

k*means: A Parameter-free Clustering Algorithm

Anonymous authors
Paper under double-blind review

1 Introduction

Abstract

Clustering is a widely used and powerful machine learning technique, but its effectiveness is often limited by the need to specify the number of clusters, k , or by relying on thresholds that implicitly determine k . We introduce **k*means**, a novel clustering algorithm that eliminates the need to set k or any other parameters. Instead, it formulates the clustering problem as minimising a three-part encoding of the data. It uses this formulation to determine the optimal number of clusters, k^* , by splitting and merging clusters while also optimising the standard k -means objective. We prove that **k*means** is guaranteed to converge and demonstrate experimentally that it significantly outperforms existing methods in scenarios where k is unknown. We also show that it accurately estimates k and that, empirically, its runtime is competitive with existing methods and scales well with dataset size.

2 Introduction

Clustering is a fundamental task in machine learning. As well as allowing data visualisation and exploration, it is used for several more specific functions in the context of machine learning systems, such as representation learning Liu et al. (2023a); Niu et al. (2024), federated learning (Ma et al., 2023), exploration in reinforcement learning (Wagner & Harmeling, 2024), anomaly detection (Markovitz et al., 2020), and has found widespread application in the natural sciences (Xu et al., 2025; Kisi et al., 2025; Meyer et al., 2025; Hebdon et al., 2025). It has also been interwoven with deep learning feature extraction in the areas of deep clustering (Caron et al., 2018; Mahon & Lukasiewicz, 2021; Miklautz et al., 2024; Liu et al., 2023b; Vo et al., 2024) and deep graph clustering (Mo et al., 2024; Fini et al., 2023). Clustering can produce meaningful and interpretable partitions of data, even in the absence of information often required by other machine learning methods, such as annotated labels.

However, almost all existing clustering algorithms still require some user-set parameters, which limits their applicability to cases where the user can choose appropriate values. Two common classes of clustering algorithms are centroid-based and density-based. The former, typified by k -means, work by finding the optimal location for cluster centre-points (centroids), and then assigning points to nearby centres. These algorithms generally require the user to specify the number of clusters. Density-based algorithms aim to locate clusters where the density of points is high. They also require some threshold(s) to determine what constitutes a high-density region and where to separate them.

In this paper, we design a clustering algorithm that eliminates the need to set the number of clusters, tunable thresholds, or any other parameters. Our algorithm, **k*means**, extends k -means by automatically determining the number of clusters, k , that minimises the length of a three-part coding of the data. The first part, which we refer to as the *model cost*, describes centroids of the fit clustering model, the second part, which we refer to as the *index cost*, describes the cluster assignments, and the third, which we refer to as the *residual cost*, describes the displacement of each point from its assigned centroid. Too many clusters incur prohibitively high index costs, while too few incur prohibitively high residual costs, so the objective guides the model towards a reasonable value of k .

This is a similar approach to the minimum description length (MDL) principle, which states that the optimal data representation is the one that uses the fewest bits. `k*means` differs from existing MDL clustering approaches (Kontkanen et al., 2005) in that it uses hard labels for each point, whereas MDL typically takes the description length as the negative log probability under a probabilistic model such as a Gaussian mixture model (GMM), and this amounts to labelling each point as a soft label of a distribution across all clusters.

We optimise our three-part code objective by including two subclusters per cluster in the model. The “assign” and “update” steps of k -means are applied to the subclusters in the same way as to the main clusters, and the algorithm has the option to split a cluster into its two subclusters or merge two clusters if it reduces the description length.

Despite its simplicity, k -means remains the most widely used clustering algorithm because it is fast, provably converges, has just one easily interpretable parameter, and achieves accuracy competitive with more complicated methods. We aim to maintain these advantages with `k*means`. We provide a proof that `k*means` is also guaranteed to converge. Additionally, our experiments show that `k*means` largely maintains the speed and accuracy advantages of k -means. It is as fast or faster than most other k -agnostic clustering methods, scales well with dataset size, and is close to or on par with the accuracy of k -means, even when k -means has an oracle for the true value of k . We also demonstrate, in synthetic experiments, that it can identify k more accurately than existing methods. Our contributions are summarised as follows:

- We introduce `k*means`, an entirely parameter-free clustering algorithm;
- We give a formal proof that `k*means` will converge in finite time;
- We design synthetic data experiments to test whether `k*means` can infer the true value of k , and show that it can with much higher accuracy than existing methods;
- We show experimentally that, with respect to standard clustering metrics, it is more accurate than all existing methods that do not require setting k and is as fast as, or faster than, most of these methods.

The remainder of this paper is organised as follows. Section 3 discusses related work, Section 4 describes the algorithm of `k*means` in detail, Section 5 presents experimental results, and finally Section 6 concludes and summarises.

3 Related Work

Two well-known centroid-based clustering algorithms are k -means, (MacQueen, 1967; Lloyd, 1982) and GMMs (Dempster et al., 1977). The former partition data into k clusters by iteratively assigning points to the nearest centroid and updating centroids until convergence, and the latter which fit a multivariate normal model via expectation maximization. A number of more complex clustering algorithms are also in widespread use.

Spectral Clustering (Ng et al., 2001) transforms data using eigenvectors of a similarity matrix before applying a clustering algorithm such as k -means. Mean Shift (Comaniciu & Meer, 2002) discovers clusters by iteratively shifting points toward areas of higher density until convergence. It does not require setting k , but does require a bandwidth parameter. Affinity Propagation (Frey & Dueck, 2007) identifies exemplars among data points and forms clusters by exchanging messages between pairs of samples until convergence. Like mean shift, it does not require specifying the number of clusters k , but instead relies on a preference parameter and a damping factor. A common drawback of both mean shift and affinity propagation is their quadratic space complexity, which limits scalability. Divisive hierarchical clustering continues to bifurcate clusters with k -means, $k = 2$, until a stopping criterion.

Two other classic methods that estimate k automatically are DPC (Rodriguez & Laio, 2014) and DPMM (Antoniak, 1974). DPC is a density-based method that seeks to assign centroids to high-density regions and far apart from each other. DPMM models the data as generated from a mixture of Dirichlet processes, and fits an approximation with a Bayesian estimator.

DBSCAN (Ester et al., 1996) identifies dense regions as clusters by grouping points with many neighbours, while marking sparse points as noise. OPTICS (Ankerst et al., 1999) extends DBSCAN by ordering points by reachability distance, allowing it to identify clusters with varying densities. HDBSCAN (Campello et al., 2013) further builds on DBSCAN by introducing a hierarchical clustering framework that extracts flat clusters based on stability. Although DBSCAN and its variants do not require specifying the number of clusters, they rely on other parameters—such as `eps` and `min-pts`, which specify the neighbourhood size and the number of points required to form a ‘dense region’. OPTICS avoids setting `eps` by computing reachability distances over a range of values, but in its place introduces a steepness parameter to define cluster boundaries (where the reachability value decreases faster than this steepness). Tuning these parameters can yield a wide range of values for the number of predicted clusters (see Appendix A). Thus, without knowledge about the number of clusters or parameter values, DBSCAN and its derivatives can be difficult to apply effectively.

X-Means (Pelleg & Moore, 2000) extends k -means by automatically determining the optimal number of clusters using the Bayesian information criterion (BIC) (Schwarz, 1978). Our method is similar to X-Means in two respects: firstly, in that it selects k using an agnostic criterion from probability/information theory, and secondly, in that it considers bifurcating each centroid as the means by which to explore different values of k . Li & Li (2009) employs the same idea but for a GMM and using MDL as the stopping criterion. However, there are some important differences between `k*means` and these two methods. `k*means` uses three-part code length as the criterion, whereas X-Means uses BIC and Li & Li (2009) uses MDL. Secondly, our method does not require the \max_K parameter. It can, in principle, return any value of k (although this would have to be bounded by N). Thirdly, X-means, and Li & Li (2009) have to run the standard EM-training algorithm to convergence each time a new value of k is explored. `k*means`, in contrast, returns the best model in one stage by splitting only when it reduces the code length and keeping a pre-initialised pair of sub-centroids for each cluster, which are updated one step at a time as k is optimised. This means `k*means` only needs to run k -means to convergence once. Ishioka (2000) uses a very similar method to X-means, keeping a stack of clusters during training, and sequentially running k -means with $k=2$ on each. Again, this is much less efficient than `k*means`, which does not need to run multiple models to convergence. Also similar is Ronen et al. (2022), which splits and merges stochastically during deep clustering. k -splits, Mohammadi et al. (2022), is a recent algorithm that performs divisive hierarchical clustering until the inter-centroid distance exceeds a threshold. Clustering applications often deal with unknown k by training many k -means models with varying values of k , and selecting that with the lowest BIC (Zhang & Li, 2014; Lancaster & Camarata, 2019; Salmanpour et al., 2022). Selecting by silhouette score, or the elbow method, is also a common approach (Alam, 2023). Our experiments (Section 5) find that this is not only much slower than `k*means`, as it requires running many models to convergence, but also less accurate, often severely overestimating k . A summary of the clustering algorithms discussed in this section and their parameters is presented in Table 1.

4 The `k*means` Algorithm

In the exposition and accompanying algorithms of this Section, we use the following notation: $X = \{x_1, \dots, x_N\} \subset \mathbb{R}^m$ is the data to be clustered, K is the number of clusters, $\mu \in \mathbb{R}^{K \times N}$ is the matrix of mean vectors, C is the partition, $\mu_s \in \mathbb{R}^{K \times 2 \times N}$ is the tensor of sub-centroids, and C_s is the length K array of binary partitions of each cluster. Indexing notation follows Python-style.

4.1 Quantifying Description Length

In `k*means`, we quantify a bit cost for the various components of a clustering model and how they change over training. This allows `k*means` to directly minimise the description length in a single procedure that simultaneously finds the optimal number of clusters, k^* , and fits a k -means model with k^* clusters. The bitcost of a data point x under a clustering model has two parts, the cost of specifying which cluster it belongs to, which we call the *index cost*, and the cost of specifying its displacement from that cluster’s centroid, which we call the *residual cost*. The former requires selecting an element of $\{0, \dots, K-1\}$, thus taking $\log K$ bits. The latter can be approximated by the Kraft-McMillan inequality, as $-\log p(x|c)$, where c is the centroid of x ’s assigned cluster. We model the cluster distribution as a multivariate normal distribution with unit

Table 1: Common clustering algorithms and their required parameters

Algorithm	Required Parameters
K-means	Number of clusters (k)
Gaussian Mixture Models (GMM)	Number of components (k); Covariance type
Spectral Clustering	Number of clusters (k); Affinity type
Mean Shift	Bandwidth parameter (kernel width)
Affinity Propagation	Preference parameter; Damping factor
DBSCAN	Neighborhood radius (eps); Minimum points (minpts)
HDBSCAN	Minimum cluster size; Minimum samples; Cluster selection eps
X-Means	Maximum number of clusters; Minimum number of clusters
Divisive Hierarchical Clustering	Stopping criterion
k*means	—

variance

$$p(x|c) = \frac{1}{(2\pi)^{d/2}} \exp\left(-\frac{1}{2}(x-c)^T(x-c)\right)$$

$$\iff -\log p(x|c) = \frac{d \log 2\pi + \|x-c\|^2}{2}.$$

The total cost of the data under the model is the sum of this cost for all data points, plus the cost of the model itself, which for k clusters, d dimensions and floating point precision m , is kdm bits. (The precision m is chosen from the data as the smallest value that allows perfect representation.) This is the quantity minimised by **k*means**. Formally, let X be the data to be clustered, $\Pi(X)$ be the set of all partitions of X , and $|P|$ be the number of subsets in a partition. The optimal partition P^* is

$$P^* = \arg \min_{P \in \Pi(X)} |P|dm + |X| \log |P| + \frac{1}{2} \sum_{S \in P} Q(S), \quad (1)$$

where Q computes the total sum of squares: $Q(X) = |X| \text{Var} X$ and then $k^* = |P^*|$. (Full derivation is provided in Appendix B).

4.2 Minimising Description Length

In this section, we describe the algorithm by which **k*means** efficiently optimises Equation 1. For a more formal exposition, see Algorithm 1. In all algorithm definitions we use Python-style indexing notation. The familiar Lloyd’s algorithm for k -means alternates between two steps: **assign**, which assigns each point to its nearest centroid, and **update**, which updates the centroids of each cluster to the mean of all of its assigned points. As well as the centroids and clusters, **k*means** keeps track of subcentroids and subclusters. Subclusters consist of a partition of each cluster into two, and subcentroids are the means of all points in each subcluster. These are updated during the **update** and **assign** steps in just the same way as the main clusters and centroids. Essentially, each cluster has a mini version of k -means happening inside it during training.

k*means introduces two additional steps, **maybe-split** and **maybe-merge**, to the standard **assign**-**update** procedure. After the **assign** and **update** steps, the algorithm calls **maybe-split**, which uses the subclusters and subcentroids to determine whether any cluster should be split. If no clusters are split, it proceeds with **maybe-merge**. In the case of a split, each constituent subcluster is promoted to a full cluster, and a new set of subclusters and subcentroids is initialised within each of them, following the k++-means initialisation method (Arthur & Vassilvitskii, 2006). If two clusters are merged, their subclusters are discarded, and the

noend 1 K*-means Algorithm

```

1: procedure K*-MEANS( $X$ )
2:    $\text{best\_cost} \leftarrow \infty$ 
3:    $\text{unimproved\_count} \leftarrow 0$ 
4:    $\mu \leftarrow \frac{1}{n} \sum_{i=1}^n x_i$   $\triangleright$  where the  $x_i$ s are the constituents of  $X$ , i.e.  $X = \{x_1, \dots, x_n\} \subset \mathbb{R}^m$ 
5:    $C \leftarrow [X]$   $\triangleright$  Python-style notation for an array with a single element,  $X$ 
6:    $\mu_s \leftarrow$  sub-centroids initialised using  $k++$ means
7:    $C_s \leftarrow \{x \in X : \|x - \mu_{s_1}\| < \|x - \mu_{s_2}\|\}, \{x \in X : \|x - \mu_{s_2}\| < \|x - \mu_{s_1}\|\}$ 
8:   while true do
9:      $\mu, C, \mu_s, C_s \leftarrow \text{KMEANSSTEP}(X, \mu, C, \mu_s, C_s)$   $\triangleright$  One assign + update step for both main centroids/clusters
       and subcentroids/subclusters.
10:     $\mu, C, \mu_s, C_s, \text{did\_split} \leftarrow \text{MAYBESPLIT}(X, \mu, C, \mu_s, C_s)$ 
11:    if  $\neg \text{did\_split}$  then
12:       $\mu, C, \mu_s, C_s \leftarrow \text{KMEANSSTEP}(X, \mu, C, \mu_s, C_s)$ 
13:       $\mu, C, \mu_s, C_s \leftarrow \text{MAYBEMERGE}(X, \mu, C, \mu_s, C_s)$ 
14:     $\text{cost} \leftarrow \text{MBITCOST}(X, \mu, C)$ 
15:    if  $\text{cost} < \text{best\_cost}$  then
16:       $\text{best\_cost} \leftarrow \text{cost}$ 
17:       $\text{unimproved\_count} \leftarrow 0$ 
18:    else
19:       $\text{unimproved\_count} \leftarrow \text{unimproved\_count} + 1$ 
20:    if  $\text{unimproved\_count} = \text{patience}$  then
21:      break
22:    return  $\mu, C$ 

23: procedure BITCOST( $X, \mu, C$ )
24:    $d \leftarrow$  the dimensionality of  $X$ 
25:    $\text{floatprecision} \leftarrow -\log$  of the minimum distance between any values in  $X$ 
26:    $\text{floatcost} \leftarrow \frac{\max(X) - \min(X)}{\text{floatprecision}}$ 
27:    $\text{modelcost} \leftarrow |C|d \times \text{floatcost}$ 
28:    $\text{idxcost} \leftarrow |X| \log(|C|)$ 
29:    $c \leftarrow$  the sum of the squared distances of every point in  $X$  from its assigned centroid
30:    $\text{residualcost} \leftarrow \frac{|X|d \log(2\pi) + c}{2}$ 
31:   return  $\text{modelcost} + \text{idxcost} + \text{residualcost}$ 

```

clusters themselves are demoted to become two subclusters inside a new cluster that is their union. `k*means` is initialised with just a single cluster containing all data points (and its two sub-clusters), and then cycles between `assign`, `update`, `maybe-split`, and `maybe-merge` until the assignments remain unchanged for a full cycle. (In practice, for speed, we terminate if the cost has improved by < 2 in the past five cycles. These are not core parameters of the algorithm, and can easily be omitted, in which the runtime is $\sim 30\%$ longer.) In this way, it simultaneously optimises k and the standard k -means objective, with respect to Equation equation 1.

Maybe-Split Step This method (Algorithm 2) checks whether each cluster should be split into two. A naive approach would involve computing Equation equation 1 for the current parameters, and then again with the given cluster replaced by its two subclusters, splitting if the latter is smaller. However, we can perform a faster, equivalent check by simply measuring the difference in cost. If there are currently k clusters, splitting would increase the index cost of each point by $\log(k+1) - \log(k) \approx 1/(k+1)$. It would also decrease the residual cost by $Q(S) - (Q(S_1) + Q(S_2))$, where S is the original cluster and S_1, S_2 are its subclusters. To determine whether a split is beneficial, we compute $Q(S) - (Q(S_1) + Q(S_2))$ for every cluster. If any value exceeds $2N/(k+1)$, the cluster with the largest difference is split.

Maybe-Merge Step This method (Algorithm 3) checks whether a pair of clusters should be merged. To avoid the time taken to compare every pair, we compare only the closest pair of centroids. Analogously to `maybe-split`, the potential change from merging is $\frac{1}{2}(Q(S) - (Q(S_1) + Q(S_2))) - N/k$, where S_1 and S_2 are the two clusters with the closest centroids, and $S = S_1 \cup S_2$. If this value is positive, then S_1 and S_2 are merged and become the new subclusters inside the new cluster S .

noend 2 Maybe-Split Procedure

```

1: procedure MAYBESPLIT( $X, \mu, C, \mu_s, C_s$ )
2:   best_costchange  $\leftarrow$  BITCOST( $X, \mu, C$ )
3:   split_at  $\leftarrow -1$ 
4:   for  $i \in \{0, \dots, |\mu|\}$  do
5:      $subc1, subc2 \leftarrow C_s[i]$ 
6:      $submu1, submu2 \leftarrow \mu_s[i]$ 
7:      $costchange = \sum_{x \in submu1} (x - subc1)^2 + \sum_{x \in submu2} (x - subc2)^2 - \sum_{x \in C[i]} (x - \mu[i])^2 + |X|/(|\mu| + 1)$ 
8:     if  $costchange < best\_costchange$  then
9:       best_costchange  $\leftarrow costchange$ 
10:      split_at  $\leftarrow i$ 
11:      if  $best\_costchange < 0$  then
12:         $\mu \leftarrow SPLIT(\mu, \mu_s, split\_at)$ 
13:         $C \leftarrow SPLIT(C, C_s, split\_at)$ 
14:         $submu1', submu2' \leftarrow k+\text{means on } C_s[i]$ 
15:         $\mu_s \leftarrow \mu_s[:split\_at] + (submu1', submu2') + \mu_s[split\_at :]$ 
16:      return  $\mu, C, \mu_s, C_s, split\_at \geq 0$ 
17: procedure SPLIT( $A, A_s, split\_at$ )
18:    $A \leftarrow A[:split\_at] + A_s[split\_at] + A[split\_at :]$ 

```

noend 3 Maybe-Merge Procedure

```

1: procedure MAYBEMERGE( $X, \mu, C, \mu_s, C_s$ )
2:    $i_1, i_2 \leftarrow$  the indices of the closest
   pair of centroids
3:    $Z \leftarrow C[i_1] \cup C[i_2]$ 
4:    $m_{merged} \leftarrow \frac{1}{|Z|} \sum_{x \in Z} x$ 
5:    $mainQ \leftarrow \sum_{z \in Z} (z - m_{merged})^2$ 
6:    $subcQ \leftarrow \sum_{x \in C[i_1]} (x - \mu[i_1])^2 +$ 
    $\sum_{x \in C[i_2]} (x - \mu[i_2])^2$ 
7:    $costchange \leftarrow mainQ - subcQ -$ 
    $N/|\mu|$ 
8:   if  $costchange < 0$  then
9:      $C \leftarrow C$  with  $C[i_1]$  replaced
   with  $Z$  and  $C[i_2]$  removed
10:     $\mu \leftarrow \mu$  with  $\mu[i_1]$  replaced
   with  $m_{merged}$  and  $\mu[i_2]$  removed
11:  return  $\mu, C$ 

```

4.3 Theoretical Guarantees

4.4 Proof of Convergence

We now prove that `k*means` is guaranteed to converge in finite time. This is an extension of the proof of convergence for k -means, and uses the fact that all four of the steps at each `cycle-assign`, `update`, `maybe-split`, and `maybe-merge` can only decrease the cost function in equation 1.

Lemma 1. *At each `assign` step (which is the same step as vanilla k -means), the three-part code length either decreases or remains the same, and it remains the same only if no points are reassigned.*

Proof. As defined in Section 4.1, the three parts to the cost are the model cost, consisting of the bits to specify the centroids of the fit clustering model, the index cost, consisting of the bits to specify the cluster membership of each point, and the residual cost, consisting of the bits corresponding to the displacement of each from its cluster centre. The former depends only on the number of points N and the number of clusters k , and is unaffected by re-assignment. The latter is proportional to the sum of squared distances of each point to its assigned centre. By definition of reassignment, if a point is reassigned, then it is closer to its new centroid than its old centroid. Thus, every reassignment does not affect the first two summands of the cost and strictly reduces the third. \square

Lemma 2. *At each `update` step (which is the same step as vanilla k -means), the bit cost either decreases or remains the same, and it remains the same only if no centroids are updated.*

Proof. As with the `assign` step, the `update` step does not change k or N and so does not affect the index cost. The latter can be written as the sum across clusters of the sum of all points in that cluster from the centroid. When the centroids are updated, they are set to the mean of all points in the cluster, which is the unique minimiser of the sum of squared distances. As well as a standard statistical fact, this can be seen by

observing that the $SS(x) = \sum_{i=1}^m (x - x_i)^2$ is a U-shaped function of x , so achieves its global minimum when

$$\begin{aligned} SS'(x) = 0 &\iff \\ 2 \sum_{i=1}^m x - x_i = 2mx - 2 \sum_{i=1}^m x_i = 0 &\iff \\ x = \frac{1}{m} \sum_{i=1}^m x_i. \end{aligned}$$

This holds for the reassignment of each cluster and, by extension, for the entire reassignment step. \square

Theorem 3. *The k^* means algorithm is guaranteed to converge in finite time.*

Proof. By Lemmas 1 and 2, the bit cost strictly decreases at each step at which points are reassigned and centroids updated. The other two steps, `maybe-split` and `maybe-merge`, include explicit steps for which the bit cost decreases before being performed, so they are also guaranteed to strictly reduce the bit cost. Together, this means the algorithm will never revisit an assignment during training. Moreover, there are a finite number of assignments, equal to the number of partitions of N data points, which is given by the $N + 1$ th Bell number (Graham et al., 1994), B_{N+1} . Therefore k^* means cannot run for more than a finite number, namely B_{N+1} , steps. \square

Remark 4. *This is an extension of the standard proof of convergence of k -means. Like for k -means, this proof establishes a theoretical worst-case run time which is exponential, but then, in practice, the algorithm converges quickly. It is known that k -means is NP-hard (Drineas et al., 2004), and that it can, in theory, run in exponential time even in 2 dimensions (Vattani, 2009). As k^* means subsumes k -means, the same is true of it. However, also like k -means, the practical runtime is very good. Practical empirical runtimes are studied in detail in Section 5.*

In Appendix C we also prove a lower bound on the performance of k^* means. We show that all k centroids will be within ϵ of their true values, with probability at least p , as long as

$$d > \sqrt{\frac{1 + \epsilon^2 - (\epsilon^2/2 - 1)e^{-\epsilon^2/2}}{1 - e^{-\epsilon^2/2} - \sqrt[4]{p}}} + \epsilon.$$

4.5 Complexity Analysis

The computational complexity of each iteration of k^* means is $O(n)$, the same as that of k -means. The steps are as follows: (1) assign and update the clusters and centroids, (2) assign and update the subclusters and subcentroids, (3) check whether to split, (4) (if (3) returns true) split, (5) (if (3) returns false) check whether to merge, (6) (if (5) returns true) merge. Steps (1) and (2) are the usual Lloyd's algorithm steps, requiring the computation of the distance of each point from the centroids. Both are $O(n)$. Step (3) requires computing the distance of each point from its assigned centroid, and from its assigned subcentroid, so it is also $O(n)$. Splitting requires initialising new subcentroids with `k++means`, also $O(n)$. Step (5) requires computing, for the closest pair of centroids, the distance of each point in their union from their assigned centroid and from the mean of the union. Again, this is $O(n)$. Finally, step (6) requires redefining the merged centroid as the mean already computed in (5), and reindexing the existing clusters. This is $O(1)$. Thus, the total complexity is $5O(n) + O(1) = O(n)$.

5 Experimental Evaluation

We evaluate our clustering algorithm with three sets of experiments. Firstly, we use synthetic data, controlling the true number of clusters, and test whether the algorithm correctly identifies it. Secondly, we measure performance on labelled data, and compare the predicted cluster labels to the true class labels using supervised clustering metrics. Thirdly, we examine the runtime as a function of dataset size, and show that it scales well compared to existing methods.

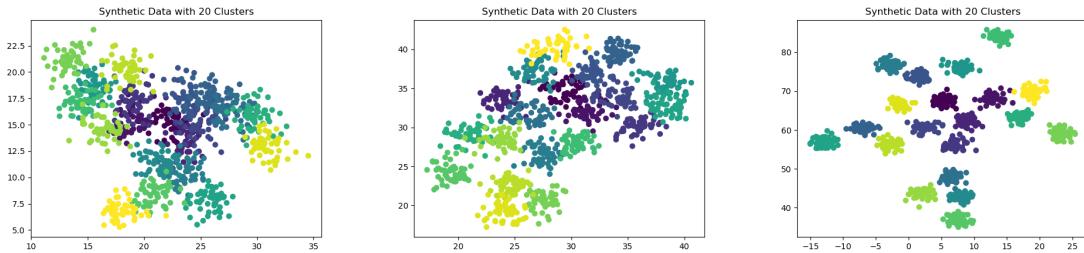


Figure 1: Synthetic data of standard, multivariate Normal clusters, with varying degrees of separation. Left: weak separation, inter-centroid distance constrained to ≥ 2 , $k^*\text{means}$ is 9% accurate in inferring k and baselines are $\leq 4.4\%$. Middle: inter-centroid distance constrained to ≥ 3 , $k^*\text{means}$ is 25% accurate in inferring k and baselines are $\leq 16\%$. Right: strong separation, inter-centroid distance constrained to ≥ 5 , $k^*\text{means}$ is 99% accurate in inferring k and baselines are $\leq 57\%$.

Table 2: Performance predicting the number of clusters in synthetic data for varying degrees of cluster separation. $k^*\text{means}$ performs consistently the best, with near-perfect accuracy when $d = 5$.

	mse					acc				
	$k^*\text{means}$	dbSCAN	hdbscan	xmeans	k -elb	$k^*\text{means}$	dbSCAN	hdbscan	xmeans	k -elb
synthetic d=2	306.35	126.10	414.73	721.54	266.0	9.00	4.40	4.00	3.80	7.80
synthetic d=3	81.70	252.41	116.35	681.97	296.0	25.40	5.40	7.80	16.00	13.40
synthetic d=4	1.94	244.28	28.34	630.13	274.0	68.00	7.60	21.40	22.20	20.10
synthetic d=5	0.00	238.18	12.83	623.99	274.0	99.80	6.60	57.60	25.40	20.90

5.1 Synthetic Data

For a range of values of k , we first use Bridson sampling to sample k centroids in \mathbb{R}^2 near the origin with a minimum inter-point distance of d . Then we sample $1000/k$ points from a multivariate normal distribution, with unit variance, centred at each centroid. Examples of this synthetic data with varying d are shown in Figure 1. We then run $k^*\text{means}$ and comparison methods on these 1,000 points and compare the number of clusters they find to k . We repeat this 10 times each for each $(k, d) \in \{1, \dots, 50\} \times \{2, 3, 4, 5\}$. For each value of d , there are 10 examples each of 50 different values of k . We compute the accuracy, i.e., fraction of these 500 examples with perfectly correct prediction of k , and also the mean squared error (MSE) from the predicted k to the true k .

Table 2 presents the results. As shown, $k^*\text{means}$ consistently outperforms the baseline algorithms in inferring k . Unsurprisingly, its performance improves as the distance between centroids increases, and notably, the accuracy gap between $k^*\text{means}$ and the baselines also widens under these conditions. $k^*\text{means}$ reaches near-perfect accuracy in the highly separable setting, c.f. the next highest of HDBSCAN at 58%. Appendix D shows the same experiment with variances that differs by cluster. Figure 1 contains visualisations of the predictions of $k^*\text{means}$.

5.2 Labelled Datasets

We evaluate $k^*\text{means}$ on six datasets spanning multiple modalities. **MNIST** and **USPS** both consist of handwritten digit images from 0–9, **Imagenette** (Howard & Gugger, 2019) is a subset of ImageNet with ten image classes, **Speech Commands** consists of short spoken words for command recognition in 36 classes, **20 NewsGroups** is a dataset of text documents across twenty topics, and **MSRVTT** consists of video clips paired with natural language captions in 20 categories. For all datasets, we perform dimensionality reduction with UMAP (McInnes et al., 2018) (min-dist=0, n-neighbors=10). For ImageNet we first apply CLIP (Radford et al., 2021) and for 20 Newsgroups we first take features from Llama-3.1 (Touvron et al., 2023) (mean across all tokens). For MSRVTT, we first take CLIP features of both the video and text (mean

Table 3: Supervised metrics on labelled datasets. Methods below the dotted line are given k .

		ACC	ARI	NMI	k	Num Outliers	Runtime (s)
MNIST domain = images n classes = 10	meanshift	77.23	63.42	80.28	7.00	0	463.39
	DBSCAN	68.75	54.84	77.66	6.00	1	2.95
	HDBSCAN	79.73	84.84	70.70	1214.00	11190	46.24 (0.79)
	xmeans	40.89 (4.75)	34.77 (4.70)	64.74 (2.25)	118.80 (23.59)	0	16.40 (6.41)
	DPC	31.88	19.82	62.84	102.00	0.00	58.31 (1.8287)
	elbow	87.24 (7.0176)	80.06 (8.3068)	85.37 (2.9301)	10.60 (1.1738)	0.00 (0.0000)	210.18 (12.0703)
	DPMM	55.37 (0.4706)	44.97 (0.5174)	73.29 (0.1056)	35.20 (0.6325)	0.00 (0.0000)	53.99 (0.7465)
	DivHier	-1.00	-1.00	-1.00	-1.00	0	36000+
	k*means	91.26 (3.56)	84.99 (2.97)	87.44 (1.14)	10.90 (0.32)	0	3.38 (0.39)
	kmeans	84.12 (8.13)	79.64 (6.92)	85.31 (7.273)	10.00	0	0.09 (0.05)
USPS domain = images n classes = 10	GMM	86.29 (7.05)	82.61 (6.89)	87.41 (2.74)	10.00	0	0.78 (0.26)
	meanshift	74.55	63.88	78.03	6.00	0	27.93
	DBSCAN	80.46	71.00	83.51	7.00	0	0.13
	HDBSCAN	77.49	82.16	79.09	108.00	829	0.80 (0.01)
	xmeans	55.12 (5.03)	46.09 (4.23)	73.27 (1.71)	41.00 (8.12)	0	1.00 (0.43)
	DPC	40.35	24.62	65.70	78.00	0.00	1.18 (0.0058)
	elbow	79.81 (7.8221)	71.20 (8.8348)	82.96 (3.8259)	7.00 (0.8165)	0.00 (0.0000)	11.43 (0.4058)
	CRP	19.58 (0.4476)	6.54 (0.7680)	15.94 (1.3542)	13.60 (1.7127)	0.00 (0.0000)	298.26 (41.8577)
	DPMM	88.59 (0.0594)	79.12 (0.0251)	86.76 (0.0182)	12.00 (0.0000)	0.00 (0.0000)	2.68 (0.3649)
	DivHier	88.11 (0.0000)	80.27 (0.0000)	86.13 (0.0000)	8.00 (0.0000)	0.00 (0.0000)	31.79 (2.3307)
Imagenet (subset) domain = images n classes = 10	k*means	88.68 (0.00)	81.57 (0.00)	87.14 (0.00)	8.00 (0.00)	0	0.80 (0.26)
	kmeans	79.72 (8.15)	78.68 (6.66)	86.41 (7.12)	10.00	0	0.03 (0.03)
	GMM	81.72 (6.76)	80.27 (5.68)	86.84 (1.82)	10.00	0	0.11 (0.01)
	affinity	41.49	27.73	57.58	46.00	0	233.19
	meanshift	55.98	36.05	58.67	6.00	0	103.31
	DBSCAN	26.09	3.70	22.00	3.00	1	0.22
	HDBSCAN	51.62	46.01	55.52	402.00	4193	1.09 (0.02)
	xmeans	39.21 (3.19)	25.53 (3.03)	55.92 (0.88)	70.00 (8.54)	0	2.76 (0.68)
	DPC	39.76	24.10	56.30	89.00	0.00	2.32 (0.0097)
	elbow	70.14 (3.9311)	51.53 (3.4313)	62.68 (2.1283)	7.90 (0.8756)	0.00 (0.0000)	23.85 (7.1662)
Speech Commands domain = audio n classes = 36	CRP	11.27 (0.1030)	0.00 (0.0072)	0.16 (0.0294)	12.40 (1.9551)	0.00 (0.0000)	397.00 (47.4286)
	DPMM	70.37 (1.4710)	55.45 (1.3848)	64.07 (0.9699)	15.20 (0.7888)	0.00 (0.0000)	40.71 (1.3952)
	DivHier	58.08 (0.0000)	38.26 (0.0000)	59.82 (0.0000)	5.00 (0.0000)	0.00 (0.0000)	317.69 (10.5432)
	k*means	66.18 (1.55)	46.42 (1.45)	60.20 (0.86)	6.40 (0.70)	0	0.94 (0.34)
	kmeans	69.79 (5.18)	55.08 (4.65)	64.16 (2.81)	10.00	0	0.05 (0.04)
	GMM	66.85 (6.11)	53.97 (5.44)	64.01 (2.76)	10.00	0	0.30 (0.09)
	affinity	52.08	17.89	59.53	16.00	0	1205.21
	DBSCAN	50.60	10.52	61.59	20.00	0	2.22
	HDBSCAN	65.35	67.68	67.12	2453.00	24170	53.98 (7.86)
	xmeans	26.32 (7.78)	14.33 (8.22)	47.70 (18.56)	190.10 (161.25)	0	16.00 (13.01)
20 NG domain = text n classes = 20	DPC	55.79	39.88	67.80	114.00	0.00	65.47
	elbow	62.59 (8.0219)	40.20 (8.7028)	66.34 (4.6024)	21.00 (4.5704)	0.00 (0.0000)	395.99 (25.0698)
	DPMM	62.64 (0.3104)	46.56 (0.4448)	70.13 (0.0886)	66.90 (0.7379)	0.00 (0.0000)	66.11 (0.3408)
	CRP	11.53 (0.8678)	4.13 (0.6360)	12.86 (0.2315)	30.30 (3.0569)	0.00 (0.0000)	6991.60 (871.0678)
	DivHier	-1.00	-1.00	-1.00	-1.00	0	36000+
	k*means	68.73 (1.57)	48.43 (2.49)	70.22 (0.67)	26.50 (0.97)	0	20.98 (5.22)
	kmeans	71.08 (1.72)	57.78 (1.67)	72.67 (0.47)	36.00	0	0.30 (0.06)
	GMM	71.04 (1.27)	56.12 (1.63)	72.90 (0.42)	36.00	0	6.46 (0.89)
	affinity	21.50	9.19	30.45	9.00	0	275.23
	DBSCAN	16.40	1.98	18.59	12.00	0	0.40
MSRVT domain = video & text n classes = 20	HDBSCAN	30.08	24.05	47.72	664.00	6153	3.27 (0.03)
	xmeans	30.01 (10.66)	15.48 (8.18)	37.78 (19.83)	107.60 (56.16)	0	4.78 (2.51)
	DPC	39.47	21.83	47.41	143.00	0.00	4.58 (0.1567)
	elbow	40.45 (7.1649)	23.53 (7.6900)	43.66 (5.8133)	10.67 (4.1633)	0.00 (0.0000)	99.08 (44.8268)
	DPMM	49.75 (0.5689)	31.17 (0.8372)	50.63 (0.1245)	45.00 (1.0000)	0.00 (0.0000)	36.14 (0.7786)
	CRP	7.90 (0.0968)	-0.00 (0.0067)	0.19 (0.0252)	12.00 (2.0000)	0.00 (0.0000)	1657.05 (233.9947)
	DivHier	18.02 (0.0000)	5.55 (0.0000)	20.03 (0.0000)	2.00 (0.0000)	0.00 (0.0000)	6.90 (0.6898)
	k*means	42.33 (1.14)	26.08 (0.44)	46.61 (0.67)	11.20 (0.42)	0	2.46 (0.96)
	kmeans	46.73 (1.47)	33.68 (0.53)	50.42 (0.48)	20.00	0	0.07 (0.06)
	GMM	47.03 (1.22)	33.71 (0.78)	50.68 (0.50)	20.00	0	0.86 (0.19)

across all frames and tokens). As well as tracking the predicted number of classes, we assess partition quality by comparing to the ground truth partition arising from the class labels using three metrics: clustering accuracy (ACC), adjusted rand index (ARI), and normalised mutual information (NMI), as defined, in Mahon & Lukasiewicz (2024).

As baselines for clustering with unknown k , we compare to the following: affinity propagation (damping factor = 0.5), mean shift (bandwidth = median of pairwise distances), DBSCAN (`eps=0.5, min-samples = 5`), HDBSCAN (`eps=0.5, min-samples = 5`), OPTICS, ($\xi = 0.05, \text{min-samples}=5$), XMeans (`kmax=`dataset size), divisive hierarchical clustering (DivHier) using silhouette score as stopping criterion for splitting, and the elbow-method with k -means up to $k = 200$, computed using the public `kneed` library¹. These methods are all described in Section 3 (see also Table 1). For XMeans, in the absence of any guidance on selecting `kmax`, we set it to the value at which the information content is roughly equal between the index cost and the residual cost. All other parameter values are the sci-kit learn² defaults.

Our results are summarised in Table 3. `k*means` consistently outperforms all other methods that do not require setting k . Meanshift and DBSCAN tend to underestimate k , while affinity propagation, HDBSCAN, XMeans, and OPTICS tend to overestimate it, often by a factor of 10 or more. `k*means`, on average, slightly underestimates k , but is much closer than existing methods. It is also much more accurate with respect to clustering metrics, on some datasets (MNIST, USPS), even performing on par with k -means and GMM, which have the *true* value of k specified.

Occasionally (20-NG, MSRVTT), one of the existing methods gets a high NMI score. However, we observe that they also vastly overpredict k in these cases, indicating that the true and predicted partitions have very different numbers of classes. This can cause NMI to give unreliable results as the entropy in the latter is then unnaturally high. For existing methods, it is quite likely that one could obtain better results by manually tuning the parameters. We find that it is possible to get almost any value of k by such tuning (see Appendix A), but the focus of the present paper is on cases in which the user does not know the true value of k . In other words, they do not have a ground truth against which to tune these parameters; instead, they have to use the defaults. Table 3 shows that `k*means` is a much better choice in such cases.

Comparison to Sweeping k A common approach when clustering with unknown k is to train k -means models with multiple values of k , compute some external model-selection criterion, commonly the Bayesian information criterion (Schwarz, 1978) for each, and select whichever k gives the lowest BIC (Wessman et al., 2012; Zhang & Li, 2014; Lancaster & Camarata, 2019; Salmanpour et al., 2022). Table 4 shows the performance of this common approach compared to `k*means`. As we simulate the scenario where k is unknown, we sweep in increments of 10% up to the dataset size. Sweeping plus BIC selection tends to favour very high values of k , generally 4-5x the number of annotated classes. It is also 10-50x slower than `k*means`.

Runtime Analysis The runtimes from Table 3 already indicate the speed of `k*means` compared with existing methods. To examine this further, and in particular how it depends on dataset size, we use subsets of varying sizes from the largest dataset in Table 3: Speech Commands, which has 99,000 data points. Figure 2 shows the runtime of `k*means`, compared to the fastest baselines, on subsets of size 1,000, 2,000, ..., 99,000. The fastest at all sizes is k -means, which remains well under 1s even for 99,000 samples. The next is DBSCAN, rising to \sim 3s, then the GMM \sim 5s, and `k*means` \sim 8s.

HDBSCAN is efficient for small samples, faster than `k*means` and GMM, but increases much faster, and by 99,000 samples, its runtime is 6x that of `k*means`. XMeans is the most erratic, by far the slowest for small sample sizes, and increases very little or even decreases, ending up close to `k*means`. The surprising decrease could be due to XMeans predicting fewer clusters for larger datasets. It could also be related to the optimised C-Engine that the public XMeans code makes use of³. Note that Figure 2 shows only the fastest five algorithms. Mean-shift, affinity propagation, and OPTICS are all substantially slower and would be off the chart if included.

¹<https://pypi.org/project/kneed/>

²<https://scikit-learn.org/stable/>

³<https://pyclustering.github.io>

Table 4: Comparison of $k^* \text{means}$ with the common approach of sweeping k and selecting with BIC. $k^* \text{means}$ is consistently faster and more accurate.

		ACC	ARI	NMI	NC	Runtime (s)
MNIST	sweepkm	12.86	8.17	56.01	25.00	148.15
	$k^* \text{means}$	91.26 (3.56)	84.99 (2.97)	87.44 (1.14)	10.90 (0.32)	3.38 (0.39)
USPS	sweepkm	32.36 (0.81)	21.77 (0.77)	65.20 (0.40)	68.40 (3.10)	11.21 (0.73)
	$k^* \text{means}$	88.68 (0.00)	81.57 (0.00)	87.14 (0.00)	8.00 (0.00)	0.80 (0.26)
ImageNet (subset)	sweepkm	8.16 (0.26)	1.18 (0.05)	7.62 (0.05)	83.20 (4.13)	19.54 (0.23)
	$k^* \text{means}$	66.18 (1.55)	46.42 (1.45)	60.20 (0.86)	6.40 (0.70)	0.94 (0.34)
Speech Commands	sweepkm	32.19 (1.27)	20.10 (0.90)	62.29 (0.30)	239.50 (12.12)	951.58 (11.31)
	$k^* \text{means}$	68.73 (1.57)	48.43 (2.49)	70.22 (0.67)	26.50 (0.97)	20.98 (5.22)
20 NG	sweepkm	32.75 (0.54)	17.44 (0.54)	46.84 (0.17)	107.30 (5.83)	36.61 (1.28)
	$k^* \text{means}$	42.33 (1.14)	26.08 (0.44)	46.61 (0.67)	11.20 (0.42)	2.46 (0.96)
MSRVT	sweepkm	27.50 (89.64)	12.24 (53.57)	41.36 (18.64)	91.60 (464.76)	7.33 (20.57)
	$k^* \text{means}$	44.10 (136.25)	25.75 (65.28)	38.16 (33.06)	18.10 (87.56)	2.57 (40.59)

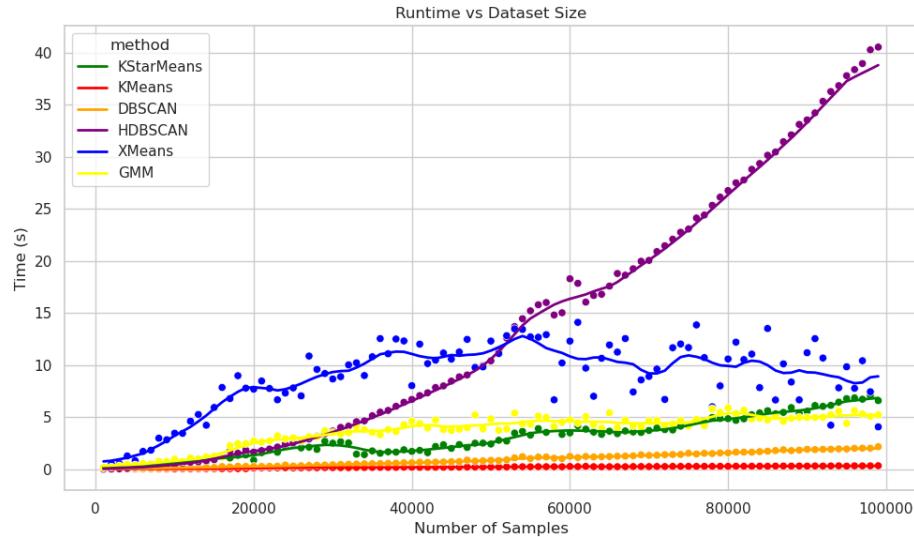


Figure 2: Windowed averages of runtime as a function of dataset size. Each point represents the mean runtime across 10 randomly sampled subsets of the given size from the Speech Commands dataset.

6 Conclusion

This paper presented a new clustering algorithm, $k^* \text{means}$, that can be applied without knowing k and does not require setting any other parameters, such as thresholds. We prove that $k^* \text{means}$ is guaranteed to converge, and we show empirically on synthetic data that it can more accurately infer k than comparison methods, and with near-perfect accuracy for sufficiently separated centroids. We then test it on six labelled datasets spanning image, text, audio and video domains, and show that it is significantly more accurate than existing methods in terms of standard clustering metrics. We also compare it to the standard practice of sweeping k in k -means and selecting with a model selection criterion. Finally, we demonstrate how its runtime scales with dataset size, and show that it is faster, and scales better than the majority of existing methods. $k^* \text{means}$ can be useful in cases where the user has large uncertainty as to the appropriate value of k .

References

Afroj Alam. Hybridization of k-means with improved firefly algorithm for automatic clustering in high dimension. *arXiv preprint arXiv:2302.10765*, 2023.

Mihael Ankerst, Markus M Breunig, Hans-Peter Kriegel, and Jörg Sander. Optics: ordering points to identify the clustering structure. In *Proceedings of the 1999 ACM SIGMOD international conference on Management of data*, pp. 49–60, 1999.

Charles E Antoniak. Mixtures of dirichlet processes with applications to bayesian nonparametric problems. *The annals of statistics*, pp. 1152–1174, 1974.

David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. Technical report, Stanford, 2006.

Ricardo JGB Campello, Davoud Moulavi, and Joerg Sander. Density-based clustering based on hierarchical density estimates. *Pacific-Asia conference on knowledge discovery and data mining*, pp. 160–172, 2013.

Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering for unsupervised learning of visual features. In *Proceedings of the European conference on computer vision (ECCV)*, pp. 132–149, 2018.

Dorin Comaniciu and Peter Meer. Mean shift: A robust approach toward feature space analysis. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 24(5):603–619, 2002.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete data via the em algorithm. *Journal of the royal statistical society: series B (methodological)*, 39(1):1–22, 1977.

Petros Drineas, Alan Frieze, Ravi Kannan, Santosh Vempala, and Vishwanathan Vinay. Clustering large graphs via the singular value decomposition. *Machine learning*, 56(1):9–33, 2004.

Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. In *Proceedings of the Second International Conference on Knowledge Discovery and Data Mining*, pp. 226–231. AAAI Press, 1996.

Enrico Fini, Pietro Astolfi, Karteek Alahari, Xavier Alameda-Pineda, Julien Mairal, Moin Nabi, and Elisa Ricci. Semi-supervised learning made simple with self-supervised clustering. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 3187–3197, 2023.

Brendan J Frey and Delbert Dueck. Clustering by passing messages between data points. *Science*, 315(5814):972–976, 2007.

Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. *Concrete Mathematics: A Foundation for Computer Science*. Addison-Wesley, 2nd edition, 1994. ISBN 9780201558029. URL <https://archive.org/details/B-001-002-135>.

Nicholas Hebdon, Alexa Ortega, Alexander Orlove, Nichole Wheeler, Mia Pham, Vivian Nguyen, Justin Gladman, and Lindsay D. Waldrop. Dog skull shape challenges assumptions of performance specialization from selective breeding. *Science Advances*, 11(5):eadq9590, 2025. doi: 10.1126/sciadv.adq9590. URL <https://www.science.org/doi/abs/10.1126/sciadv.adq9590>.

Jeremy Howard and Sylvain Gugger. Imagenette. <https://github.com/fastai/imagenette>, 2019.

Tsunenori Ishioka. Extended k-means with an efficient estimation of the number of clusters. *Oyou toukeigaku*, 29(3):141–149, 2000.

Ozgur Kisi, Salim Heddam, Kulwinder Singh Parmar, Andrea Petroselli, Christoph Külls, and Mohammad Zounemat-Kermani. Integration of gaussian process regression and k means clustering for enhanced short term rainfall runoff modeling. *Scientific Reports*, 15(1):7444, 2025.

Petri Kontkanen, Petri Myllymäki, Wray Buntine, Jorma Rissanen, and Henry Tirri. An mdl framework for data clustering. *Advances in minimum description length: Theory and applications*, pp. 323–354, 2005.

Hope S Lancaster and Stephen Camarata. Reconceptualizing developmental language disorder as a spectrum disorder: issues and evidence. *International Journal of Language & Communication Disorders*, 54(3):319–327, 2019.

Yan Li and Lei Li. A novel split and merge em algorithm for gaussian mixture model. In *2009 Fifth International Conference on Natural Computation*, volume 6, pp. 479–483. IEEE, 2009.

Alexander H. Liu, Anmol Gulati, Shubham Narang, Ruoming Pang, and Yonghui Wu. Dinosr: Self-distillation and online clustering for self-supervised speech representation learning. In *Advances in Neural Information Processing Systems*, 2023a. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/b6404bf461c3c3186bdf5f55756af908-Paper-Conference.pdf.

Meng Liu, Yue Liu, Ke Liang, Wenxuan Tu, Siwei Wang, Sihang Zhou, and Xinwang Liu. Deep temporal graph clustering. *arXiv preprint arXiv:2305.10738*, 2023b.

Stuart Lloyd. Least squares quantization in pcm. *IEEE Transactions on Information Theory*, 28(2):129–137, 1982.

Jie Ma, Ling Liu, Cong Chen, and Zhou Yu. Structured federated learning through clustered additive modeling. In *Advances in Neural Information Processing Systems*, 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/8668fdc7b2ddf55a0e235824c66f2eee-Paper-Conference.pdf.

James MacQueen. Some methods for classification and analysis of multivariate observations. 1(14):281–297, 1967.

Louis Mahon and Thomas Lukasiewicz. Selective pseudo-label clustering. In *KI 2021: Advances in Artificial Intelligence: 44th German Conference on AI, Virtual Event, September 27–October 1, 2021, Proceedings* 44, pp. 158–178. Springer, 2021.

Louis Mahon and Thomas Lukasiewicz. Hard regularization to prevent deep online clustering collapse without data augmentation. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 14281–14288, 2024.

Amir Markovitz, Gilad Sharir, Itamar Friedman, Lih Zelnik-Manor, and Shai Avidan. Graph embedded pose clustering for anomaly detection. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2020.

Leland McInnes, John Healy, and James Melville. UMAP: Uniform manifold approximation and projection for dimension reduction. *arXiv:1802.03426*, 2018.

Ole Meyer, Rebecca Diekmann, Sandra Hellmers, Andreas Hein, and Anna Schumacher. Uncovering hidden insights in the chair rise performance of older adults using dynamic time warping and k-means clustering. *Scientific Reports*, 15(1):7654, 2025.

Lukas Miklautz, Timo Klein, Kevin Sidak, Collin Leiber, Thomas Lang, Andrii Shkabrii, Sebastian Tschiatschek, and Claudia Plant. Breaking the reclustering barrier in centroid-based deep clustering. *arXiv preprint arXiv:2411.02275*, 2024.

Yujie Mo, Zhihe Lu, Rumpeng Yu, Xiaofeng Zhu, and Xinchao Wang. Revisiting self-supervised heterogeneous graph learning from spectral clustering perspective. *Advances in Neural Information Processing Systems*, 37:43133–43163, 2024.

Seyed Omid Mohammadi, Ahmad Kalhor, and Hossein Bodaghi. K-splits: Improved k-means clustering algorithm to automatically detect the number of clusters. In *Computer Networks, Big Data and IoT: Proceedings of ICCBI 2021*, pp. 197–213. Springer, 2022.

Andrew Y Ng, Michael I Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm. In *Advances in neural information processing systems*, pp. 849–856, 2001.

Shengjie Niu, Wenjie Zhang, Yanyan Liang, and Xia Hu. Owmatch: Conditional self-labeling with consistency for open-world semi-supervised learning. In *Advances in Neural Information Processing Systems*, 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/b4fd162d3e2d015233486a2e313828a7-Paper-Conference.pdf.

Rafail Ostrovsky, Yuval Rabani, Leonard J Schulman, and Chaitanya Swamy. The effectiveness of lloyd-type methods for the k-means problem. *Journal of the ACM (JACM)*, 59(6):1–22, 2013.

Dan Pelleg and Andrew W Moore. X-means: Extending k-means with efficient estimation of the number of clusters. In *Proceedings of the Seventeenth International Conference on Machine Learning*, pp. 727–734. Morgan Kaufmann, 2000.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable visual models from natural language supervision. In Marina Meila and Tong Zhang (eds.), *Proceedings of the 38th International Conference on Machine Learning*, volume 139 of *Proceedings of Machine Learning Research*, pp. 8748–8763. PMLR, 18–24 Jul 2021. URL <https://proceedings.mlr.press/v139/radford21a.html>.

Alex Rodriguez and Alessandro Laio. Clustering by fast search and find of density peaks. *science*, 344(6191):1492–1496, 2014.

Meitar Ronen, Shahaf E Finder, and Oren Freifeld. Deepdpm: Deep clustering with an unknown number of clusters. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 9861–9870, 2022.

Mohammad R Salmanpour et al. Longitudinal clustering analysis and prediction of parkinson’s disease progression. *Quantitative Imaging in Medicine and Surgery*, 12(3):292–300, 2022.

Gideon Schwarz. Estimating the dimension of a model. *The annals of statistics*, pp. 461–464, 1978.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language models, 2023.

Andrea Vattani. K-means requires exponentially many iterations even in the plane. In *Proceedings of the twenty-fifth annual symposium on Computational geometry*, pp. 324–332, 2009.

Huy V Vo, Vasil Khalidov, Timothée Darzet, Théo Moutakanni, Nikita Smetanin, Marc Szafraniec, Hugo Touvron, Camille Couprie, Maxime Oquab, Armand Joulin, et al. Automatic data curation for self-supervised learning: A clustering-based approach. *arXiv preprint arXiv:2405.15613*, 2024.

Stefan S. Wagner and Stefan Harmeling. Just cluster it: An approach for exploration in high-dimensions using clustering and pre-trained representations. In *International Conference on Machine Learning*, 2024. URL <https://proceedings.mlr.press/v235/wagner24a.html>.

Jaana Wessman, Stefan Schönauer, Jouko Miettunen, Hannu Turunen, Pekka Parviainen, Jukka K. Seppänen, Eliza Congdon, Susan Service, Liisa Keltikangas-Järvinen, Jesper Ekelund, Jouko Lönnqvist, Nelson B. Freimer, Juha Veijola, Heikki Mannila, and Leena Peltonen. Temperament clusters in a normal population: Implications for health and disease. *PLOS ONE*, 7(7):e33088, 2012. doi: 10.1371/journal.pone.0033088. URL <https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0033088>.

Gaoqing Xu, Qun Chen, Shuhang Jiang, Xiaohang Fu, Yiwei Wang, and Qingchun Jiao. Analyzing the capability description of testing institution in chinese phrase using a joint approach of semi-supervised k-means clustering and bert. *Scientific Reports*, 15(1):11331, 2025.

Sheng Zhang and Chiang-shan R Li. Functional clustering of the human inferior parietal lobule by whole-brain connectivity mapping of resting-state fmri signals. *Brain Connectivity*, 4(7):547–557, 2014.

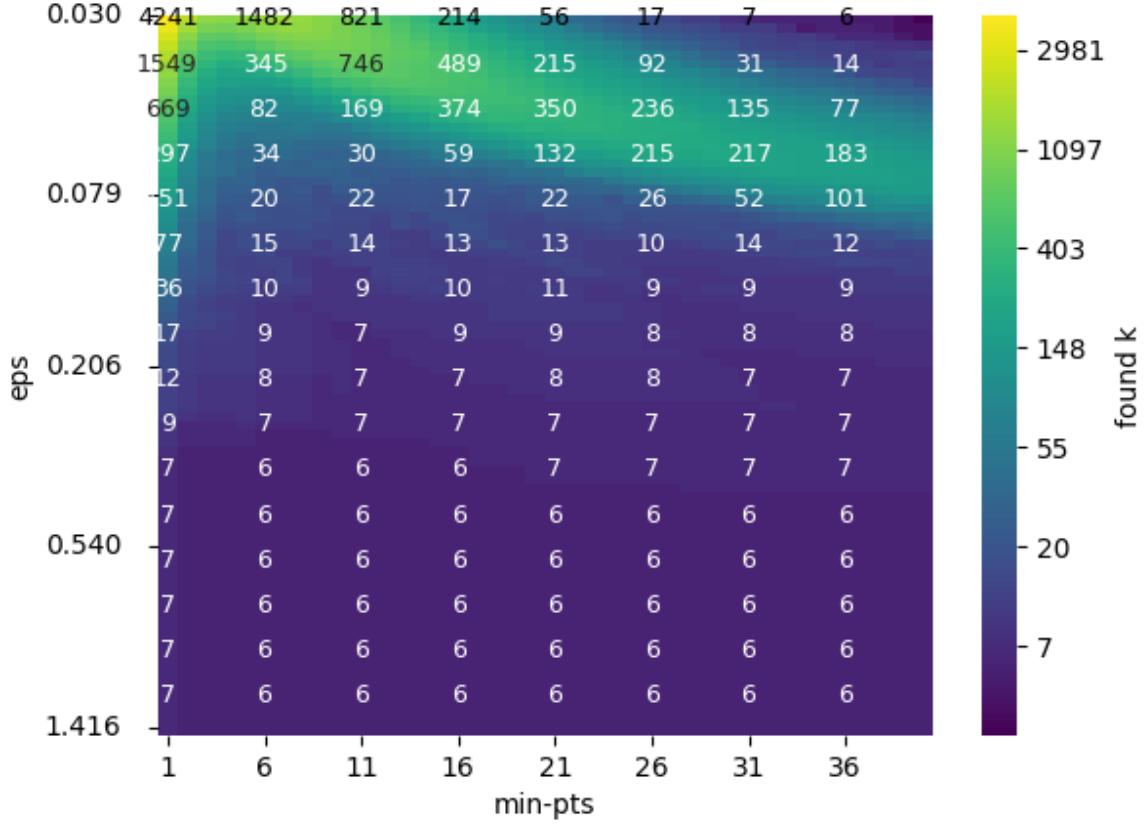


Figure 3: Values of k (number of clusters) found on MNIST for different values of the DBSCAN parameters, `min-pts` (x-axis) and `eps` (y-axis). We sweep `min-pts` from 1–40, and `eps` from 0.03 to 1.5 in 5% increments.

A Dependence of k on DBSCAN Parameters

Although DBSCAN does not explicitly require setting k , its two key parameters, `eps` and `min-pts`, indirectly determine a value for k . As can be seen in Figure 3, the different values for k found by DBSCAN for different values of `eps` and `min-pts` range from 6 to over 4,000. In general, smaller `eps` and smaller `min-pts` produce more clusters—the number of annotated classes is 10.

B Derivation of Bit Cost for Clustering Objective

The objective to derive is that from Section 4.1:

$$P^* = \arg \min_{P \in \Pi(X)} |P|dm + |X| \log |P| + \frac{1}{2} \sum_{S \in P} Q(S).$$

The first two terms are direct expressions of the cost to specify the centroids (each costs dm bits and there are $|P|$ of them), and the cluster labels (each costs $\log |P|$ bits, and there are $|X|$ of them. The third term arises from the expression for the negative log-probability, and the fact that we can drop additive constants

in the argmin. Let $c(P, x)$ be the centroid of the cluster x belongs to under partition P . Then

$$\begin{aligned} \arg \min_{P \in \Pi(X)} |P|dm + |X| \log |P| + \sum_{x \in X} \frac{d \log 2\pi + \|x - c(P, x)\|^2}{2} = \\ \arg \min_{P \in \Pi(X)} |P|dm + |X| \log |P| + \frac{1}{2} \sum_{x \in X} \|x - c(P, x)\|^2 = \\ \arg \min_{P \in \Pi(X)} |P|dm + |X| \log |P| + \frac{1}{2} \sum_{S \in P} \sum_{x \in S} \|x - c(P, x)\|^2 = \\ \arg \min_{P \in \Pi(X)} |P|dm + |X| \log |P| + \frac{1}{2} \sum_{S \in P} Q(S). \end{aligned}$$

C Theoretical Guarantee of Performance for Equally-sized Spherical Multivariate Normal Clusters

Given that **k*means** subsumes the familiar Lloyd's algorithm for k -means, and given the difficulty reasoning about the behaviour of Lloyd's algorithm itself, we instead prove a guarantee of performance with respect to the $k++$ means initialisation. This is a similar approach to that taken by Ostrovsky et al. (2013).

We will prove that, if the data comes from k equally-sized multivariate Normal distributions, with the same isotropic variance, separated by at least d , then the initialisation (which follows $k++$ means and selects new points in proportion to the square of their distance from previous points) produces centroids that are all within ϵ of their true values, with probability at least a . To simplify notation, we will assume all clusters have variance 1, but this generalises to any value as the initialisations are made with respect to relative distances and so are invariant to rescaling.

As **k*means** proceeds iteratively, we first analyse the single case of splitting a dataset into two, assuming it contains k true clusters, where k may be greater than 2. The first point is chosen randomly. The probability of it falling within ϵ of whatever cluster it is in is therefore $erf(\epsilon/\sqrt{2})$. For the second point, the probability can be expressed as a ratio. The numerator, A , is the integral of the squared distance from the first point times the probability density, integrated over all ϵ -balls around the means of the other clusters. The denominator, B , is the expected value of the squared distance of a new point from the first point. We are interested in a lower bound on the probability of approximately correct cluster centroids; therefore, we consider the worst case for the location of the first point, which is that it is a distance ϵ from its centroid, and a distance $d - \epsilon$ from every other centroid (the latter being a lower bound via the triangle inequality). WLOG, we can assume the selected point is at the origin of \mathbb{R}^2 , so the squared distance of a possible second point is equal to its squared norm.

Let $X \sim \mathcal{N}(\mu_x, I)$ in \mathbb{R}^2 , where μ_x is the true centroid of X , and let $Z = X - \mu_x \sim \mathcal{N}(0, I)$.

We are interested in the conditional expectation:

$$\mathbb{E}[\|X\|^2 \mid \|X - \mu_x\| < \epsilon] = \mathbb{E}[\|Z + \mu_x\|^2 \mid \|Z\| < \epsilon] \quad (2)$$

Now expand the squared norm:

$$\|Z + \mu_x\|^2 = \|Z\|^2 + 2Z^\top \mu_x + \|\mu_x\|^2$$

Take the conditional expectation:

$$\mathbb{E}[\|Z + \mu_x\|^2 \mid \|Z\| < \epsilon] = \mathbb{E}[\|Z\|^2 \mid \|Z\| < \epsilon] + 2\mathbb{E}[Z^\top \mu_x \mid \|Z\| < \epsilon] + \|\mu_x\|^2$$

The middle term vanishes, because it is an integral of an odd function about 0. The third term $\|\mu_x\|^2$ is lower-bounded by $(d - \epsilon)^2$, due to the triangle inequality and the assumption that the first sampled point is at the origin. To calculate the first term, note that $\|Z\|^2$ is the sum of the squares of 2 normally distributed

variables, so it has a Chi-squared distribution with 2 degrees of freedom. The $r = \|Z\|^2$, then the pdf is $re^{-\frac{r^2}{2}}$. Then, we have

$$\mathbb{E}[\|Z\|^2 \mid \|Z\| < \epsilon] = \frac{\int_0^\epsilon r^2(re^{-\frac{r^2}{2}})dx}{\int_0^\epsilon re^{-\frac{r^2}{2}}dx}.$$

Substituting $u = r^2/2$, so that $du = r dr$ gives

$$\frac{\int_0^{\epsilon^2/2} 2ue^{-u}du}{\int_0^{\epsilon^2/2} re^{-u}}$$

The numerator becomes

$$[-(u+1)e^{-u}]_0^{\epsilon^2/2} = 1 + (\epsilon^2/2 - 1)e^{-\epsilon^2/2}$$

The denominator becomes

$$[-e^{-u}]_0^{\epsilon^2/2} = -e^{\epsilon^2/2} + e^0 = 1 - e^{\epsilon^2/2}.$$

So the lower bound on the conditional expectation equation 2 becomes

$$\frac{1 + (\epsilon^2/2 - 1)e^{-\epsilon^2/2}}{1 - e^{\epsilon^2/2}} + (d - \epsilon)^2.$$

As we are going to renormalise anyway, we instead use the unnormalised expectation

$$1 + (\epsilon^2/2 - 1)e^{-\epsilon^2/2} + (1 - e^{-\epsilon^2/2})(d - \epsilon)^2. \quad (3)$$

To find the probability of the new centroid being within ϵ of its true centroid, we use this total unnormalised expectation across all $k - 1$ other clusters, and normalised by the total unnormalised expectation of the squared distance. The latter contains two terms. This first is for each of the other $k - 1$ clusters, which can be computed using the same argument as above, except using the limit ∞ instead of ϵ , giving $1 + (d - \epsilon)^2$. The second is for the same cluster as the first point, which can be computed in the same way except now the distance to the centroid is ϵ rather than $d - \epsilon$, giving $1 + \epsilon^2$. Putting this together, we get

$$\begin{aligned} & \frac{(k-1) \left(1 + (\epsilon^2/2 - 1)e^{-\epsilon^2/2} + (1 - e^{-\epsilon^2/2})(d - \epsilon)^2 \right)}{(k-1)(1 + (d - \epsilon)^2) + 1 + \epsilon^2} = \\ & \frac{(k-1) \left(1 + (\epsilon^2/2 - 1)e^{-\epsilon^2/2} + (1 - e^{-\epsilon^2/2})(d - \epsilon)^2 \right)}{(k-1)(d - \epsilon)^2 + k + \epsilon^2}. \end{aligned}$$

As expected, this expression approaches 0 as ϵ approaches 0. Claim this is an increasing function of k . Show that the derivative wrt k is always positive:

$$\begin{aligned} & \frac{((k-1)(d - \epsilon)^2 + k + \epsilon^2) \left(1 + (\epsilon^2/2 - 1)e^{-\epsilon^2/2} + (1 - e^{-\epsilon^2/2})(d - \epsilon)^2 \right) - (k-1) \left(1 + (\epsilon^2/2 - 1)e^{-\epsilon^2/2} + (1 - e^{-\epsilon^2/2})(d - \epsilon)^2 \right)}{((k-1)(d - \epsilon)^2 + k + \epsilon^2)^2} \\ & \iff \\ & ((k-1)(d - \epsilon)^2 + k + \epsilon^2 - (k-1)((d - \epsilon)^2 + 1)) > 0 \\ & \iff \\ & k + \epsilon^2 - (k-1) > 0 \\ & \iff \\ & 1 + \epsilon^2 > 0. \end{aligned}$$

Thus, as a lower bound, we can consider $k = 2$. We want to determine what value of d will ensure this lower bound is greater than a :

$$\begin{aligned}
 \frac{1 + (\epsilon^2/2 - 1)e^{-\epsilon^2/2} + (1 - e^{-\epsilon^2/2})(d - \epsilon)^2}{(d - \epsilon)^2 + 2 + \epsilon^2} &> a \\
 1 + (\epsilon^2/2 - 1)e^{-\epsilon^2/2} + (1 - e^{-\epsilon^2/2})(d - \epsilon)^2 &> a(d - \epsilon)^2 + 2 + \epsilon^2 \\
 (1 - e^{-\epsilon^2/2})(d - \epsilon)^2 - a(d - \epsilon)^2 &> 2 + \epsilon^2 - (1 + (\epsilon^2/2 - 1)e^{-\epsilon^2/2}) \\
 (d - \epsilon)^2 &> \frac{1 + \epsilon^2 - (\epsilon^2/2 - 1)e^{-\epsilon^2/2}}{1 - e^{-\epsilon^2/2} - a} \\
 d &> \sqrt{\frac{1 + \epsilon^2 - (\epsilon^2/2 - 1)e^{-\epsilon^2/2}}{1 - e^{-\epsilon^2/2} - a}} + \epsilon
 \end{aligned} \tag{4}$$

We want, with probability p , to get all initialised centroids with ϵ of their true value, which requires repeating this successfully k times. The initialisations at each iteration are independent. Thus, we need

$$\begin{aligned}
 a^k &> p \\
 a &> \sqrt[k]{p}.
 \end{aligned}$$

Subbing into equation 4, we conclude that all initialised centroids will be within ϵ of their true values, with probability at least p , as long as

$$d > \sqrt{\frac{1 + \epsilon^2 - (\epsilon^2/2 - 1)e^{-\epsilon^2/2}}{1 - e^{-\epsilon^2/2} - \sqrt[k]{p}}} + \epsilon. \tag{5}$$

Plugging in some numbers, $p = 0.32$, $k = 4$, $\epsilon = 2.0$, we get

$$\begin{aligned}
 d &> \sqrt{\frac{1 + 4 - (2 - 1)e^{-2}}{1 - e^{-2} - 0.7}} + 2 \\
 &= \sqrt{\frac{4.865}{0.865 - \sqrt[4]{0.32}}} + 2.0 = 8.50.
 \end{aligned}$$

Thus, we conclude that, with probability at least 0.32, all centroids will be within 2 of their true values, as long as the centroids are separated by a distance of at least 8.5.

This proof assumes the parent centroid becomes one of the child centroids, but in practice it is initialised and updated via Lloyd, which would be significantly more accurate, so this is a loose bound.

D Extended Experimental Results

	mse				acc			
	k*means	dbSCAN	hdbscan	xmeans	k*means	dbSCAN	hdbscan	xmeans
synthetic s=2	283.44	43.19	232.47	735.91	9.60	7.00	2.60	2.40
synthetic s=3	65.11	41.11	144.05	703.73	32.60	3.60	4.80	8.80
synthetic s=4	1.83	27.12	104.96	669.22	71.20	5.40	12.00	17.00
synthetic s=5	0.19	24.58	76.98	644.44	82.40	4.80	22.40	19.80

Table 5: Clustering performance on synthetic data where the variance differs by cluster. Variance for each cluster is sampled from a Normal distribution with mean 1 and variance 1 (thresholded at 1e-4 to prevent negative values).

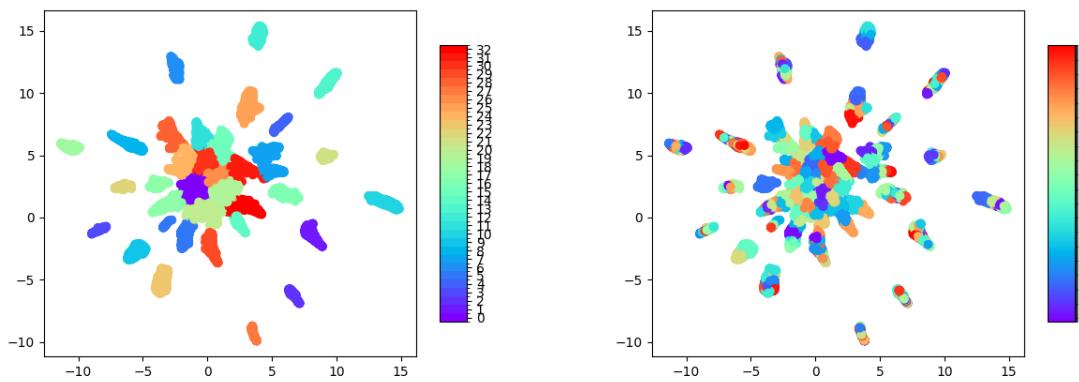


Figure 4: Clusters predicted by `k*means` for the UMAP representations on the Speech Commands dataset, by `k*means` (left) and XMeans (right). `k*means` predicts 33 classes and XMeans predicts 315, vs. 36 in the annotations.