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Abstract

Automated experimentation methods to evaluate user preferences and engagement1

is a key cornerstone in the current digital landscape. Most such systems rely on2

marketers and creators to design the content before deployment. However, with3

the advent of Large Language Models (LLMs) the feedback cycle is considerably4

shortened while the experimentation space expands significantly, necessitating5

novel and efficient ways to assess user engagement. In this paper, we experiment6

with using LLMs as simulators or treatment raters in an A/B testing application7

without running an A/B test.8

1 Introduction9

Widespread adoption of mobile devices and increased internet access has led to a significant increase10

in digital content consumption. To maximize customer engagement, businesses constantly aim to11

optimize the content and user experience. For example, news media industries constantly strive to12

come up with attractive headlines and cover images (Coenen, 2019) to drive customer engagement.13

The standard practice to find attractive headlines is to use A/B testing. However, this is inefficient14

for applications surrounding social-media, news and related sectors; as news and trends have short15

lifetimes and might become irrelevant by the time a standard A/B test finishes. This problem is further16

aggravated due to significant democratization of content creation, which has led to shorter feedback17

cycles and increasing amount of content which needs to be experimented. Thus, in industries, where18

newer content constantly comes up, there is a great need for more-efficient engagement evaluation.19

Large language models (LLMs) have been demonstrated to have significant potential for processing20

natural language text, following human instructions and generating high-quality responses (OpenAI,21

2024). This has spurred their use in many applications such as tool learning (Qu et al., 2024) and22

information retrieval (Zhu et al., 2024b). Given that LLMs have even demonstrated the ability to23

mimic human preferences and behavior in a variety of consumer research tasks (Li et al., 2024; Brand24

et al., 2023); a natural question is ’how useful LLMs can be for content optimization?’.25

Contribution In this work, we focus on the problem of using Large Language Models (LLMs) to26

bypass current A/B testing practices. Specifically we focus on using LLMs to identify appealing27

content. For concreteness, we will consider writing headlines for articles as our running example. As28

such we will use the terms content/article/prompt and the terms treatment/headline interchangeably.29

LLMs can be used in multiple ways for the purpose of rating treatments. In this paper, we explore30

in-context learning, embedding based methods, and generative model based evaluation using wo31

benchmark datasets from real-life A/B tests. In our experiments, we find that using LLMs as few-shot32

learners for treatment rating is significantly less effective than training models using LLM-based33

representations. The accuracy of using in-context learning is only slightly higher than random34

guessing. Furthermore, for methods which use LLM-based embeddings, the accuracy is not high35

enough to be used as a standalone treatment evaluation method. Finally, we tried to use a generative36
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approach by fine-tuning the LLM to produce more engaging headlines. We found using such a tuned37

generative model to be a more promising methodology for rating headlines.38

2 Preliminaries39

2.1 Learning from A/B Test40

The language model is considered as a policy function π which observes a prompt x and produces41

a textual response a by sampling from a distribution y ∼ π(· | x). We are given a dataset of42

Dpref = {(x, a+, a-)} of prompts and labeled response pairs. Here, a+ is a positive response and a-43

is a negative response. Consider the example of A/B testing different summaries or headlines for a44

given content. The preference data is obtained by exposing the incoming traffic to one of two possible45

treatments/headlines (a or b) and the effective engagement (measured as clicks, screen time or any46

other chosen metric) was monitored. The option with higher engagement is considered as the positive47

sample a+ while the other is considered as a-.48

Offline RLHF (Christiano et al., 2017; Ye et al., 2024a; Ouyang et al., 2022) deals with the problem49

of aligning a policy network, using Dpref = {(x, a+, a-)} . Given the context/prompt x, a pair of50

outputs are sampled from πref(· | x) and then arranged as per preference function (typically implicitly51

given by human annotation). RLHF methods (Christiano et al., 2017; Ouyang et al., 2022) seek to52

obtain a policy π̂ that is aligned with the preference data. This is done, by first estimating a reward53

function r from Dpref using maximum likelihood. Then one uses RL based optimization methods like54

PPO to maximize the learnt reward with an additional regularization term.55

π̂ = argmax
π∈Π

Eπ

[
r(x, y)− β log

π(a | x)
πref(a | x)

]
.

Overoptimization The phenomena of overoptimization and reward-hacking in alignment literature56

is well documented (Guo et al., 2024; Song et al., 2024). This problem can be alleviated when access57

to the underlying system is available, as data with the policy can be collected from the policy as it58

gets optimized (Gao et al., 2024; Guo et al., 2024). However, in the context of A/B testing, these59

methods are inapplicable, as the only way to collect data from the newer policy is deploying it in the60

field, i.e. another A/B test which defeats the purpose of using LLMs to bypass A/B testing.61

2.2 Related Work62

Researchers are increasingly trying to utilize LLMs for emulating human behaviour (Ziems et al.,63

[n. d.]; Kim and Lee, 2023; Park et al., 2023). The idea of using AI agents to simulate users has a long64

history of research in information systems(Carterette et al., 2011; Mostafa et al., 2003). LLM based65

user simulators has been studied for evaluating task-oriented dialogue systems and recommender66

systems (Balog and Zhai, 2023, 2024). Chen et al. (2024) have demonstrated the potential of using67

self-play between LLMs for developing recommendation systems. Recent works have also suggested68

using LLM based models to warm start bandit based methods (Ye et al., 2024b) for A/B testing.69

However, concerns about the reliability of such simulations have also been raised (Zhu et al., 2024a).70

3 Our Work71

3.1 Direct Evaluation with LLM72

LLMs have proven themselves to be good as both embedding models (Ethayarajh, 2019) and task73

learners (Brown et al., 2020). We consider both of these possible ways to develop LLM based74

baselines for rating treatments/headlines.75

• Direct Prompting: We treat the LLM as an evaluator, provide it the article in the prompt76

and instruct it to rate the different headlines as more engaging. This effectively uses the77

LLM as a zero-shot classifier, and can directly measure the accuracy. We call this method78

PromptOnly.79
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Figure 1: Overview of the proposed generative approach. The reward model r is obtained by tuning
an LLM on the preference data Dpref, which consist of tuples of contexts/articles along with two
treatments arms (a+, a-). Given a prompt x (which includes the context/article along with instructions)
the generator LLM produces an output a. The pair x, a+ is considered as a demonstration for the
generator to match and improve using the reward model r.

• In-context learning: Similar to direct prompting except that the LLM is also provided with a80

few in-context examples (or demonstrations) to learn from and choose the correct answer.81

We refer to these as ICL methods.82

• Blackbox Embedding: We train an MLP based which used the LLM embeddings of the83

combined text of the article and headline to pick the better answer.84

• Finetuning: We fine-tune an opensource LLM based on the data, to prick the better answer.85

This is similar to the blackbox embedding approach, except that has a frozen LM, whereas86

we allow the LM to be updates. Furthermore as both our compute resources and the amount87

of data is limited, we take LORA (Hu et al., 2022) approach. We call these FT methods.88

In the experiment section, we will present the results from all of these methods. We found that89

prompting and in-context learning based methods are significantly worse (< 65%) than fine-tuning90

based approaches (∼80% accuracy). These results are qualitatively in line with other recent works91

focusing on using prompting and ICL based methods to classify content (Zhou et al., 2024).92

3.2 Generative Evaluation with LLM93

We also propose a method based on finetuning an LLM to generate engaging treatment arms (or94

content) using the results from the logged A/B testing data. Note that the goal here is not necessarily95

to use the generative model to generate new treatments, but instead use it to rate content based on96

model likelihood. We use RLHF (Ouyang et al., 2022) as our starting point. However we found that97

this model can overfit easily and is only slightly better than few-shot learning based approach. As98

such we modify the standard RLHF procedure to address the overfitting caused by nuances specific99

to the A/B testing. The overall schematic is presented in Figure 1 Most of the ideas in our approach100

can also be applied with other learning paradigms such as DPO (Rafailov et al., 2024), and CPO (Xu101

et al., 2024).102

Ensemble reward model In the direct evaluation methods, we found the ensemble model from103

GPT embeddings to be a cheap and accurate model in predicting positive treatment arms. As104

such we leveraged GPT embeddings to train a reward model. However, following (Coste et al.,105

2024), we created an ensemble model E with different subsets of the data to help reduce reward106

overoptimization.107

Regularizing Objectives Compared to the standard RLHF framework of (Ouyang et al., 2022) we108

make the following changes to the loss objective:109

• We include an additional term of π(a|x)
πref(a|x) as a regularizer in the objective. This terms110

more strongly penalizes deviations of π from πref than just the KL divergence. An astute111

reader might also note that this term is equivalent to regularizing with the order-2 Tsallis112

divergence.113
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• We also prevent the model from exploring a space which might be far from the space where114

the reward model is certain. Since Dpref forms the training data for the ensemble reward115

model, a y which is too far from the training data i.e. P (y|x) << P (Dpref |x) is low, can116

be considered to be a situation where the reward model is unreliable. Penalizing with the117

corresponding density ratio prevents the model from going too far out of the training support118

of the reward model. In our experiments, we estimate this ratio via prompting. Specifically,119

we provide GPT-3 with a prompt that describes the articles and example prompts, then120

follow the prompt with the current text sample to estimate the support the sample may have121

in data. We clip the log-density-ratio at δ to avoid drawing only training samples.122

Combining these we get the following maximization objective123

π̂ = argmax
π∈Π

Eπ

[
rm(x, a)− β log

π(a | x)
πref(a | x) − β

π(a | x)
πref(a | x) + λ log+

(
P (a | x)
P (D | x) , δ

)]
(1)

where rm(x, a) = 1
E

∑
r∈E r(x, a) is the ensemble reward, P is given by GPT probabilities,124

P (D|x) = P (a+|x) + P (a-|x), log+ is the clipped log functio, and β, λ are hyperparameters.125

4 Experiments126

Datasets We experiment with two public datasets obtained from real-life A/B testing scenarios.127

• Upworthy: This dataset records a sample of A/B tests conducted by Upworthy Matias128

et al. (2021). The data consists of several versions of headlines created by an editorial129

teams for various articles. We only considered text only content and restricted to those130

treatments/headlines which were assessed to have statistically different CTRs ( at p=0.10).131

• Tweet Popularity: Tan et al. (2014) studied the effect of wording of a statement on retweeting.132

Their tweet popularity dataset is similar to an A/B test with a total of 13k tweet pairs, which133

are matched by the topic and the author; where the positive sample is considered as the one134

to receive more retweets. We apply a similar pre-processing as Upworthy.135

Evaluation Assessing performance of direct models is straightforward, we simply analyse whether136

the model correctly classified test set examples. Evaluating the generative model is more nuanced.137

The generative method is assessed based on whether the likelihood of the positive answer is higher138

than of the negative answer i.e. whether π(a+ | x) > π(a- | x).139

Table 1: Accuracy for different approaches on the different A/B
testing datasets. † represents generative models evaluated on
better treatment’s likelihood. * denotes that the prompts triggered
a safety check which were ignored in accuracy calculation

Model Upworthy Tweet
GPT-4 PromptOnly 56.6 47.1 *
Claude PromptOnly 58.1 49.6*
Llama-3-8b PromptOnly 55.7 45.3
GPT-4 ICL 64.2 61.3*
Claude ICL 60.1 56.8*
Llama-3-8b ICL 60.7 58.5
OpenAI text-embedding-3-large 82.5 79.9*
Llama-3-8b embedding 74.0 76.5
FT Single 82.8 79.4
FT Ensemble 83.6 80.2
DPO 72.8† 76.1†

Ours 84.5† 81.6†

Results Our results are pre-140

sented in Table 1. From these141

results we can see that prompt-142

ing based methods, both direct143

prompting and few-shot learning,144

are just a little better than aver-145

age guessing. Specifically we146

see no model better than (∼ 65%)147

accuracy. We also found that148

giving a few examples for ICL149

leads to slightly better perfor-150

mance than pure prompt based151

method ( ∼ 60% vs ∼55%).152

Next we also see that methods153

based on training a model on154

the data using LLM as represen-155

tation functions performs much156

better. With most embedding157

models we see accuracy of 74%158

or higher, which is significantly159

better than prompt based models.160

However, the best performance was obtained by fine-tuning these models; Fine-tuned Llama models161

outperforms GPT embedding models. These results are consistent between both the Upworthy and162
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Tweet dataset. We also note that the tweet dataset contain samples which triggered safety violations.163

With GPT/Claude we excluded these results, and so these numbers are not exactly comparable to164

each other.165
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Figure 2: Plot of model accuracy against the ab-
solute value of the mean difference in click rates
i.e. r(a+, x) − r(a-, x). Both models performs
better when the underlying rates are different,
but the generative approach outperforms the em-
bedding based model.

Finally, we tried to rate content by first training an166

LLM to produce more engaging content, and using167

its likelihood as a measure of rating. The results168

indicate that by suitably training the Llama model169

to align with the preferences implicitly given by170

our dataset, we can match or outperform all the171

earlier approaches. This suggests that LLMs can172

potentially be used as generators of the treatments173

for an A/B test. However since we did not per-174

form a human evaluation of its outputs, and more175

research is needed in this direction.176

Analysis We delve further into the behaviours177

of the different models. As a representative of178

the direct evaluation method we chose the GPT179

based embedding model, and compared it to the180

generative model described earlier. We focus on181

the Upworthy dataset here as we have significantly182

more number of tests than Tweet. In Figure 3 we183

plot the calibration chart i.e. a comparison of184

the model accuracy and the predicted probability185

of treatment A better than treatment B. For the186

generative approach we normalized the probability187

of the two considered options instead of using the output likelihood. The ideal line is of a an oracle188

calibrated model whose output probabilites will match its accuracy. From Figure 3 one can see that189

the embedding model is overconfident in its predictions, and modern neural networks are known190

to suffer from this (Caruana et al., 2015; Guo et al., 2017). However, surprisingly the generative191

approach seems conservative in its predictions.192
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Figure 3: Model accuracy vs model confi-
dence for the generative and embedding ap-
proaches. The embedding approach is over-
confident while generative model is undercon-
fident in picking the better arm.

We further analyse how the model performance varies193

across the difficulty of samples. Difficulty in this194

context is measured based on the difference in click-195

through (CTR) rates. In terms of downstream impact,196

having the right decision when the underlying click197

rates are different, is more important than when dif-198

ferences are lower. In Figure 2, we plot the accuracy199

of the the GPT3 embedding model against the per-200

centile of the click rates. We can see that both models201

are more accurate as the underlying mean difference202

increases. This supports the idea that the LLM based203

evaluation can supplement A/B testing at low risk, as204

it is less error-prone when underlying costs of error205

are higher.206

5 Conclusion207

We propose an approach to leverage LLMs for con-208

tent experimentation in digital platforms. We first209

examined how well LLMs can predict appealingness210

of content. First we find that purely prompt based211

methods improve over random chance only by a small factor, suggesting that these methods are not212

suitable for predicting engagement. We also try fine-tuning based approaches to classify content and213

find that these are significantly better. Next, we try to see whether an LLM fine-tuned to produce214

engaging content can be used to rate the treatments. We find that suitably regularized generative215

model performs better than the best fine tuned ensemble models.216
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Appendix306

The prompt used for in-context learning is given in Example 1. Instructions from this are also used in307

the context when tuning the models.308

309
Instruction Prompt310
You are an expert marketing writer for a newspaper company. You you are excellent at choosing which311
headlines are likely to get more clicks for an article.312
You will be given an article context and two headlines, from which you determine which headline was313
clicked more often.314
You are given the headlines as "Headline _" where _ is either 1 or 2. Give your final answer in the315
following format:316
"Answer: Headline _"317

318
User Prompt319
Here are some previous examples to help you:320
··· more examples here ···321
Which of the following headlines has more clicks:322
Article: <context>323
Headline 1: <headline_1>324
Headline 2: <headline_2>325

326
Think step by step, and explain your reasons327
Step 1: Look at the new pair of headlines and compare them with the examples associated with each328
pattern.Step 2: Find the set of examples that is closest to the given pair of headlines, and pick the329
pattern associated with that set of examples.330
Step 13: Think about which one out of the pair of headlines will get more clicks.331
Step 14: Give your final answer.332333

Example 1: Zero/Few-shot Inference.

We further analyse how the model performance varies across the the statistical significance of334

the difference in the CTR rates 1. The significance score is done by a Welch-t test ( two-sample335

uncommon variance t-test).336
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Figure 4: Plot of model accuracy against the per-
centiles of the click-rates difference of different arms.

This is different from Figure 2 as difficulty in337

this context is measured based on the statisti-338

cal significance of the difference in the CTR339

rates. A high difference in click through rates340

need not mean high significance, as the dif-341

ference is adjusted for the variance and/or the342

number of impressions for computing the sig-343

nificance. Note that since we already filtered344

out non-conclusive tests, we are considering345

only low p-value samples. The result of accu-346

racy on the test-set for is presented in Figure347

4. We can see that both models in general are348

more accurate as the significance increases349

(p-value decreases).350

1Since the significance score is also dependent on number of impressions which get influenced by the
experimenter decisions, the difference in rates is not an ideal measure of difficulty.
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