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ABSTRACT

Interactive world models that simulate object dynamics are crucial for robotics,
VR, and AR. However, it remains a significant challenge to learn physics-
consistent dynamics models from limited real-world video data, especially for
deformable objects with spatially-varying physical properties. To overcome the
challenge of data scarcity, we propose PhysWorld, a novel framework that uti-
lizes a simulator to synthesize physically plausible and diverse demonstrations to
learn efficient world models. Specifically, we first construct a physics-consistent
digital twin within MPM simulator via constitutive model selection and global-
to-local optimization of physical properties. Subsequently, we apply part-aware
perturbations to the physical properties and generate various motion patterns for
the digital twin, synthesizing extensive and diverse demonstrations. Finally, us-
ing these demonstrations, we train a lightweight GNN-based world model that is
embedded with physical properties. The real video can be used to further refine
the physical properties. PhysWorld achieves accurate and fast future predictions
for various deformable objects, and also generalizes well to novel interactions.
Experiments show that PhysWorld has competitive performance while enabling
inference speeds 47 times faster than the recent state-of-the-art method, i.e., Phys-
Twin. The code and pre-trained models will be publicly available.

1 INTRODUCTION

Humans possess the ability to predict object movements to achieve specific goals during interaction,
which is developed through accumulated experience from observations and experiments. This skill
is not only fundamental to human intelligence but also a crucial requirement for various techno-
logical applications, including robotics, virtual reality (VR), and augmented reality (AR). Thus, it
becomes increasingly popular to construct world models for dynamics modeling of objects.

Existing works explore this mainly from learning-based and physics-based simulation perspec-
tives. First, learning-based methods generally take neural networks such as Graph Neural Net-
works (GNN) (Sanchez-Gonzalez et al., 2020) and Multilayer Perceptron (MLP) (Zhu et al., 2024)
for dynamics modeling. Such models can achieve real-time inference and be applicable to a va-
riety of objects, including plasticine, cloth, and fluids. However, they rely on extensive training
data represented by particle (Wang et al., 2023), mesh (Pfaff et al., 2020), and 3D point (Zhang
et al., 2025b). Although the data can be derived from either simulators or real videos, the simulated
data can be physically inconsistent with real-world ones, and sufficient real-world data are labor-
intensive to acquire. Recently, AdaptiGraph (Zhang et al., 2024a) further introduces the physical
property-conditioned GNN to adapt unseen objects during interaction, but its physics-inconsistent
data synthesis and global physical parameters restrict applicability to objects with spatially varying
properties. Second, physics-based simulation methods (Zhang et al., 2024c; Huang et al., 2024a;
Zhong et al., 2024; Lin et al.) model object dynamics using established simulators such as the Ma-
terial Point Method (MPM) (Jiang et al., 2016; Stomakhin et al., 2013; Bardenhagen et al., 2000) or
the Mass-Spring System (MSS), often in conjunction with the optimization of physical properties
of objects. For instance, recent PhysTwin (Jiang et al., 2025) leverages the way to construct digital
twins of objects from sparse videos, enabling effective resimulation. Benefiting from the physics-
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based prior knowledge embedded in the simulator, these methods can achieve relatively realistic
simulations. Nevertheless, their real-time inference capability is still limited.

It can be seen that large amounts of data or powerful simulators are required for the accuracy of
world models, while lightweight modeling manners (e.g., GNN) are necessary for the efficiency.
When real-world observation sequences are short, it remains challenging to construct both accurate
and fast world models for deformable objects. To address this issue, we propose to build a bridge
between powerful simulators and lightweight modeling manner, utilizing simulators to synthesize a
large amount of data to learn a lightweight world model. Therein, we argue that the physical plausi-
bility and diversity of synthesized data are crucial to obtain satisfactory performance, thus propose
a physics-consistent digital twin construction and diverse demonstration generation methods.

Specifically, we propose a framework named PhysWorld. It consists of three main stages. Firstly, to
establish a physics-consistent digital twin, we first utilize a Vision-Language Model (VLM) to auto-
matically select the optimal constitutive models for deformable objects within the MPM simulation.
We then introduce a global-to-local optimization strategy to refine physical properties (e.g., friction,
density, and Young’s modulus), ensuring the MPM simulations align with the observed video. Sec-
ondly, since the motion trajectory of the real video is single and the learned physical parameters of
the digital twin inevitably exist errors, we propose Various Motion Pattern Generation (VMP-Gen)
and Part-aware Physical Property Perturbation (P 3-Pert) methods. It enables synthesizing exten-
sive and diverse 4D demonstrations. Thirdly, the demonstrations are used to train a GNN-based
world model embedded with spatially varying physical properties. The original real videos can also
be used to fine-tune the physical property values, thereby enhancing the alignment between GNN
models and real-world object dynamics.

The learned world model can perform accurate and fast future prediction, and also generalizes well
to novel interactions. Experiments on 22 scenarios show our model has competitive performance
while enabling more efficient inference. In particular, it is 47 times faster than the recent state-of-
the-art method, i.e., PhysTwin (Jiang et al., 2025).

Our contributions can be summarized as follows:

(1) We propose a framework that constructs not only accurate but also fast world models for de-
formable objects from short real-world videos via physics-consistent digital twin construction and
diverse demonstration generation, named PhysWorld.

(2) We propose the Various Motion Pattern Generation (VMP-Gen) and Part-aware Physical Prop-
erty Perturbation (P 3-Pert) methods for the diversity of synthesized demonstrations.

(3) Experiments on 22 scenarios show our model has competitive performance while enabling infer-
ence speeds 47 times faster than the recent state-of-the-art method, i.e., PhysTwin.

2 RELATED WORK

2.1 PHYSICS-BASED SIMULATION OF DEFORMABLE OBJECTS

Recent advances in dynamic scene reconstruction (Li et al., 2022; Wu et al., 2024a; Luiten et al.,
2024; Wu et al., 2024b) have integrated physics-based simulators with modern 3D representations
such as NeRF (Mildenhall et al., 2021) and 3DGS (Kerbl et al., 2023), utilizing their physical me-
chanics modeling to learn dynamics grounded in physical principles. For example, PIE-NeRF (Feng
et al., 2024) combines nonlinear elastodynamics with NeRF to generate plausible animations. Phys-
Gaussian (Xie et al., 2024) integrates material point methods (MPM) (Jiang et al., 2016; Stom-
akhin et al., 2013; Bardenhagen et al., 2000) with 3DGS for interactive object representations.
VR-GS (Jiang et al., 2024) employs extended position-based dynamics alongside 3DGS to develop
physics-aware virtual reality systems. However, these methods require manually specified simula-
tion parameters, risking a mismatch with real-world observations. Subsequent research (Chen et al.,
2022a; Li et al., 2023; Qiao et al., 2022; Zhang et al., 2024c; Zhong et al., 2024; Huang et al.,
2024a) addresses this via system identification, estimating parameters directly from video during
reconstruction. PhysTwin (Jiang et al., 2025) exemplifies this, using a mass-spring model optimized
from interaction videos to enable action-conditioned prediction of elastic objects.
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While physics-grounded simulations offer greater realism through inherent physical priors, they face
challenges. High-fidelity simulators like MPM incur prohibitive computational costs, hindering real-
time applications. A persistent domain gap also exists between the dynamics of simplified simulators
and complex real phenomena, frequently causing motion prediction inaccuracies.

2.2 LEARNING-BASED SIMULATION OF DEFORMABLE OBJECTS

Learning dynamics models directly from data has emerged as a prominent research direc-
tion (Sanchez-Gonzalez et al., 2020; Chen et al., 2022b; Evans et al., 2022; Ma et al., 2023; Wu
et al., 2019; Xu et al., 2019; Zhang et al., 2024a; 2025a; 2024b). Compared to traditional physics-
based approaches, these methods can utilize lightweight neural networks to achieve significantly
greater efficiency. In particular, Graph-based neural networks (GNNs) have proven particularly
effective at learning dynamics across diverse deformable objects, including plasticine (Shi et al.,
2023), cloth (Lin et al., 2022; Pfaff et al., 2020), and fluids (Li et al., 2018; Sanchez-Gonzalez
et al., 2020). For instance, GS-Dynamics (Zhang et al., 2024b) employs tracking and appearance
priors derived from Dynamic Gaussians (Luiten et al., 2024) to train GNN-based world models on
real-world interaction videos with deformable objects.

However, learning-based methods require vast data and lack generality. In this work, our PhysWorld
synergizes physics and learning-based methods. PhysWorld uses the MPM simulator as a data
factory, generating physically plausible and diverse demonstrations from real videos to train a GNN-
based world model. It can take a better trade-off between accuracy and efficiency.

3 PHYSWORLD

PhysWorld builds a physics-consistent MPM-based digital twin from short real-world videos by
leveraging a VLM to determine the appropriate constitutive models and a global-to-local physical
property optimization strategy to align the simulation with real observations. The calibrated twin
is then used to generate a variety of interaction data, which trains a GNN-based world model en-
abling real-time simulation. The physical properties embedded in GNNs are finally fine-tuned on
the original real data to mitigate the sim-to-real gap.

3.1 PHYSICS-CONSISTENT DIGITAL TWIN

Empirical research (Zhang et al., 2024b; Cao et al., 2024; Cai et al., 2024) reveals that short real inter-
action videos alone are insufficient for learning comprehensive world models of deformable objects,
whereas estimating physical properties proves comparatively tractable. This motivates our proposi-
tion, i.e., leveraging a high-fidelity physics engine to impose fundamental physical constraints (e.g.,
mass and momentum conservation laws) as strong priors. Rather than learning physics from first
principles, we parameterize the object within the physics engine and optimize only its digital twin’s
constitutive model and physical properties using the real data.

Construction of Initial Digital Twin Following object point cloud extraction from real interaction
videos (Jiang et al., 2025), we construct a physics-consistent MPM-based digital twin. To ensure
simulation fidelity under continuum mechanics principles, we utilize a tetrahedral mesh refinement
method (Wang et al., 1996) to fill interior voids in the extracted point cloud, thereby creating com-
plete volumetric representations. We implement two robotic manipulation primitives within the
MPM framework: (1) Grasping, which is achieved by directly assigning velocities to the Eule-
rian grids near the contact points; and (2) Pushing, which is implemented via geometric controllers
defined by a Signed Distance Function (SDF) that transfer motion to the proximal grid nodes. Mean-
while, the videos are analyzed using Qwen3 (Yang et al., 2025) to automatically identify the most
suitable material constitutive models from our physics library. This VLM-based method dynami-
cally adapts material representations according to the observed deformation behaviors. The consti-
tutive models implemented and the associated prompts are provided in the Appendix B.1.

Physical Property Optimization To ensure physics-consistent alignment between our digital twin
and real-world objects, we optimize the twin’s physical properties (e.g., friction coefficients, den-
sity, and Young’s modulus) using real-world observational data. More specifically, the densified
point cloud is registered as MPM particles. Using the implemented manipulation primitives, we
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Figure 1: Overview of PhysWorld. The framework first constructs a physics-consistent digital twin
from videos, then uses it to generate diverse 4D demonstrations, and finally trains a GNN-based
world model for real-time future state prediction.

drive the system to re-simulate the hand motion trajectory extracted from real-world data. The entire
MPM simulation framework is differentiable, enabling the computation of gradients of the Chamfer
Distance and L1 loss between the simulated outcomes and the ground truth. This differentiability
facilitates the optimization of the physical properties of MPM particles to achieve enhanced align-
ment. The loss function used for optimization is provided in Appendix B.2. Experimental results
show that parameter initialization critically affects optimization performance: well-chosen initial
values lead to faster convergence and higher performance. Thus, we employ a global-to-local opti-
mization strategy. First, on the global stage, we optimize homogeneous physical properties across
all particles. Then, on the local stage, we refine per-particle heterogeneous properties.

3.2 AUGMENTED INTERACTION DEMONSTRATION SYNTHESIS

To train a robust GNN-based world model, we generate various interaction demonstrations by si-
multaneously varying motion patterns and applying part-aware perturbations to physical properties.

Various Motion Pattern Generation Addressing the need for complex motion patterns during in-
ference, control point trajectories are generated via curvature-constrained Bézier (Prautzsch et al.,
2002) curves with integrated velocity regimes. One spatial trajectory x(t) can be defined by a cubic
Bézier curve, i.e.,

x(t) = B(u(t)), (1)
B(u) = (1− u)3p0 + 3(1− u)2up1 + 3(1− u)u2p2 + u3p3. (2)

p0 and p3 are start and end points of the trajectory. p1 and p2 are curvature control points generated
through randomized curvature parameters. u ∈ [0, 1] is the Bézier parameter. The temporal evolu-
tion of the trajectory is governed by the time-to-parameter mapping u(t), which is constructed using
normalized arc-length parameterization (Hartlen & Cronin, 2022). The normalized arc length s(t)
can be formulated as:

s(t) =

∫ t

0
v(τ)dτ∫ T

0
v(τ)dτ

, (3)

where v(t) represents the velocity profile along the trajectory. This ensures smooth and physically
consistent motion along the curve. To enable diverse and natural motion generation, we implement
a three-phase velocity profile consisting of acceleration, uniform motion, and deceleration phases.
Crucially, these phases are connected with smooth C1 transitions, ensuring continuous velocity and
avoiding abrupt changes in acceleration.

Part-aware Physical Property Perturbation To address potential inaccuracies in physical proper-
ties optimized in MPM solely from short real videos, we impose semantic-partition-guided stochas-
tic perturbations on the optimized physical properties during demonstration synthesis. This strategy
incorporates controlled diversity in physical property distribution while preserving continuity to
match real-world distributions and maintain simulation stability. We extract the part-semantic fea-
ture vector {Fi}Ni=1 for each of the N MPM particles via PartField (Liu et al., 2025). The feature
similarity between particles i and j is computed as,

Sij = exp

(
−∥Fi − Fj∥22

2ℓ2

)
, (4)
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where ℓ controls the feature similarity decay rate. The covariance matrix Σ is constructed using
pairwise similarities, which can be written as,

Σij = σ2Sij , (5)

where σ governs the perturbation intensity. Stochastic perturbations sampled from N (0,Σ) are then
applied to physical properties across particles. However, exact computation of the covariance matrix
becomes intractable for large-scale particle systems. We therefore employ the Nyström approxima-
tion (Fowlkes et al., 2004), which constructs a low-rank approximation through subset sampling,
achieving significant computational efficiency. We thus generate various augmented interaction
demonstrations {Xt,Φ,at}Tt=0 for each scenario, where Xt = {x(i)

t }Ni=1 represents the object’s
N -particle point cloud at timestep t; Φ = {ϕ(i)}Ni=1 encapsulates per-particle physical properties
(e.g., Young’s modulus Ei and density ρi); and at = {a(k)

t }Kk=1 denotes the velocities of K control
points interacting with the object at timestep t. These data are then used to train a world model.

3.3 GNN-BASED WORLD MODELS

Following the construction of a physics-consistent MPM digital twin, we recognize that computa-
tional latency is a main limitation to prevent its direct use as a world model. MPM simulations
exhibit prohibitive inference times, making them impractical for real-time applications like model-
based planning, which require fast responses. To address the issue, we propose to train lightweight
and fast GNN-based world models using the augmented synthetic interaction demonstrations gen-
erated by the constructed MPM digital twin. The model achieves heterogeneous material-aware
dynamics prediction with real-time inference capabilities.

Model Architecture The GNN-based world model f can be formulated as:

Xt+1 = f (Xt−h:t, at, Φ) , (6)

where t denotes the current timestep; h specifies the history window size; at represents the ap-
plied action(the velocities of control points) at time t; and Φ represents the time-invariant phys-
ical properties embedded in GNNs. The GNN construction proceeds through three key steps:
First, farthest point sampling (FPS) is applied to the raw point clouds to extract n control parti-
cles X̂t = {x̂(i)

t }ni=1 with minimum inter-particle separation dv , while their corresponding physical
properties Φ = {ϕ(i)}Ni=1 are subsampled accordingly to yield Φ̂ = {ϕ̂(i)}ni=1. Second, control
points are incorporated as additional graph vertices. Finally, bidirectional edges Êt are established
between vertices within connection radius de.

The GNN architecture integrates three core components: vertex/edge encoders for feature extraction,
a multi-step message propagator, and a motion prediction decoder. Designed to ensure translation
equivariance, the vertex encoder only processes vertex type indicators (object/controller) encoded
as one-hot vectors, control point velocities at and time-invariant physical properties ϕ̂(i) without
vertex positions. Simultaneously, the edge encoder handles history distance between two edge nodes
{x̂(i)

t−τ−x̂
(j)
t−τ}hτ=0 and a edge type identifier(object-object or object-controller). The output features

then undergo p(p = 7 in our experiments) iterations of message passing through the propagator’s
independent MLP blocks with unshared parameters. And the decoder finally generates per-particle
3D motion predictions ∆x̂

(i)
t . The entire process can be represented as:

X̂t+1,pred = X̂t + fθ(X̂t−h:t,at, Φ̂), (7)

where fθ denotes the GNN model parameterized by θ.

Model Training The generated interaction demonstrations serve as training data for the GNN, with
the mean squared error between predicted and ground-truth particle positions constituting the pri-
mary loss, i.e.,

Lpred =

τ∑
i=1

∥X̂t+i,pred − X̂t+i∥2. (8)

The look-forward horizon τ determines the multi-step prediction window size, balancing accuracy
and computational efficiency. Training sequences are initialized at randomly sampled timesteps t.
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Since our model is trained on ground-truth short-term data pairs, it is susceptible to error accumu-
lation during long-horizon rollouts. To alleviate this issue, we inject noise into historical vertex
positions, thereby aligning the training distribution more closely with that encountered during roll-
out generation. Noise is also introduced to the GNN’s physical properties Φ̂ during training, with
the objective of enhancing the stability of subsequent physical property fine-tuning.

Physical Property Fine-Tuning Due to the proneness to gradient explosion and training instability
when optimizing the physical properties Φ̂ of MPM particles—a result of employing a large number
of simulation substeps per frame—the estimated values of these properties are not yet sufficiently
accurate. In contrast, GNNs do not suffer from gradient explosion during training and demonstrate
greater stability. Therefore, based on a pre-trained physical property-conditioned GNN, we fine-
tune the physical properties Φ̂ at the GNN vertices using real-world data while freezing the network
parameters θ. This approach enhances the alignment between the GNN and real objects in terms of
physical motion characteristics, while also further narrowing the sim-to-real domain gap resulting
from training the model solely on synthetic data.

Action-Conditioned Video Prediction To achieve action-conditioned video prediction, we addi-
tionally optimize object appearance representations using 3DGS (Kerbl et al., 2023). Each object is
modeled as a set G = {G(k)}Kk=1 of 3D Gaussian kernels, where each G(k) = (µk,qk, sk, αk, ck)
consists of: center position µk ∈ R3, rotation quaternion qk ∈ SO(3), scaling vector sk ∈ R3,
opacity αk ∈ [0, 1], and RGB color coefficients ck ∈ R3. We optimize the 3D Gaussian Splatting
representation solely at t = 0. For subsequent timesteps (t > 0), the representation is derived via
Linear Blend Skinning (LBS) (Sumner et al., 2007), i.e.,

Gt = LBS
(
G0, {∆X̂τ}tτ=1

)
, (9)

where LBS interpolates Gaussian motions using the vertex motion field predicted by our GNN. A
more detailed description of LBS is provided in Appendix B.4.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Implementation Details Our MPM simulator is built upon PhysGaussian (Xie et al., 2024). We
implement additional constitutive models for diverse materials (e.g., anisotropic cloth) and incorpo-
rates grasping and pushing capabilities. During MPM simulations, for the majority of simulation
scenarios, we set the total simulation duration to 0.04 seconds and the per-frame duration to 0.0001
seconds. This indicates that the state between consecutive frames is advanced through 400 simula-
tion substeps, implicitly satisfying the CFL condition for numerical stability. To mitigate the risk of
gradient explosion and ensure training stability during the optimization of physical properties, we
computes gradients using only the final 10 simulation substeps, supplemented by gradient clipping.
For each scene, we generate 500 interaction demonstration episodes to train the GNN. The frame
count for each episode closely matches that of the original real-world data. During GNN training,
the number of GNN nodes was maintained at approximately 100 to 150 through FPS downsampling.
Meanwhile, the number of message passing steps was set to 7 in our experiments.

Dataset We utilize an open-access dataset (Jiang et al., 2025) featuring human interactions with a
variety of deformable objects. The dataset consists of 1-10 second videos capturing diverse interac-
tions such as rapid lifting, stretching, pushing, and bimanual squeezing. Each one is with distinct
physical properties, including ropes, stuffed animals, cloth, and packages. For each scenario, we par-
tition the whole video into training and test frames with a 7:3 ratio. We only use the training frames
exclusively for developing MPM digital twins and fine-tuning the GNN-based world models.

Evaluation Configurations Following PhysTwin (Jiang et al., 2025), we employ metrics in both 3D
and 2D spaces for evaluation. In 3D space, we utilize the single-direction Chamfer Distance (i.e.,
CD) and a tracking error (i.e., Track) derived from manually annotated ground-truth points. In 2D
space, we evaluate image reconstruction quality using the PSNR, SSIM, and LPIPS (Zhang et al.,
2018) metrics, while silhouette alignment is measured by the Intersection over Union (i.e., IoU). To
quantify the prediction quality of the model on unseen interactions in the absence of ground truth, we
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Figure 2: Visual results of action-conditioned future prediction. Our method’s predicted positions
show closer alignment with ground truth compared to PhysTwin.

Table 1: Quantitative results on action-conditioned future prediction and inference speed (FPS). Best
metric values are bolded, while second-best ones are underlined.

Methods CD↓ Track↓ IoU↑ PSNR↑ SSIM↑ LPIPS↓ FPS↑
Spring-Gaus (ECCV 2024) 0.062 0.094 46.4 22.488 0.924 0.113 2
GS-Dynamics (CoRL 2024) 0.041 0.070 49.8 22.540 0.924 0.097 236

PhysTwin (ICCV 2025) 0.012 0.022 72.5 25.617 0.941 0.055 17

Our MPM 0.011 0.021 74.7 26.231 0.942 0.052 3
Our GNN w/o Finetuning 0.012 0.025 70.0 25.345 0.939 0.059 799

PhysWorld(Our GNN w Finetuning) 0.010 0.021 73.3 25.940 0.941 0.055 799

follow DreamPhysics (Huang et al., 2024a) and employ the following metrics from VBench (Huang
et al., 2024c): aesthetic quality score, motion smoothness score, and subject consistency score.

Comparison Configurations To the best of our knowledge, there is a scarcity of methods for learn-
ing object-centric world models from short video clips (under 10 seconds). PhysTwin (Jiang et al.,
2025) currently stands as the state-of-the-art approach by employing a spring-mass model as its
foundational dynamics model, where the physical properties are optimized through real-world video
observations. To provide a more comprehensive evaluation, we include several other approaches,
i.e., Spring-Gauss (Zhong et al., 2024) and GS-Dynamics (Zhang et al., 2025b), where Spring-
Gauss is a physics-based simulation method also based on spring-mass models and GS-Dynamics is
a learning-based approach employing a GNN-based model to learn dynamics from real videos.

4.2 EXPERIMENTAL RESULTS

Action-Conditioned Future Prediction The qualitative results in Fig. 2 and quantitative results in
Table 1 for the action-conditioned future prediction task demonstrate the superior performance of
our proposed methods. Our MPM method, enhanced with optimized physical properties, surpasses
other approaches across most evaluated metrics, which underscores MPM’s ability to simulate a
wide variety of deformable objects with high fidelity. Furthermore, our finetuned GNN achieves
competitive results, outperforming the baseline model PhysTwin in the majority of benchmarks and
achieving the lowest CD and Track loss with the fastest inference speed. This highlights the accuracy
and effectiveness of PhysWorld in both predicting motion and generating realistic images.

Inference Time Comparison We perform the inference speed comparisons with an NVIDIA
GeForce RTX 4060 Ti (16GB) GPU in the double lift cloth 3 scene, which consists of 118 frames
(a relatively long sequence) and contains 171,602 3DGS kernels. The results are shown in Table
1. The results demonstrate our PhysWorld maintains competitive accuracy while achieving fast in-
ference speed. Spring-Gaus exhibits limitations in both prediction accuracy and inference speed.
Although GS-Dynamics is observed to have a fast inference speed, it suffers from low predictive
accuracy. The recent state-of-the-art PhysTwin lags behind in both speed (47× slower) and predic-
tion accuracy. MPM achieves slightly better prediction accuracy but at a prohibitive computational
cost, running about 400× slower than PhysWorld. The real-time inference capability of PhysWorld
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Figure 3: Generalization to unseen interactions. As representative examples, we consider two un-
seen interaction scenarios: lifting a pushed rope and rotating a lifted sloth. The results show that
PhysWorld generates physically plausible predictions, while PhysTwin suffers from artifacts such as
fracture-like rope distortions and unnatural foot folding.

Figure 4: Examples of model-based planning. With MPPI control, the rope and the zebra doll are
transferred from the initial configurations to the target ones.

Table 2: Quantitative results on unseen interactions.

Methods Aesthetic Quality↑ Motion Smoothness↑ Subject Consistency↑
Phystwin 0.4315 0.9971 0.9155

PhysWorld (Ours) 0.4440 0.9973 0.9312

enables its deployment in computationally demanding scenarios, such as model-based robotic plan-
ning, interactive simulation systems, and real-time optimization tasks.

Generalization to Unseen Interactions We further compare PhysWorld’s generalization perfor-
mance on unseen interactions. Using single push rope and double lift sloth as test cases, we apply
randomized action sequences to objects. Visual results in Fig. 3 show that PhysWorld consistently
generates high-fidelity physical predictions, significantly outperforming PhysTwin in dynamic ac-
curacy and deformation realism. The quantitative results in Table 2 also indicate that PhysWorld
generates more plausible predictions when confronted with unseen interactions.

Model-Based Planning PhysWorld enables real-time trajectory optimization for model-based
robotic planning, as shown in the case studies in Fig. 4. Given initial and target configurations of the
deformable objects, we utilize a Model-Predictive Path Integral (MPPI) (Williams et al., 2017) plan-
ning framework, which successfully generates controlling trajectories to guide the objects towards
their target configurations.

4.3 ABLATION STUDY

Effect of Global-to-Local Physical Property Optimization Here we conduct an ablation study on
optimization strategies of physical properties within MPM. As summarized in Table 3, experimental
results demonstrate that global-only optimization fails to capture localized material variations, while
local optimization exhibits convergence challenges. Our global-to-local approach significantly en-
hances optimization stability in the second stage by initializing local properties with global property
priors, yielding superior overall performance.

Effect of VMP-Gen The ablation studies (Table 4) demonstrate that the proposed VMP-Gen mod-
ules significantly enhance the trained GNN’s prediction accuracy and robustness. This improvement

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Effect of different physical property optimization strategies for MPM.

Strategy CD↓ Track↓ IoU↑ PSNR↑ SSIM↑ LPIPS↓
Global 0.012 0.024 72.4 25.854 0.940 0.055
Local 0.016 0.032 66.5 24.901 0.935 0.066

Global-to-Local (Ours) 0.010 0.021 74.7 26.231 0.942 0.052

Table 4: Effect of different motion patterns.

Motion Pattern CD↓ Track↓ IoU↑ PSNR↑ SSIM↑ LPIPS↓
Uniform and linear 0.0114 0.0175 76.95 24.475 0.920 0.067
VMP-Gen (Ours) 0.0100 0.0154 78.66 24.666 0.921 0.067

Table 5: Effect of different physical property perturbation strategies.

Perturbation CD↓ Track↓ IoU↑ PSNR↑ SSIM↑ LPIPS↓
× 0.0111 0.0179 75.84 23.984 0.919 0.070

Random 0.0153 0.0216 70.19 23.073 0.915 0.082
Uniform 0.0147 0.0258 72.00 23.101 0.914 0.079

P 3-Pert (Ours) 0.0100 0.0154 78.66 24.666 0.921 0.067

Table 6: Performance comparison with a GNN directly trained on real data.

Methods CD↓ Track↓ IoU↑ PSNR↑ SSIM↑ LPIPS↓
GNN (Directly trained on real data) 0.0530 0.0802 41.32 19.925 0.881 0.132

PhysWorld (Ours) 0.0100 0.0154 78.66 24.666 0.921 0.067

is achieved by increasing motion diversity, enabling the model to capture a wider range of patterns
beyond simple uniform linear motion.

Effect of P 3-Pert Ablation studies demonstrate the effectiveness of the proposed P 3-Pert modules,
with quantitative results detailed in Table 5. The key advantage of P 3-Pert lies in its generation
of physically realistic part-aware property variations. As evidenced by the results, our method sur-
passes the random and uniform perturbation baselines (e.g., AdaptiGraph (Zhang et al., 2024a)) by
producing more plausible and diverse physical property distributions.

Training GNN Directly on Real Data To evaluate the role of synthetic data in GNN training, we
compared PhysWorld against traditional real-data-only training. Results on the double lift sloth
task in Table 6 indicate that real-data scarcity caused severe overfitting in GNNs, which, as a result,
led to compromised performance in future state prediction due to poor generalization. In contrast,
incorporating various synthetic data used in PhysWorld significantly improved prediction accuracy
and model robustness.

5 CONCLUSION

In this work, we introduce PhysWorld, a novel framework that constructs accurate and efficient
world models for deformable objects through physics-aware demonstration synthesis from real-
world videos. It first establishes a MPM-based digital twin and then generates extensive augmented
interaction demonstrations via strategic perturbations of physical parameters, control trajectories,
and velocity profiles. We employ the generated data to train a real-time GNN world model that
learns spatially heterogeneous physical properties, with real video data subsequently refining the
model’s parameters. The world model supports diverse downstream applications such as model-
based planning and robotic manipulation. Extensive experiments show that PhysWorld outperforms
state-of-the-art methods.
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APPENDIX

The content of this supplementary material includes:

• Details about Material Point Method (MPM) in Sec. A;
• Details of our method in Sec. B;
• Additional ablation studies in Sec. C.
• Additional analysis and results in Sec. D.

A MATERIAL POINT METHOD (MPM)

The Material Point Method (MPM) (Jiang et al., 2016; Stomakhin et al., 2013; Bardenhagen et al.,
2000) is particularly powerful for simulating complex nonlinear mechanics in highly deformable
objects, including soft materials (e.g. rubber, foam, biological tissues), granular media (e.g., soil,
snow), and fluids undergoing extreme plastic flows. Its core advantage lies in its hybrid Lagrangian-
Eulerian formulation: Lagrangian material points inherently track mass, momentum, complete de-
formation history (captured via the deformation gradient tensor), and evolving material state (stress,
damage) through arbitrary motion and topological changes, while a background computational grid
solves momentum equations on-the-fly automatically avoiding mesh entanglement issues inherent
to traditional mesh-based methods like FEM. This unique synergy enables MPM to natively handle
extreme deformations, automatic material separation/fracture, and history-dependent constitutive
behavior without remeshing or special failure criteria.

MPM operates through three key phases: Particle-to-Grid (P2G) Transfer, Grid Operations(GridOp),
and Grid-to-Particle (G2P) Transfer.

A.1 PARTICLE-TO-GRID (P2G) TRANSFER.

During the Particle-to-Grid (P2G) phase, material points transfer their mass and momentum to grid
nodes via interpolation functions. Using a fixed timestep ∆t such that tn = n∆t, the mass mn

i at
grid node i at timestep n is computed as:

mn
i =

∑
p

wn
ipmp (10)

where mp is the mass of material point p, and wn
ip denotes the B-spline interpolation weight between

material point p and grid node i. Similarly, grid momentum is calculated through:

mn
i v

n
i =

∑
p

wn
ipmp

(
vn
p +Cn

p (xi − xn
p )
)

(11)

where vn
p is the material point’s velocity, Cn

p represents its affine momentum matrix, and xi, xn
p

denote grid node and material point positions respectively.

A.2 GRID OPERATIONS (GRIDOP).

The Grid Operations (GridOp) phase constitutes the computational core of MPM, where the gov-
erning equations of continuum mechanics are solved on the background grid. Following Particle-to-
Grid (P2G) transfer, this phase performs two critical operations:

First, grid velocities are updated by resolving both internal stresses and external forces:

v̂n+1
i = vn

i +∆t

(
1

mn
i

∑
p

σn
p∇wn

ipV
0
p + g

)
(12)

where σn
p denotes the Cauchy stress tensor at material point p (derived from its deformation state),

V 0
p is the material point’s initial volume, and g represents gravitational acceleration. This explicit

integration accounts for internal forces and external body forces.
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Subsequently, boundary conditions are enforced through velocity modifications:

vn+1
i = P∂Ω

(
v̂n+1
i

)
(13)

where P∂Ω is a projection operator imposing constraints at domain boundaries ∂Ω. For Dirichlet
boundaries (e.g., collider surfaces), signed distance fields (SDF) modify velocities to satisfy pre-
scribed kinematic conditions.

A.3 GRID-TO-PARTICLE (G2P) TRANSFER.

The Grid-to-Particle (G2P) phase transfers the updated grid kinematics back to material points,
completing the time step. Material point velocities are first reconstructed through grid velocity
interpolation:

vn+1
p =

∑
i

vn+1
i wn

ip (14)

where wn
ip is the consistent B-spline interpolation weight. Material point positions are then updated

via explicit advection:
xn+1
p = xn

p +∆tvn+1
p (15)

To preserve local deformation characteristics and reduce numerical diffusion, the affine velocity
field matrix is reconstructed:

Cn+1
p =

4

(∆x)2

∑
i

wn
ipv

n+1
i (xi − xn

p )
T (16)

where ∆x is the grid spacing. Finally, the deformation gradient tensor undergoes incremental up-
dating to track finite-strain kinematics:

F n+1
p =

(
I +∆tCn+1

p

)
F n
p (17)

This deformation gradient update enables history-dependent constitutive evaluation in the subse-
quent time step, closing the MPM computational loop.

B METHOD DETAILS

B.1 VLM-ASSISTED CONSTITUTIVE MODEL SELECTION

Our framework leverages Qwen3 Yang et al. (2025)’s multimodal capabilities to automate constitu-
tive model selection for MPM simulations. By processing object manipulation videos, we extract
deformation sequences through optical flow variance detection. Qwen3 then analyzes the material
responses observed in these videos, matching the underlying physics descriptors against our curated
library of constitutive laws following Jiang et al. (2016); Xie et al. (2024). This library includes
plasticity models for describing irreversible deformation and elasticity models for computing Kirch-
hoff stress:

1. Plasticity Models: Encompass Drucker-Prager for pressure-sensitive yielding in geoma-
terials, Von Mises for J2 plasticity in metals, and St. Venant-Kirchhoff for finite-strain
elasticity preceding yield or purely elastic behavior.

2. Elasticity Models: Feature Fixed Co-rotated (FCR) for robustness under large rotations,
Neo-Hookean with volumetric coupling, St. Venant-Kirchhoff for direct mapping to Green
strain, Drucker-Prager Elastic with pressure-dependent stiffness and Anisotropic Hypere-
lasticity for cloth.

Qwen3 performs model selection through structured prompting. The system receives the following
instruction:

Analyze the video of object-hand interaction and recommend
optimal MPM constitutive models from the following library:

• Elastic Models: FCR, Neo-Hookean, St. Venant-Kirchhoff,
Anisotropic Hyperelastic
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• Plastic Models: Von Mises, Drucker-Prager,
St. Venant-Kirchhoff, Purely Elastic

Provide recommendations in the format:
Elastic: [model] | Plastic: [model] | Reason:
[justification]

When video evidence demonstrates matching physical behaviors, Qwen3 outputs the best-matched
constitutive models from our library. We evaluated the accuracy of Qwen3 in predicting plasticity
models and elasticity models across 22 scenarios. The experimental results demonstrate that Qwen3
achieved perfect prediction of 100% accuracy for both plasticity models and elasticity models in all
22 scenarios. Specifically, elasticity models for 8 cloth-type objects were consistently predicted as
anisotropic hyperelastic, while Neo-Hookean was assigned to the other 14 objects. Additionally, the
plasticity models for all objects were correctly identified as purely elastic.

B.2 PHYSICAL PROPERTY OPTIMIZATION

We implement a global-to-local optimization strategy to calibrate the physical properties of an
MPM-based digital twin through two sequential computational stages. The initial global homog-
enization stage optimizes fundamental domain-wide parameters—including Young’s modulus E,
friction coefficient µ, Poisson’s ratio ν, yield stress σy , and mass density ρ—to establish stable
dynamic behavior. This provides robust initialization for the subsequent heterogeneous refinement
stage, which selectively optimizes only E, µ, and ρ with spatial variation to ensure convergence
while avoiding over-parameterization. Given the predicted point positions X̂t = {x̂(i)

t }Ni=1 and
the ground truth Xt = {x(i)

t }Ni=1 at time t, both stages employ identical composite loss metrics
combining geometric matching and kinematic consistency:

LCD(Xt, X̂t) =
1

|Xt|
∑
x∈Xt

min
y∈X̂t

∥x− y∥

+
1

|X̂t|

∑
y∈X̂t

min
x∈Xt

∥y − x∥
(18)

Ltrack(Xt,X̂t)=
1

3|V|
∑
i∈V

∑
c∈{x,y,z}

ℓsmooth l1(∥x̂(i)
t,c−x

(i)
t,c∥) (19)

where V represents point indices, and the smooth ℓ1 component is defined as:

ℓsmooth l1(d) =

{
1
2d

2 if d < 1

d− 0.5 otherwise
(20)

The total optimization objective combines these metrics through weighted summation:

Ltotal = λ1LCD + λ2Ltrack (21)

with experimentally configured weights λ1 = 1.0 and λ2 = 0.1.

B.3 FINE-TUNING PHYSICAL PROPERTY FOR GNN-BASED WORLD MODELS

When training GNN-based world models using generated demonstrations, we concurrently input
the physical properties of objects from each demonstration into the Graph Neural Network (GNN).
This process yields a physics-informed GNN capable of dynamically adapting its physical dynamics
predictions according to varying input physical features. To align the simulated physical properties
with real-world objects for consistent kinematic behavior, we subsequently fine-tune these properties
using tracking points extracted from real videos. During fine-tuning, we freeze the GNN model
parameters θ while optimizing only the physical properties Φ̂ associated with each graph vertex.
Due to the discrepancy between the number of GNN vertices and ground truth tracking points, we
employ Linear Blend Skinning (LBS) to interpolate positions for all target track points from the
GNN vertex outputs. The optimization utilizes a composite loss function combining unidirectional
Chamfer distance and Mean Squared Error (MSE) Loss.
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B.4 3D GAUSSIAN UPDATE THROUGH LBS

To predict the appearance of deformable objects at time t represented by a set of 3D Gaussian kernels
Gt+1, we first compute the 6-DoF transformation for each vertex µ̂t

i ∈ X̂t, consisting of a translation
T t
i and rotation Rt

i. The translation is directly obtained from the vertex displacement:

T t
i = µ̂t+1

i − µ̂t
i = x̂i

t+1 − x̂i
t. (22)

For 3D rotation, we estimate a rigid local rotation Rt
i for each vertex by minimizing the motion

discrepancy of its neighborhood N (i) between t and t+ 1:

Rt
i = argmin

R∈SO(3)

∑
j∈N (i)

∥∥R(µ̂t
j − µ̂t

i)− (µ̂t+1
j − µ̂t+1

i )
∥∥2 , (23)

We then transform Gaussian kernels via Linear Blend Skinning (LBS) Huang et al. (2024b); Sumner
et al. (2007); Zhang et al. (2024b); Jiang et al. (2025) by interpolating transformations from their
neighboring GNN vertices. The 3D position and rotation of each Gaussian can be computed by:

µt+1
j =

∑
k∈N (j)

wt
jk(R

t
k(µ

t
j − µ̂t

k) + µ̂t
k + T t

k) (24)

qt+1
j = (

∑
k∈N (j)

wt
jkr

t
k)⊗ qt

j , (25)

where Rt
k ∈ R3×3 and rtk ∈ R4 respectively denote the rotation matrix and quaternion of vertex

k; ⊗ represents the quaternion multiplication; N (j) indicates K-nearest GNN vertices to Gaussian
kernel j; and wt

jk defines the interpolation weights between a Gaussian µt
j and a corresponding

GNN vertex µ̂t
k, which is inversely proportional to their Euclidean distance:

wt
jk =

∥µt
j − µ̂k∥−1∑

k∈N (j) ∥µt
j − µ̂k∥−1

(26)

to ensure that spatially closer Gaussian-vertex pairs receive higher weighting influence. With the
updated 3D Gaussian parameters, we render the deformable objects to obtain their appearance at
t+ 1.

C ADDITIONAL ABLATION STUDIES

C.1 BACKBONE ARCHITECTURE ABLATION

To examine the effect of backbone choice on deformable object dynamics learning, we consider two
alternative architectures in place of our GNN:

• MLP backbone. We implement a point-based MLP model following PointMLP (Ma et al.,
2022).

• Transformer backbone. We implement a Transformer model following PointTrans-
formerV3 (Wu et al., 2024c).

All variants are trained on the double lift sloth scenario under the same data, losses, and optimiza-
tion protocol as PhysWorld. We then evaluate their prediction accuracy and inference speed using
the metrics in the main paper. The results are demonstrated in Table. 7. The results show that the
GNN backbone achieves the best prediction accuracy across all metrics, and is substantially faster
at inference. We attribute this advantage to the inductive bias of GNNs for deformable dynam-
ics: the radius-graph construction and multi-step message passing explicitly model sparse, local
particle–particle and particle–tool interactions, which aligns well with how forces propagate in de-
formable media. In contrast, MLPs must learn such interactions implicitly from point features, while
Transformers incur dense attention overhead without explicit locality priors. These properties make
GNNs a practical and effective choice for real-time, material-aware deformable world modeling.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 7: Comparison of different backbone architectures for action-conditioned future prediction
and inference speed (FPS).

Methods CD↓ Track↓ IoU↑ PSNR↑ SSIM↑ LPIPS↓ FPS↑
Transformer 0.0497 0.0656 42.43 20.291 0.891 0.133 56

MLP 0.0213 0.0343 70.13 23.206 0.914 0.084 107
Our GNN 0.0100 0.0154 78.66 24.666 0.921 0.067 784

Table 8: GNN distillation results using PhysTwin as the teacher simulator. Incorporating VMP-Gen
and P 3-Pert improves performance, while MPM-based PhysWorld achieves the best overall results.

Method VMP-Gen & P 3-Pert CD↓ Track↓ IoU↑ PSNR↑ SSIM↑ LPIPS↓
PhysTwin + GNN × 0.0296 0.0679 55.66 21.220 0.895 0.121
PhysTwin + GNN ✓ 0.0187 0.0320 67.87 22.686 0.911 0.082
MPM + GNN (Ours) ✓ 0.0100 0.0154 78.66 24.666 0.921 0.067

C.2 PHYSTWIN + GNN DISTILLATION EXPERIMENTS

To further examine the role of our data-generation modules (VMP-Gen and P 3-Pert) and to con-
textualize the benefits of using an MPM-based digital twin as the teacher model, we conducted an
additional set of distillation experiments in which the GNN is trained using PhysTwin as the super-
visory simulator. For the double lift sloth scene, we replace the MPM simulator with PhysTwin’s
spring–mass model and generate synthesized demonstrations using the same data-generation proto-
col as PhysWorld.

We consider two settings: (1) training on synthesized demonstrations without VMP-Gen or P 3-
Pert, and (2) training with both modules enabled. In all cases, the GNN architecture, losses,
and optimization schedule are identical to those used in the main paper. Table 8 summarizes the
performance of the distilled GNN. Incorporating VMP-Gen and P 3-Pert improves the quality of
PhysTwin-generated training data, leading to a stronger GNN even when PhysTwin serves as the
teacher. When compared to PhysWorld, the GNN distilled from MPM still achieves the highest ac-
curacy across all metrics. These results show that VMP-Gen and P 3-Pert substantially enhance the
effectiveness of GNN distillation even when the supervisory simulator is PhysTwin and the MPM-
based digital twin provides higher-fidelity training signals, leading to the best-performing distilled
GNN in our framework.

D ADDITIONAL ANALYSIS AND RESULTS

D.1 ADDITIONAL QUANTITATIVE RESULTS FOR MPPI-BASED PLANNING

We use an MPPI-based planner, where at each planning step we sample 2000 candidate trajectories,
roll them out with our learned dynamics model, compute the distance between the terminal state
of each trajectory and the target configuration, assign higher weights to trajectories with smaller
terminal errors, and obtain the control by taking a weighted average over all trajectories; only the
first action of this averaged control sequence is executed, after which we re-sample and repeat the
procedure in a receding-horizon fashion. The results in Fig. 5 compare our method(GNN) with
PhysTwin and MPM in two deformable object relocating tasks by plotting the distance error between
the objects’s current and target positions as a function of the planning steps. Fig. 6 further compares
these three methods in terms of success-rate curves under different error thresholds. A comparison
of the wall-clock time required for 10-step MPPI planning is also illustrated in Table. 9, where
each step samples 2000 trajectories. Thanks to the GNN’s ability to perform parallel inference over
multiple trajectories, our method requires significantly less planning time while still achieving strong
control performance.
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Figure 5: Mean error curves over planning steps for different methods (PhysTwin, our MPM, and
our GNN) on the toy-zebra relocation (left) and rope relocation (right) tasks.

Figure 6: Success rate curves with respect to different error thresholds for different methods (Phys-
Twin, our MPM, and our GNN) on the toy-zebra relocation (left) and rope relocation (right) tasks.

D.2 PHYSICAL REALISM OF SYNTHESIZED DEMONSTRATIONS

To assess the physical realism of our synthesized demonstrations, we adopt the evaluation protocol
of PhyGenBench (Meng et al., 2024). This benchmark measures the consistency of object motion
with 27 physical laws, including those related to gravity, friction, elastic forces, and other basic
dynamics. We apply these metrics to both our generated demonstrations and the real ground-truth
videos. Our synthesized demonstrations achieve an average Realism score of 1.6010, which is very
close to the real videos’ score of 1.6087, indicating that the generated object motions are highly
physically realistic.

D.3 ROBUSTNESS OF VLM-ASSISTED CONSTITUTIVE MODEL SELECTION

To further evaluate the robustness of our VLM-based constitutive model selection, we collected ad-
ditional videos from the Internet showing hand/robot-arm interactions with deformable objects(as
shown in Fig. 7) and asked Qwen3 to choose the most suitable constitutive model for the ma-
nipulated object from our material library, containing 4 elastic models and 4 plastic models. We
then compared Qwen3’s predictions with expert annotations and observed consistently high agree-
ment (100%) accuracy on this extended set. This suggests that, with a reasonably designed mate-
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Table 9: Per-step planning time comparison for different methods.

Methods PhysTwin MPM GNN(Ours)

Planning time per step (s) 998 4687 22

Figure 7: Examples of additional collected video clips showing hand/robot-arm interactions with
deformable objects.

rial library, constitutive-model selection using a modern VLM is a manageable subproblem in our
pipeline.

We also note that picking a “second-best” model does not necessarily break the system. In practice,
some objects can be described reasonably well by more than one constitutive law. For instance,
many cloth-like objects are best matched by an anisotropic hyperelastic model, but a simpler Neo-
Hookean elastic model can still yield plausible behavior for thicker fabrics. To test robustness, we
conducted this study on the single lift cloth 1 scene, where the theoretically optimal constitutive
model is Anisotropic Hyperelastic. We intentionally replaced it with a suboptimal model-Neo-
Hookean and reran the pipeline. The results in Table. 10 show that our framework can re-optimize
the physical parameters under this suboptimal choice and still recover accurate dynamics, indicating
tolerance to occasional non-optimal model selection.

D.4 GNN TRAINING SENSITIVITY

To assess the robustness of our GNN training procedure, we ran additional experiments with three
different random seeds in Fig. 8 (leading to different parameter initializations) and varied the batch
size and learning rate in Fig. 9 and Fig. 10 respectively. We found that changing random seeds
or batch size has negligible impact on final performance, and the training loss curves consistently
converge to similar values. The learning rate is also stable within a reasonable range; however,
when it is set too small, convergence becomes noticeably slower (though it still reaches a com-
parable minimum). This indicates that PhysWorld is not overly sensitive to initialization or most
hyperparameters.
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Table 10: Robustness to suboptimal VLM constitutive-model selection: comparison of PhysTwin
and our pipeline using the optimal vs. an intentionally suboptimal constitutive model.

Methods CD↓ Track↓ IoU↑ PSNR↑ SSIM↑ LPIPS↓
PhysTwin 0.0221 0.0286 55.75 23.919 0.958 0.062

Ours (Suboptimal material) 0.0193 0.0339 62.15 26.512 0.968 0.046
Ours (Optimal material) 0.0186 0.0241 75.54 27.700 0.974 0.039

Figure 8: Training loss curves over epochs with different random seeds.

Figure 9: Training loss curves over epochs with different batch sizes.

D.5 OVERALL COMPUTATIONAL COST

For completeness, we report the end-to-end computational cost of PhysWorld for a representative
scene, double lift sloth, evaluated on a single RTX 4060 Ti (16 GB) GPU. The pipeline consists
of four stages: (1) MPM-based digital twin optimization, (2) demonstration synthesis, (3) GNN
training, and (4) GNN fine-tuning on real videos. On average, the end-to-end process requires a
total of 8.89 h per object, with the stage-wise breakdown summarized in Table 11. While this one-
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Figure 10: Training loss curves over epochs with different learning rates.

Table 11: Overall computational cost.

Stage Duration (h) Share of total

MPM optimization 0.38 4.3%
Demonstration synthesis 3.00 33.7%
GNN training 5.48 61.7%
GNN fine-tuning 0.03 0.3%

Total 8.89 100%

time preparation cost is non-trivial, it yields a fast learned world model that runs orders of magnitude
faster than the underlying MPM simulator and can be directly used for downstream tasks such as
model-based planning and control, where high inference speed is crucial.

D.6 EVALUATION ON ELASTO-PLASTIC OBJECTS FROM ROBOCRAFT

To assess the advantage of using an MPM-based digital twin on materials beyond the elastic regime,
we conducted additional experiments on elasto-plastic objects from RoboCraft (Shi et al., 2024).
These objects undergo large and partially irreversible deformations, which are challenging to cap-
ture with spring-mass dynamics. For each RoboCraft sequence, we calibrate physical parameters
independently for (1) an MPM simulator and (2) PhysTwin’s spring-mass simulator, using the same
optimization procedure as in our main pipeline. We then roll out both calibrated simulators un-
der the recorded actions and compare their predicted object trajectories against ground-truth point
clouds. Table 12 reports quantitative errors. The calibrated MPM digital twin consistently achieves
lower Chamfer, EMD, and Hausdorff losses than PhysTwin, indicating more faithful reproduction
of elasto-plastic dynamics, especially under large and irreversible deformations.

Furthermore, as illustrated in Fig. 11, when the two control points push inward on the elasto-plastic
object and then move back, the behaviors of the two simulators differ markedly. PhysTwin, built on a
spring-mass formulation, tends to enforce elastic recovery, causing the object to automatically return
toward its original shape after the push. In contrast, the calibrated MPM digital twin accurately
predicts the persistent, plastic deformation induced by this interaction, producing trajectories that
remain consistent with the irreversible shape changes observed in the real sequence.
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Table 12: Comparison of calibrated MPM and PhysTwin on elasto-plastic objects from RoboCraft.

Method Chamfer Loss↓ EMD Loss↓ Hausdorff Loss↓
PhysTwin 0.0190 0.0320 0.1701
Our MPM 0.0175 0.0276 0.0963

Figure 11: Qualitative results of PhysTwin and calibrated MPM on an elasto-plastic RoboCraft
object. When two control points push inward and then retract, PhysTwin’s spring–mass simulator
exhibits elastic recovery toward the original shape, whereas MPM captures the persistent plastic
deformation, matching the irreversible shape changes observed in the real sequence.

D.7 ADDITIONAL QUALITATIVE RESULTS

We present additional qualitative results of action-conditioned future prediction in Fig. 12, demon-
strating the superior performance of our method compared to the SOTA method PhysTwin Jiang
et al. (2025).
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Figure 12: Additional visual results of action-conditioned future prediction. Our method’s predicted
positions show closer alignment with ground truth compared to PhysTwin.
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