntax-Aware Memory Network206

To improve the semantic interaction and fusion207

of representations from math text and the syntax208

graph, we add k syntax-aware memory networks209

between the last k layers of PLM and GAT. In the 210

memory network, node embeddings (from the math 211

syntax graph) with dependency relations are con- 212

sidered as slot entries, and we design multi-view 213

read/write operations to allow token embeddings 214

(explanation tokens or hints) to attend to highly 215

related node embeddings (math symbols). 216

Memory Initialization. We construct the mem- 217

ory network based on the dependency triplets and 218

representations of the math syntax graph. Given 219

the dependency triplets {(h, r, t)}, we treat the 220

head and relation (h, r) as the key and the tail 221

t as the value, to construct a syntax-aware key- 222

value memory. The representations of the heads 223

and tails are the corresponding node representa- 224

tions from GAT, while the relation representa- 225

tions are randomly initialized and will be opti- 226

mized by continually pre-training. Finally, we 227

concatenate the representations of heads and rela- 228

tions to compose the representation matrix of Keys 229

as K(l) = {[n(l)
h1
; r1], [n

(l)
h2
; r2], · · · , [n(l)

hN
; rN ]}, 230

and obtain the representation matrix of Values as 231

V(l) = {n(l)
t1
,n

(l)
t2
, · · · ,n(l)

tN
}. 232

Multi-view Read Operation. We read the useful 233

semantics within the syntax-aware memory to up- 234

date the token representations from PLM. Since 235

a token can be related to several nodes within 236

the math syntax graph, we design a multi-view 237

read operation to capture these complex seman- 238

tic associations. Concretely, via different bilinear 239

transformation matrices {WS
1 ,W

S
2 , · · · ,WS

n}, 240

we first generate multiple similarity matrices 241

{S1,S2, · · · ,Sn} between tokens and keys (head 242

and relation) within the memory, and then aggre- 243

gate the values (tail) to update the token represen- 244

tations. Given the token representations from the 245

l-th layer of PLM H(l) = {h(l)
1 ,h

(l)
2 , · · · ,h(l)

L }, 246

the similarity matrix Si is computed as 247

Si = H(l)WS
i K

(l)⊤ (2) 248

where WS
i is a learnable matrix, and an entry 249

Si[j, k] denotes the similarity between the j-th to- 250

ken and the k-th key (head and relation) in the i-th 251

view. Based on these similarity matrices, we up- 252

date the token representations by aggregating the 253

value representations as 254

Ĥ(l) = H(l) + [α1V;α2V; · · · ;αhV]WO (3) 255

αi = softmax(Si) (4) 256
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Figure 2: Illustration of our COMUS. We encode the textual description and math syntax graph of a math problem.

where WO is a learnable matrix, αi is the attention257

scores along the key dimension. In this way, the258

token representation can directly trace into multiple259

semantic-related values via the keys, so that the260

complex fine-grained correlations between tokens261

and nodes can be captured. The updated token262

representations Ĥ(l) will be fed into the next layer263

of PLM to consolidate the fused information.264

Multi-View Write Operation. After update the265

token representations, we also consider to write the266

memory for updating the representations of nodes267

from GAT. We also utilize the multi-view similarity268

matrices {S1,S2, · · · ,Sh}. Concretely, we com-269

pute the attention scores β via softmax along the270

token dimension of the similarity matrices, and271

then aggregate the token representations as272

V(l)
new = [β1H

(l);β2H
(l); · · · ;βhH(l)]WR (5)273

βi = softmax(S⊤
i ) (6)274

where WR is a learnable matrix. Based on the275

aggregated token representations, we incorporate a276

gate to update the representation of the values as277

z = σ(V(l)
newW

A +V(l)WB) (7)278

V̂(l) = z ∗V(l)
new + (1− z) ∗V(l) (8)279

where WA and WB are learnable matrices. The280

updated representations V̂(l) will be also fed into281

the next layer of GAT for consolidation.282

3.3 Continual Pre-training 283

Continual pre-training aims to further enhance and 284

fuse the math text and math syntax graph. To 285

achieve it, we utilize the masked language model 286

and dependency triplet completion tasks to improve 287

the understanding of math text and math syntax 288

graph, respectively, and the text-graph contrastive 289

learning task to align and fuse their representations. 290

Masked Language Model (MLM). Since math 291

text contains a number of special math symbols, 292

we utilize the MLM task to learn it for better under- 293

standing the math text. Concretely, we randomly se- 294

lect 15% tokens of the input sequence to be masked. 295

Of the selected tokens, 80% are replaced with a spe- 296

cial token [MASK], 10% remain unchanged, and 297

10% are replaced by a token randomly selected 298

from vocabulary. The objective is to predict the 299

original tokens of the masked ones as: 300

LMLM =
∑

ti∈Vmask

− log p(ti) (9) 301

where Vmask is the set of masked tokens, and p(ti) 302

denotes the probability of predicting the original 303

token in the position of ti. 304

Dependency Triplet Completion (DTC). Within 305

the math syntax graph, the relationships with the de- 306

pendency triplet (h, r, t) are essential to understand 307

the complex math logic of the math problem. Thus, 308

inspired by TransE (Bordes et al., 2013), we devise 309

the dependency triplet completion task to improve 310

the correlations within the triplets. Specifically, for 311
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each triplet (h, r, t) within the math syntax graph,312

we minimize the DTC loss by313

LDTC = max(γ+d(nh+r,nt)−d(nh+r
′
,nt), 0)

(10)314

where γ > 0 is a margin hyper-parameter, and d is315

the Euclidean Distance. r
′

is the randomly sampled316

negative relation embedding. In this way, the head317

and relation embeddings can learn to match the318

semantics of the tail embedding, which enhances319

the node and relation representations to capture the320

graph structural information.321

Text-Graph Contrastive Learning (TGCL). Hav-322

ing enhanced the representations of math text and323

math syntax graph via MLM and DTC respectively,324

we further consider to align and unify the repre-325

sentation of the two different views of the math326

problem. We adopt contrastive learning to pull the327

representations of text and graph of the same math328

problem together, and push apart negatives. Con-329

cretely, given a text-graph pair of a math problem330

(qi,Gi), we utilize the representation of the [CLS]331

token hq
i as the sentence representation of qi, and332

the meanpooling of the node representations nG
i as333

the graph representation of Gi. Then, we adopt the334

cross-entropy contrastive learning objective with335

in-batch negatives to align the two representations336

LTGCL = − log
exp(f(hq

i ,n
G
i )/τ)∑

i ̸=j exp(f(h
q
i ,n

G
j )/τ)

(11)337

where f(·) is a dot product function and τ denotes338

a temperature parameter. Since the TGCL task is339

able to unify the representations of text and graph,340

it can also benefit for the fusion and interaction of341

the information from text and graph.342

3.4 Overview and Discussion343

Overview. Our approach focuses on continually344

pre-training PLMs for improving the understand-345

ing of math problems. We adopt PLM and GAT346

to encode the math text and math syntax graph of347

the math problem, respectively, and design syntax-348

aware memory networks between the last k lay-349

ers of PLM and GAT for capturing complex fine-350

grained correlations between the text and graph. In351

each of the last k layers, we first interact and fuse352

the representations of tokens from the math text353

and nodes from the math syntax graph, then feed354

the updated representations into the next layers of355

PLM and GAT for consolidation. To continually356

Task Train Dev Test
KPC 8,721 991 1,985
QRC 10,000 2,000 4,000
QAM 14,000 2,000 4,000
SQR 250,000 11,463 56,349

Table 1: Statistics of the datasets.

pre-train our model, we propose MLM, DTC and 357

TGCL tasks to further enhance and fuse the rep- 358

resentations of math text and math syntax graph. 359

For downstream tasks, we fine-tune our model with 360

specific data and objectives, and concatenate the 361

representations of text hq and graph nG from the 362

last layer for prediction. 363

Discussion. The key of our approach is to deeply 364

interact and fuse the math text and formula infor- 365

mation of the math problem via syntax-aware mem- 366

ory networks and continual pre-training tasks. Re- 367

cently, MathBERT (Peng et al., 2021) is proposed 368

to continual pre-train BERT in math domain cor- 369

pus, which applies self-attention mechanism to in- 370

teract formulas with text and learns similar tasks 371

as BERT. As a comparison, we construct the math 372

syntax graph to enrich the formula information and 373

design a syntax-aware memory network to fuse the 374

text and graph information. Via the syntax-aware 375

memory network, the token from math text can 376

trace its related nodes along the relations in the 377

math syntax graph, which can capture fine-grained 378

correlations between tokens and nodes. Besides, 379

we explicitly model the syntax graph via GAT, and 380

devise the DTC task to improve the correlations 381

within triplets from the math syntax graph, and the 382

TGCL task to align the representations of graph 383

and text. In this way, we can better capture graph 384

structural information and fuse it with textual infor- 385

mation. It is beneficial for understanding logical 386

semantics from formulas of math problems . 387

4 Experiment 388

4.1 Experimental Setup 389

We conduct experiments on four tasks in the math 390

domain to verify the effectiveness of our approach. 391

Evaluation Tasks. We construct four tasks based 392

on the collected math exercise problems of high 393

school students, which cover math problem classifi- 394

cation, solving, and recommendation. The statistics 395

of these tasks are summarized in Table 1. 396

• Knowledge Point Classification (KPC) is a 397

multi-class classification task. Given a math ques- 398
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Tasks KPC QAM QRC SQR
Metrics Accuracy F1-macro Accuracy F1-macro Accuracy F1-macro HR@3 NDCG@3
TextCNN 51.2 31.7 91.6 91.6 75.1 55.8 0.321 0.301
TextRCNN 56.8 40.3 89.3 89.2 80.3 62.9 0.334 0.317
GAT 42.5 28.5 90.0 89.9 66.6 45.4 0.315 0.300
R-GCN 40.7 26.0 91.6 91.5 70.4 50.0 0.316 0.298
BERT-Base 59.4 36.0 96.8 96.8 82.3 63.1 0.578 0.576
BERT+GAT 61.1 38.0 97.0 96.9 83.0 64.3 0.568 0.566
TAPT-BERT 67.1 45.2 98.8 98.7 85.9 67.7 0.641 0.643
TAPT-BERT+GAT 67.8 47.3 98.9 98.9 85.8 67.2 0.646 0.649
MathBert 66.4 43.2 98.9 98.9 86.4 68.3 0.640 0.641
COMUS 72.6∗ 57.9∗ 99.5∗ 99.5∗ 88.9∗ 81.4∗ 0.658∗ 0.660∗

Table 2: Main results on four downstream tasks. The best and the second best methods are denoted in bold and
underlined fonts respectively. “*” indicates the statistical significance for p < 0.01 compared to the best baseline.

tion, the goal is to classify what knowledge point399

(KP) this question is associated with. The knowl-400

edge points are defined and annotated by profes-401

sionals, and we finally define 387 KPs in this task.402

• Question-Answer Matching (QAM) is a bi-403

nary classification task to predict whether an an-404

swer is matched with a question. For each question,405

we randomly sample an answer from other prob-406

lems as the negative example.407

• Question Relation Classification (QRC) is408

a 6-class classification task. Given a pair of math409

questions, this task aims to predict their relation410

(e.g., equivalent, similar, problem variant, condi-411

tional variant, situation variant, irrelevant).412

• Similar Question Recommendation (SQR) is413

a ranking task. Given a question, this task aims to414

rank retrieved candidate questions by the similarity.415

Evaluation Metrics. For classification tasks (KPC,416

QRC, QAM), we adopt Accuracy and F1-macro417

as the evaluation metrics. For the recommen-418

dation task (SQR), we employ top-k Hit Ratio419

(HR@k) and top-k Normalized Discounted Cu-420

mulative Gain (NDCG@k) for evaluation. Since421

the length of candidate list is usually between 6 and422

15, we report results on HR@3 and NDCG@3.423

Baseline Methods. We compare our proposed ap-424

proach with the following nine baseline methods:425

• TextCNN (Kim, 2019) is a classic text classifi-426

cation model using CNN on top of word vectors.427

• TextRCNN (Lai et al., 2015) combines both428

RNN and CNN for text classification tasks.429

• GAT (Veličković et al., 2018) utilizes the atten-430

tion mechanism to aggregate neighbors’ represen-431

tations to produce representations for each node.432

• R-GCN (Schlichtkrull et al., 2018) extended433

Graph Convolutional Network with multi-edge en-434

coding to aggregate neighbors’ representations.435

• BERT-Base (Devlin et al., 2018) is a popular 436

pre-trained model. We use the bert-base-chinese, 437

and add some new tokens into the original vocab 438

to represent specific symbols in math datasets. 439

• TAPT-BERT (Gururangan et al., 2020) contin- 440

ually pre-trains BERT on task-related corpus. We 441

use our collected math problem dataset with the 442

masked language model task for implementation. 443

• BERT+GAT concatenates the [CLS] embed- 444

ding from BERT and mean node embedding from 445

GAT as the representation of a math question. 446

• TAPT-BERT+GAT replaces BERT in 447

BERT+GAT with the TAPT-BERT. 448

• MathBert (Peng et al., 2021) continual pre- 449

trains BERT with BERT-like tasks, and revises the 450

self-attention for encoding the OPT of formulas. 451

Implementation Details. For baseline models, all 452

hyper-parameters are set following the suggestions 453

from the original papers. For all PLM-related mod- 454

els, we implement them based on HuggingFace 455

Transformers 3. For the models combining PLM 456

and GAT, we set the number of GAT layer as 6. 457

In the continual pre-training stage, we initialize 458

the weights of all models with bert-base-chinese 4. 459

We continually pre-train the parameters with a to- 460

tal of 128 batch size for 100,000 steps.And the 461

max length of input sequences is set as 512. We 462

use AdamW (Loshchilov and Hutter, 2017) opti- 463

mization with β1 = 0.9, β2 = 0.999, learning rate 464

warmup over the first 5% steps, and linear decay of 465

the learning rate. The learning rate is set as 1e−4. 466

During fine-tuning on downstream tasks, we use 467

AdamW with the same setting as pre-training. And 468

batch size for all experiments is set as 32. The 469

learning rate is set to 1e−3 for non-pre-training 470

methods and 3e−5 for pre-training methods. 471

3https://huggingface.co/transformers/
4https://huggingface.co/bert-base-chinese
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Tasks KPC
Ratio 40% 20% 10% 5%
Method Accuracy F1-macro Accuracy F1-macro Accuracy F1-macro Accuracy F1-macro
TAPT-BERT 53.1 27.9 38.6 15.2 26.4 7.7 16.8 4.2
TAPT-BERT+GAT 53.3 27.5 38.3 15.5 26.2 6.8 11.8 2.5
MathBERT 49.6 32.1 31.2 11.1 19.5 5.7 8.4 1.9
COMUS 62.7 41.5 52.2 27.8 36.9 15.0 22.1 7.1
Tasks QRC
Ratio 40% 20% 10% 5%
Method Accuracy F1-macro Accuracy F1-macro Accuracy F1-macro Accuracy F1-macro
TAPT-BERT 78.8 59.7 73.5 52.7 65.5 46.1 61.4 40.3
TAPT-BERT+GAT 81.4 62.3 73.3 53.1 69.1 48.5 61.8 38.4
MathBERT 80.5 60.9 73.3 47.9 65.6 38.3 58.0 22.6
COMUS 82.6 67.4 77.7 57.1 69.8 49.6 64.6 40.7

Table 3: Performance comparison w.r.t. different amount of training data on KPC and QRC tasks.

4.2 Main Results472

The results of all methods on four tasks are shown473

in Table 2. Based on these results, we can find:474

As for non-pre-training methods, text-based475

methods (i.e., TextCNN and TextRCNN) outper-476

form GNN-based methods (i.e., GAT and R-GCN).477

It indicates that textual description is more impor-478

tant than formulas to understand math problems. In479

general, non-pre-training methods perform worse480

than pre-training methods, since pre-trained models481

have learned sufficient general knowledge during482

pre-training on large-scale corpus.483

Among five pre-training methods, we can ob-484

serve two trends. First, combining PLMs with485

GNN mostly yields improvement. The reason is486

that GNN can capture the structural semantics from487

formulas as auxiliary information to help PLM488

model the math problem, but the improvement is489

unstable since these methods just concatenate the490

representations of text and graph but not deeply491

fuse them. Secondly, continual pre-training brings492

a significant improvement on all tasks. The rea-493

son is that there are a number of specific symbols494

and terms in math text that PLMs haven’t learned495

before, but continual pre-training can solve it.496

Finally, by comparing our approach with all the497

baselines, it is clear to see that our model performs498

consistently better than them on four tasks. We499

utilize the syntax-aware memory network to fuse500

and interact the representations of textual descrip-501

tions and formulas, and adopt three continual pre-502

training tasks to further align and enhance these503

representations. Among these results, we can see504

that our model achieves a large improvement on505

the KPC task. The possible reason is that detect-506

ing knowledge points depends more on the deep507

understanding of formulas and text.508

KPC QRC
Method Acc F1 Acc F1
COMUS 72.6 57.9 88.9 81.4
- w/o GAT 69.4 49.2 87.9 78.3
- w/o BERT 41.7 27.2 64.1 39.6
- w/o Memory 69.4 49.2 88.1 73.7
- w/o MLM 36.5 21.9 70.2 51.2
- w/o DTC 70.8 55.3 87.8 73.5
- w/o TGCL 71.9 56.5 87.9 69.8

Table 4: Ablation and variation study of our approach
on the KPC and QRC tasks.

4.3 Few-shot Learning 509

To validate the reliability of our method under the 510

data scarcity scenarios, we conduct few-shot exper- 511

iments on KPC and QRC tasks by using different 512

proportions of the training data, i.e., 5%, 10%, 20% 513

and 40%. We compared our model with TAPT- 514

BERT, TAPT-BERT+GAT and MathBERT. 515

Figure 3 shows the evaluation results. We can 516

see that the performance substantially drops when 517

the size of training data is reduced. However, 518

our model performs consistently better than oth- 519

ers across different tasks and metrics. This result 520

shows that our model leverage the data more ef- 521

fectively with the novel syntax-aware memory net- 522

work and continual pre-training tasks. With 5% 523

training data, our model exceeds the best baseline 524

by a large margin. It further indicates that our 525

model have better robustness. 526

4.4 Ablation and Variation Study 527

Our proposed approach contains several comple- 528

mentary modules and pre-training tasks. Thus, we 529

conduct experiments on KPC and QRC tasks to 530

verify the contribution of these modules and tasks. 531

Concretely, we remove the module GAT, BERT, 532

Syntax-Aware Memory Network, or the task MLM, 533

DTC and TGCL, respectively. 534
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Figure 3: Performance comparison w.r.t. the number of
pre-training steps and GAT layers

In Table 4, we can see that the performance drops535

with any modules or pre-training tasks removed. It536

shows the effectiveness of each part of our pro-537

posed model. Among all the modules, it is clearly538

to see that model’s performance drops a lot after539

removing BERT, which implies that the textual de-540

scriptions are more important for math problem541

understanding. Besides, we can see that removing542

MLM also results in a larger performance drop.543

The reason may be that MLM can enhance the rep-544

resentations of math text, which is important for545

math problem understanding.546

4.5 Hyper-Parameters Analysis547

Our proposed model contains a few parameters to548

tune. In this part, we tune two parameters, i.e.,549

the number of GAT Layer and the continual pre-550

training steps. We conduct experiments on KPC551

and QRC tasks and show the change curves of552

Accuracy in Figure 3.553

We can observe that our model achieves the best554

performance in 80k steps. It indicates that our555

model can be improved by continual pre-training556

gradually and may overfit after 80k steps. Besides,557

our model achieves the best performance with 6558

GAT layers, which shows that 6 GAT layers are suf-559

ficient to capture the information in syntax graph.560

5 Related Work561

Math Problem Understanding Math problem562

understanding task focuses on understanding the563

text, formulas and symbols in math domain. A564

surge of works aim to understand the math for-565

mulas for problem solving or mathematical infor-566

mation retrieval. In this way, the formula is usu-567

ally transformed as a tree or graph (e.g., Operator568

Tree (Zanibbi and Blostein, 2012)), then network569

embedding methods Mansouri et al. (2019) and570

graph neural networkSong and Chen (2021) are571

utilized to encode it. Besides, a number of works572

focus on understanding math problem based on 573

the textual information. Among them, Math Word 574

Problem (MWP) Solving is a popular task that gen- 575

erates answers of math word problems. Numerous 576

deep learning based methods have been proposed 577

to tackle MWP, ranging from Seq2Seq (Chiang 578

and Chen, 2019; Li et al., 2019), Seq2Tree(Wang 579

et al., 2019; Qin et al., 2020), to Pre-trained Lan- 580

guage Models(Kim et al., 2020; Liang et al., 2021). 581

More recently, several works attempt to modeling 582

more complex math problems (Huang et al., 2020; 583

Hendrycks et al., 2021) that require to understand 584

both textual and formula information. 585

Continual Pre-training of Language Models 586

Continually pre-training can effectively improve 587

pre-trained model’s performance on new domain 588

or downstream tasks (Gururangan et al., 2020). To 589

achieve it, most of previous works either continu- 590

ally optimize the model parameters with BERT-like 591

tasks on domain or task related corpus (e.g., sci- 592

entific (Beltagy et al., 2019) and bio-media (Lee 593

et al., 2020)), or design new pre-training objectives 594

for task adaption (e.g., commonsense reasoning 595

(Zhou et al., 2020) and dialogue adaption (Li et al., 596

2020)). Besides, several works (Wang et al., 2020; 597

Xiang et al., 2020) utilize both domain-related cor- 598

pus and new pre-training objectives for continual 599

pre-training, and even revise the Transformer struc- 600

ture of PLMs for better adaption (Ghosal et al., 601

2020). For math problem understanding, the re- 602

cently proposed MathBERT (Peng et al., 2021) 603

adopts math domain corpus and formula-related 604

pre-training tasks for continually pre-training. 605

6 Conclusion 606

In this paper, we propose COMUS, to continually 607

pre-train PLMs for math problem understanding. 608

By combining the formulas with the syntax tree of 609

mathematical text, we constructed the math syn- 610

tax graph and designed the syntax-aware memory 611

network to fuse the information from the text and 612

formulas. Along the syntax relations within the 613

memory network, the token can directly trace into 614

its semantic-related nodes from the graph, so that 615

the fine-grained correlations between nodes and 616

tokens can be well captured. Besides, we devised 617

three continual pre-training tasks to further enhance 618

and align the representations of the text and graph. 619

Experimental results have shown that our approach 620

outperforms several competitive baselines on four 621

tasks in the math domain. 622
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