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ABSTRACT

Compositional generalization, referring to the capacity to generalize novel com-
binations of fundamental and essential concepts, is thought to be the mechanism
underlying a human’s remarkable ability of rapid generalization to new knowl-
edge and tasks. Recent research on brain neural activation space has found that
the geometric structure of neural representations is highly related to human com-
positional generalization capability. In this paper, we extend the above obser-
vations from neuroscience to deep neural networks to validate the potential re-
lationship between the geometric structure of representations and compositional
generalization capability. In particular, we first construct a new compositional
generalization benchmark from the existent datasets, which aims to discriminate
multiple concepts simultaneously through a powerful representation. Meanwhile,
for the aforementioned geometric constraint, the parallelism score is formally de-
fined for deep neural networks. Subsequently, we decompose the deep neural net-
work into two parts: the featurizer and the classifier, to investigate the relationship
between compositional generalization capability and parallelism score separately.
Our proposed method, Geometric Constraint (GeoCon), involves distance vari-
ance minimization on the classifier and parallelism score maximization on the fea-
turizer. Experiments on synthetic and real-world datasets demonstrate significant
improvement of our approach, verifying the effectiveness of our neuroscience-
inspired GeoCon approach towards human-like superior generalization ability.

1 INTRODUCTION

Humans exhibit a remarkable capacity for generalization by transferring existing limited prior
knowledge to novel contexts. One underlying mechanism is hypothesized to be compositional gen-
eralization (Cole et al., 2013; Frankland & Greene, 2020; Hupkes et al., 2020), the ability to sys-
tematically disentangle learned concepts and recombine them into unseen compositions (e.g., red
apple and yellow banana can be decoupled and recomposed into a new composition yellow apple).
This ability, described by Chomsky (2014) as “the infinite use of finite means”, is considered an
essential characteristic of human intelligence. Despite the substantial advancements accomplished
by deep neural networks (Li et al., 2021; Han et al., 2022), they still struggle with generalization per-
formance and have been criticized for lacking compositional generalization capability, even when
provided with extensive training data (Zhang et al., 2023). Consequently, it is a significant yet chal-
lenging research topic to study the compositional generalization mechanism of deep neural networks
(Lin et al., 2023), which is crucial for advancing toward artificial intelligence.

Related Work. In previous research on compositional generalization in computer vision, one impor-
tant related research field is disentangled representation learning (Higgins et al., 2017; Wang et al.,
2022), which aims to extract independent underlying concept factors from mixed representations
and recombine them to generate novel concept compositions predominantly on synthetic datasets.
However, it remains unclear whether disentanglement can assist in compositional generalization,
while some studies suggest that there is currently no evidence that explicitly decoupling input com-
positional factors substantially improves the learning efficiency or generalization capacity of models
(Montero et al., 2020; Schott et al., 2021; Xu et al., 2022), whereas some claim to find a correlation
between disentanglement and compositional generalization (Higgins et al., 2017; Esmaeili et al.,
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Figure 1: (a). Hypothetical geometric configurations of neural activation space. Parallel abstract rep-
resentation leads to high compositional generalization capability. (b). Our designed compositional
generalization benchmark. The model is expected to simultaneously differentiate two concepts.

2019; Mahon et al., 2023). Compositional zero-shot learning attempts to address the compositional-
ity challenge in real-world scenarios, enhancing the accuracy of unseen attribute-object pairs when
trained on different attribute-object pairs (Mancini et al., 2021; Wang et al., 2023; Hao et al., 2023).
The objective of this task is to acquire invariant representations of objects while eliminating spuri-
ous attribute features, rather than systematically recognizing each concept, including attributes and
objects. With the advancement of vision-language models (Zhang et al., 2024), several efforts have
evaluated the compositional generalization capability of multimodal models (Ma et al., 2023; Yuk-
sekgonul et al., 2023) and endeavored to develop novel training paradigms to enhance this ability
(Zheng et al., 2024; Mitra et al., 2024). However, these purported improvements have been revealed
to stem from linguistic priors rather than genuine enhancements in visual compositional generaliza-
tion capability (Wu et al., 2023). Furthermore, extant visual encoders still perform inadequately in
capturing compositional details (Tong et al., 2024). In summary, the internal mechanism of compo-
sitional generalization in visual models remains elusive.

To demystify the mechanism of compositional generalization from a neuroscience perspective,
Bernardi et al. (2020) investigates the neural activation space in the hippocampus and prefrontal
cortex, proposing the compositional additive representation extracted from neural signals, identified
as the abstract representation. They further propose the parallelism score to quantify the parallelism
of the geometric structure for the abstract representation, which is positively related to the com-
positional generalization capability, as shown in Fig.1.(a). The subsequent study (Ito et al., 2022)
leverages the parallelism score to measure the fMRI activity signals of the human brain during the
execution of tasks that necessitate logical decision, semantic comprehension, and motor response.

Our Contributions. Motivated by the aforementioned observations from neuroscience research,
we would like to validate whether this pattern is consistent in deep neural networks. Initially, we
establish a novel compositional generalization task from the existent datasets and provide a formal
definition of the parallelism score. Afterward, we partition the deep neural network into the featur-
izer and the classifier, proposing regularization techniques: distance variance minimization on the
classifier and parallelism score maximization on the featurizer, to constrain the representation space.
As a result, we introduce the Geometric Constraint (GeoCon) to strengthen the visual compositional
generalization capability. Experimental results demonstrate that our GeoCon method surpasses the
current baselines across multiple datasets. This research endeavor has the potential to serve as a valu-
able investigation into the mechanisms underlying compositional generalization, thereby advancing
the development of deep neural networks toward achieving human-like intelligence.

2 PRELIMINARIES

2.1 COMPOSITIONAL GENERALIZATION

To achieve compositional generalization, it is imperative to systematically differentiate each concept
and preserve the discrimination capacity for novel combinations. To facilitate comprehension and
maintain simplicity, we shall initially examine the case of two concept factors, A and B. This
framework can subsequently be expanded to encompass additional concepts.
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Featurizer 𝑽𝑬→𝑮,𝑷

Concept A
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Concept B

Sketch

Concept B

Photo

Photo Giraffe

Photo Elephant

Sketch Elephant

𝐏𝐒𝑬𝒍𝒆𝒑𝒉𝒂𝒏𝒕−𝑮𝒊𝒓𝒂𝒇𝒇𝒆 = 𝐜𝐨𝐬 < 𝑽𝑬→𝑮,𝑷 , 𝑽𝑬→𝑮,𝑺 >

𝐏𝐒𝑺𝒌𝒆𝒕𝒄𝒉−𝑷𝒉𝒐𝒕𝒐 = 𝐜𝐨𝐬 < 𝑽𝑮,𝑺→𝑷, 𝑽𝑬,𝑺→𝑷 >

Classifier

Sketch Giraffe

𝑽𝑮,𝑺→𝑷

𝑽𝑬,𝑺→𝑷

𝑽𝑬→𝑮,𝑺

Figure 2: Illustration for the parallelism score calculation. We first calculate the expected repre-
sentation for each combination, then obtain the concept transform vectors within diverse conceptual
contexts (e.g., VE→G,P represents the concept transform vector that changes one concept from Ele-
phant to Giraffe in the setting of Photo for another concept). Finally, we measure the parallelism of
these concept transform vectors using the cosine similarity.

Consider predicting the target a = (a1, a2, . . . , amA
) ∈ RmA with mA concepts and target b =

(b1, b2, . . . , bmB
) ∈ RmB with mB concepts simultaneously from input image x ∈ RL×H×C .

The featurizer can be defined as g : RL×H×C 7→ Rd that maps an input image x into the d-
dimensional representation space, while classifiers can be characterized as fA : Rd 7→ RmA and
fB : Rd 7→ RmB that map a representation r = g(x) into A and B concept space respectively. The
objective of this task is to develop the model fA ◦ g and fB ◦ g capable of accurately predicting
multiple target concepts simultaneously, utilizing representations extracted by a single featurizer.
In particular, to verify that g captures a good representation, we consider fA and fB to be linear
functions to eschew further modifications of the representation structure.

Let X denote a nonempty input image space, as well as A and B two target spaces of concepts A
and B. In the training process, we have training points Dtr = {(x(i),a(i), b(i))}ni=1 sampled from
distribution D = X × A × B. In the in-distribution generalization, the train set targets encompass
all compositions within the concept space. However, referring to the definition of compositional
generalization in Mahon et al. (2023); Xu et al. (2022), as demonstrated in Fig.1.(b), the train set
targets will encounter each potential concept individually (containing all styles and contents), but
there will still exist unseen concept combinations, which can be formally elucidated as:
∃ i ∈ {1, 2, . . . ,mA}, j ∈ {1, 2, . . . ,mB} s.t. ai ∈ Atr, bj ∈ Btr, (ai, bj) /∈ (Atr × Btr) (1)

where Atr and Btr denotes the training target spaces. The leftover space (Ate × Bte) = (A ×
B) \ (Atr × Btr) is identified as the out-of-combination (OOC) in the target space. An ideal model
exhibiting high compositional generalization capability can effectively learn from samples that only
cover partial concept compositions but perform proficiency in OOC cases Dte = Xte ×Ate × Bte,
which characterize the test set, Xte denoting the corresponding input image space for Ate × Bte.

Let LA(fA, g;Dtr) and LB(fB , g;Dtr) be cross-entropy loss functions that measures the discrep-
ancy between the predictions and the targets, respectively (keeping consistent in Section 3). Accord-
ingly, the compositional generalization can be formulated as the following optimization problem:

min
fA,fB ,g

E(x,a,b)∈Dtr

[
LA

(
fA ◦ g(x),a

)
+ LB

(
fB ◦ g(x), b

)]
(2)

2.2 PARALLELISM SCORE

We here provide a mathematical description for the parallelism score (PS) proposed qualitatively in
neuroscience by Bernardi et al. (2020). Assign X (a, b) = {x | (x,a, b) ∈ D, (a, b) = (a, b)} as the
input samples with the target (a, b). Subsequently, we obtain the expected representation indicating
the centroid for points with the target (a, b) as:

r(a, b) = Ex∈X (a,b)[g(x)] (3)

3
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Figure 3: Positive correlation between PS and CG for logistic regression and MinDV regularization
across the different variances for the Gaussian distributions. Since PS is nonlinear with respect to
angle, the horizontal axis is converted to linear scale by the arccos function for clearer visualization.

Next, we introduce the concept transform vector of a → a′ under context b, which measures the
directional transformation of the expected representation of (a, b) to that of (a′, b) as:

Va→a′,b = V (a→ a′|b) = r(a′, b)− r(a, b) (4)

Correspondingly, the concept transform vector of b→ b′ under context a can be described as:

Va,b→b′ = V (b→ b′|a) = r(a, b′)− r(a, b) (5)

The parallelism score (PS) intents to quantify the consistency of concept transform vector directions
across diverse contexts, utilizing the cosine similarity function as a measurement, as illustrated in
Fig.2. Consequently, it is feasible to define the specific-concept-level PSa→a′ , the overall-concept-
level PSA, and the dataset-level PSD as follows:

PSa→a′ = PS(a→ a′) =
1

MB

∑
b̸=b′∈B

cos
〈
V (a→ a′|b),V (a→ a′|b′)

〉
(6)

PSA = PS(a) =
1

MA

∑
a̸=a′∈A

PS(a→ a′) (7)

PSD =
MA

MA +MB
PS(a) +

MB

MA +MB
PS(b) (8)

where MA is the quantity of pairs for a ̸= a′ and MB is the quantity of pairs for b ̸= b′. The PS
approaching 1 indicates highly parallel concept transform vectors, which may potentially lead to
improved OOC performance, as suggested by Bernardi et al. (2020). This characteristic exhibits the
potential to facilitate the training of models with enhanced compositional generalization capability.

3 METHODOLOGY

In this section, we aim to validate the effectiveness of the parallelism score (PS) from neuroscience
on deep neural networks by investigating the correlation between PS and compositional general-
ization (CG) capability. Specifically, we partition the neural network into a featurizer that extracts
representations and a classifier that makes final decisions based on these representations linearly. We
seek to address the following inquiries: What kind of classifier can enhance robust CG capability?
What kind of featurizer can yield high PS representations?

3.1 CLASSIFIER: DISTANCE VARIANCE MINIMIZATION

Simulation Studies on Synthetic Datasets. Assuming the existence of representations captured by
the featurizer, we aim to explore the relationship between representation geometric structure and CG
capability. Considering the simplest scenario involving two targets a = (a1, a2) and b = (b1, b2)
with two-dimensional representations that can be visualized on a plane, on which we sample four
points on a unit circle and consider them as centroids of representations with the concept combina-
tions (a1, b1), (a1, b2), (a2, b1), and (a2, b2). By controlling the sampled points, we can manipulate
the PS of the representation centroids. We further sample points around these centroids from the

4
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Figure 4: A fail case occurs when the PS of the sample points is 0.99. (a). Logistic regression
exhibits 100% accuracy when classifying concepts a1 and a2. (b). Logistic regression has only
3% accuracy when classifying concepts b1 and b2. (c). After applying MinDV regularization, the
accuracy improves to 81% when classifying concepts b1 and b2.

Gaussian distributions along the proximal circumference, to facilitate the generation of a synthetic
dataset of representations with different PS, all retaining the same concept labels as the centroids.

Subsequently, the points centered at (a2, b2) are designated as the test set, while points centered
at (a1, b1), (a1, b2) and (a2, b1) constitute the train set. We train two linear classifiers to classify
a = (a1, a2) and b = (b1, b2). During the training process, the model is exposed to all concepts a1,
a2, and b1, b2. Nevertheless, it has not encountered the combination of (a2, b2), which is defined as
the out-of-combination for CG. The mean and standard deviation of the accuracy of simultaneously
classifying the targets correctly within different PS intervals are recorded, as shown in Fig.3.

The blue line in Fig.3 illustrates the relationship between PS and CG when logistic regression is
employed as the linear classifier. As the PS increases, the model’s CG accuracy also improves,
demonstrating a positive correlation. A higher PS suggests that the configuration of the centroids
more closely approximates a parallelogram rather than an irregular quadrilateral, resulting in greater
parallelism between edges and making it more feasible for the model to accomplish CG tasks. The
blue shaded area represents the standard deviation in accuracy, a larger standard deviation implies
instability in CG accuracy. This observation suggests that even when the representations exhibit
high PS, the model retains a considerable probability of demonstrating poor CG capability.

We conduct a detailed analysis of cases where CG fails under high PS representations. In Fig.4.(a),
when classifying concepts a1 and a2, the distance between them is significant, allowing for distinct
classification. However, a severe failure occurs when classifying concepts b1 and b2 with an accuracy
of only 3%, as depicted in Fig.4.(b). During the training process, the logistic regression model
tends to maximize the aggregate distances from all train sample points (circle points) to the decision
boundary. Nevertheless, while classifying (a2, b1) and (a2, b2), since the test sample points (triangle
points) centered around (a2, b2) are unseen, the model will attempt to make the decision boundary
as far away as possible from the visible (a2, b1)-centered points (meanwhile getting closer to the
unseen (a2, b2)-centered points), in order to achieve enhanced basic generalization (albeit at the
expense of the CG capability). To address the aforementioned challenges, we propose distance
variance minimization regularization on the classifier to enhance the CG capability.

Distance Variance Minimization. The vanilla classifier demonstrates a failure on out-of-
combination samples, due to neglecting the highly parallel geometric structures of representations.
In this case, we aim for all samples to have as similar distances to the decision boundary as possible,
essentially minimizing the variance of distances. This strategy can prevent the model from devi-
ating excessively from the (a2, b2)-center points, based on which we propose Distance Variance
Minimization (MinDV) regularization to achieve this insight.

In more detail, when f is a linear function, defined as f(x) = wTr+ b, where r = g(x), we know
that the distance between the point and the decision boundary is |wTr + b|/∥w∥2. The distance
variance (DV) of the samples from the decision boundary on dataset D can be denoted as:

DV(f, g;D) = Varx∈X

[ |wT g(x) + b|
∥w∥2

]
(9)

Smaller DV indicates that the decision boundary is more parallel to the concept transform vectors.
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Ideally, we aim to solve the following constrained optimization problem. If this objective is feasible,
then our solution can rectify the failures. We generalize this finding in the subsequent theorem.

min
fA,fB ,g

E(x,a,b)∈Dtr

[
LA(fA, g;Dtr) + LB(fB , g;Dtr)

]
s.t. DV(fA, g;Dtr) = 0, DV(fB , g;Dtr) = 0

(10)

Theorem 1. If we do not consider the stochastic noise of the feature distribution, assume that
PS = 1, and the representation space is linearly separable, then f calculated by Eq.10 is guaranteed
to have 100% test accuracy, while vanilla classifier may fail for some cases.

Provided that DV = 0 is extremely challenging in practice, we relax the formulation constraint to:

min
fA,fB ,g

E(x,a,b)∈Dtr

[
LA(fA, g;Dtr) + LB(fB , g;Dtr)

]
s.t. DV(fA, g;Dtr) ≤ ϵ, DV(fB , g;Dtr) ≤ ϵ

(11)

where ϵ is the tolerance coefficient. The above is equivalent to the Lagrange function with appropri-
ate hyperparameters αA and αB , where the last terms are identified as the MinDV regularization:

min
fA,fB ,g

E
[
LA(fA, g;Dtr) + LB(fB , g;Dtr)

]
+ αADV(fA, g;Dtr) + αBDV(fB , g;Dtr) (12)

The MinDV regularization promotes model consistency in the distance from the decision boundary
across all samples. The idea of “balance enhances generalization” has also been applied in domain
generalization. For instance, the Invariant Risk Minimization (IRM) (Arjovsky et al., 2019) algo-
rithm aims to achieve similar classification performance across diverse domains while maintaining
overall classification efficacy. In summary, both MinDV and IRM are based on the assumption that
there exists a substantial disparity between the observed training distribution and the unseen testing
distribution. They strive to ensure that the model performs similarly across all visible distributions,
rather than significantly outperforming on a specific distribution.

After utilizing MinDV regularization, the previous failed case is rectified effectively, with perfor-
mance improving from 3% to 81%, as shown in Fig.4.(c). Moreover, the orange line in Fig.3 depicts
the results after incorporating MinDV regularization. Concomitant with the increase in CG accuracy,
the standard deviation is effectively controlled, indicating a reduction in the quantity of failed cases.
Overall, there exists a strong positive correlation between PS and CG, with higher PS expected to
yield better CG performance.

3.2 FEATURIZER: PARALLELISM SCORE MAXIMIZATION

Figure 5: The PSclass and CGclass for dif-
ferent models across multiple datasets.
Different colors represent different pre-
trained models, different shapes repre-
sent different datasets.

Empirical Studies on Real-world Datasets. To explore
what characteristic of the models can achieve high PS rep-
resentations, we evaluate multiple pre-trained models on
the PACS, Office-Home and NICO datasets for PS and
CG capabilities, also validating whether the above con-
clusions remain effective in more complex real-world sce-
narios. In specific, these datasets are broadly used in do-
main generalization, typically annotated with class and
domain labels. We treat them as two target concepts and
establish the CG tasks following Section 2.1. We select
65 pre-trained models with different architectures, sizes,
training strategies, and training datasets from the timm
library (Wightman, 2019). Through freezing their featur-
izers’ parameters and conducting linear probing solely on
representations, we evaluate the CG capabilities.

We separately record the PSclass and PSdomain, CGclass and
CGdomain, yielding the following insights:

(i). A positive correlation exists between PS and CG, and
this conclusion still holds true even in real-world environ-
ments. As depicted in Fig.5, Pearson’s correlation (γ) and Spearman’s rank correlation (ρ) coeffi-
cient both exceed 0.945, further emphasizing this robust correlation irrespective of dataset variations.

6
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Figure 6: The Spearman correlation matrices of the PACS, Office-Home, and NICO datasets.

(ii). Different models exhibit varying PS and CG capabilities across different concepts. As indicated
by the blue region in Fig.6, the CGclass shows a negative correlation with the PSdomain and CGdomain.
This suggests that models with strong CG capabilities for class may have weaker CG capabilities for
domain, indicating that the CG capabilities across different concepts are not necessarily correlated.

(iii). The pre-training strategy of a model influences its PS and CG capability. Models with ran-
domly initialized weights inherently exhibit high PS for domain, showcasing the best CGdomain per-
formance but negligible CGclass capability. Compared to supervised models, the self-supervised
model DINO demonstrates a balanced performance on both class and domain, potentially because
supervised models excessively focus on the class during the pre-training phase. For supervised
models, increasing the amount of training data or scaling up the model size can enhance the CGclass
capability but does not improve the CGdomain capability. Multimodal models like CLIP exhibit su-
perior CG capabilities for both class and domain. Refer to the Appendix C for more details.

(iv). Even the most advanced models struggle to exhibit strong CG capabilities across multiple
concepts simultaneously. So far, no model has demonstrated extremely strong CG capabilities in
both class and domain aspects. Consequently, when it comes to more concepts, the model will face
even greater difficulties. CG continues to be a highly complex and challenging task.

Parallelism Score Maximization. Existing models encounter difficulties in simultaneously pos-
sessing high PS across multiple concepts, thereby limiting their CG capabilities. Consequently, an
intuitive approach is to utilize PS as a constraint and explicitly optimize it during the training pro-
cess. Therefore, we propose the Parallelism Score Maximization (MaxPS) regularization, which
encourages the representations to possess a highly parallel geometric structure. Since PS is a cosine
function with an upper bound of 1, we achieve this by minimizing the difference between PS and 1.

Suppose that T denotes the number of iterations. At each t = 1, . . . , T round, we get a batch of
stochastic samples Dt

tr = X t
tr×At

tr×Bt
tr. Following the mathematical definition in Eq.3, initially,

we estimate the expected representation using batch samples as:
r̂t(a, b) = Ex∈X t

tr(a,b)
[g(x)] (13)

When the batch size is large enough, this estimation approximates the actual expected value. If the
batch size is limited, we can also employ an exponential smoothing method (Cutkosky & Orabona,
2019) to reduce the variance. According to Eq.8, the estimations of PS can be calculated as follows:

P̂S(gt;Dt
tr) =

1

M t
A +M t

B

∑
a̸=a′∈At

tr

∑
b ̸=b′∈Bt

tr

( 1

M t
B

cos
〈
V̂ t(a→ a′|b), V̂ t(a→ a′|b′)

〉
+

1

M t
A

cos
〈
V̂ t(b→ b′|a), V̂ t(b→ b′|a′)

〉) (14)

where V̂ t(a → a′|b) = r̂t(a, b) − r̂t(a′, b). Under the assumption of uniformly sampled concept
transform vectors, this estimation can be proved unbiased as follows.
Theorem 2. Assume that the concept transform vectors are uniformly sampled, and r̂t(a, b) ≈
r(a, b), we have: E[P̂S(gt;Dt

tr)] ≈ PS(g;Dtr).

Theorem 2 indicates that PS can be appropriately optimized. One might argue that uniformly sam-
pled concept transform vectors may be too strong. In practice, we can reweight each pair of concept
transform vectors to ensure equal influence, thereby potentially obtaining equivalent results.
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Class 0, Train Sample
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Class 1, Test Sample

Decision Boundary

Figure 7: The Geometric Constraint framework.

By leveraging the PS estimation, we get the MaxPS regularized loss for the batch t as:

L̃t = LA(f
t
A, gt;Dt

tr) + LB(f
t
B , gt;Dt

tr) + β(1− P̂S(gt;Dt
tr)) (15)

and then perform gradient steps for descending L̃t to update the model and obtain f t+1
A , f t+1

B and
gt+1 until the parameter converges. The MaxPS regularization ensures that the representation mod-
els are enforced to optimize the accuracy and PS simultaneously, leading to better CG performance.

3.3 FRAMEWORK: GEOMETRIC CONSTRAINT

Based on the positive correlation between PS and CG capability, we introduce two regularizations:
MinDV primarily constrains the geometric structure of the classifier, whereas MaxPS imposes con-
straints on the the representations extracted by the featurizer. By combining Eq.12 and Eq.15, we
propose the Geometric Constraint (GeoCon) method to enhance CG capability via PS and DV:

min
fA,fB ,g

E
[
LA(fA, g) + LB(fB , g)

]
+ αAD̂V(fA, g) + αBD̂V(fB , g) + β(1− P̂S(g)) (16)

where αA, αB and β denote the weights of the regularization terms. Fig.7 illustrates the workflow
of GeoCon, where MaxPS encourages more parallelism among the centroids of the representations,
while MinDV ensures a more equitable distribution of distances between sample points and decision
boundary, thus conforming to this well-organized geometric structure. Refer to the Appendix A for
the proof of the theorem and the Appendix B for detailed optimization steps.

4 EXPERIMENTS

4.1 SETUP

Datasets. As described in Section 2.1, the CG benchmark requires each sample to have at least two
concept labels. Therefore, domain generalization datasets that concurrently annotate class and do-
main labels would serve as an feasible solution. We select the PACS (Li et al., 2017), Office-Home
(Saenko et al., 2010), DomainNet (Peng et al., 2019), and NICO (He et al., 2021) datasets, consid-
ering their class and domain labels as two separate concepts, to construct our CG task, among which
PACS, Office-Home, and DomainNet have concepts labeled as content and style, while NICO’s
concepts are labeled as object and environment. Refer to the Appendix D for more details.

Due to the significant disparity in the quantity of classes compared to domains in the Office-Home,
DomainNet, and NICO datasets, there exists a substantial difficulty gap between classifying the two
targets. To address this issue, we divide the datasets by class into several subsets, each containing a
comparable number of classes as the number of domains, and record the average performance across
these subsets. For each class, one domain is selected as the test set, while the remaining domains
serve as the train set, ensuring that all domains have appeared in the train set.

For deeper analysis, we additionally leverage the synthetic dataset 3D Shapes (Kim & Mnih, 2018),
composed of 6 factors: floor hue, wall hue, object hue, scale, shape, and orientation. We identify
shape and object hue as the concepts to be predicted, while regarding the other factors as noise,
providing a reasonable simulation of the real world. We randomly sample 1000 images for each
concept combination to construct our dataset. Half of the concept combinations are used for training,
while the remaining combinations are employed for testing. Each image is flattened into a one-
dimensional vector, and a three-layer fully connected neural network is employed, wherein the first
two layers are shared by two concepts, serving as a featurizer. Subsequently, two linear classifiers
are connected to classify shape and object hue, respectively.
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Table 1: CG accuracy of models with different pre-training settings. Bold indicates the best result.

Dataset PACS Office-Home DomainNet NICO

Backbone Method class domain both class domain both class domain both class domain both

ViT1K

LP 0.4083 0.6834 0.2195 0.9155 0.2732 0.0789 0.3548 0.6052 0.1769 0.9313 0.2008 0.1521
FT 0.7307 0.6655 0.4060 0.9127 0.3499 0.1553 0.7098 0.6125 0.3534 0.9323 0.2472 0.2366

GeoCon 0.7896 0.6938 0.4804 0.9324 0.3962 0.2513 0.7103 0.6523 0.4352 0.9416 0.3228 0.3071

ViT21K

LP 0.5614 0.8433 0.4197 0.9465 0.2113 0.1690 0.5120 0.7513 0.3589 0.9550 0.3358 0.3047
FT 0.7197 0.9085 0.6317 0.9437 0.2535 0.2000 0.6988 0.8230 0.5584 0.9629 0.3534 0.3233

GeoCon 0.7884 0.9521 0.7409 0.9606 0.3299 0.2965 0.7765 0.8425 0.6327 0.9643 0.4420 0.4151

DINO
LP 0.4609 0.8245 0.2976 0.8366 0.2901 0.1549 0.4327 0.7450 0.2520 0.9323 0.3131 0.2630
FT 0.5206 0.8245 0.3536 0.8394 0.3296 0.1775 0.4888 0.7552 0.3052 0.9341 0.3298 0.2782

GeoCon 0.5493 0.8449 0.4043 0.8451 0.4231 0.2780 0.5075 0.8012 0.3721 0.8562 0.4212 0.3344

CLIP
LP 0.9384 0.9262 0.8645 0.9155 0.4620 0.3831 0.9012 0.8532 0.7865 0.9699 0.3984 0.3766
FT 0.9234 0.9623 0.8857 0.9324 0.5803 0.5155 0.9026 0.8781 0.8014 0.9689 0.3789 0.3534

GeoCon 0.9713 0.9910 0.9623 0.9114 0.6563 0.5775 0.9155 0.9352 0.8552 0.9768 0.4940 0.4819

Table 2: Comparison for CG accuracy of different methods on CLIP. Bold indicates the best result.

Dataset PACS Office-Home DomainNet NICO Average

Method class domain both class domain both class domain both class domain both both

LP 0.9384 0.9262 0.8645 0.9155 0.4620 0.3831 0.9012 0.8532 0.7865 0.9699 0.3984 0.3766 0.6027
FT 0.9234 0.9623 0.8857 0.9324 0.5803 0.5155 0.9026 0.8781 0.8014 0.9689 0.3789 0.3534 0.6390

LP-FT 0.9352 0.9713 0.9066 0.9218 0.6064 0.5216 0.9058 0.8810 0.8021 0.9702 0.3884 0.3615 0.6480
WiSE-FT 0.9399 0.9706 0.9109 0.9201 0.6255 0.5520 0.9094 0.9053 0.8233 0.9703 0.4402 0.4151 0.6753

GeoCon w/o MaxPS 0.9431 0.9761 0.9195 0.9147 0.6028 0.5433 0.9137 0.9184 0.8401 0.9712 0.4671 0.4439 0.6867
GeoCon w/o MinDV 0.9368 0.9623 0.8991 0.9195 0.6312 0.5524 0.9121 0.9136 0.8345 0.9717 0.4893 0.4763 0.6906

GeoCon 0.9713 0.9910 0.9623 0.9114 0.6563 0.5775 0.9155 0.9352 0.8552 0.9768 0.4940 0.4819 0.7192

Baselines. We implement the classifiers of the two concepts as single-layer linear classifiers. For the
featurizer, we employ a ViT-Base-16 architecture and select models from the timm library (Wight-
man, 2019) under different training settings, including: ViT1K (supervised training on ImageNet
1K), ViT21K (supervised training on ImageNet 21K), DINO (self-supervised training) (Oquab et al.,
2023), and CLIP (contrastive language-image pre-training) (Radford et al., 2021). CLIP tuning is
an important research problem in transfer learning. To further validate the effectiveness of our ap-
proach, we select linear probing (LP), fine-tuning (FT), LP-FT (Kumar et al., 2022), and WiSE-FT
(Wortsman et al., 2022) as baselines for comparison, where LP-FT does LP first and then FT after
some epochs, WiSE-FT uses a weighted average of parameters before and after FT.

4.2 MAIN RESULTS

Tab.1 presents the class accuracy, domain accuracy, and both accuracy (classifying two concepts
accurately simultaneously) on multiple datasets when utilizing pre-trained models under different
training settings. Irrespective of the backbone employed, our method consistently demonstrates
remarkably superior performance, thus substantiating the effectiveness of our approach. ViT21K,
compared to ViT1K, demonstrates enhanced CG capability due to the increased training data volume.
The supervised ViT1K and ViT21K result in higher performance in class accuracy, whereas the self-
supervised DINO shows a more balanced performance in class accuracy and domain accuracy. CLIP
continues to serve as a robust featurizer for CG tasks, surpassing other backbones significantly.

Tab.2 further analyzes the results of different algorithms when using CLIP as the backbone. Al-
though WiSE-FT serves as a strong baseline for out-of-distribution generalization, our method still
achieves state-of-the-art performance in this task. LP-FT shows a marginal improvement compared
to LP and FT, suggesting that conventional methods focusing solely on train set accuracy may just
enhance basic generalization but struggle to achieve strong CG capability. Furthermore, we con-
duct ablation studies to elucidate the importance of each component in our GeoCon framework.
The results indicate that even independently utilizing one single component can lead to optimal per-
formance. In comparison, MaxPS may be more critical since it primarily influences the featurizers
with more parameters. Additionally, an observation reveals the presence of a “Buckets Effect” in CG
tasks, wherein the both accuracy is more susceptible to concepts that are difficult to discriminate.
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Figure 8: The training process on 3D Shapes Dataset.

(a) (b) (c)

Figure 9: (a). t-SNE visualization when using baseline method. (b). t-SNE visualization when using
GeoCon framework. (c). Comparison of the accuracy with (blue) and without (orange) pre-training.

4.3 DISCUSSIONS

We conduct a more comprehensive analysis on the 3D Shapes dataset, leveraging supervised learn-
ing without the addition of any regularization as the baseline method. Fig.8 illustrates the variation
of metrics during the training process, wherein our approach demonstrates a significant improve-
ment of 22.29% compared to the baseline. When MaxPS is not used, the model converges rapidly
but experiences a decrease in accuracy after 25 epochs. It is noteworthy that the improvement in
accuracy aligns precisely with the uplift of PS, while the decline in accuracy corresponds to the
stagnation of PS. Maintaining consistency with MaxPS, the application of MinDV leads to lower
DV and improved accuracy, without which DV will ascend.

Fig.9.(a) and Fig.9.(b) display the t-SNE visualization results. The representations of the baseline
model still tend to cluster together but exhibit poor separability. In contrast, our GeoCon method
produces highly separable representations characterized by distinct linear discriminability.

To investigate the impact of pre-training on CG, we initially train a featurizer supervised by shape
solely and subsequently fine-tune it according to the CG setting. Surprisingly, the pre-trained models
demonstrated lower accuracy compared to models trained from scratch, as depicted in Fig.9.(c). This
could be attributed to biases introduced during the pre-training phase that are challenging to entirely
eliminate during fine-tuning. This observation suggests that simply fine-tuning existing pre-trained
models may not be efficacious for enhancing CG performance. The development of algorithms with
stronger CG capability necessitates consideration from the pre-training stage.

5 CONCLUSIONS

Conclusions. We formally introduce the parallelism score from neuroscience to deep learning, re-
vealing a strong positive correlation between it and compositional generalization from a geometry
perspective. Our framework, GeoCon, consisting of MinDV for the classifier and MaxPS for the fea-
turizer, aims to enhance CG capability by constraining the geometric structures of representations
and forcing the decision boundaries to conform to the well-organized structure. Experiments show
that GeoCon outperforms traditional approaches. This neuroscience-inspired representation mecha-
nism may elucidate the fundamental nature of human-like intelligence in deep neural networks.

Limitations. Our GeoCon currently relies on aligned concepts, presenting challenges when scaling
up to more complex and productive tasks. Furthermore, the computation of PS requires a substantial
quantity of concept combinations inside each batch, which is of relative inefficiency. This issue
could potentially be addressed by introducing a memory bank to mitigate computational complexity.
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A PROOF FOR THEOREM

A.1 PROOF FOR THEOREM 1

Proof. We shall begin with a 2-dimensional and 2-concept case. Assume that we have 4 points are
(a1, a2), (b1, b2), (c1, c2), (d1, d2) with target (y1, y2), (y′1, y2), (y1, y

′
2), (y

′
1, y

′
2). If PS = 1, then

we have:

Vy1→y′
1,y2

= (b1 − a1, b2 − a2) = (d1 − c1, d2 − c2) = Vy1→y′
1,y1

Vy1,y2→y′
2
= (c1 − a1, c2 − a2) = (d1 − b1, d2 − b2) = Vy′

1,y2→y′
2

Since the representation space is linearly separable, we can easily know that the optimal classifier
(considering the whole combination cases, hence have the best CG performance) for separating y1
and y′1 is:

y =
c2 − a2
c1 − a1

(x− a1 + b1
2

) +
a2 + b2

2

which is parallel to Vy1,y2→y′
2

and Vy′
1,y2→y′

2
. And the optimal classifier for separating y2 and y2 is:

y =
b2 − a2
b1 − a1

(x− a1 + c1
2

) +
a2 + c2

2

which is parallel to Vy1,y2→y′
2

and Vy′
1,y2→y′

2
.

Then, suppose the training points are (a1, a2), (b1, b2), (c1, c2), the optimal solution of Eq.10 is
exactly the same with the above optimal classifier that performs 100% accuracy when classifying
(d1, d2).

However, if four points are A = (1, 1), B = (2, 1), C = (−1, 0), D = (0, 0), then vanilla regression
on A, B and C will have solution for separating y2 and y2:

x =
3

2

which fail to classify D. We now prove that in the above case, Eq.10 yields a perfect model, while
vanilla regression could fail.

In the more generalized case involving multiple concepts and higher dimensionality, the principle
still comprises several instances of the 4-point cases. The generalization of our theoretical frame-
work is readily achievable.
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A.2 PROOF FOR THEOREM 2

Proof. Since we know that r̂t(a, b) ≈ rt(a, b), we can get:

V̂ t
a→a′,b = r̂(a′, b)− r̂(a, b) ≈ r(a′, b)− r(a, b) = V t

a→a′,b,

V̂ t
a,b→b′ = r̂(a, b′)− r̂(a, b) ≈ r(a, b′)− r(a, b) = V t

a,b→b′ .

For simplicity, we assume that Mt = M t
A = M t

B in Eq.14 and M = MA = MB in Eq.8. Due to
the concept transform vectors are uniformly sampled, we have:

E[P̂S(gt;Dt
tr)] = E

 1

2M2
t

∑
a ̸=a′∈At

tr

∑
b ̸=b′∈Bt

tr

(
cos

〈
V̂ t
a→a′,b, V̂

t
a→a′,b′

〉
+ cos

〈
V̂ t
a,b→b′ , V̂

t
a′,b→b′

〉)
≈ E

 1

2M2
t

∑
a ̸=a′∈At

tr

∑
b ̸=b′∈Bt

tr

(
cos

〈
V t
a→a′,b,V

t
a→a′,b′

〉
+ cos

〈
V t
a,b→b′ ,V

t
a′,b→b′

〉)
=

1

2M2

∑
a ̸=a′∈Atr

∑
b ̸=b′∈Btr

(
cos

〈
V t
a→a′,b,V

t
a→a′,b′

〉
+ cos

〈
V t
a,b→b′ ,V

t
a′,b→b′

〉)
= PS(g;Dtr).

We thus end the proof.
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B OPTIMIZATION STEPS FOR GEOCON

Algorithm 1 Geometric Constraint for Compositional Generalization

1: Input: training dataset Dtr = {(x(i),a(i), b(i))}Ni=1, batch size M , learning rate η, training
steps T , regularization weights αA, αB , β

2: Output: featurizer g, classifier fA for concept A, classifier fB for concept B parameterized as
θ

3: for t = 1 to T do
4: get mini-batch data from Dtr: Dt

tr = {(x(i),a(i), b(i))}Mi=1
5: for ∀(a, b) ∈ (At

tr × Bttr) do
6: calculate mean representations: r̂t(a, b) by Eq.3
7: end for
8: for b = 1 to |b| do
9: for ∀a ̸= a′ ∈ At

tr do
10: if (a, b) ∧ (a′, b) ∈ (At

tr × Bttr) then
11: calculate concept a→ a′ transform vectors: V̂ t(a→ a′|b) by Eq.4
12: end if
13: end for
14: end for
15: for a = 1 to |a| do
16: for ∀b ̸= b′ ∈ Bttr do
17: if (a, b) ∧ (a, b′) ∈ (At

tr × Bttr) then
18: calculate concept b→ b′ transform vectors: V̂ t(b→ b′|a) by Eq.5
19: end if
20: end for
21: end for
22: for ∀a ̸= a′ ∈ At

tr do
23: for ∀b ̸= b′ ∈ Bttr do
24: if (a, b) ∧ (a, b′) ∧ (a′, b) ∧ (a′, b′) ∈ (At

tr × Bttr) then
25: calculate parallelism score: P̂S(gt;Dt

tr) by Eq.8
26: end if
27: end for
28: end for
29: for i = 1 to M do

30: calculate distances:
∥fA ◦ g(x(i))∥
∥wA∥2

and
∥fB ◦ g(x(i))∥
∥wB∥2

31: calculate cross-entropy loss: LA(f
t
A, gt;Dt

tr) and LB(f
t
B , gt;Dt

tr)
32: end for
33: calculate distance variance: D̂VA(f

t
A, gt;Dt

tr) and D̂VB(f
t
B , gt;Dt

tr) by Eq.10
34: calculate total loss: L̃t = LA + LB + αAD̂VA + αBD̂VB + β(1− P̂S) by Eq.16

35: update parameters by stochastic gradient descent: θt+1 ← θt − η
∂L̃t

∂θt
36: end for
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C THE PS AND CG ACCURACY OF DIFFERENT PRE-TRAINED MODELS

Table 3: The PS and CG Accuracy of different pre-trained models on the PACS dataset.

Model PS-class CG-class PS-domain CG-domain
resnet18 random -0.0017 0 0.9929 1
resnet18 tv in1k 0.3697 0.3805 0.5864 0.8499

resnet18 fb ssl yfcc100m ft in1k 0.3951 0.3542 0.6127 0.8591
resnet18 fb swsl ig1b ft in1k 0.5225 0.5012 0.5724 0.8569

resnet34 tv in1k 0.3581 0.4055 0.574 0.8533
resnet50 random -0.0024 0 0.9946 1
resnet50 tv2 in1k 0.3354 0.4073 0.5663 0.8526

resnet50 fb ssl yfcc100m ft in1k 0.4263 0.3418 0.6004 0.8682
resnet50 fb swsl ig1b ft in1k 0.6123 0.6333 0.5608 0.8711

resnet101 tv2 in1k 0.3256 0.3844 0.5751 0.8206
resnet152 tv2 in1k 0.3325 0.383 0.563 0.812

wide resnet50 2 tv2 in1k 0.3221 0.3 0.5606 0.8504
wide resnet101 2 tv2 in1k 0.3171 0.4144 0.586 0.8411
vit small patch8 224 dino 0.4028 0.5302 0.6058 0.8552

vit small patch16 224 augreg in1k 0.3432 0.3062 0.5409 0.8248
vit small patch16 224 augreg in21k 0.4456 0.3945 0.6144 0.9193

vit small patch16 224 augreg in21k ft in1k 0.4629 0.4464 0.5911 0.9064
vit small patch16 224 dino 0.3678 0.3412 0.627 0.8852

vit small patch32 224 augreg in21k 0.3778 0.3477 0.5804 0.8894
vit small patch32 224 augreg in21k ft in1k 0.3747 0.3717 0.5694 0.8434

vit base patch16 224 random -0.0021 0 0.9493 1
vit base patch16 224 augreg in1k 0.3813 0.3497 0.5481 0.8089

vit base patch16 224 augreg in21k 0.4876 0.5275 0.6244 0.9364
vit base patch16 224 augreg in21k ft in1k 0.5514 0.5543 0.572 0.8588

vit base patch16 224 dino 0.3854 0.3928 0.6108 0.8767
vit base patch16 224 mae 0.1319 0.132 0.5857 0.8246

vit base patch16 clip 224 laion2b 0.7491 0.8638 0.7334 0.9719
vit base patch16 clip 224 laion2b ft in1k 0.6145 0.6976 0.5328 0.8891

vit base patch16 clip 224 laion2b ft in12k in1k 0.535 0.5601 0.4925 0.8523
vit base patch16 clip 224 openai 0.7369 0.8035 0.6761 0.9287

vit base patch16 clip 224 openai ft in1k 0.6225 0.7693 0.4733 0.8417
vit base patch16 clip 224 openai ft in12k in1k 0.5292 0.6341 0.4515 0.833

vit base patch32 224 random -0.0023 0 0.9443 1
vit base patch32 224 augreg in1k 0.3447 0.281 0.5534 0.8168

vit base patch32 224 augreg in21k 0.4187 0.4261 0.6191 0.8761
vit base patch32 224 augreg in21k ft in1k 0.4432 0.4463 0.5786 0.8837

vit base patch32 clip 224 laion2b 0.7293 0.769 0.7193 0.9794
vit base patch32 clip 224 laion2b ft in12k in1k 0.5185 0.5523 0.4712 0.8698

vit base patch32 clip 224 laion2b ft in1k 0.5537 0.5642 0.5367 0.8507
vit large patch16 224 random -0.0017 0 0.9591 1

vit large patch16 224 augreg in21k 0.519 0.514 0.6279 0.9267
vit large patch16 224 augreg in21k ft in1k 0.6149 0.7023 0.5985 0.901

vit large patch16 224 mae 0.3074 0.1342 0.7857 0.9129
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Table 4: The PS and CG Accuracy of different pre-trained models on the Office-Home dataset.

Model PS-class CG-class PS-domain CG-domain
resnet18 random 0.0161 0 0.9836 1
resnet18 tv in1k 0.6987 0.5559 0.2555 0.5614

resnet18 fb ssl yfcc100m ft in1k 0.6864 0.5463 0.2697 0.5828
resnet18 fb swsl ig1b ft in1k 0.7135 0.5805 0.2755 0.562

resnet34 tv in1k 0.7136 0.5832 0.2605 0.5532
resnet50 random 0.0052 0 0.9864 1
resnet50 tv2 in1k 0.6928 0.634 0.2068 0.5092

resnet50 fb ssl yfcc100m ft in1k 0.6997 0.6165 0.265 0.5774
resnet50 fb swsl ig1b ft in1k 0.7273 0.6706 0.2637 0.5846

resnet101 tv2 in1k 0.71 0.641 0.2266 0.4892
resnet152 tv2 in1k 0.7141 0.6467 0.2068 0.5004

wide resnet50 2 tv2 in1k 0.6883 0.625 0.1963 0.5056
wide resnet101 2 tv2 in1k 0.7085 0.6609 0.2115 0.4888
vit small patch8 224 dino 0.6678 0.594 0.3636 0.6542

vit small patch16 224 augreg in1k 0.7231 0.6369 0.1632 0.5289
vit small patch16 224 augreg in21k 0.7143 0.7102 0.2644 0.6167

vit small patch16 224 augreg in21k ft in1k 0.7568 0.7141 0.2421 0.6003
vit small patch16 224 dino 0.6454 0.5095 0.3521 0.6715

vit small patch32 224 augreg in21k 0.7115 0.6799 0.2402 0.5897
vit small patch32 224 augreg in21k ft in1k 0.7378 0.6772 0.2182 0.5654

vit base patch16 224 random 0.0051 0 0.86 1
vit base patch16 224 augreg in1k 0.7437 0.6238 0.1542 0.4942

vit base patch16 224 augreg in21k 0.7019 0.7528 0.269 0.6549
vit base patch16 224 augreg in21k ft in1k 0.7881 0.7672 0.2145 0.6212

vit base patch16 224 dino 0.6549 0.57 0.3472 0.6412
vit base patch16 224 mae 0.4166 0.097 0.32 0.5989

vit base patch16 clip 224 laion2b 0.7106 0.7438 0.4751 0.8177
vit base patch16 clip 224 laion2b ft in1k 0.8073 0.7896 0.1993 0.5451

vit base patch16 clip 224 laion2b ft in12k in1k 0.7951 0.7867 0.1775 0.54
vit base patch16 clip 224 openai 0.7039 0.6471 0.4516 0.7672

vit base patch16 clip 224 openai ft in1k 0.7937 0.7489 0.1831 0.5408
vit base patch16 clip 224 openai ft in12k in1k 0.784 0.7741 0.1441 0.4959

vit base patch32 224 random 0.0026 0 0.8676 1
vit base patch32 224 augreg in1k 0.7135 0.6194 0.1566 0.5114

vit base patch32 224 augreg in21k 0.677 0.6995 0.2499 0.6128
vit base patch32 224 augreg in21k ft in1k 0.729 0.7089 0.2156 0.5676

vit base patch32 clip 224 laion2b 0.6972 0.7091 0.4539 0.7953
vit base patch32 clip 224 laion2b ft in12k in1k 0.7721 0.7539 0.1671 0.5093

vit base patch32 clip 224 laion2b ft in1k 0.7741 0.7277 0.2166 0.5577
vit large patch16 224 random 0.0014 0 0.884 1

vit large patch16 224 augreg in21k 0.7122 0.76 0.2768 0.6472
vit large patch16 224 augreg in21k ft in1k 0.8136 0.7998 0.2303 0.61

vit large patch16 224 mae 0.5065 0.1118 0.4222 0.6601
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Table 5: The PS and CG Accuracy of different pre-trained models on the NICO dataset.

Model PS-class CG-class PS-domain CG-domain
resnet18 random -0.0054 0 0.9897 1
resnet18 tv in1k 0.8006 0.6717 0.4011 0.4513

resnet18 fb ssl yfcc100m ft in1k 0.8051 0.7289 0.4053 0.4573
resnet18 fb swsl ig1b ft in1k 0.8109 0.7523 0.3912 0.4388

resnet34 tv in1k 0.8113 0.7188 0.3819 0.4372
resnet50 random -0.0045 0 0.9913 1
resnet50 tv2 in1k 0.8014 0.7859 0.3164 0.3652

resnet50 fb ssl yfcc100m ft in1k 0.8168 0.8115 0.3707 0.4154
resnet50 fb swsl ig1b ft in1k 0.826 0.8213 0.3603 0.4153

resnet101 tv2 in1k 0.7966 0.7756 0.3287 0.3609
resnet152 tv2 in1k 0.7946 0.7531 0.3271 0.3749

wide resnet50 2 tv2 in1k 0.7996 0.7827 0.3005 0.3642
wide resnet101 2 tv2 in1k 0.7961 0.7816 0.2914 0.3678
vit small patch8 224 dino 0.8159 0.8305 0.3382 0.4306

vit small patch16 224 augreg in1k 0.8206 0.7719 0.2464 0.351
vit small patch16 224 augreg in21k 0.8135 0.8385 0.4044 0.4613

vit small patch16 224 augreg in21k ft in1k 0.8409 0.8418 0.3805 0.4273
vit small patch16 224 dino 0.782 0.7706 0.3601 0.4564

vit small patch32 224 augreg in21k 0.79 0.7651 0.3861 0.4743
vit small patch32 224 augreg in21k ft in1k 0.8109 0.7705 0.3657 0.4583

vit base patch16 224 random -0.0018 0 0.9084 1
vit base patch16 224 augreg in1k 0.8262 0.7621 0.238 0.3502

vit base patch16 224 augreg in21k 0.7935 0.8639 0.3827 0.4567
vit base patch16 224 augreg in21k ft in1k 0.8575 0.8711 0.363 0.4124

vit base patch16 224 dino 0.7989 0.7964 0.3495 0.436
vit base patch16 224 mae 0.6242 0.2528 0.7944 0.5234

vit base patch16 clip 224 laion2b 0.8265 0.8786 0.4397 0.4998
vit base patch16 clip 224 laion2b ft in1k 0.8258 0.8644 0.2296 0.3262

vit base patch16 clip 224 laion2b ft in12k in1k 0.8269 0.8683 0.2171 0.3369
vit base patch16 clip 224 openai 0.8329 0.8653 0.4059 0.4673

vit base patch16 clip 224 openai ft in1k 0.8303 0.8641 0.1984 0.333
vit base patch16 clip 224 openai ft in12k in1k 0.8219 0.877 0.2143 0.3453

vit base patch32 224 random 0.0038 0 0.9015 1
vit base patch32 224 augreg in1k 0.7887 0.699 0.2814 0.4104

vit base patch32 224 augreg in21k 0.7631 0.8044 0.384 0.4683
vit base patch32 224 augreg in21k ft in1k 0.8088 0.8187 0.3572 0.4399

vit base patch32 clip 224 laion2b 0.8147 0.8384 0.4445 0.5143
vit base patch32 clip 224 laion2b ft in12k in1k 0.8087 0.8475 0.2305 0.3434

vit base patch32 clip 224 laion2b ft in1k 0.7972 0.8231 0.2537 0.3618
vit large patch16 224 random -0.0014 0 0.9192 1

vit large patch16 224 augreg in21k 0.7883 0.8746 0.3744 0.476
vit large patch16 224 augreg in21k ft in1k 0.8641 0.8838 0.3553 0.4164

vit large patch16 224 mae 0.6728 0.3345 0.5714 0.5421
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D DATASET INFORMATION

Every domain generalization dataset is divided into several groups by domain, and each domain
group is divided into several categories by class, while categories across different domains are the
same. It means that every image in the dataset will have two labels, a class label and a domain label.
Here, we have presented examples of the PACS dataset in Fig.10.

Painting Photo Sketch Cartoon

Dog

Person

Figure 10: Examples of the PACS domain generalization dataset. Here, dog and person are classes,
while painting, photo, sketch and cartoon are domains.

Shapes3D is a dataset of 3D shapes procedurally generated from 6 ground truth independent latent
factors. These factors are floor hue (10 values), wall hue (10 values), object hue (10 values), scale (8
values), shape (4 values), and orientation (15 values). All possible combinations of these latents are
present exactly once, generating N = 480, 000 total images. We identify shape and object hue as
the concepts to be predicted, while regarding the other factors as noise, as demonstrated in Fig.11.

shape

wall hue

object hue

floor hue

scale

orientation

concepts

noise

Figure 11: Examples of Shapes3D dataset.
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E MORE ABLATION STUDY RESULTS

E.1 CONCEPT FACTOR QUANTITY

To facilitate comprehension and maintain simplicity, we just discuss the situation when the concept
factor is two. Here we will add detailed information when there are more than two concepts: When
the quantity of concept factors is N, there are N targets to be predicted. For the featurizer, they will
share a public one as a visual encoder to extract features. For classifiers, we arrange N independent
linear functions to predict N concepts. For MinDV regularization, we calculate distance variance
within N concepts, indicating that N regularization terms will exist for N concepts. For MaxPS
regularization, to compute PS, two groups of concept factors are needed, and we regard other concept
factors as noise, like what we do in the Shapes3D dataset. We traverse all possible compositions of
any two concepts and sum them up to get the final result.

We test our method when there are three concepts in the Shapes3D dataset: object hue, shape, and
wall hue. The separation of train set and test set brings into correspondence with Section 4.1. The
results of different methods are shown in Tab.6, validating our GeoCon method’s effectiveness.

Table 6: CG accuracy when the quantity of concept factors is three in Shapes3D dataset. Bold
indicates the best result.

Method Acc-object hue Acc-wall hue Acc-shape Acc-all

baseline 0.6910 0.7531 0.5434 0.2853

w/o MaxPS 0.7018 0.7271 0.5849 0.3145

w/o MinDV 0.8187 0.8566 0.7023 0.4839

GeoCon 0.8405 0.8842 0.7341 0.5241

E.2 BATCH SIZE

To get an absolutely accurate PS, it needs to calculate all samples of the dataset. According to
Eq.14, the minimal sample quantity required to calculate PS is 4 with the target concepts of (a1, b1),
(a1, b2), (a2, b1), and (a2, b2).

As stated in Section 3.2, we hope to generate an estimation of PS as accurately as possible. The batch
size depends on the specific dataset, including the number of concept factors and the number of target
categories. More concept factors and target categories imply a larger batch size. In practice, we set
the batch size as 256. Compared to the domain quantity of no more than 6 and the class quantity
of no more than 7, the batch size is big enough to generate an accurate estimation. However, when
the batch size is limited, we can employ an exponential smoothing method to reduce the estimation
variance, thus resolving the challenge.

To demonstrate that our method remains effective even with smaller batch size, we conduct experi-
ments with batch size 32 as demonstrated in Tab.7. Compared to GeoCon with batch size 256, there
was only a negligible drop in performance, while outperforming the FT baseline much.

Table 7: CG accuracy in the real-world datasets under different settings of batch size.

Method PACS Office-Home DomainNet NICO

FT 0.8857 0.5155 0.8014 0.3534

GeoCon-32 0.9557 0.5521 0.8414 0.4695

GeoCon-256 0.9623 0.5775 0.8552 0.4819
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E.3 OTHER BASELINE

We try to understand the essence of Ito et al. (2022) and validate it in our tasks. Specifically, their
method doesn’t random sample from mixing all the composition data. Instead, they try to learn a
single concept first and then extend to some new compositions. The core of their algorithm is to start
from simple settings and then gradually expand to complex compositions. Since their method is not
open-source, we refer to Appendix 7 and 8 in Ito et al. (2022) and implement their algorithm through
the following approach: First, we conduct training on two randomly selected groups of concepts (on
the four corresponding compositions), and then gradually expand to new compositions one by one
until all the compositions in the train set have been trained. The results are demonstrated in Tab.8,
where primitives pre-training (PPT) refers to their method. We find that, compared with FT, PPT
shows an improvement when FT doesn’t work well, but is still inferior to our GeoCon method.

Table 8: The comparison between GeoCon and PPT across multiple datasets. We present the accu-
racy of predicting two concepts correctly at the same time. Bold indicates the best result.

Method PACS Office-Home DomainNet NICO Shapes3D

FT / from Scratch 0.8857 0.5155 0.8014 0.3534 0.5145

PPT 0.8838 0.5324 0.8030 0.4012 0.6094

GeoCon 0.9623 0.5775 0.8552 0.4819 0.7374
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