
Published in Transactions on Machine Learning Research (04/2025)

MemLLM: Finetuning LLMs to Use Explicit Read-Write
Memory

Ali Modarressi1,2, Abdullatif Köksal1,2, Ayyoob Imani1,2, Mohsen Fayyaz3, Hinrich Schütze1,2

amodaresi@cis.lmu.de

1Center for Information and Language Processing, LMU Munich, Germany
2Munich Center for Machine Learning, Germany
3Microsoft, Berlin, Germany

Reviewed on OpenReview: https: // openreview. net/ forum? id= dghM7sOudh

Abstract

While current large language models (LLMs) perform well on many knowledge-related tasks,
they are limited by relying on their parameters as an implicit storage mechanism. As
a result, they struggle with memorizing rare events and with updating their memory as
facts change over time. In addition, the uninterpretable nature of parametric memory
makes it challenging to prevent hallucination. Model editing and augmenting LLMs with
parameters specialized for memory are only partial solutions. In this paper, we introduce
MemLLM, a novel method of enhancing LLMs by integrating a structured and explicit read-
and-write memory module. MemLLM tackles the aforementioned challenges by enabling
dynamic interaction with the memory and improving the LLM’s capabilities in using stored
knowledge. Our experiments indicate that MemLLM enhances the LLM’s performance and
interpretability, in language modeling in general and knowledge-intensive tasks in particular.
We see MemLLM as an important step towards making LLMs more grounded and factual
through memory augmentation. The project repository is publicly available at: https:
//github.com/amodaresi/MemLLM

1 Introduction

State-of-the-art large language models (LLMs) perform well in knowledge-intensive tasks (Yu et al., 2023;
Chowdhery et al., 2023). They solve these tasks utilizing the information memorized in their vast array of
parameters (Roberts et al., 2020). However, the effectiveness of parameter-based memorization is limited
for infrequent entities and concepts (Kandpal et al., 2023; Mallen et al., 2023) and is prone to temporal
degradation (Kasai et al., 2023; Jang et al., 2022). Parametric model editing may address some of these
issues (Sinitsin et al., 2020; De Cao et al., 2021; Mitchell et al., 2022), but struggles with maintaining
locality – possibly damaging model performance in unrelated areas (Yao et al., 2023c; Gu et al., 2024).
Moreover, model editing often deteriorates performance when applying sequential editing or batch updates.
This is because it primarily focuses on applying (and evaluating) single edits one-by-one (Huang et al., 2023).
Finally, model editing may struggle to generalize and maintain previous edits when updating multiple facts
simultaneously (Yao et al., 2023c).

Other parametric solutions, like augmenting LLMs with extra parameters such as memory pools can preserve
knowledge for subsequent utilization (Wang et al., 2023a; 2024b). However, parametric memorization is prone
to distortion and hallucinated nonfactual output. In addition, parametric mechanisms like memory pools
have limited capacity and lack interpretability (Maynez et al., 2020; Ji et al., 2023).

Another approach is to augment LLMs with a non-parametric memory component that interacts with the
LLM either through natural language text or a formalized API (Wang et al., 2023b). Although prior
work has demonstrated enhanced abilities in extended dialogs, long-text generation and question answering

1

https://openreview.net/forum?id=dghM7sOudh
https://github.com/amodaresi/MemLLM
https://github.com/amodaresi/MemLLM

Published in Transactions on Machine Learning Research (04/2025)

(Packer et al., 2023; Hu et al., 2023; Zhou et al., 2023), these methods are primarily prompt-dependent and
necessitate customization for each specific task and model. They also suffer from the lack of a structured
memory. This undermines interpretability and interoperability (Wang et al., 2023b). While Retrieval-
Augmented Generation (RAG) methods (Lewis et al., 2020) can provide updated facts, their unstructured
storage complicates fact editing. Updating an atomic fact requires modifying all related instances to prevent
contradictions when conflicting facts are retrieved together (Shi et al., 2023).

In this paper, we introduce MemLLM, an LLM endowed with an explicit memory component. This archi-
tecture has the following key characteristics.

• This explicit memory component has the general advantages of some of the memory-focused work
we discussed: we can keep information accessible indefinitely, beyond the context window,
including infrequent information that standard LLMs struggle with.

• The LLM has both read and write access to the explicit memory component, i.e., it can store
information in the memory as it processes text (or interacts with a user) and retrieve it when it
needs it.

• We adopt finetuning to train the model to access the explicit memory component through read
and write commands. To this end, we specify an API for read and write access. Based on the
API specification, we create a dataset with training examples of API read and write commands and
finetune the LLM on it. Our published training dataset can be used to finetune any language model,
endowing it with an explicit memory component without requiring architectural changes.

• The memory component has an explicit structured schema, similar to a database schema. Therefore,
it is interpretable and inspectable for humans; it is editable by humans; it is scalable since
databases have excellent scalability properties; and it is interoperable since the contents of the
memory can be exported (e.g., to a different LLM supporting explicit memory) and contents can be
imported from data resources (e.g., from Wikidata).

Our evaluation on Re-DocRED (Tan et al., 2022) demonstrates that MemLLM achieves better perplexity
compared to baselines without memory components, with strong gains on named entities. We also show that
MemLLM outperforms non-memory-based methods on knowledge editing.

2 Related work

External memory augmentation. Augmenting an LLM with memory as an external component can
enhance its ability to process larger contexts and maintain reliable records by storing facts and knowledge.
Such components include databases, knowledge bases and knowledge graphs that LLMs interact with via
natural or formal language (Guu et al., 2020; Lewis et al., 2020; Liu et al., 2022; Yao et al., 2023a; Park et al.,
2023; Zhou et al., 2023; Schick et al., 2023; Hu et al., 2023). For instance, Retrieval Augmented Generation
(RAG) retrieves relevant text snippets from large document databases, to improve factuality (Guu et al.,
2020; Lewis et al., 2020). Other recent solutions store summarized information from previous contexts for
future retrieval, improving performance in long-form generation, summarization, question answering and
dialog coherence (Park et al., 2023; Zhou et al., 2023; Packer et al., 2023; Chen et al., 2023; Liang et al.,
2023).

In general, our framework aligns with external memory methodologies but stands out with its structured
format for storing information. This explicit memory facilitates large-scale knowledge editing and makes the
model’s output generation process more interpretable. While similar structured storage approaches exist,
they are often task-specific. For example, Hu et al. (2023) introduce ChatDB, which takes a database
structure as input for a data record management task. This requires prior knowledge of the task-specific
database schema (e.g., a sales table), which must be defined and provided as a prompt to the model.
In contrast, our method is designed for generic language modeling, making it adaptable to a variety of
tasks without extensive prompt engineering. Knowledge graphs are another structured format that can be
interpreted as a memory of triples, similar to our memory. However, while there is work on extracting triples

2

Published in Transactions on Machine Learning Research (04/2025)

from text into knowledge graphs (Zhang & Soh, 2024) using LLMs and on LLMs “interactively” querying
knowledge graphs to answer questions (Baek et al., 2023), our approach is distinguished by teaching the
LLM memory-write and memory-read functionality through finetuning. This makes memory an integral
component of the model’s text processing and at the same time enables the model to flexibly handle new and
updated knowledge. Similar integrated systems have also been considered in the knowledge graph literature
(e.g., AutoKG (Zhu et al., 2024)), but to the best of our knowledge, our system is the first that goes beyond
a conceptual proposal and demonstrates empirical success in both language modeling and knowledge editing.
Additionally, our published training dataset can be used to endow any trainable language model with explicit
memory without requiring architectural changes.

Memory as a state. The term memory can refer to recurrent architectures that represent past context
with vectors (Hochreiter & Schmidhuber, 1997; Cho et al., 2014). Transformer-based models use similar
mechanisms with memory tokens (to transfer context across segments) and memory pools (to share informa-
tion across multiple contexts) (Burtsev et al., 2020; Bulatov et al., 2022; Wang et al., 2024b). While recent
advances use vector- or parameter-based memory systems for long-range dependencies (Martins et al., 2022;
Wu et al., 2022a;b; Cheng et al., 2023; Wang et al., 2023a; He et al., 2024), they are limited by memory vec-
tor capacity (Jelassi et al., 2024). In contrast, MemLLM has no such architectural limitations and features
explicit, interpretable and editable memory.

Knowledge editing. The goal of knowledge editing is to apply data-efficient changes to a model’s behavior
for a set of edits while keeping other knowledge unaffected (Yao et al., 2023c; Gu et al., 2024; Zhang et al.,
2024). Meta-learning and locate-then-edit are two classes of parametric methods that modify model weights.
In meta-learning, a hypernetwork is trained and applied to the model weights during test time (De Cao
et al., 2021; Mitchell et al., 2021). In locate-then-edit, the weights triggered by a knowledge expression are
located and modified (Dai et al., 2022; Meng et al., 2022). There are also memory-based methods that
do not alter the original model weights but use an external memory (Gu et al., 2024). E.g., methods like
SERAC, GRACE and DEFER use retrieval-based memory to fetch previously given edits and apply them to
new inputs (Mitchell et al., 2022; Hartvigsen et al., 2024). In WISE (Wang et al., 2024a), in addition to the
LLM, two additional parametric models are trained: a side memory and a routing network. Based on the
query, the routing network decides which memory to use, the side memory or the main LLM. Evaluations
show that multiple edits at a time (batch editing) or successive edits (sequential editing) are challenging
tasks – but certainly critical for the intended application of knowledge editing. While most methods can
handle a few edits at a time, their performance drops when applying more (Yao et al., 2023c; Wang et al.,
2024a). Due to the explicit memory structure of MemLLM, it can handle a large number of edits while
maintaining performance.

3 Methodology

Our approach to endowing an LLM with an explicit memory is finetuning with the standard language
modeling objective. We now present a finetuning regime that teaches the LLM (1) to extract knowledge
from text and write it to the memory and (2) to read knowledge from the memory and leverage it for better
language modeling. Following Schick et al. (2023) and Modarressi et al. (2023), we define an API through
which the LLM initiates memory writes and memory reads.

3.1 Memory structure

The memory stores information in relation triples. Each triple has the form r = ⟨es, t, eo⟩, where
es is the first entity or subject, eo the second entity or object, and t the relation. Example:
⟨Washington D.C., capital of, United States⟩. The entities and relations are stored as raw text and vectors,
each in separate tables. As shown in Figure 1, the facts are stored in the main table “Triple Memory” using
three identifiers linked to two other tables: one for subject and object entities, and one for relations. The
entities and relations tables are indexed by unique names. We enforce uniqueness across the three linked iden-
tifiers in the main table “Triple Memory”, i.e., a specific combination (Entity_ID1,Relation_ID,Entity_ID2)
can only occur once in the table. Because these identifiers indirectly refer to the names of the entities or
relations, different identifiers imply different entity or relation names, thereby preventing redundant storage

3

Published in Transactions on Machine Learning Research (04/2025)

Triple Memory (Main)

PK Triple_ID

Subj_Entity_ID

Relation_ID

Obj_Entity_ID

Relations

PK Relation_ID

Relation_name (str)

IDX Embedding (vector)

Entities

PK Entity_ID

Entity_name (str)

IDX Embedding (vector)

Figure 1: MemLLM memory schema. Each triple is stored in the “Triple Memory” using its subject entity
ID, relation ID and object entity ID, along with a designated triple ID. Entities and relations are stored
in separate tables, each containing their designated ID, name and corresponding vector embedding. Both
tables are indexed based on their vector embeddings.

of identical facts. The vector representations (created with Contriever (Izacard et al., 2022)) abstract away
from different surface forms of the same entity, e.g., “US” vs “USA”. In the interest of brevity, we use the
symbols e and t for both the entity/relation itself and for its vector.

Our query format for querying the memory is:
q ∈ {⟨eq

s, tq, ∗⟩, ⟨∗, tq, eq
o⟩}

where eq
s, eq

o, tq are subject entity, object entity, and relation. ∗ indicates the position in the triple of the
entity we are querying for. These two templates give us sufficiently specific queries (as opposed to, e.g.,
queries with two variables) that are likely to return useful entity information.

We want to retrieve triples from the memory that match the query. Given that the surface form of an entity
(and also the relation) can vary (e.g., “US” vs “USA”), our match criterion is not exact match, but rather
vector similarity. We refer to entities/relations that are similar to the query entity and the query relation as
candidate entities/relations.

For retrieval, we first determine a set of candidate entities:
C = {e′| cos(eq, e′) ≥ τe}

That is, all entities with an above-threshold similarity are considered candidate entities.

Similarly, we determine a set of candidate relations:
T = {t′| cos(tq, t′) ≥ τt}

If the query is a query for an object, i.e., q = ⟨eq
s, tq, ∗⟩, then we retrieve the following final set E of entities

from the memory:

{eo|∃(e, t, eo) ∈ M : e ∈ C, t ∈ T , 0.5(cos(e, eq
s) + cos(t, tq)) ≥ τr}

where M is the memory. That is, we retrieve all triples with entities/relations from the candidate sets such
that their average similarity to query subject and relation is above the threshold. Subject queries are handled
analogously.1

3.2 Memory-API and Inference

We now describe the API that specifies how the LLM initiates memory writes and memory reads.

Memory writes. We process the input sentences one by one. See the example given in Figure 2a. For
sentence si the input xMW

i to the LLM is formatted as follows:
xMW

i =S<i+({USER_ST})+si+({USER_END})
where S<i are the i−1 preceding sentences and si is bracketed by tags to mark it as the focus sentence. The
LLM’s task is then to extract all relations occurring in the focus sentence and to generate a write command

1We discuss how we set the thresholds and other hyperparameters in Appendix D.

4

Published in Transactions on Machine Learning Research (04/2025)

"Il Regalo Più Grande" (English: "The Greatest Gift") is a song by Italian singer Tiziano Ferro. ({USER_ST})The song was written by Ferro
for his fourth studio album, Alla Mia Età.({USER_END}) ({MEM_WRITE-->Alla Mia Età>>performer>>Tiziano Ferro;Il Regalo Più
Grande>>part of>>Alla Mia Età})</s>

Memory Write
User Input

LLM Output

"Il Regalo Più Grande" (English: "The Greatest Gift") is a song by Italian singer Tiziano Ferro. The song was written by Ferro for his
fourth studio album, ({MEM_READ(>>performer>>Tiziano Ferro;Il Regalo Più Grande>>part of)--> Alla Mia Età}) Alla Mia Età. The
track was released as the album 's second single on ({

"Il Regalo Più Grande" (English: "The Greatest Gift") is a song by Italian singer Tiziano Ferro. The song was written by Ferro for his
fourth studio album, Alla Mia Età. The track was released as the album 's second single on ({MEM_READ(...

LLM Output

Memory Output LLM Output
New memory read
call incoming…

Remove previous call
and pass all generated

text as new input

LLM Output

Previously generated text as input

Memory Read(a) For memory writes, the input is given in two parts. (i) The pretext provides context for the model (e.g., an-
tecedents for pronouns). (ii) The focus sentence is the span of text (bracketed by ({USER_ST}) and ({USER_END}))
from which the model is tasked to extract all relations. The model calls the API starting with the ({MEM_WRITE-
-> command followed by the extracted relations. })</s> closes the API call. In each document, MemLLM scans
the sentences one by one.

"Il Regalo Più Grande" (English: "The Greatest Gift") is a song by Italian singer Tiziano Ferro. ({USER_ST})The song was written by Ferro
for his fourth studio album, Alla Mia Età.({USER_END}) ({MEM_WRITE-->Alla Mia Età>>performer>>Tiziano Ferro;Il Regalo Più
Grande>>part of>>Alla Mia Età})</s>

Memory Write
User Input

LLM Output

"Il Regalo Più Grande" (English: "The Greatest Gift") is a song by Italian singer Tiziano Ferro. The song was written by Ferro for his
fourth studio album, ({MEM_READ(>>performer>>Tiziano Ferro;Il Regalo Più Grande>>part of)--> Alla Mia Età}) Alla Mia Età. The
track was released as the album 's second single on ({

"Il Regalo Più Grande" (English: "The Greatest Gift") is a song by Italian singer Tiziano Ferro. The song was written by Ferro for his
fourth studio album, Alla Mia Età. The track was released as the album 's second single on ({MEM_READ(...

LLM Output

Memory Output LLM Output
New memory read
call incoming…

Remove previous call
and pass all generated

text as new input

LLM Output

Previously generated text as input

Memory Read

(b) The model decodes one token at a time, as in standard language modeling. It is also trained to generate
memory read commands at points when they can retrieve useful information. In the example, after decoding
some tokens, the model generates a ({MEM_READ(command followed by queries. --> triggers execution of the
queries. Returned results are appended. The model then uses the retrieved results for decoding the posttext.
Whenever, during further decoding, the model initiates a new memory read by emitting ({, we remove the
previous one because it is unlikely to still be useful.

Figure 2: MemLLM inference with memory read and memory write

that stores them in the memory:
y[xMW

i] = ({MEM_WRITE-->e1
s»t1»e1

o; e2
s»t2»e2

o; . . . })

Context S<i is necessary to extract relations from the focus sentence, e.g., if the focus sentence refers to a
previously introduced entity with a pronoun. We finetune the LLM to only extract relations from the focus
sentence (not from the preceding context); see §3.3 for details.

To extract all relations from a document and write them to the memory, we iterate over the sentences of a
document one by one.

Memory reads. The LLM can at each point in time either emit a regular token or initiate an API
MEM_READ call by generating:

({MEM_READ(
It then continues by generating subject or object queries as introduced above: q ∈ {⟨eq

s, tq, ∗⟩, ⟨∗, tq, eq
o⟩}.

The syntax for the memory-read API call is:
({MEM_READ(eq1

s »tq1»; »tq2»eq2
o ; . . .)-->

The entity sets E are then retrieved from the memory (§3.1), merged and appended to the API call:
({MEM_READ(eq1

s »tq1»; . . .)-->e1, e2, e3, . . . })
The LLM then continues decoding. Figure 2b gives an example. The LLM starts generating a sentence that
refers to an album by the Italian singer Tiziano Ferro. It has learned that just before naming the album is a
good point at which to initiate a memory read. Two queries are generated (including: “What is the song “Il
Regalo Più Grande” part of?”). One entity is returned by the memory (“--> Alla Mia Età})”) and written

5

Published in Transactions on Machine Learning Research (04/2025)

Documents +
Relations

Memory-Write
Training Examples

Memory-Write
FT Model

Wikipedia
Relations

 MemoryMemory-Read
Training Examples

MemLLM Training Data

1 2 3

45

Figure 3: MemLLM training data pipeline.

to the buffer. The LLM then generates the name of the correct album (“Alla Mia Età.”). This example
illustrates that our memory has the potential of reducing hallucinations because through the memory an
explicit representation is available of the fact that “Il Regalo Più Grande” is part of the album “Alla Mia
Età”.

We remove memory-read API calls from the context if they are no longer useful. This happens in three cases:
(i) The returned set E of entities is empty. (ii) The number of retrieved entities exceeds a threshold Qthr

(Qthr = 30). Such large retrieval results are unlikely to be helpful. (iii) The model emits “({”, initiating a
new memory-read API call.

For (iii), our motivation for removing the API call is as follows. Omitting API verbiage preserves the text’s
natural flow and reduces the context to those parts of the input that are still informative for high-quality
generation.

3.3 Finetuning the LLM

We now describe how we create the dataset for finetuning the model to generate memory-write and memory-
read API calls. One innovation of our work is that we create these API training data from corpora annotated
with entities and relations, including Re-DocRED (Tan et al., 2022), a Wikipedia corpus annotated in
Wikidata format with named entity mentions and relations (see also §4.1) that we will use as an example
below.

Memory-write data. Figure 3 shows how we use Re-DocRED’s annotated relations. For each sentence si,
we retrieve from Re-DocRED all relation triples such that one entity has a full mention (i.e., not a pronoun)
in si and the other entity has a full mention either in si or in the pretext (S<i). The memory-write training
example consists of the context xMW

i and the memory-write command y[xMW
i]; see §3.2 and Figure 2a. Since

we want to teach the LLM to generate memory-write API calls, we compute the training loss on y[xMW
i]

only.

The set of relation triples can be empty for a sentence si. In that case we generate a memory-write command
in y[xMW

i] that contains no relations. This encourages the LLM not to generate spurious relations for such
“empty” sentences.

Memory-read data. For effective memory reads, the LLM has to learn (i) to identify where to initiate a
query to the memory, (ii) to generate queries that retrieve helpful information from the memory and (iii) to
make good use of the information that is returned by the memory. We now describe how we generate our
training data with all three capabilities in mind.

Given a Re-DocRED document d, we generate a different training instance d′ for each memory-read API
call. To produce d′, we scan d’s annotated entity mentions from the beginning to the end of the document.
For each entity mention etarget, we collect all relation triples in which it participates. Such triples are a
good basis for memory-read API calls that – when issued before etarget first appears – will help the LLM
to correctly generate etarget; this is why we refer to etarget as the target entity. We keep only that subset
of the triples in which the mention of the other entity eq that the triple refers to (the query entity) has
already occurred. (The LLM will in general not be able to generate a query containing eq if eq has not yet

6

Published in Transactions on Machine Learning Research (04/2025)

occurred.) We also discard all triples that we previously encountered during our scan. (These are already
known at this point, so there is little utility initiating a query for them.) We then generate a query for each
remaining triple: either ⟨eq, t, ∗⟩ (etarget = object) or ⟨∗, t, eq⟩ (etarget = subject). The memory-read API call
for the queries generated for etarget is placed immediately preceding etarget. This will retrieve etarget from the
memory in many cases and then make it easy for the LLM to correctly predict etarget at the next position.

Next we retrieve results for the query from the memory (see Figure 1). The memory we use here is the one
that is populated from Wikipedia by the trained memory-write model (as described earlier in this section
and in Figure 2a). The memory write model misses some relations and incorrectly identifies others, resulting
in an imperfect memory. We intentionally use this imperfect memory because it aligns the training data
with the ultimate inference conditions.

If the query returns a large number of results from memory (more than Qthr = 30), we discard it as unlikely
to be helpful. (See Appendix B for details.) An example is the query ⟨∗, country, United States⟩ where
Wikidata defines the relation “country” as “sovereign state that this item is in”. There are thousands of
entities that satisfy this query. Such an unspecific result is not useful. Otherwise we add the queries and
the query result to d′; see Figure 2b and §3.2.

Finally, we add the rest of d to d′ up to the next memory read (indicated by “({”) or (if there isn’t one) the
entire remainder of d.

To summarize, each training example d′ is a concatenation of (i) the pretext, including the first two letters
(“({”) of the API call, (ii) the API call proper “MEM_READ(eq1

s »tq1»; . . .)-->”, (iii) the query result from the
memory “e1, e2, e3, . . . })” and (iv) the posttext. The posttext consists of the rest of the following text until
the next memory read or (if there isn’t one) the entire rest of d.

The loss is applied to the API call (ii) – this teaches the model to generate the correct API call. The loss is
also applied to the posttext – this teaches the model (a) to make good use of the information provided in the
query result for predicting entities and (b) to predict the next memory read (as indicated by “({”). (iii) is
not subject to the loss since the query results are generated by the memory, not by the LLM. For the training
example d′ that contains the very first “({MEM_READ(” in the document (and only for this d′), the loss is also
applied to the pretext – because the LLM needs to learn where to generate this first “({MEM_READ(”. For
a more comprehensive overview of the memory-read data generation process, refer to Appendix C, which
outlines the detailed algorithm.

4 Experiments

4.1 Setup

To train and evaluate MemLLM, we construct training and evaluation datasets as described in §3.3. We
require datasets annotated with entities and relations. We use three such datasets. (i) Re-DocRED (Tan
et al., 2022): Wikipedia texts annotated (in a Wikidata format) with named entity mentions, coreference
information and 96 relations (occurring intra- and inter-sentence). Re-DocRED includes many relation
instances missing in DocRED Yao et al. (2019). (ii) DocRED’s distant supervised training set. It includes
>100K documents but fewer relations per document. The size of this dataset makes the training more
effective and robust. (iii) A set of “counterfactual” variations of Re-DocRED (Modarressi et al., 2024).
Modarressi et al. (2024) introduces an entity replacement strategy to find and apply suitable replacements
over Re-DocRED. In our initial tests, we found that teaching the model to produce counterfactual answers
(which often contradict its parametric memory) increases robustness against pretrained knowledge bias. This
is described in detail in §4.1.1.

We finetune two Mistral-7B (Jiang et al., 2023) models using LoRA (Hu et al., 2022), a memory-write model
and a memory-read model. See Appendix D for details on finetuning and hyperparameters. Our baselines
are the original Mistral-7B and the memory-read model with its memory capabilities disabled. The latter
baseline lets us ascertain to what extent improvements are due to in-domain finetuning (as opposed to the
memory).

7

Published in Transactions on Machine Learning Research (04/2025)

Filtering Approach Prec. Rec. F1 Acc.
Baseline 0.58 0.83 0.68 0.61
Justification 0.56 0.82 0.66 0.59
Reasoning 0.78 0.84 0.80 0.80

Table 1: Comparing performance of different prompting strategies for filtering distant supervision data. The
reasoning approach similar to chain-of-thought prompting performs best among the strategies.

4.1.1 Filtering Distant Supervision Relations

Re-DocRED is human-annotated and mostly consists of relations with explicit evidence. In contrast, the
distant supervised DocRED training set lacks explicit evidence and contains many false positives due to its
automated annotation method. To address this, we implement a few-shot-based filtering approach to remove
false-positive relations. We also apply this filtering to Re-DocRED relations that lack explicit evidence.

To increase the number of training examples, we also include examples from the distant supervision subset
of DocRED. Distant supervision (Mintz et al., 2009) assumes that a relation r exists between two entities
(es, eo) in a text if the text includes both entities and the r = ⟨es, t, eo⟩ relation triple exists in a knowledge
base. While this method is valuable for relation extraction, it may introduce noisy examples without any
evidence of the relation in the text. This noise could adversely affect our training pipeline.

The experimental setup is as follows: We start with a partial document (S = {s1, s2, . . . , si}) mentioning
two entities (e1, e2), with at least one of them present in the last sentence (i.e., the focus sentence), si. Our
aim is to determine whether the potential relation r between e1 and e2 has any evidence in the last sentence.

To filter out negative examples, we use large language models (i.e., Mixtral). We design 8-shot in-context
learning examples to detect if there is evidence of a relation in the focus sentence. We curate a test set to
evaluate the performance of this filtering mechanism as follows. We select 1000 examples from the human-
annotated split of DocRED as positive examples where the focus sentence is annotated as evidence. For
negative examples, we choose 1000 examples where the focus sentence contains at least one entity but there
is no evidence for the relation in the focus sentence.

For prompting, we apply three different strategies. In the first approach (baseline), we expect the LLM
to answer with “Yes” or “No” to report whether the focus sentence contains evidence. With the second
approach (justification), we expect the LLM to provide justification after giving the answer. In the final
approach (reasoning), we expect the LLM to generate a natural sentence representing the relation, then
provide reasoning, and finally generate the answer with “Yes” or “No” in the last sentence, similar to chain-
of-thought prompting.

We present the results in Table 1. These results suggest that the reasoning approach outperforms the other
two approaches by a large margin. Also, it suggests that the filtering would lead to higher quality based on
the high recall score, 0.84. We demonstrate the best-performing prompt in Appendix E.

After applying this method, we use the filtered distant dataset alongside 10 counterfactual variations of
Re-DocRED to generate data for the initial fine-tuning phase. We then continue the finetuning process with
data generated from the supervised set of Re-DocRED.

4.2 Perplexity evaluation

To evaluate how the memory component would improve language modeling, we perform a perplexity evalu-
ation. For this, we need a corpus to extract facts, do memory writes, and store them in structured memory.
Our primary source is a full dump of English Wikipedia2, but we also evaluate using Wikipedia abstracts
and Re-DocRED texts for further analyses. The language modeling evaluation then examines how the model
performs in terms of perplexity once the memory component has been filled. Following Liu et al. (2022), we
report: (1) OVERALL PPL (PPL on the entire input text), (2) TARGET PPL (PPL on the target enti-

2Dump date: 2023-11-01, available at: https://huggingface.co/datasets/wikimedia/wikipedia

8

https://huggingface.co/datasets/wikimedia/wikipedia

Published in Transactions on Machine Learning Research (04/2025)

Memory PPL
OVERALL TARGET ENTITY

Baseline #1 (Mistral-7b) (no memory) 5.823 3.550 4.666
Baseline #2 (Memory Disabled) 4.997 3.510 4.353

1 MemLLM MW[Wikipedia (Full)] 4.905 2.986 4.187

2 MemLLM MW[Wikipedia (Abs.)] 4.898 2.955 4.170

3 MemLLM MW[Re-DocRED (Test)] 4.863 2.821 4.102
4 + Gold MR Pos. & Queries 4.634 1.938 3.548

5 MemLLM

Re-DocRED (Test)

4.811 2.596 3.993
6 + Gold MR Position 4.674 2.232 3.728
7 + Gold Queries 4.431 1.364 3.149
8 + Gold Target 4.426 1.357 3.142
9 + Gold Target Only 4.385 1.194 3.026

Table 2: MemLLM performance on OVERALL PPL (all text), TARGET PPL (target entities) and ENTITY
PPL (all entities). We show the effect of memory content (“Memory”). “MW[X]”: the memory is populated
with triples generated by memory-writes with MemLLM run on X. 5 – 9 : the triples are from Re-DocRED
(Test), Re-DocRED’s validation set.

ties) and (3) ENTITY PPL (PPL on all named entities). The model produces a token wi with probability
p(wi|w<i):

p(wi|w<i) = p(wi|w<i, MR)p(MR|w<i)
+ p(wi|w<i)(1 − p(MR|w<i))

where p(MR|w<i) is the probability of initiating a memory read (MR) with the “({” token.3

In case of MR, wi is conditioned on both MR (including the MR call and the returned result, see Figure 2b)
and the pretext w<i. If there is no MR, then wi is only conditioned on w<i.

Table 2 gives perplexity results on Re-DocRED test. MemLLM outperforms the two baselines on all three
PPL measures (1). This increase for triples appearing for the first time in the text suggests that memory-
reads successfully recall relevant information for language modeling. This improvement benefits not just
all entities in the text (ENTITY PPL) but the entire text (OVERALL PPL). TARGET PPL (the focus
of this work) improves by .524 (2.986 vs 3.510). This substantial improvement demonstrates the effective-
ness of MemLLM for target entities. This capability is crucial for generating factual text and preventing
hallucinations.

For our memory-read analysis, instead of using the LLM to write to the memory, we directly populate the
memory with the relations from the validation set (indicated as “Re-DocRED (Test)” in column “Memory”).
This lets us investigate what would happen if the memory-write process were error-free, i.e., all remaining
errors are due to the memory-read process. We look at four potential sources of error in memory reads and
present in each case an ablation in which this source of error is eliminated: the position of the memory
read is the gold position immediately before the target entity (6 “Gold MR Position”), the query to the
memory is the gold query (7 “Gold Queries”), the correct target entity is returned by the memory (8
“Gold Target”), the correct target entity is returned by the memory and no other entities (9 “Gold Target
Only”). 9 is the lower bound perplexity for perfect memory reads (and perfect memory writes).

3We evaluate p(wi|w<i) by setting p(wi|w<i, MR) to zero for all positions except for positions where memory reads actually
occur. The reason is that taking into account an MR call at each position results in a tree with 2n leaves at position n in the
text, each requiring a memory call. This is too expensive to compute. As a result, we evaluate with smaller values of p(wi|w<i)
than the true p(wi|w<i) estimated by the model and, consequently, with higher perplexities, thus unfairly penalizing MemLLM.
Note that this is a problem for fairness of our perplexity evaluation, but not for a real application (where we only pursue a
single path at each point).

9

Published in Transactions on Machine Learning Research (04/2025)

Method REL GEN LOC AVG
DEFER 0.02 0.02 0.67 0.24
GRACE 1.00 0.02 1.00 0.67
WISE 0.70 0.67 1.00 0.79
MemLLM 0.78 0.76 0.97 0.84

Table 3: Knowledge editing results on ZsRE with 1000 sequential edits. AVG: mean of reliability (REL),
generalization (GEN), locality (LOC). Baseline results (using the same model, Mistral-7B, and edit set) are
from Wang et al. (2024a). Bold (italics): (second) best result.

Comparing 9 and 8 on TARGET PPL (1.194 vs 1.357) shows the effect of “ambiguity”. The +.343 gap is
due to the memory returning more targets than just the gold target.

Moving from 8 to 7 (1.357 to 1.364) indicates the impact of the memory retrieval process. In 7 , we use
the gold queries, but without ensuring the inclusion of the gold target in the results. The next comparison
highlights the impact observed when the LLM itself generates queries (6) vs when only gold queries are
issued (7). Finally, the effect of the model itself selecting the position for the memory read (6) versus
predetermining that position (5) is shown in the rise from 2.232 to 2.596.

To isolate the factor memory-write performance, we fix (i) gold memory-read positions and queries and
(ii) the input corpus for extracting relations (we use Re-DocRED test). We only vary the method by which
the memory is populated: running the memory-write model on the input corpus (4) vs reading out the
relations from the gold data and directly storing them in memory (7). As expected, PPL improves when
directly stored (i.e., 100% precision and recall) triples are used (7) vs when MemLLM extracts and writes
triples to memory (4). This indicates that there is room for improvement by training MemLLM to do a
better job at information extraction.

Scaling the stored triples. In a real-world scenario, the size of the memory and, consequently, the size of
query results will get large. This increases the risk of unhelpful information being returned from the memory.
To investigate this, we compare our main experiment (1 , using the full Wikipedia, 111M triples) with two
ablations that use only Wikipedia abstracts (2 , 38M triples) and only Re-DocRED test (3). Table 2 shows
that there is a relatively small negative effect of memory size: 3 (memory stripped down to the relations
generated from Re-DocRED test) is only slightly better than 1 (full memory). This suggests good scaling
properties of our approach.

102 103 104 105 106 107 108

No. Extracted Facts (Triplets)

0

20

40

60

80

100

M
em

or
y

U
sa

ge
 R

el
at

iv
e

to

Fa
ct

-B
as

ed
 S

to
ra

ge
 (%

)

Figure 4: Memory efficiency of storing structured
triples vs. proposition-based storage. The y-axis rep-
resents the fraction of memory required compared to a
RAG system that stores an embedding per fact.

Memory redundancy reduction benefits. In-
stead of storing facts in a structured triple format,
each fact could be stored as its own proposition
(Chen et al., 2024). For instance, one can store the
triple ⟨Washington D.C., capital of, United States⟩
as the proposition: “Washington D.C. is the cap-
ital of the United States.” Based on the memory
populated with full Wikipedia (111M triples), an
equivalent RAG system would need to store and in-
dex 111M proposition sentences. In a vector-based
(dense) retrieval setting, this means storing and in-
dexing 111M vectors alongside their text counter-
parts. However, in MemLLM, we store these facts
in structured triples with identifiers (cf. Section
3.1), and the only vector-based indices are entity
and relation embeddings. After storing the 111M
triples, the entity/relation tables contain roughly
21M unique entity/relation records. Thus, as the
number of extracted facts increases, our structured

10

Published in Transactions on Machine Learning Research (04/2025)

triple approach results in significantly lower mem-
ory usage and, at large scales, it requires less than
20% of the memory (21M) needed for direct proposition storage (111M), demonstrating its efficiency in
reducing redundancy (Figure 4). Moreover, having only entities and relations encoded as vectors reduces
ambiguity and improves recall by introducing less noise compared to encoding entire sentences.

4.3 Knowledge Editing Evaluation

To test whether MemLLM facilitates knowledge editing, we evaluate prompt-based knowledge editing. Fol-
lowing Hartvigsen et al. (2023) and Yao et al. (2023b), we measure reliability (REL), generalization (GEN)
and locality (LOC). Each example includes a prompt, an edit, a generalization test prompt and a locality
test prompt. The task is to apply the edit on the original prompt to the model. The goal is for the model
to respond to original and generalization test prompts in accordance with the edit. The locality test checks
whether unrelated knowledge is affected. An ideal method effectively applies edits, generalizes correctly and
does not harm unrelated knowledge.

Following Wang et al. (2024a), we evaluate MemLLM on ZsRE, a closed-book question answering dataset
(Levy et al., 2017) with locality prompts selected from Natural Questions (NQ) (Kwiatkowski et al., 2019).
We apply 1000 edits from the evaluation set by appending them to the end of the questions (the prompts)
using the following text: “It is or they are” and bracketing them with tags. Example: “({USER_ST})What
city was Luca Verdecchia born? It is or they are Naples({USER_END}).” The memory-write model should
then extract and store Verdecchia’s place of birth, i.e., Naples. We evaluate MemLLM using a 5-shot QA
prompt. The first four examples are typical question-answer pairs. The fifth in addition includes a full
memory-read call. A prompt – a generalization or locality test prompt – is appended to the 5 shots and a
memory-read API call executed after the question mark.

We expect the model to answer the questions based on the memory filled with the edits. Some edits in the
dataset overlap or are intended to replace previous edits. Therefore, if a newly extracted triple has an exact
matching entity and relation with an old triple, we replace the old one with the new one.

Table 3 compares knowledge editing results for MemLLM with three baselines. MemLLM outperforms
the baselines (AVG of .84). High reliability (.78) and generalization (.76) scores suggest that MemLLM (i)
manages to extract and store the relation triple based on the edit and (ii) utilizes the edit in the memory-read
process to answer the original and the generalization test questions correctly. Moreover, since MemLLM
uses an explicit memory the applied edits only mildly affect the answers to unrelated questions: MemLLM
has a score of .97 on locality. This indicates that there is little cumulative deterioration of the explicit
memory.

Qualitative Analysis. Leveraging MemLLM’s interpretable design, we identified the causes behind the
22% performance gap in reliability from 1.00 to 0.78 (REL, MemLLM vs GRACE). Out of 216 errors, 45
were due to memory writes resulting in no triples or triples without the desired edit. In 95 cases, the edit was
captured in the memory write but not retrieved by the memory read, either due to a bad query or incorrect
relation extraction during the memory write. Another 63 errors occurred when the model did not effectively
use the edits even though they were correctly retrieved. Many of these errors are due to the limitation
to 96 relations (see §4). For example, the question “How endangered does the IUCN consider Hyloxalus
parcus?” involves a relation that is not covered: “IUCN conservation status”. In another case, the question
“What family lineage was Xiao Jia part of?” retrieves the correct edit (“Southern Ming Dynasty”) but for
an incorrect relation: ({MEM_READ(Xiao Jia»country of citizenship»)}), as the relation “family” is not
one of the covered 96. The model may then not recognize the query result as relevant to the question and
ignore it. Addressing this limitation by supporting more relations would resolve many of these errors. Even
with this limitation and not being specifically designed for knowledge editing, MemLLM outperforms other
model editing methods. We believe that expanding its capability to handle a broader range of relations
would greatly enhance its performance.

11

Published in Transactions on Machine Learning Research (04/2025)

5 Conclusion

We present MemLLM, a novel approach to endowing an LLM with an explicit structured memory. We
publish a training dataset that can be used to extend any standard LLM with such a memory. We show
that MemLLM improves language modeling (as measured by entropy) and outperforms state-of-the-art
knowledge editing methods on ZsRE.

Limitations

While the structured relation-based memory improves factuality and interpretability, it has its own lim-
itations. The current version of MemLLM handles only 96 relation types commonly used in Wikidata.
However, to handle all types of knowledge extraction and storage, the model should be capable of extracting
other types of relations. Composite relations that could be inferred from multiple already extracted rela-
tions are not detected or utilized in the current version of MemLLM. For instance, if we extract (California,
country, United States) and (Apple Inc., located in, California), we expect the relation (Apple Inc., located
in (or Country), United States) to be inferred. MemLLM is not a memory-aware solution. This means if
a fact is not stored in the memory, but the decoding process generates a partial prompt that requires that
fact, the model would either continue generation based on its parametric knowledge or hallucinate.

We acknowledge that Retrieval-Augmented Generation (RAG) methods are widely used for a more grounded
text generation. However, like other baselines in knowledge editing, we do not include RAG methods in our
comparisons due to the difficulty of modifying facts in their unstructured format. Updating a single fact
would require locating and altering every related text snippet and embedding within the RAG’s knowledge
base, which is highly impractical. MemLLM’s memory is not pre-populated as a KB; it stores edited facts
through a memory-write process, similar to non- and semi-parametric editing methods. While methods like
ChatDB (Hu et al., 2023) also employ non-parametric structured memory, they rely on database tables
that are more suitable for analytical tasks. This setup requires the user to define a task-specific database
schema in advance and explicitly prompt the model with it. In contrast, MemLLM uses a much more
generalized memory structure that supports both language modeling and QA tasks (as discussed in the
knowledge editing section) without requiring any changes to its approach or memory format. Furthermore,
the nature of prompt-based approaches—compared to fine-tuning—makes them inherently less faithful and
more dependent on the specific content stored in memory.

We refer all these limitations to future work, as in this paper we have laid the initial groundwork for building
a more complex and comprehensive method.

References
Jinheon Baek, Alham Fikri Aji, and Amir Saffari. Knowledge-augmented language model prompting for

zero-shot knowledge graph question answering. Proceedings of the First Workshop on Matching From
Unstructured and Structured Data (MATCHING 2023), 2023. URL https://api.semanticscholar.
org/CorpusID:260063238.

Aydar Bulatov, Yuri Kuratov, and Mikhail Burtsev. Recurrent memory transformer. In Alice H. Oh,
Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing
Systems, 2022. URL https://openreview.net/forum?id=Uynr3iPhksa.

Mikhail S Burtsev, Yuri Kuratov, Anton Peganov, and Grigory V Sapunov. Memory transformer. arXiv
preprint arXiv:2006.11527, 2020.

Howard Chen, Ramakanth Pasunuru, Jason Weston, and Asli Celikyilmaz. Walking down the memory maze:
Beyond context limit through interactive reading. arXiv preprint arXiv:2310.05029, 2023.

Tong Chen, Hongwei Wang, Sihao Chen, Wenhao Yu, Kaixin Ma, Xinran Zhao, Hongming Zhang, and Dong
Yu. Dense X retrieval: What retrieval granularity should we use? In Yaser Al-Onaizan, Mohit Bansal, and

12

https://api.semanticscholar.org/CorpusID:260063238
https://api.semanticscholar.org/CorpusID:260063238
https://openreview.net/forum?id=Uynr3iPhksa

Published in Transactions on Machine Learning Research (04/2025)

Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 15159–15177, Miami, Florida, USA, November 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.emnlp-main.845. URL https://aclanthology.org/2024.emnlp-main.845.

Xin Cheng, Di Luo, Xiuying Chen, Lemao Liu, Dongyan Zhao, and Rui Yan. Lift yourself up: Retrieval-
augmented text generation with self-memory. In Thirty-seventh Conference on Neural Information Pro-
cessing Systems, 2023. URL https://openreview.net/forum?id=lYNSvp51a7.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder–decoder for statis-
tical machine translation. In Alessandro Moschitti, Bo Pang, and Walter Daelemans (eds.), Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1724–1734,
Doha, Qatar, October 2014. Association for Computational Linguistics. doi: 10.3115/v1/D14-1179. URL
https://aclanthology.org/D14-1179.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vinodkumar
Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James Bradbury, Jacob Austin, Michael
Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk
Michalewski, Xavier Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito,
David Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani
Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor
Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang,
Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas
Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with pathways. Journal
of Machine Learning Research, 24(240):1–113, 2023. URL http://jmlr.org/papers/v24/22-1144.html.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons in pretrained
transformers. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of the
60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
8493–8502, Dublin, Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/
2022.acl-long.581. URL https://aclanthology.org/2022.acl-long.581.

Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing factual knowledge in language models. In Marie-
Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing, pp. 6491–6506, Online and Punta Cana,
Dominican Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
emnlp-main.522. URL https://aclanthology.org/2021.emnlp-main.522.

Jia-Chen Gu, Hao-Xiang Xu, Jun-Yu Ma, Pan Lu, Zhen-Hua Ling, Kai-Wei Chang, and Nanyun Peng.
Model editing can hurt general abilities of large language models. arXiv preprint arXiv:2401.04700, 2024.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. Realm: retrieval-augmented
language model pre-training. In Proceedings of the 37th International Conference on Machine Learning,
ICML’20. JMLR.org, 2020.

Thomas Hartvigsen, Swami Sankaranarayanan, Hamid Palangi, Yoon Kim, and Marzyeh Ghassemi. Aging
with grace: Lifelong model editing with discrete key-value adaptors. In Advances in Neural Information
Processing Systems, 2023.

Tom Hartvigsen, Swami Sankaranarayanan, Hamid Palangi, Yoon Kim, and Marzyeh Ghassemi. Aging with
grace: Lifelong model editing with discrete key-value adaptors. Advances in Neural Information Processing
Systems, 36, 2024.

Zexue He, Leonid Karlinsky, Donghyun Kim, Julian McAuley, Dmitry Krotov, and Rogerio Feris. Camelot:
Towards large language models with training-free consolidated associative memory. arXiv preprint
arXiv:2402.13449, 2024.

13

https://aclanthology.org/2024.emnlp-main.845
https://openreview.net/forum?id=lYNSvp51a7
https://aclanthology.org/D14-1179
http://jmlr.org/papers/v24/22-1144.html
https://aclanthology.org/2022.acl-long.581
https://aclanthology.org/2021.emnlp-main.522

Published in Transactions on Machine Learning Research (04/2025)

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780,
nov 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL https://doi.org/10.1162/neco.
1997.9.8.1735.

Chenxu Hu, Jie Fu, Chenzhuang Du, Simian Luo, Junbo Zhao, and Hang Zhao. Chatdb: Augmenting llms
with databases as their symbolic memory. arXiv preprint arXiv:2306.03901, 2023.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2022. URL https://openreview.net/forum?id=nZeVKeeFYf9.

Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou, Wenge Rong, and Zhang Xiong. Transformer-patcher:
One mistake worth one neuron. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=4oYUGeGBPm.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bojanowski, Armand Joulin, and
Edouard Grave. Unsupervised dense information retrieval with contrastive learning. Transactions on Ma-
chine Learning Research, 2022. ISSN 2835-8856. URL https://openreview.net/forum?id=jKN1pXi7b0.

Joel Jang, Seonghyeon Ye, Changho Lee, Sohee Yang, Joongbo Shin, Janghoon Han, Gyeonghun Kim, and
Minjoon Seo. TemporalWiki: A lifelong benchmark for training and evaluating ever-evolving language
models. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing, pp. 6237–6250, Abu Dhabi, United Arab Emirates,
December 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.418. URL
https://aclanthology.org/2022.emnlp-main.418.

Samy Jelassi, David Brandfonbrener, Sham M Kakade, and Eran Malach. Repeat after me: Transformers
are better than state space models at copying. arXiv preprint arXiv:2402.01032, 2024.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea
Madotto, and Pascale Fung. Survey of hallucination in natural language generation. ACM Computing
Surveys, 55(12):1–38, 2023.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al. Mistral 7b.
arXiv preprint arXiv:2310.06825, 2023.

Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric Wallace, and Colin Raffel. Large language models
struggle to learn long-tail knowledge. In Proceedings of the 40th International Conference on Machine
Learning, ICML’23. JMLR.org, 2023.

Jungo Kasai, Keisuke Sakaguchi, yoichi takahashi, Ronan Le Bras, Akari Asai, Xinyan Velocity Yu, Dragomir
Radev, Noah A. Smith, Yejin Choi, and Kentaro Inui. Realtime QA: What’s the answer right now? In
Thirty-seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track,
2023. URL https://openreview.net/forum?id=HfKOIPCvsv.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International Conference
on Learning Representations (ICLR), San Diega, CA, USA, 2015.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav Petrov. Natural ques-
tions: A benchmark for question answering research. Transactions of the Association for Computational
Linguistics, 7:452–466, 2019. doi: 10.1162/tacl_a_00276. URL https://aclanthology.org/Q19-1026.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. Zero-shot relation extraction via reading com-
prehension. In Roger Levy and Lucia Specia (eds.), Proceedings of the 21st Conference on Computational
Natural Language Learning (CoNLL 2017), pp. 333–342, Vancouver, Canada, August 2017. Association for
Computational Linguistics. doi: 10.18653/v1/K17-1034. URL https://aclanthology.org/K17-1034.

14

https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=4oYUGeGBPm
https://openreview.net/forum?id=jKN1pXi7b0
https://aclanthology.org/2022.emnlp-main.418
https://openreview.net/forum?id=HfKOIPCvsv
https://aclanthology.org/Q19-1026
https://aclanthology.org/K17-1034

Published in Transactions on Machine Learning Research (04/2025)

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela. Retrieval-
augmented generation for knowledge-intensive nlp tasks. In H. Larochelle, M. Ranzato, R. Hadsell, M.F.
Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 9459–
9474. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/
2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf.

Xinnian Liang, Bing Wang, Hui Huang, Shuangzhi Wu, Peihao Wu, Lu Lu, Zejun Ma, and Zhoujun Li.
Enhancing large language model with self-controlled memory framework. arXiv preprint arXiv:2304.13343,
2023.

Qi Liu, Dani Yogatama, and Phil Blunsom. Relational memory-augmented language models. Transactions
of the Association for Computational Linguistics, 10:555–572, 2022. doi: 10.1162/tacl_a_00476. URL
https://aclanthology.org/2022.tacl-1.32.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Daniel Khashabi, and Hannaneh Hajishirzi. When
not to trust language models: Investigating effectiveness of parametric and non-parametric memories. In
Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 9802–9822, Toronto,
Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.546. URL
https://aclanthology.org/2023.acl-long.546.

Pedro Henrique Martins, Zita Marinho, and Andre Martins. ∞-former: Infinite memory transformer. In
Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5468–5485, Dublin, Ireland,
may 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.375. URL https:
//aclanthology.org/2022.acl-long.375.

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and Ryan McDonald. On faithfulness and factuality in
abstractive summarization. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault (eds.),
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 1906–1919,
Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.173. URL
https://aclanthology.org/2020.acl-main.173.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual associations
in gpt. Advances in Neural Information Processing Systems, 35:17359–17372, 2022.

Mike Mintz, Steven Bills, Rion Snow, and Daniel Jurafsky. Distant supervision for relation extraction
without labeled data. In Keh-Yih Su, Jian Su, Janyce Wiebe, and Haizhou Li (eds.), Proceedings of the
Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP, pp. 1003–1011, Suntec, Singapore, August 2009. Association
for Computational Linguistics. URL https://aclanthology.org/P09-1113.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning. Fast model editing
at scale. In International Conference on Learning Representations, 2021.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D Manning, and Chelsea Finn. Memory-based
model editing at scale. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang
Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pp. 15817–15831. PMLR, 17–23 Jul 2022. URL
https://proceedings.mlr.press/v162/mitchell22a.html.

Ali Modarressi, Ayyoob Imani, Mohsen Fayyaz, and Hinrich Schütze. Ret-llm: Towards a general read-write
memory for large language models. arXiv preprint arXiv:2305.14322, 2023.

15

https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://aclanthology.org/2022.tacl-1.32
https://aclanthology.org/2023.acl-long.546
https://aclanthology.org/2022.acl-long.375
https://aclanthology.org/2022.acl-long.375
https://aclanthology.org/2020.acl-main.173
https://aclanthology.org/P09-1113
https://proceedings.mlr.press/v162/mitchell22a.html

Published in Transactions on Machine Learning Research (04/2025)

Ali Modarressi, Abdullatif Köksal, and Hinrich Schuetze. Consistent document-level relation extraction via
counterfactuals. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2024, pp. 11501–11507, Miami, Florida, USA, Novem-
ber 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.672. URL
https://aclanthology.org/2024.findings-emnlp.672.

Charles Packer, Vivian Fang, Shishir G Patil, Kevin Lin, Sarah Wooders, and Joseph E Gonzalez. Memgpt:
Towards llms as operating systems. arXiv preprint arXiv:2310.08560, 2023.

Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai, Meredith Ringel Morris, Percy Liang, and Michael S.
Bernstein. Generative agents: Interactive simulacra of human behavior. In In the 36th Annual ACM
Symposium on User Interface Software and Technology (UIST ’23), UIST ’23, New York, NY, USA, 2023.
Association for Computing Machinery.

Adam Roberts, Colin Raffel, and Noam Shazeer. How much knowledge can you pack into the parameters of
a language model? In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 5418–5426, Online,
November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.437. URL
https://aclanthology.org/2020.emnlp-main.437.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves
to use tools. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=Yacmpz84TH.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed H Chi, Nathanael Schärli, and
Denny Zhou. Large language models can be easily distracted by irrelevant context. In International
Conference on Machine Learning, pp. 31210–31227. PMLR, 2023.

Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitry Pyrkin, Sergei Popov, and Artem Babenko. Editable neural
networks. In International Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=HJedXaEtvS.

Qingyu Tan, Lu Xu, Lidong Bing, Hwee Tou Ng, and Sharifah Mahani Aljunied. Revisiting DocRED - ad-
dressing the false negative problem in relation extraction. In Yoav Goldberg, Zornitsa Kozareva, and Yue
Zhang (eds.), Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing,
pp. 8472–8487, Abu Dhabi, United Arab Emirates, December 2022. Association for Computational Linguis-
tics. doi: 10.18653/v1/2022.emnlp-main.580. URL https://aclanthology.org/2022.emnlp-main.580.

Peng Wang, Zexi Li, Ningyu Zhang, Ziwen Xu, Yunzhi Yao, Yong Jiang, Pengjun Xie, Fei Huang, and Huajun
Chen. Wise: Rethinking the knowledge memory for lifelong model editing of large language models. arXiv
preprint arXiv:2405.14768, 2024a.

Weizhi Wang, Li Dong, Hao Cheng, Xiaodong Liu, Xifeng Yan, Jianfeng Gao, and Furu Wei. Augmenting
language models with long-term memory. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023a. URL https://openreview.net/forum?id=BryMFPQ4L6.

Yu Wang, Xiusi Chen, Jingbo Shang, and Julian McAuley. Memoryllm: Towards self-updatable large
language models. arXiv preprint arXiv:2402.04624, 2024b.

Zekun Wang, Ge Zhang, Kexin Yang, Ning Shi, Wangchunshu Zhou, Shaochun Hao, Guangzheng Xiong,
Yizhi Li, Mong Yuan Sim, Xiuying Chen, et al. Interactive natural language processing. arXiv preprint
arXiv:2305.13246, 2023b.

Qingyang Wu, Zhenzhong Lan, Kun Qian, Jing Gu, Alborz Geramifard, and Zhou Yu. Memformer: A
memory-augmented transformer for sequence modeling. In Yulan He, Heng Ji, Sujian Li, Yang Liu, and
Chua-Hui Chang (eds.), Findings of the Association for Computational Linguistics: AACL-IJCNLP 2022,
pp. 308–318, Online only, November 2022a. Association for Computational Linguistics. URL https:
//aclanthology.org/2022.findings-aacl.29.

16

https://aclanthology.org/2024.findings-emnlp.672
https://aclanthology.org/2020.emnlp-main.437
https://openreview.net/forum?id=Yacmpz84TH
https://openreview.net/forum?id=HJedXaEtvS
https://openreview.net/forum?id=HJedXaEtvS
https://aclanthology.org/2022.emnlp-main.580
https://openreview.net/forum?id=BryMFPQ4L6
https://aclanthology.org/2022.findings-aacl.29
https://aclanthology.org/2022.findings-aacl.29

Published in Transactions on Machine Learning Research (04/2025)

Yuhuai Wu, Markus Norman Rabe, DeLesley Hutchins, and Christian Szegedy. Memorizing transformers. In
International Conference on Learning Representations, 2022b. URL https://openreview.net/forum?
id=TrjbxzRcnf-.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan Cao. Re-
act: Synergizing reasoning and acting in language models. In The Eleventh International Conference on
Learning Representations, 2023a. URL https://openreview.net/forum?id=WE_vluYUL-X.

Yuan Yao, Deming Ye, Peng Li, Xu Han, Yankai Lin, Zhenghao Liu, Zhiyuan Liu, Lixin Huang, Jie Zhou,
and Maosong Sun. DocRED: A large-scale document-level relation extraction dataset. In Anna Korho-
nen, David Traum, and Lluís Màrquez (eds.), Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pp. 764–777, Florence, Italy, July 2019. Association for Computational
Linguistics. doi: 10.18653/v1/P19-1074. URL https://aclanthology.org/P19-1074.

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng, Zhoubo Li, Shumin Deng, Huajun Chen, and Ningyu
Zhang. Editing large language models: Problems, methods, and opportunities. CoRR, abs/2305.13172,
2023b. doi: 10.48550/arXiv.2305.13172. URL https://doi.org/10.48550/arXiv.2305.13172.

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng, Zhoubo Li, Shumin Deng, Huajun Chen, and Ningyu
Zhang. Editing large language models: Problems, methods, and opportunities. In Houda Bouamor, Juan
Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 10222–10240, Singapore, December 2023c. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.emnlp-main.632. URL https://aclanthology.org/2023.emnlp-main.632.

Wenhao Yu, Dan Iter, Shuohang Wang, Yichong Xu, Mingxuan Ju, Soumya Sanyal, Chenguang Zhu, Michael
Zeng, and Meng Jiang. Generate rather than retrieve: Large language models are strong context generators.
In The Eleventh International Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=fB0hRu9GZUS.

Bowen Zhang and Harold Soh. Extract, define, canonicalize: An llm-based framework for knowledge graph
construction. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024
Conference on Empirical Methods in Natural Language Processing, EMNLP 2024, Miami, FL, USA,
November 12-16, 2024, pp. 9820–9836. Association for Computational Linguistics, 2024. URL https:
//aclanthology.org/2024.emnlp-main.548.

Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng Wang, Shumin Deng, Mengru Wang, Zekun Xi, Shengyu
Mao, Jintian Zhang, Yuansheng Ni, et al. A comprehensive study of knowledge editing for large language
models. arXiv preprint arXiv:2401.01286, 2024.

Wangchunshu Zhou, Yuchen Eleanor Jiang, Peng Cui, Tiannan Wang, Zhenxin Xiao, Yifan Hou, Ryan
Cotterell, and Mrinmaya Sachan. Recurrentgpt: Interactive generation of (arbitrarily) long text. arXiv
preprint arXiv:2305.13304, 2023.

Yuqi Zhu, Xiaohan Wang, Jing Chen, Shuofei Qiao, Yixin Ou, Yunzhi Yao, Shumin Deng, Huajun Chen,
and Ningyu Zhang. Llms for knowledge graph construction and reasoning: recent capabilities and future
opportunities. World Wide Web (WWW), 27(5):58, 2024. doi: 10.1007/S11280-024-01297-W. URL
https://doi.org/10.1007/s11280-024-01297-w.

A Memory-write Decoding Method

While one might use MemLLM with greedy decoding for memory writes, we suggest that the finetuned
model may end the memory-write too early, before completely extracting all relations. Therefore, to ensure
the model captures all relevant relations, we implement a late stopping strategy. In this approach, similar to
greedy decoding, we consistently select the top-scoring token as the next token, unless it’s the closing token
")}". If the closing token scores highest, we note its position, calculate the average log probability score of the
sequence up to that point, and proceed with the second highest scoring token—-typically the ";" separator—-
resuming greedy decoding. By tracking the positions where the closing token was predicted, along with their

17

https://openreview.net/forum?id=TrjbxzRcnf-
https://openreview.net/forum?id=TrjbxzRcnf-
https://openreview.net/forum?id=WE_vluYUL-X
https://aclanthology.org/P19-1074
https://doi.org/10.48550/arXiv.2305.13172
https://aclanthology.org/2023.emnlp-main.632
https://openreview.net/forum?id=fB0hRu9GZUS
https://openreview.net/forum?id=fB0hRu9GZUS
https://aclanthology.org/2024.emnlp-main.548
https://aclanthology.org/2024.emnlp-main.548
https://doi.org/10.1007/s11280-024-01297-w

Published in Transactions on Machine Learning Research (04/2025)

Query (q) Relation type (tq)

⟨∗, tq, eq
o⟩

country of citizenship, country, country of origin,
religion, place of birth, place of death, work location,

location, basin country, residence, location of formation,
publication date, production company, platform,
original language of work, applies to jurisdiction,

located in the administrative territorial entity,
headquarters location, inception,

employer, date of birth, date of death, educated at

⟨eq
s, tq, ∗⟩ contains administrative territorial entity

Table 4: List of ambiguous queries subject to the filtering process.

corresponding logprob scores, we maintain the generation process until there are no enhancements in the
scores for K=5 consecutive times. Subsequently, we halt the generation and select the position with the
highest score as the cutoff point.

B Filtering Ambiguous Queries

As we aim to assist the model with the stored memory content, having concise query results would facilitate
reaching this objective. Getting precise outputs from the memory would require queries that are tailored in
a way which lead to an exact match or related entities to the target entity. To reduce the chances of getting
a vast and wide-range amount of outputs from the memory, we exclude queries that potentially leads to such
results. In Table 4, we demonstrate query patterns that we intuitively assume based on the queried entity
and the relation type that would lead to an ambiguous result. Therefore, we drop any query that would
match with one of the mentioned patterns.

C Memory-read Data Generation

Algorithm 1 presents the pseudocode for the process of generating MemLLM ’s memory-read training data.
See Section 3.3 for a detailed description of the same process.

D Hyperparameters Details

We finetune MemLLM, with a Mistral-7B-v0.1 model (Jiang et al., 2023) using an Adam optimizer (Kingma
& Ba, 2015), with the learning rate set to 2 × 10−5, 2 epochs, and a batch size of 96. For LoRA specific
parameters, we apply a dropout rate of 0.1, with a rank of 16 and an alpha weight of 8.

We opted to set Qthr to 30 based on the distribution of triples observed in the Re-DocRED dataset. During
the construction of memory-write data, we found that the 95th percentile of sentences contained a maximum
of approximately 30 triples. This value serves as an upper threshold: if the number of entities exceeds 30, it
is likely to surpass the typical number of triples within a sentence. Consequently, a higher count of entities
could indicate that many of them are unrelated to the sentence’s factual content, reducing their overall
informativeness.

To select the memory retrieval hyperparameters (§3.1), we must balance explicitness with the need to
accommodate variations in entity mentions and relation types. This balance is influenced by the data and
the entities involved, but generally, a larger τe increases explicitness. However, it also limits the number of
similarly mentioned entities that can be retrieved, which depends on the use case. A smaller τe could retrieve
more entities, but it would also increase query execution time. The selection of τt depends on the supported
relation types and the required flexibility in retrieving closely related relation types. For instance, in model
editing, where handling loosely similar relation types is necessary, a more relaxed τt value is appropriate.

18

Published in Transactions on Machine Learning Research (04/2025)

Algorithm 1 Memory-read Data Generation
Input:

D: Re-DocRED documents (d ∈ D)
Output:
DMR: Memory-read training data (d′ ∈ D)

Auxiliary functions:
Triples(etarget, d): Returns all triples in document d containing the entity etarget as the subject or object:

Triples(etarget, d) = {⟨etarget, t, eq⟩ ∈ d} ∪ {⟨eq , t, etarget⟩ ∈ d}

QueryResult(q, M): Returns the set of entities retrieved by query q over memory M (e.g. Wikipedia facts extracted
using memory writes).
Definitions:

positionIdx: The position of an entity (or word) within the document text.
1: Initialize SeenTriples ← {}, SeenEntities ← {}, DMR ← []
2: for d in D do
3: prevReadPos← 0, Dd ← []
4: for etarget in d, in order of appearance in text do
5: q← {}, R← [] ▷ (R is the query-results dictionary for the queries in q)
6: for triple in Triples(etarget, d) do
7: if triple /∈ SeenTriples then
8: Let eq be the other entity in triple
9: if eq ∈ SeenEntities then

10: q ← triple− etarget
11: if q /∈ q then
12: Rq ← QueryResult(q, M)
13: if |Rq | ≤ Qthr then
14: Add q to q, R[q]← Rq

15: end if
16: end if
17: end if
18: Add triple in SeenTriples
19: end if
20: end for
21: if |q| > 0 then
22: currentReadPos ← etarget.positionIdx
23: d′.pretext← d.text[:currentReadPos]
24: d′.queries← {}
25: d′.results← {}
26: Sort q in ascending order by |R[q]|
27: for q in the first 3 elements of q do
28: Add q to d′.queries
29: d′.results← d′.results ∪R[q]
30: end for
31: if |d′.results| = 0 then
32: d′.results← {etarget}
33: end if
34: if |Dd| > 0 then
35: Dd[−1].posttext← d.text[prevReadPos:currentReadPos]
36: prevReadPos← currentReadPos
37: end if
38: end if
39: Add etarget in SeenEntities
40: end for
41: Dd[−1].posttext← d.text[currentReadPos :]
42: DMR ← DMR ∥Dd ▷ (∥ denotes list concatenation)
43: end for
44: return DMR

Finally, τr determines the final number of outputs retrieved during the memory-read. A larger τr makes the
memory more explicit in both entity and relation type. We set τe and τt to 0.7 and τr to 0.85. We set these
values to τe = 0.85, τt = 0.2 and τr = 0.6 respectively for model editing experiments.

19

Published in Transactions on Machine Learning Research (04/2025)

E Filtering Prompt

In Figure 5, we demonstrate the best-performing prompt in our filtering process over the distant supervised
subset of DocRED.

20

Published in Transactions on Machine Learning Research (04/2025)

To determine whether the main sentence contains information about the given relation, both the main sentence and the context will be provided. The goal is to
identify whether there is evidence of the relation in the main sentence, supported by the context. If there is no relation or the evidence exists solely in the context
without requiring the main sentence, respond with No. Otherwise, respond with Yes. Provide reasoning to support your response.
Context:
Main Sentence: James Michael Osting (born April 7 , 1977) is a former Major League Baseball pitcher .
Relation: ("Osting", "date of birth", "April 7 , 1977")
Evidence: The relation indicates that Osting was born on April 7, 1977. The main sentence explicitly mentions that Osting was born on April 7, 1977. The answer is
Yes.

Context: Splashdown is a Hot Tuna album released in 1984 containing the tracks from a previously unreleased live acoustic performance that had been played on
the short - lived radio station WQIV in the mid-1970s . During the recording , news of the Apollo - Soyuz mission returning to Earth after the first USA - USSR
rendezvous in space reached the station , and the astronauts ' radio transmissions were played at the same time as Jorma and Jack continued with " Police Dog Blues
. " The transmissions mixed with the song were preserved for this release as the last track of side 1 .
Main Sentence: The album was Hot Tuna 's first release on Relix Records , and one of the first Relix releases .
Relation: ("Hot Tuna", "country of origin", "USA")
Evidence: The relation indicates that the origin of Hot Tuna is the country of the United States. There is no evidence in the main sentence regarding the country of
origin of Hot Tuna. The answer is No.

Context:
Main Sentence: The Chemung Canal Bank Building is located at 415 East Water Street in Elmira , Chemung County , New York , United States .
Relation: ("Chemung County", "capital", "Elmira")
Evidence: The relation indicates that Elmira is the capital of Chemung County. The main sentence only specifies the location of Elmira within Chemung County
but does not mention Elmira as the capital of Chemung County. The answer is No.

Context: Carrie Lam Cheng Yuet - ngor , GBM , GBS (; born 13 May 1957) is the 4th and current Chief Executive of Hong Kong . Before that she was the Chief
Secretary for Administration , the most senior rank of principal officials of Hong Kong , from 2012 to 2017 .
Main Sentence: After graduating from the University of Hong Kong , Lam joined the civil service in 1980 and served in various bureaux and departments .
Relation: ("Lam", "educated at", "University of Hong Kong")
Evidence: The relation indicates that Lam received education at the University of Hong Kong. The main sentence mentions that Carrie Lam Cheng Yuet-ngor
graduated from the University of Hong Kong. The answer is Yes.

Context: Pacific Fair is a major shopping centre in Broadbeach Waters on the Gold Coast , Queensland , Australia . It was Queensland 's largest regional shopping
centre until 2006 . Pacific Fair was developed by Hooker Retail Developments and opened in 1977 on what was swampland with 96 specialty stores and two anchor
tenants . Since then , Pacific Fair has undergone numerous expansions and has grown to have more than 300 specialty stores and four anchor tenants . In January
2014 , work began on a major redevelopment project to meet the predicted regional growth on the Gold Coast . Prior to the redevelopment , the shopping centre had
four main major stores including a four - level Myer , Kmart , Target , Coles and Toys ' R ' Us . Daimaru operated in the centre before its Australian withdrawal ,
albeit briefly .
Main Sentence: It also had a 12-screen Birch Carroll and Coyle Cinema (re - opened as Event Cinemas in late 2015) .
Relation: ("Event Cinemas", "country", "Australia")
Evidence: The relation indicates that Event Cinemas is located in the country of Australia. The main sentence mentions that Event Cinemas is part of Pacific Fair
which is located in Australia. The answer is Yes.

Context: Benjamin Winslow Harris (November 10 , 1823 - February 7 , 1907) was a nineteenth - century politician , lawyer and judge from Massachusetts . He
was the father of Robert Orr Harris . Born in East Bridgewater , Massachusetts , Harris pursued an academic course at Phillips Academy , Andover , graduating in
1847 . He graduated from Dane Law School of Harvard University in 1849 . He was admitted to the bar in Boston , Massachusetts in 1850 , commencing practice
in East Bridgewater . He served in the Massachusetts Senate in 1857 , was a member of the Massachusetts House of Representatives in 1858 , was district attorney
for the southeastern district of Massachusetts from 1858 to 1866 and was collector of internal revenue for the second district of Massachusetts from 1866 to 1873 .
Harris was elected a Republican to the United States House of Representatives in 1872 , serving from 1873 to 1883 , not being a candidate for renomination in 1882
. There , he served as chairman of the Committee on Naval Affairs from 1881 to 1883 . Afterwards , he resumed practicing law in East Bridgewater , Massachusetts
and was judge of probate for Plymouth County , Massachusetts from 1887 to 1906 .
Main Sentence: Harris died in East Bridgewater on February 7 , 1907 and was interred in Central Cemetery in East Bridgewater .
Relation: ("Benjamin Winslow Harris", "place of birth", "East Bridgewater")
Evidence: The relation indicates that Benjamin Winslow Harris was born in East Bridgewater. The main sentence lacks information about Benjamin Winslow
Harris's place of birth. The evidence for East Bridgewater as his birthplace is exclusively found in the context, not in the main sentence. The answer is No.

Context: Greatest Hats is the first compilation album by the Canadian new wave / synthpop group Men Without Hats , released in 1996 .
Main Sentence: A slightly modified version of the album was released in the US in 1996 , entitled Collection .
Relation: ("Collection", "performer", "Men Without Hats")
Evidence: The relation indicates that Men Without Hats is the performer of the Collection album. The main sentence says that Men Without Hats released slightly
modified version of the Greatest Hats album which is the album Collection. The answer is Yes.

Context: Aaron Hobart (June 26 , 1787 - September 19 , 1858) was a U.S. Representative from Massachusetts . Born in Abington , Massachusetts , Hobart
pursued classical studies and graduated from Brown University in 1805 . He studied law , was admitted to the bar and commenced practice in Abington . He served
as member of the Massachusetts House of Representatives and served in the Massachusetts State Senate . Hobart was elected as a Democratic - Republican to the
Sixteenth Congress to fill the vacancy caused by the resignation of Zabdiel Sampson . He was reelected as a Democratic - Republican to the Seventeenth Congress ,
elected as an Adams - Clay Republican to the Eighteenth Congress , and reelected as an Adams candidate to the Nineteenth Congress , and served from November
24 , 1820 , to March 3 , 1827 . He declined to be a candidate for renomination in 1826 .
Main Sentence: He then served as an Executive councilor 1827 - 1831 and served as probate judge 1843 - 1858 .
Relation: ("Aaron Hobart", "date of death", "1858")
Evidence: The relation indicates that Aaron Hobart passed away in the year 1858. The main sentence does not contain information about the given relation. The
evidence of Aaron Hobart's date of death in 1858 is solely present in the context and is not mentioned in the provided main sentence. The answer is No.

Context: [[context]]
Main Sentence: [[focus_sentence]]
Relation: ("[[entity1]]", "[[relation]]", "[[entity2]]")
Evidence:

 Reasoning Prompt - Distant Supervision Filtering

Figure 5: The prompt for the distant supervision dataset filtering. This prompt includes the natural repre-
sentation of the relation, the reasoning, and the final answer.

21

	Introduction
	Related work
	Methodology
	Memory structure
	Memory-API and Inference
	Finetuning the LLM

	Experiments
	Setup
	Filtering Distant Supervision Relations

	Perplexity evaluation
	Knowledge Editing Evaluation

	Conclusion
	Memory-write Decoding Method
	Filtering Ambiguous Queries
	Memory-read Data Generation
	Hyperparameters Details
	Filtering Prompt

