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Abstract

Recently, pre-trained language models (PLMs)
have shown effectiveness in domain transfer
and task adaption. However, two major chal-
lenges limit the effectiveness of transferring
PLMs into math problem understanding tasks.
First, a math problem usually contains a textual
description and formulas. The two types of in-
formation have a natural semantic gap. Second,
textual and formula information is essential to
each other, it is hard but necessary to deeply
fuse the two types of information. To address
these issues, we enrich the formula informa-
tion by combining the syntax semantics of the
text to construct the math syntax graph, and
design the syntax-aware memory networks to
deeply fuse the characteristics from the graph
and text. With the help of syntax relations,
the token from the text can trace its semantic-
related nodes within the formulas, which is
able to capture the fine-grained correlations be-
tween text and formulas. Besides, we also de-
vise three continual pre-training tasks to further
align and fuse the representations of the text
and graph. Experimental results on four tasks
in the math domain demonstrate the effective-
ness of our approach.

1 Introduction

Understanding math problems via automated meth-
ods is a desired machine capacity for artificial in-
telligence assisted learning. Such a capacity is the
key to the success of a variety of education appli-
cations, including math problem retrieval (Reusch
et al., 2021), problem recommendation (Liu et al.,
2018), and problem solving (Huang et al., 2020).
To automatically understand math problems, it
is feasible to learn computational representations
from problem statement texts with pre-trained lan-
guage models (PLMs) (Shen et al., 2021; Peng
et al., 2021). Pre-trained on the large-scale gen-
eral corpus, PLMs (Devlin et al., 2018) can be
effectively transferred into new domains or tasks

Math Problem: Given that sin x is equal to 0.6 and x is an

acute angle, find the value of [sin2x + tanZ.

Textual Description: Given that sin x is ... find the value
of $\sqrt { \sin{ 2x }+\tan { \frac { x }{2} } }$.
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Figure 1: Illustration of a math problem with its textual
description and math syntax graph.

by continual pre-training on task-specific datasets.
Different from traditional text comprehension tasks,
as shown in Figure 1, math problems usually in-
volve a complex mixture of mathematical symbols,
logic and formulas, which becomes a barrier to the
accurate understanding of math problems.

However, previous works (Reusch et al., 2021;
Shen et al., 2021) mostly oversimplify the issues
of math problem understanding. They directly con-
catenate the formulas with the textual description
as an entire sentence, and then perform continual
pre-training and encoding without special consider-
ations. Therefore, two major shortcomings that are
likely to affect the understanding of math problems.
First, formulas (the most important elements of the
problem) contain complex mathematical logic, and
modeling them as plain text may incur the loss of
valuable information. Second, the textual descrip-
tion contains essential explanations or hints about
the symbols and logic within the formulas, hence
it is necessary to accurately capture fine-grained
correlations between words from description text
and symbols from math formulas.

To better model the formulas, operator trees
have been introduced to represent the math for-
mulas (Zanibbi and Blostein, 2012), which are sub-



sequently encoded by graph neural network (GNN).
Although these methods can improve the compre-
hension capacity to some extent, there exists a se-
mantic gap between graph encoding and text en-
coding due to the heterogeneity of formulas and
texts. Even with concatenation and self-attention
mechanisms (Peng et al., 2021), it is still hard to
capture the fine-grained associations among tokens
and symbols, e.g., the dependency relation between
math symbols and corresponding explanation to-
kens.

In order to better fuse the information from for-
mulas and texts, our solutions are twofold. First, we
construct a syntax-aware memory network based
on a structure called math syntax graph (Figure 1),
which integrates operator trees from formulas and
syntax trees from texts. The key point lies in that
we store the node embeddings from the GNN and
dependency relation embeddings as entries of mem-
ory networks, and then design the corresponding
read and write mechanism by taking token em-
beddings from the PLM (for formulas) as queries,
which can effectively associate the representation
spaces of text and formulas. Second, we devise spe-
cific continual pre-training tasks to further enhance
and fuse the text and graph data. These tasks not
only improve the understanding of math symbols
in text and formulas logic in the syntax graph, but
also directly align and unify the representations of
the text and graph.

To this end, we propose COMUS, to continually
pre-train language models for math problem
understanding with syntax-aware memory network.
In our approach, we first encode the textual de-
scription and math syntax graph via PLM and GAT,
respectively. Then, we add syntax-aware memory
networks between the last £ layers of PLM and
GAT. In each layer, we first conduct the multi-view
read and write operation to interact and fuse the
token and node representations, respectively, and
then consolidate the fused representation by pass-
ing the next layers from PLM and GAT. All param-
eters of our model will be initialized from PLMs
and be continually pre-trained by our devised three
tasks, namely masked language model, memory
triplet completion and text-graph contrastive learn-
ing. Experimental results on four tasks in the math
domain have demonstrated the effectiveness of our
approach, especially when training data is limited.

Our contributions can be summarized as follows:
(1) We construct a novel syntax-aware memory

network to capture the fine-grained interactions
between the text and formulas. (2) We design three
continual pre-training tasks to further align and
fuse the representations of the text and graph data.
(3) Experiments on four tasks in the math domain
demonstrate the effectiveness of our model.

2 Preliminaries

Problem Statement. Generally, a math problem
consists of a textual description d and several for-
mulas {fi1, fo, -, fm}. The textual description
provides necessary background information for the
math problem. It is formally denoted as a sequence
of tokens ¢ = {t1,t2,--- ,;}, where t; is either
a word token or a mathematical symbol (e.g., a
number or an operator). The formulas describe the
relationship among mathematical symbols, which
is the key to understand and solve the math problem.
Each formula consists of a sequence of mathemati-
cal symbols, denoted as f; = {s1, -+, Sn}-
Based on the above notations, this work focuses
on continually pre-training a PLM on unsupervised
math problem corpus for domain adaptation. After
that, the PLM can be fine-tuned on various tasks
from the math domain (e.g., knowledge point pre-
diction), and improve the task performance.

Math Syntax Graph. The understanding of math-
ematical text and formulas requires capturing the
complex correlations within words, symbols and
operators. Inspired by previous works (Mansouri
et al., 2019; Peng et al., 2021), we construct a syn-
tax graph, where the textual description is repre-
sented as a syntax dependency tree and the formu-
las are represented as operator trees (OPT).
Specifically, given a math problem consisting
of a textual description d and several formulas
{f1, f2," -+, fm}, we first utilize the toolkit Tan-
gentS' to convert each formula into an OPT, and
Stanza’ to convert the textual description into a
syntax dependency tree. Then, we add a special
token “[MATH]” to link each OPT with a specific
slot in the syntax dependency tree, to construct the
syntax graph G of the math problem. Let N and
R denote the set of nodes and relations on G, re-
spectively. We further extract dependency triplets
from G, where a dependency triplet (h,r,t) de-
notes there exists an edge with the relation r € R
to link the head node h € N to the tail node t € N.

"https://github.com/BehroozMansouri/TangentCFT
Zhttps://stanfordnlp.github.io/stanza/



3 Methodology

As shown in Figure 2, our approach aims to effec-
tively encode textual description and formulas, and
fuse the two kinds of information for understanding
math problems. In what follows, we first present
the base models for encoding math problems, and
then introduce our improvements on syntax-aware
memory networks and continual pre-training tasks.

3.1 Base Models

Encoding Math Text. We use BERT (Devlin et al.,
2018) as the PLM to encode the math text, i.e., the
textual description d. Given d = {t1,ta, - ,tr}
of a math question, the PLM first projects these to-
kens into corresponding embeddings. Then, a stack
of Transformer layers will gradually encode the em-
beddings to generate the [-th layer representations
{hgl), hgl), e 7hg)}. Since the textual description
¢ may contain specific math symbols that were not
seen during pre-training, we add them into the vo-
cabulary of the PLM and randomly initialize their
token embeddings. Such new embeddings will be
learned during continual pre-training.

Encoding Math Syntax Graph. We incorporate a
graph attention network (GAT) (Velickovi¢ et al.,
2018) to encode the math syntax graph, it is com-
posed of an embedding layer and a stack of graph
attention layers. Given a math syntax graph G with
N nodes, GAT first maps the nodes into a set of
embeddings {nj, ny,--- ,ny}. Then each graph
attention layer aggregates the neighbourhood’s hid-
den states using multi-head attentions to update the
node representations as:

K
I+1 HIRG
ng ) = H J(Z afjW]g)ng-)). (D
k=1 jen;
where ngl“) is the representation of the i-th node

in the [ + 1 layer, || denotes the concatenation op-
eration, o denotes the sigmoid function, K is the
number of attention heads and N; is the neighbor-

(@)

hoods of node ¢ in the graph, W, " is a learnable
k

matrix. g is the attention value of node ¢ to its
neighbour j in attention head k.

3.2 Syntax-Aware Memory Network

To improve the semantic interaction and fusion
of representations from math text and the syntax
graph, we add k syntax-aware memory networks

between the last £ layers of PLM and GAT. In the
memory network, node embeddings (from the math
syntax graph) with dependency relations are con-
sidered as slot entries, and we design multi-view
read/write operations to allow token embeddings
(explanation tokens or hints) to attend to highly
related node embeddings (math symbols).

Memory Initialization. We construct the mem-
ory network based on the dependency triplets and
representations of the math syntax graph. Given
the dependency triplets {(h,r,t)}, we treat the
head and relation (h,r) as the key and the tail
t as the value, to construct a syntax-aware key-
value memory. The representations of the heads
and tails are the corresponding node representa-
tions from GAT, while the relation representa-
tions are randomly initialized and will be opti-
mized by continually pre-training. Finally, we
concatenate the representations of heads and rela-
tions to compose the representation matrix of Keys
as KO = {[ngl);rl],[ngg;rg],"- ,[ng])v;r]v]},
and obtain the representation matrix of Values as
v = {ngll),ng), . ,ng\)]}.

Multi-view Read Operation. We read the useful
semantics within the syntax-aware memory to up-
date the token representations from PLM. Since
a token can be related to several nodes within
the math syntax graph, we design a multi-view
read operation to capture these complex seman-
tic associations. Concretely, via different bilinear
transformation matrices {W7, W5, ... W2},
we first generate multiple similarity matrices
{S1,S2,---,S,} between tokens and keys (head
and relation) within the memory, and then aggre-
gate the values (tail) to update the token represen-
tations. Given the token representations from the
I-th layer of PLM H®) = {hgl), hgl), e ,hg)},
the similarity matrix S; is computed as

s, = HOWSKO ' )

where W;g is a learnable matrix, and an entry
Si[J, k] denotes the similarity between the j-th to-
ken and the k-th key (head and relation) in the ¢-th
view. Based on these similarity matrices, we up-
date the token representations by aggregating the
value representations as

HY = HO 4 [0, V; 0 V; - 505, VIWO (3)
a; = softmax(S;) 4)
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Figure 2: Illustration of our COMUS. We encode the textual description and math syntax graph of a math problem.

where WO is a learnable matrix, «; is the attention
scores along the key dimension. In this way, the
token representation can directly trace into multiple
semantic-related values via the keys, so that the
complex fine-grained correlations between tokens
and nodes can be captured. The updated token
representations HO will be fed into the next layer
of PLM to consolidate the fused information.

Multi-View Write Operation. After update the
token representations, we also consider to write the
memory for updating the representations of nodes
from GAT. We also utilize the multi-view similarity
matrices {S1,So,---,Sy}. Concretely, we com-
pute the attention scores 3 via softmax along the
token dimension of the similarity matrices, and
then aggregate the token representations as

v —5HY: BHO; ... s HOIWE (5)
Bi = softmax(S;) (6)

where W is a learnable matrix. Based on the
aggregated token representations, we incorporate a
gate to update the representation of the values as

z=o(VQ, WAL VvOWE) (7

new

VO =24VO +(1-2)«vD (8

new

where W4 and W? are learnable matrices. The
updated representations V() will be also fed into
the next layer of GAT for consolidation.

3.3 Continual Pre-training

Continual pre-training aims to further enhance and
fuse the math text and math syntax graph. To
achieve it, we utilize the masked language model
and dependency triplet completion tasks to improve
the understanding of math text and math syntax
graph, respectively, and the text-graph contrastive
learning task to align and fuse their representations.

Masked Language Model (MLM). Since math
text contains a number of special math symbols,
we utilize the MLLM task to learn it for better under-
standing the math text. Concretely, we randomly se-
lect 15% tokens of the input sequence to be masked.
Of the selected tokens, 80% are replaced with a spe-
cial token [MASK], 10% remain unchanged, and
10% are replaced by a token randomly selected
from vocabulary. The objective is to predict the
original tokens of the masked ones as:

Ly =y, —logp(t:) ©)

t; evmask

where V,,,4sk is the set of masked tokens, and p(t;)
denotes the probability of predicting the original
token in the position of ;.

Dependency Triplet Completion (DTC). Within
the math syntax graph, the relationships with the de-
pendency triplet (h, 7, t) are essential to understand
the complex math logic of the math problem. Thus,
inspired by TransE (Bordes et al., 2013), we devise
the dependency triplet completion task to improve
the correlations within the triplets. Specifically, for



each triplet (h, 7, t) within the math syntax graph,
we minimize the DTC loss by

Lprc = max(y+d(np+r, nt)—d(nh—kr/, n;),0)

(10)
where v > 0 is a margin hyper-parameter, and d is
the Euclidean Distance. r’ is the randomly sampled
negative relation embedding. In this way, the head
and relation embeddings can learn to match the
semantics of the tail embedding, which enhances
the node and relation representations to capture the
graph structural information.

Text-Graph Contrastive Learning (TGCL). Hav-
ing enhanced the representations of math text and
math syntax graph via MLM and DTC respectively,
we further consider to align and unify the repre-
sentation of the two different views of the math
problem. We adopt contrastive learning to pull the
representations of text and graph of the same math
problem together, and push apart negatives. Con-
cretely, given a text-graph pair of a math problem
(¢i, Gi), we utilize the representation of the [CLS]
token h? as the sentence representation of ¢;, and
the meanpooling of the node representations nig as
the graph representation of G;. Then, we adopt the
cross-entropy contrastive learning objective with
in-batch negatives to align the two representations

exp(f(b{,n?)/7)
Zi;&j exp(f(h, njg)/T)

where f(-) is a dot product function and 7 denotes
a temperature parameter. Since the TGCL task is
able to unify the representations of text and graph,
it can also benefit for the fusion and interaction of
the information from text and graph.

1D

Lrgcer = —log

3.4 Overview and Discussion

Overview. Our approach focuses on continually
pre-training PLMs for improving the understand-
ing of math problems. We adopt PLM and GAT
to encode the math text and math syntax graph of
the math problem, respectively, and design syntax-
aware memory networks between the last k lay-
ers of PLM and GAT for capturing complex fine-
grained correlations between the text and graph. In
each of the last k layers, we first interact and fuse
the representations of tokens from the math text
and nodes from the math syntax graph, then feed
the updated representations into the next layers of
PLM and GAT for consolidation. To continually

Task Train Dev Test
KPC 8,721 991 1,985
QRC 10,000 2,000 4,000
QAM 14,000 2,000 4,000
SQR 250,000 11,463 56,349

Table 1: Statistics of the datasets.

pre-train our model, we propose MLM, DTC and
TGCL tasks to further enhance and fuse the rep-
resentations of math text and math syntax graph.
For downstream tasks, we fine-tune our model with
specific data and objectives, and concatenate the
representations of text h? and graph nY from the
last layer for prediction.

Discussion. The key of our approach is to deeply
interact and fuse the math text and formula infor-
mation of the math problem via syntax-aware mem-
ory networks and continual pre-training tasks. Re-
cently, MathBERT (Peng et al., 2021) is proposed
to continual pre-train BERT in math domain cor-
pus, which applies self-attention mechanism to in-
teract formulas with text and learns similar tasks
as BERT. As a comparison, we construct the math
syntax graph to enrich the formula information and
design a syntax-aware memory network to fuse the
text and graph information. Via the syntax-aware
memory network, the token from math text can
trace its related nodes along the relations in the
math syntax graph, which can capture fine-grained
correlations between tokens and nodes. Besides,
we explicitly model the syntax graph via GAT, and
devise the DTC task to improve the correlations
within triplets from the math syntax graph, and the
TGCL task to align the representations of graph
and text. In this way, we can better capture graph
structural information and fuse it with textual infor-
mation. It is beneficial for understanding logical
semantics from formulas of math problems .

4 Experiment

4.1 Experimental Setup

We conduct experiments on four tasks in the math
domain to verify the effectiveness of our approach.

Evaluation Tasks. We construct four tasks based
on the collected math exercise problems of high
school students, which cover math problem classifi-
cation, solving, and recommendation. The statistics
of these tasks are summarized in Table 1.

¢ Knowledge Point Classification (KPC) is a
multi-class classification task. Given a math ques-



[ Tasks | KPC | QAM | QRC | SQR ]
Metrics Accuracy  Fl-macro | Accuracy Fl-macro | Accuracy Fl-macro | HR@3 NDCG@3
TextCNN 51.2 31.7 91.6 91.6 75.1 55.8 0.321 0.301
TextRCNN 56.8 40.3 89.3 89.2 80.3 62.9 0.334 0.317
GAT 42.5 28.5 90.0 89.9 66.6 454 0.315 0.300
R-GCN 40.7 26.0 91.6 91.5 70.4 50.0 0.316 0.298
BERT-Base 59.4 36.0 96.8 96.8 823 63.1 0.578 0.576
BERT+GAT 61.1 38.0 97.0 96.9 83.0 64.3 0.568 0.566
TAPT-BERT 67.1 452 98.8 98.7 85.9 67.7 0.641 0.643
TAPT-BERT+GAT 67.8 47.3 98.9 98.9 85.8 67.2 0.646 0.649
MathBert 66.4 432 98.9 98.9 86.4 68.3 0.640 0.641
COMUS 72.6* 57.9* 99.5* 99.5" 88.9* 81.4* 0.658" 0.660"

Table 2: Main results on four downstream tasks. The best and the second best methods are denoted in bold and
underlined fonts respectively. “*” indicates the statistical significance for p < 0.01 compared to the best baseline.

tion, the goal is to classify what knowledge point
(KP) this question is associated with. The knowl-
edge points are defined and annotated by profes-
sionals, and we finally define 387 KPs in this task.

¢ Question-Answer Matching (QAM) is a bi-
nary classification task to predict whether an an-
swer is matched with a question. For each question,
we randomly sample an answer from other prob-
lems as the negative example.

e Question Relation Classification (QRC) is
a 6-class classification task. Given a pair of math
questions, this task aims to predict their relation
(e.g., equivalent, similar, problem variant, condi-
tional variant, situation variant, irrelevant).

o Similar Question Recommendation (SQR) is
a ranking task. Given a question, this task aims to
rank retrieved candidate questions by the similarity.

Evaluation Metrics. For classification tasks (KPC,
QRC, QAM), we adopt Accuracy and Fl-macro
as the evaluation metrics. For the recommen-
dation task (SQR), we employ top-k Hit Ratio
(HR@Fk) and top-k Normalized Discounted Cu-
mulative Gain (NDCG@k) for evaluation. Since
the length of candidate list is usually between 6 and
15, we report results on HR@3 and NDCG@3.

Baseline Methods. We compare our proposed ap-
proach with the following nine baseline methods:

o TextCNN (Kim, 2019) is a classic text classifi-
cation model using CNN on top of word vectors.

e TextRCNN (Lai et al., 2015) combines both
RNN and CNN for text classification tasks.

o GAT (Velickovié et al., 2018) utilizes the atten-
tion mechanism to aggregate neighbors’ represen-
tations to produce representations for each node.

o R-GCN (Schlichtkrull et al., 2018) extended
Graph Convolutional Network with multi-edge en-
coding to aggregate neighbors’ representations.

¢ BERT-Base (Devlin et al., 2018) is a popular
pre-trained model. We use the bert-base-chinese,
and add some new tokens into the original vocab
to represent specific symbols in math datasets.

e TAPT-BERT (Gururangan et al., 2020) contin-
ually pre-trains BERT on task-related corpus. We
use our collected math problem dataset with the
masked language model task for implementation.

e BERT+GAT concatenates the [CLS] embed-
ding from BERT and mean node embedding from
GAT as the representation of a math question.

o TAPT-BERT+GAT replaces BERT in
BERT+GAT with the TAPT-BERT.

e MathBert (Peng et al., 2021) continual pre-
trains BERT with BERT-like tasks, and revises the
self-attention for encoding the OPT of formulas.

Implementation Details. For baseline models, all
hyper-parameters are set following the suggestions
from the original papers. For all PLM-related mod-
els, we implement them based on HuggingFace
Transformers 3. For the models combining PLM
and GAT, we set the number of GAT layer as 6.

In the continual pre-training stage, we initialize
the weights of all models with bert-base-chinese .
We continually pre-train the parameters with a to-
tal of 128 batch size for 100,000 steps.And the
max length of input sequences is set as 512. We
use AdamW (Loshchilov and Hutter, 2017) opti-
mization with 81 = 0.9, 52 = 0.999, learning rate
warmup over the first 5% steps, and linear decay of
the learning rate. The learning rate is set as le ™.

During fine-tuning on downstream tasks, we use
AdamW with the same setting as pre-training. And
batch size for all experiments is set as 32. The
learning rate is set to le ™ for non-pre-training
methods and 3e~° for pre-training methods.

3https://huggingface.co/transformers/
*https://huggingface.co/bert-base-chinese



Tasks KPC
Ratio 40% 20% 10% 5%
Method Accuracy Fl-macro | Accuracy Fl-macro | Accuracy Fl-macro | Accuracy Fl-macro
TAPT-BERT 53.1 27.9 38.6 15.2 264 7.7 16.8 4.2
TAPT-BERT+GAT 533 27.5 38.3 15.5 26.2 6.8 11.8 2.5
MathBERT 49.6 32.1 31.2 11.1 19.5 5.7 8.4 1.9
COMUS 62.7 41.5 52.2 27.8 36.9 15.0 22.1 7.1
Tasks QRC
Ratio 40% 20% 10% 5%
Method Accuracy Fl-macro | Accuracy Fl-macro | Accuracy Fl-macro | Accuracy Fl-macro
TAPT-BERT 78.8 59.7 73.5 52.7 65.5 46.1 61.4 40.3
TAPT-BERT+GAT 81.4 62.3 73.3 53.1 69.1 48.5 61.8 38.4
MathBERT 80.5 60.9 73.3 47.9 65.6 38.3 58.0 22.6
COMUS 82.6 67.4 77.7 57.1 69.8 49.6 64.6 40.7
Table 3: Performance comparison w.r.t. different amount of training data on KPC and QRC tasks.
4.2 Main Results KPC QRC
Method Acc F1 Acc F1
COMUS 72.6 579 | 889 814
The results of all methods on four tasks are shown oo GAT 04 492 | 879 783
in Table 2. Based on these results, we can find: -wlo BERT 417 272 | 641 396
As for non-pre-training methods, text-based - W; 0 % eL”X/‘[)ry 22‘5‘ g?g gg; 2 ;
. - w/o . . . .
methods (l.e., TextCNN and TextRCNN) outper— -wlo DTC 708 553 | 87.8 735
form GNN-based methods (i.e., GAT and R-GCN). -wlo TGCL 719 565 | 87.9 69.8

It indicates that textual description is more impor-
tant than formulas to understand math problems. In
general, non-pre-training methods perform worse
than pre-training methods, since pre-trained models
have learned sufficient general knowledge during
pre-training on large-scale corpus.

Among five pre-training methods, we can ob-
serve two trends. First, combining PLMs with
GNN mostly yields improvement. The reason is
that GNN can capture the structural semantics from
formulas as auxiliary information to help PLM
model the math problem, but the improvement is
unstable since these methods just concatenate the
representations of text and graph but not deeply
fuse them. Secondly, continual pre-training brings
a significant improvement on all tasks. The rea-
son is that there are a number of specific symbols
and terms in math text that PLMs haven’t learned
before, but continual pre-training can solve it.

Finally, by comparing our approach with all the
baselines, it is clear to see that our model performs
consistently better than them on four tasks. We
utilize the syntax-aware memory network to fuse
and interact the representations of textual descrip-
tions and formulas, and adopt three continual pre-
training tasks to further align and enhance these
representations. Among these results, we can see
that our model achieves a large improvement on
the KPC task. The possible reason is that detect-
ing knowledge points depends more on the deep
understanding of formulas and text.

Table 4: Ablation and variation study of our approach
on the KPC and QRC tasks.

4.3 Few-shot Learning

To validate the reliability of our method under the
data scarcity scenarios, we conduct few-shot exper-
iments on KPC and QRC tasks by using different
proportions of the training data, i.e., 5%, 10%, 20%
and 40%. We compared our model with TAPT-
BERT, TAPT-BERT+GAT and MathBERT.

Figure 3 shows the evaluation results. We can
see that the performance substantially drops when
the size of training data is reduced. However,
our model performs consistently better than oth-
ers across different tasks and metrics. This result
shows that our model leverage the data more ef-
fectively with the novel syntax-aware memory net-
work and continual pre-training tasks. With 5%
training data, our model exceeds the best baseline
by a large margin. It further indicates that our
model have better robustness.

4.4 Ablation and Variation Study

Our proposed approach contains several comple-
mentary modules and pre-training tasks. Thus, we
conduct experiments on KPC and QRC tasks to
verify the contribution of these modules and tasks.
Concretely, we remove the module GAT, BERT,
Syntax-Aware Memory Network, or the task MLM,
DTC and TGCL, respectively.
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Figure 3: Performance comparison w.r.t. the number of
pre-training steps and GAT layers

In Table 4, we can see that the performance drops
with any modules or pre-training tasks removed. It
shows the effectiveness of each part of our pro-
posed model. Among all the modules, it is clearly
to see that model’s performance drops a lot after
removing BERT, which implies that the textual de-
scriptions are more important for math problem
understanding. Besides, we can see that removing
MLM also results in a larger performance drop.
The reason may be that MLM can enhance the rep-
resentations of math text, which is important for
math problem understanding.

4.5 Hyper-Parameters Analysis

Our proposed model contains a few parameters to
tune. In this part, we tune two parameters, i.e.,
the number of GAT Layer and the continual pre-
training steps. We conduct experiments on KPC
and QRC tasks and show the change curves of
Accuracy in Figure 3.

We can observe that our model achieves the best
performance in 80k steps. It indicates that our
model can be improved by continual pre-training
gradually and may overfit after 80k steps. Besides,
our model achieves the best performance with 6
GAT layers, which shows that 6 GAT layers are suf-
ficient to capture the information in syntax graph.

5 Related Work

Math Problem Understanding Math problem
understanding task focuses on understanding the
text, formulas and symbols in math domain. A
surge of works aim to understand the math for-
mulas for problem solving or mathematical infor-
mation retrieval. In this way, the formula is usu-
ally transformed as a tree or graph (e.g., Operator
Tree (Zanibbi and Blostein, 2012)), then network
embedding methods Mansouri et al. (2019) and
graph neural networkSong and Chen (2021) are
utilized to encode it. Besides, a number of works

focus on understanding math problem based on
the textual information. Among them, Math Word
Problem (MWP) Solving is a popular task that gen-
erates answers of math word problems. Numerous
deep learning based methods have been proposed
to tackle MWP, ranging from Seq2Seq (Chiang
and Chen, 2019; Li et al., 2019), Seq2Tree(Wang
et al., 2019; Qin et al., 2020), to Pre-trained Lan-
guage Models(Kim et al., 2020; Liang et al., 2021).
More recently, several works attempt to modeling
more complex math problems (Huang et al., 2020;
Hendrycks et al., 2021) that require to understand
both textual and formula information.

Continual Pre-training of Language Models
Continually pre-training can effectively improve
pre-trained model’s performance on new domain
or downstream tasks (Gururangan et al., 2020). To
achieve it, most of previous works either continu-
ally optimize the model parameters with BERT-like
tasks on domain or task related corpus (e.g., sci-
entific (Beltagy et al., 2019) and bio-media (Lee
et al., 2020)), or design new pre-training objectives
for task adaption (e.g., commonsense reasoning
(Zhou et al., 2020) and dialogue adaption (Li et al.,
2020)). Besides, several works (Wang et al., 2020;
Xiang et al., 2020) utilize both domain-related cor-
pus and new pre-training objectives for continual
pre-training, and even revise the Transformer struc-
ture of PLMs for better adaption (Ghosal et al.,
2020). For math problem understanding, the re-
cently proposed MathBERT (Peng et al., 2021)
adopts math domain corpus and formula-related
pre-training tasks for continually pre-training.

6 Conclusion

In this paper, we propose COMUS, to continually
pre-train PLMs for math problem understanding.
By combining the formulas with the syntax tree of
mathematical text, we constructed the math syn-
tax graph and designed the syntax-aware memory
network to fuse the information from the text and
formulas. Along the syntax relations within the
memory network, the token can directly trace into
its semantic-related nodes from the graph, so that
the fine-grained correlations between nodes and
tokens can be well captured. Besides, we devised
three continual pre-training tasks to further enhance
and align the representations of the text and graph.
Experimental results have shown that our approach
outperforms several competitive baselines on four
tasks in the math domain.
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