
Under review as submission to TMLR

k∗means: A Parameter-free Clustering Algorithm

Anonymous authors
Paper under double-blind review

1 Introduction

Abstract
Clustering is a widely used and powerful machine learning technique, but its effectiveness is
often limited by the need to specify the number of clusters, k, or by relying on thresholds that
implicitly determine k. We introduce k∗means, a novel clustering algorithm that eliminates
the need to set k or any other parameters. Instead, it formulates the clustering problem
as minimising a three-part encoding of the data. It uses this formulation to determine
the optimal number of clusters, k∗, by splitting and merging clusters while also optimising
the standard k-means objective. We prove that k∗means is guaranteed to converge and
demonstrate experimentally that it significantly outperforms existing methods in scenarios
where k is unknown. We also show that it accurately estimates k and that, empirically, its
runtime is competitive with existing methods and scales well with dataset size.

2 Introduction

Clustering is a fundamental task in machine learning. As well as allowing data visualisation and exploration,
it is used for several more specific functions in the context of machine learning systems, such as representation
learning Liu et al. (2023a); Niu et al. (2024), federated learning (Ma et al., 2023), exploration in reinforcement
learning (Wagner & Harmeling, 2024), anomaly detection (Markovitz et al., 2020), and has found widespread
application in the natural sciences (Xu et al., 2025; Kisi et al., 2025; Meyer et al., 2025; Hebdon et al., 2025).
It has also been interwoven with deep learning feature extraction in the areas of deep clustering (Caron
et al., 2018; Mahon & Lukasiewicz, 2021; Miklautz et al., 2024; Liu et al., 2023b; Vo et al., 2024) and deep
graph clustering (Mo et al., 2024; Fini et al., 2023). Clustering can produce meaningful and interpretable
partitions of data, even in the absence of information often required by other machine learning methods, such
as annotated labels.

However, almost all existing clustering algorithms still require some user-set parameters, which limits their
applicability to cases where the user can choose appropriate values. Two common classes of clustering
algorithms are centroid-based and density-based. The former, typified by k-means, work by finding the
optimal location for cluster centre-points (centroids), and then assigning points to nearby centres. These
algorithms generally require the user to specify the number of clusters. Density-based algorithms aim to
locate clusters where the density of points is high. They also require some threshold(s) to determine what
constitutes a high-density region and where to separate them.

In this paper, we design a clustering algorithm that eliminates the need to set the number of clusters, tunable
thresholds, or any other parameters. Our algorithm, k∗means, extends k-means by automatically determining
the number of clusters, k, that minimises the length of a three-part coding of the data. The first part, which
we refer to as the model cost, describes centroids of the fit clustering model, the second part, which we refer
to as the index cost, describes the cluster assignments, and the third, which we refer to as the residual cost,
describes the displacement of each point from its assigned centroid. Too many clusters incur prohibitively
high index costs, while too few incur prohibitively high residual costs, so the objective guides the model
towards a reasonable value of k.

1

Under review as submission to TMLR

This is a similar approach to the minimum description length (MDL) principle, which states that the optimal
data representation is the one that uses the fewest bits. k∗means differs from existing MDL clustering
approaches (Kontkanen et al., 2005) in that it uses hard labels for each point, whereas MDL typically takes
the description length as the negative log probability under a probabilistic model such as a Gaussian mixture
model (GMM), and this amounts to labelling each point as a soft label of a distribution across all clusters.

We optimise our three-part code objective by including two subclusters per cluster in the model. The “assign”
and “update” steps of k-means are applied to the subclusters in the same way as to the main clusters, and
the algorithm has the option to split a cluster into its two subclusters or merge two clusters if it reduces the
description length.

Despite its simplicity, k-means remains the most widely used clustering algorithm because it is fast, provably
converges, has just one easily interpretable parameter, and achieves accuracy competitive with more compli-
cated methods. We aim to maintain these advantages with k∗means. We provide a proof that k∗means is
also guaranteed to converge. Additionally, our experiments show that k∗means largely maintains the speed
and accuracy advantages of k-means. It is as fast or faster than most other k-agnostic clustering methods,
scales well with dataset size, and is close to or on par with the accuracy of k-means, even when k-means has
an oracle for the true value of k. We also demonstrate, in synthetic experiments, that it can identify k more
accurately than existing methods. Our contributions are summarised as follows:

• We introduce k∗means, an entirely parameter-free clustering algorithm;

• We give a formal proof that k∗means will convergence in finite time;

• We design synthetic data experiments to test whether k∗means can infer the true value of k, and
show that it can with much higher accuracy than existing methods;

• We show experimentally that, with respect to standard clustering metrics, it is more accurate than
all existing methods that do not require setting k and is as fast as, or faster than, most of these
methods.

The remainder of this paper is organised as follows. Section 3 discusses related work, Section 4 describes the
algorithm of k∗means in detail, Section 5 presents experimental results, and finally Section 6 concludes and
summarises.

3 Related Work

Two well-known centroid-based clustering algorithms are k-means, (MacQueen, 1967; Lloyd, 1982) and GMMs
(Dempster et al., 1977). The former partition data into k clusters by iteratively assigning points to the nearest
centroid and updating centroids until convergence, and the latter which fit a multivariate normal model via
expectation maximization. A number of more complex clustering algorithms are also in widespread use.

Spectral Clustering (Ng et al., 2001) transforms data using eigenvectors of a similarity matrix before applying
a clustering algorithm such as k-means. Mean Shift (Comaniciu & Meer, 2002) discovers clusters by iteratively
shifting points toward areas of higher density until convergence. It does not require setting k, but does
require a bandwidth parameter. Affinity Propagation (Frey & Dueck, 2007) identifies exemplars among data
points and forms clusters by exchanging messages between pairs of samples until convergence. Like mean
shift, it does not require specifying the number of clusters k, but instead relies on a preference parameter
and a damping factor. A common drawback of both mean shift and affinity propagation is their quadratic
space complexity, which limits scalability. Divisive hierarchical clustering continues to bifurcate clusters with
k-means, k = 2, until a stopping criterion.

Two other classic methods that estimate k automatically are DPC (Rodriguez & Laio, 2014) and DPMM
(Antoniak, 1974). DPC is a density-based method that seeks to assign centroids to high-density regions and
far apart from each other. DPMM models the data as generated from a mixture of Dirichlet processes, and
fits an approximation with a Bayesian estimator.

2

Under review as submission to TMLR

DBSCAN (Ester et al., 1996) identifies dense regions as clusters by grouping points with many neighbours,
while marking sparse points as noise. OPTICS (Ankerst et al., 1999) extends DBSCAN by ordering points by
reachability distance, allowing it to identify clusters with varying densities. HDBSCAN (Campello et al.,
2013) further builds on DBSCAN by introducing a hierarchical clustering framework that extracts flat clusters
based on stability. Although DBSCAN and its variants do not require specifying the number of clusters, they
rely on other parameters—such as eps and min-pts, which specify the neighbourhood size and the number
of points required to form a ‘dense region’. OPTICS avoids setting eps by computing reachability distances
over a range of values, but in its place introduces a steepness parameter to define cluster boundaries (where
the reachability value decreases faster than this steepness). Tuning these parameters can yield a wide range
of values for the number of predicted clusters (see Appendix A). Thus, without knowledge about the number
of clusters or parameter values, DBSCAN and its derivatives can be difficult to apply effectively.

X-Means (Pelleg & Moore, 2000) extends k-means by automatically determining the optimal number of
clusters using the Bayesian information criterion (BIC) (Schwarz, 1978). Our method is similar to X-Means in
two respects: firstly, in that it selects k using an agnostic criterion from probability/information theory, and
secondly, in that it considers bifurcating each centroid as the means by which to explore different values of k.
Li & Li (2009) employs the same idea but for a GMM and using MDL as the stopping criterion. However,
there are some important differences between k∗means and these two methods. k∗means uses three-part code
length as the criterion, whereas X-Means uses BIC and Li & Li (2009) uses MDL. Secondly, our method does
not require the maxK parameter. It can, in principle, return any value of k (although this would have to
be bounded by N). Thirdly, X-means, and Li & Li (2009) have to run the standard EM-training algorithm
to convergence each time a new value of k is explored. k∗means, in contrast, returns the best model in one
stage by splitting only when it reduces the code length and keeping a pre-initialised pair of sub-centroids
for each cluster, which are updated one step at a time as k is optimised. This means k∗means only needs to
run k-means to convergence once. Ishioka (2000) uses a very similar method to X-means, keeping a stack of
clusters during training, and sequentially running k-means with k=2 on each. Again, this is much less efficient
than k∗means, which does not need to run multiple models to convergence. Also similar is Ronen et al. (2022),
which splits and merges stochastically during deep clustering. k-splits, Mohammadi et al. (2022), is a recent
algorithm that performs divisive hierarchical clustering until the inter-centroid distance exceeds a threshold.
Clustering applications often deal with unknown k by training many k-means models with varying values
of k, and selecting that with the lowest BIC (Zhang & Li, 2014; Lancaster & Camarata, 2019; Salmanpour
et al., 2022). Selecting by silhouette score, or the elbow method, is also a common approach (Alam, 2023).
Our experiments (Section 5) find that this is not only much slower than k∗means, as it requires running many
models to convergence, but also less accurate, often severely overestimating k. A summary of the clustering
algorithms discussed in this section and their parameters is presented in Table 1.

4 The k∗means Algorithm

In the exposition and accompanying algorithms of this Section, we use the following notation: X =
{x1, . . . , xN } ⊂ Rm is the data to be clustered, K is the number of clusters, µ ∈ RK×N is the matrix of mean
vectors, C is the partition, µs ∈ RK×2×N is the tensor of sub-centroids, and Cs is the length K array of
binary partitions of each cluster. Indexing notation follows Python-style.

4.1 Quantifying Description Length

In k∗means, we quantify a bit cost for the various components of a clustering model and how they change
over training. This allows k∗means to directly minimise the description length in a single procedure that
simultaneously finds the optimal number of clusters, k∗, and fits a k-means model with k∗ clusters. The
bitcost of a data point x under a clustering model has two parts, the cost of specifying which cluster it belongs
to, which we call the index cost, and the cost of specifying its displacement from that cluster‘s centroid, which
we call the residual cost. The former requires selecting an element of {0, . . . , K − 1}, thus taking log K bits.
The latter can be approximated by the Kraft-McMillan inequality, as − log p(x|c), where c is the centroid
of x’s assigned cluster. We model the cluster distribution as a multivariate normal distribution with unit

3

Under review as submission to TMLR

Table 1: Common clustering algorithms and their required parameters
Algorithm Required Parameters
K-means Number of clusters (k)
Gaussian Mixture Models (GMM) Number of components (k); Covariance type
Spectral Clustering Number of clusters (k); Affinity type
Mean Shift Bandwidth parameter (kernel width)
Affinity Propagation Preference parameter; Damping factor
DBSCAN Neighborhood radius (eps); Minimum points (minpts)
HDBSCAN Minimum cluster size; Minimum samples; Cluster selection

eps

X-Means Maximum number of clusters; Minimum number of clusters
Divisive Hierarchical Clustering Stopping criterion
k∗means —

variance

p(x|c) = 1
(2π)d/2 exp

(
−1

2(x − c)T (x − c)
)

⇐⇒ − log p(x|c) = d log 2π + ||x − c||2

2 .

The total cost of the data under the model is the sum of this cost for all data points, plus the cost of the
model itself, which for k clusters, d dimensions and floating point precision m, is kdm bits. (The precision
m is chosen from the data as the smallest value that allows perfect representation.) This is the quantity
minimised by k∗means. Formally, let X be the data to be clustered, Π(X) be the set of all partitions of X,
and |P | be the number of subsets in a partition. The optimal partition P ∗ is

P ∗ = arg min
P ∈Π(X)

|P |dm + |X| log |P | + 1
2

∑
S∈P

Q(S) , (1)

where Q computes the total sum of squares: Q(X) = |X|VarX and then k∗ = |P ∗|. (Full derivation is
provided in Appendix B).

4.2 Minimising Description Length

In this section, we describe the algorithm by which k∗means efficiently optimises Equation equation 1. For a
more formal exposition, see Algorithm 1. In all algorithm definitions we use Python-style indexing notation.
The familiar Lloyd’s algorithm for k-means alternates between two steps: assign, which assigns each point
to its nearest centroid, and update, which updates the centroids of each cluster to the mean of all of its
assigned points. As well as the centroids and clusters, k∗means keeps track of subcentroids and subclusters.
Subclusters consist of a partition of each cluster into two, and subcentroids are the means of all points in each
subcluster. These are updated during the update and assign steps in just the same way as the main clusters
and centroids. Essentially, each cluster has a mini version of k-means happening inside it during training.

k∗means introduces two additional steps, maybe-split and maybe-merge, to the standard assign-update
procedure. After the assign and update steps, the algorithm calls maybe-split, which uses the subclusters
and subcentroids to determine whether any cluster should be split. If no clusters are split, it proceeds with
maybe-merge. In the case of a split, each constituent subcluster is promoted to a full cluster, and a new set
of subclusters and subcentroids is initialised within each of them, following the k++-means initialisation
method (Arthur & Vassilvitskii, 2006). If two clusters are merged, their subclusters are discarded, and the

4

Under review as submission to TMLR

noend 1 K*-means Algorithm
1: procedure K*-means(X)
2: best_cost←∞
3: unimproved_count← 0
4: µ← 1

n

∑n

i=1 xi ▷ where the xis are the constituents of X, i.e. X = {x1, . . . , xn} ⊂ Rm

5: C ← [X] ▷ Python-style notation for an array with a single element, X
6: µs ← sub-centroids initialised using k++means
7: Cs ← [{x ∈ X : ∥x− µs1∥ < ∥x− µs2∥} , {x ∈ X : ∥x− µs2∥ < ∥x− µs1∥}]
8: while true do
9: µ, C, µs, Cs ← KmeansStep(X, µ, C, µs, Cs) ▷ One assign + update step for both main centroids/clusters

and subcentroids/subclusters.
10: µ, C, µs, Cs, did_split←MaybeSplit(X, µ, C, µs, Cs)
11: if ¬did_split then
12: µ, C, µs, Cs ← KmeansStep(X, µ, C, µs, Cs)
13: µ, C, µs, Cs ←MaybeMerge(X, µ, C, µs, Cs)
14: cost←MBitCost(X, µ, C)
15: if cost < best_cost then
16: best_cost← cost
17: unimproved_count← 0
18: else
19: unimproved_count← unimproved_count + 1
20: if unimproved_count = patience then
21: break
22: return µ, C

23: procedure BitCost(X, µ, C)
24: d← the dimensionality of X
25: floatprecision← − log of the minimum distance between any values in X
26: floatcost← max(X)−min(X)

floatprecision

27: modelcost← |C|d× floatcost
28: idxcost← |X| log(|C|)
29: c← the sum of the squared distances of every point in X from its assigned centroid
30: residualcost← |X|d log(2π)+c

2
31: return modelcost + idxcost + residualcost

clusters themselves are demoted to become two subclusters inside a new cluster that is their union. k∗means
is initialised with just a single cluster containing all data points (and its two sub-clusters), and then cycles
between assign, update, maybe-split, and maybe-merge until the assignments remain unchanged for a full
cycle. (In practice, for speed, we terminate if the cost has improved by < 2 in the past five cycles. These are
not core parameters of the algorithm, and can easily be omitted, in which the runtime is ∼30% longer.) In this
way, it simultaneously optimises k and the standard k-means objective, with respect to Equation equation 1.

Maybe-Split Step This method (Algorithm 2) checks whether each cluster should be split into two. A naive
approach would involve computing Equation equation 1 for the current parameters, and then again with the
given cluster replaced by its two subclusters, splitting if the latter is smaller. However, we can perform a
faster, equivalent check by simply measuring the difference in cost. If there are currently k clusters, splitting
would increase the index cost of each point by log(k + 1) − log(k) ≈ 1/(k + 1). It would also decrease the
residual cost by Q(S) − (Q(S1) + Q(S2)), where S is the original cluster and S1, S2 are its subclusters. To
determine whether a split is beneficial, we compute Q(S) − (Q(S1) + Q(S2)) for every cluster. If any value
exceeds 2N/(k + 1), the cluster with the largest difference is split.

Maybe-Merge Step This method (Algorithm 3) checks whether a pair of clusters should be merged. To
avoid the time taken to compare every pair, we compare only the closest pair of centroids. Analogously to
maybe-split, the potential change from merging is 1

2 (Q(S) − (Q(S1) + Q(S2))) − N/k, where S1 and S2 are
the two clusters with the closest centroids, and S = S1 ∪ S2. If this value is positive, then S1 and S2 are
merged and become the new subclusters inside the new cluster S.

5

Under review as submission to TMLR

noend 2 Maybe-Split Procedure
1: procedure MaybeSplit(X, µ, C, µs, Cs)
2: best_costchange← BitCost(X, µ, C)
3: split_at← −1
4: for i ∈ {0, . . . , |µ|} do
5: subc1, subc2← Cs[i]
6: submu1, submu2← µs[i]
7: costchange =

∑
x∈submu1(x − subc1)2 +

∑
x∈submu2(x −

subc2)2 −
∑

x∈C[i](x− µ[i])2 + |X|/(|µ|+ 1)
8: if costchange < best_costchange then
9: best_costchange← costchange

10: split_at← i

11: if best_costchange < 0 then
12: µ← Split(µ, µs, split_at)
13: C ← Split(C, Cs, split_at)
14: submu1′, submu2′ ← k++means on Cs[i]
15: µs ← µs[: split_at] + (submu1′, submu2′) + µs[split_at :]
16: return µ, C, µs, Cs, split_at ≥ 0
17: procedure Split(A, As, split_at)
18: A← A[: split_at] + As[split_at] + A[split_at :]

noend 3 Maybe-Merge Procedure
1: procedure Maybe-

Merge(X, µ, C, µs, Cs)
2: i1, i2 ← the indices of the closest

pair of centroids
3: Z ← C[i1] ∪ C[i2]
4: mmerged ← 1

|Z|

∑
x∈Z

x

5: mainQ←
∑

z∈Z
(z −mmerged)2

6: subcQ←
∑

x∈C[i1](x− µ[i1])2 +∑
x∈C[i2](x− µ[i2])2

7: costchange← mainQ−subcQ−
N/|µ|

8: if costchange < 0 then
9: C ← C with C[i1] replaced

with Z and C[i2] removed
10: µ ← µ with µ[i1] replaced

with mmerged and µ[i2] removed
11: return µ, C

4.3 Theoretical Guarantees

4.4 Proof of Convergence

We now prove that k∗means is guaranteed to converge in finite time. This is an extension of the proof
of convergence for k-means, and uses the fact that all four of the steps at each cycle–assign, update,
maybe-split, and maybe-merge–can only decrease the cost function in equation 1.

Lemma 1. At each assign step (which is the same step as vanilla k-means), the three-part code length
either decreases or remains the same, and it remains the same only if no points are reassigned.

Proof. As defined in Section 4.1, the three parts to the cost are the model cost, consisting of the bits to
specify the centroids of the fit clustering model, the index cost, consisting of the bits to specify the cluster
membership of each point, and the residual cost, consisting of the bits corresponding to the displacement of
each from its cluster centre. The former depends only on the number of points N and the number of clusters
k, and is unaffected by re-assignment. The latter is proportional to the sum of squared distances of each
point to its assigned centre. By definition of reassignment, if a point is reassigned, then it is closer to its new
centroid than its old centroid. Thus, every reassignment does not affect the first two summands of the cost
and strictly reduces the third.

Lemma 2. At each update step (which is the same step as vanilla k-means), the bit cost either decreases or
remains the same, and it remains the same only if no centroids are updated.

Proof. As with the assign step, the update step does not change k or N and so does not affect the index
cost. The latter can be written as the sum across clusters of the sum of all points in that cluster from the
centroid. When the centroids are updated, they are set to the mean of all points in the cluster, which is the
unique minimiser of the sum of squared distances. As well as a standard statistical fact, this can be seen by

6

Under review as submission to TMLR

observing that the SS(x) =
∑m

i=1(x − xi)2 is a U-shaped function of x, so achieves its global minimum when

SS′(x) = 0 ⇐⇒

2
m∑

i=1
x − xi = 2mx − 2

m∑
i=1

xi = 0 ⇐⇒

x = 1
m

m∑
i=1

xi .

This holds for the reassignment of each cluster and, by extension, for the entire reassignment step.

Theorem 3. The k∗means algorithm is guaranteed to converge in finite time.

Proof. By Lemmas 1 and 2, the bit cost strictly decreases at each step at which points are reassigned and
centroids updated. The other two steps, maybe-split and maybe-merge, include explicit steps for which
the bit cost decreases before being performed, so they are also guaranteed to strictly reduce the bit cost.
Together, this means the algorithm will never revisit an assignment during training. Moreover, there are
a finite number of assignments, equal to the number of partitions of N data points, which is given by the
N + 1th Bell number (Graham et al., 1994), BN+1. Therefore k∗means cannot run for more than a finite
number, namely BN+1, steps.

Remark 4. This is an extension of the standard proof of convergence of k-means. Like for k-means, this
proof establishes a theoretical worst-case run time which is exponential, but then, in practice, the algorithm
converges quickly. It is known that k-means is NP-hard (Drineas et al., 2004), and that it can, in theory, run
in exponential time even in 2 dimensions (Vattani, 2009). As k∗means subsumes k-means, the same is true
of it. However, also like k-means, the practical runtime is very good. Practical empirical runtimes are studied
in detail in Section 5.

In Appendix C we also prove a lower bound on the performance of k∗means. We show that all k centroids
will be within ϵ of their true values, with probability at least p, as long as

d >

√
1 + ϵ2 − (ϵ2/2 − 1)e−ϵ2/2

1 − e−ϵ2/2 − k
√

p
+ ϵ .

4.5 Complexity Analysis

The computational complexity of each iteration of k∗means is O(n), the same as that of k-means. The steps
are as follows: (1) assign and update the clusters and centroids, (2) assign and update the subclusters and
subcentroids, (3) check whether to split, (4) (if (3) returns true) split, (5) (if (3) returns false) check whether
to merge, (6) (if (5) returns true) merge. Steps (1) and (2) are the usual Lloyd’s algorithm steps, requiring
the computation of the distance of each point from the centroids. Both are O(n). Step (3) requires computing
the distance of each point from its assigned centroid, and from its assigned subcentroid, so it is also O(n).
Splitting requires initialising new subcentroids with k++means, also O(n). Step (5) requires computing, for
the closest pair of centroids, the distance of each point in their union from their assigned centroid and from
the mean of the union. Again, this is O(n). Finally, step (6) requires redefining the merged centroid as the
mean already computed in (5), and reindexing the existing clusters. This is O(1). Thus, the total complexity
is 5O(n) + O(1) = O(n).

5 Experimental Evaluation

We evaluate our clustering algorithm with three sets of experiments. Firstly, we use synthetic data, controlling
the true number of clusters, and test whether the algorithm correctly identifies it. Secondly, we measure
performance on labelled data, and compare the predicted cluster labels to the true class labels using supervised
clustering metrics. Thirdly, we examine the runtime as a function of dataset size, and show that it scales well
compared to existing methods.

7

Under review as submission to TMLR

Figure 1: Synthetic data of standard, multivariate Normal clusters, with varying degrees of separation.
Left: weak separation, inter-centroid distance constrained to ≥ 2, k∗means is 9% accurate in inferring k
and baselines are ≤4.4%. Middle: inter-centroid distance constrained to ≥ 3, k∗means is 25% accurate in
inferring k and baselines are ≤16%. Right: strong separation, inter-centroid distance constrained to ≥ 5,
k∗means is 99% accurate in inferring k and baselines are ≤57%.

Table 2: Performance predicting the number of clusters in synthetic data for varying degrees of cluster
separation. k∗means performs consistently the best, with near-perfect accuracy when d = 5.

mse acc
k∗means dbscan hdbscan xmeans k-elb k∗means dbscan hdbscan xmeans k-elb

synthetic d=2 306.35 126.10 414.73 721.54 266.0 9.00 4.40 4.00 3.80 7.80
synthetic d=3 81.70 252.41 116.35 681.97 296.0 25.40 5.40 7.80 16.00 13.40
synthetic d=4 1.94 244.28 28.34 630.13 274.0 68.00 7.60 21.40 22.20 20.10
synthetic d=5 0.00 238.18 12.83 623.99 274.0 99.80 6.60 57.60 25.40 20.90

5.1 Synthetic Data

For a range of values of k, we first use Bridson sampling to sample k centroids in R2 near the origin with a
minimum inter-point distance of d. Then we sample 1000/k points from a multivariate normal distribution,
with unit variance, centred at each centroid. Examples of this synthetic data with varying d are shown in
Figure 1. We then run k∗means and comparison methods on these 1,000 points and compare the number
of clusters they find to k. We repeat this 10 times each for each (k, d) ∈ {1, . . . , 50} × {2, 3, 4, 5}. For each
value of d, there are 10 examples each of 50 different values of k. We compute the accuracy, i.e., fraction of
these 500 examples with perfectly correct prediction of k, and also the mean squared error (MSE) from the
predicted k to the true k.

Table 2 presents the results. As shown, k∗means consistently outperforms the baseline algorithms in inferring k.
Unsurprisingly, its performance improves as the distance between centroids increases, and notably, the accuracy
gap between k∗means and the baselines also widens under these conditions. k∗means reaches near-perfect
accuracy in the highly separable setting, c.f. the next highest of HDBSCAN at 58%. Appendix D shows the
same experiment with variances that differs by cluster. Figure 1 contains visualisations of the predictions of
k∗means.

5.2 Labelled Datasets

We evaluate k∗means on six datasets spanning multiple modalities. MNIST and USPS both consist of
handwritten digit images from 0–9, Imagenette (Howard & Gugger, 2019) is a subset of ImageNet with ten
image classes, Speech Commands consists of short spoken words for command recognition in 36 classes,
20 NewsGroups is a dataset of text documents across twenty topics, and MSRVTT consists of video
clips paired with natural language captions in 20 categories. For all datasets, we perform dimensionality
reduction with UMAP (McInnes et al., 2018) (min-dist=0, n-neighbors=10). For ImageNet we first apply
CLIP (Radford et al., 2021) and for 20 Newsgroups we first take features from Llama-3.1 (Touvron et al.,
2023) (mean across all tokens). For MSRVTT, we first take CLIP features of both the video and text (mean

8

Under review as submission to TMLR

Table 3: Supervised metrics on labelled datasets. Methods below the dotted line are given k.

ACC ARI NMI k
Num

Outliers Runtime (s)

meanshift 77.23 63.42 80.28 7.00 0 463.39
DBSCAN 68.75 54.84 77.66 6.00 1 2.95
HDBSCAN 79.73 84.84 70.70 1214.00 11190 46.24 (0.79)

MNIST
domain = images

n classes = 10 xmeans 40.89 (4.75) 34.77 (4.70) 64.74 (2.25) 118.80 (23.59) 0 16.40 (6.41)
DPC 31.88 19.82 62.84 102.00 0.00 58.31 (1.8287)
elbow 87.24 (7.0176) 80.06 (8.3068) 85.37 (2.9301) 10.60 (1.1738) 0.00 (0.0000) 210.18 (12.0703)
DPMM 55.37 (0.4706) 44.97 (0.5174) 73.29 (0.1056) 35.20 (0.6325) 0.00 (0.0000) 53.99 (0.7465)
DivHier -1.00 -1.00 -1.00 -1.00 0 36000+
k∗means 91.26 (3.56) 84.99 (2.97) 87.44 (1.14) 10.90 (0.32) 0 3.38 (0.39)
kmeans 84.12 (8.13) 79.64 (6.92) 85.31 (2.73) 10.00 0 0.09 (0.05)
GMM 86.29 (7.05) 82.61 (6.89) 87.41 (2.74) 10.00 0 0.78 (0.26)

meanshift 74.55 63.88 78.03 6.00 0 27.93
DBSCAN 80.46 71.00 83.51 7.00 0 0.13
HDBSCAN 77.49 82.16 79.09 108.00 829 0.80 (0.01)

USPS
domain = images

n classes = 10 xmeans 55.12 (5.03) 46.09 (4.23) 73.27 (1.71) 41.00 (8.12) 0 1.00 (0.43)
DPC 40.35 24.62 65.70 78.00 0.00 1.18 (0.0058)
elbow 79.81 (7.8221) 71.20 (8.8348) 82.96 (3.8259) 7.00 (0.8165) 0.00 (0.0000) 11.43 (0.4058)
CRP 19.58 (0.4476) 6.54 (0.7680) 15.94 (1.3542) 13.60 (1.7127) 0.00 (0.0000) 298.26 (41.8577)
DPMM 88.59 (0.0594) 79.12 (0.0251) 86.76 (0.0182) 12.00 (0.0000) 0.00 (0.0000) 2.68 (0.3649)
DivHier 88.11 (0.0000) 80.27 (0.0000) 86.13 (0.0000) 8.00 (0.0000) 0.00 (0.0000) 31.79 (2.3307)
k∗means 88.68 (0.00) 81.57 (0.00) 87.14 (0.00) 8.00 (0.00) 0 0.80 (0.26)
kmeans 79.72 (8.15) 78.68 (6.66) 86.41 (2.12) 10.00 0 0.03 (0.03)
GMM 81.72 (6.76) 80.27 (5.68) 86.84 (1.82) 10.00 0 0.11 (0.01)

affinity 41.49 27.73 57.58 46.00 0 233.19
meanshift 55.98 36.05 58.67 6.00 0 103.31
DBSCAN 26.09 3.70 22.00 3.00 1 0.22
HDBSCAN 51.62 46.01 55.52 402.00 4193 1.09 (0.02)

Imagenet
(subset)

domain = images
n classes = 10 xmeans 39.21 (3.19) 25.53 (3.03) 55.92 (0.88) 70.00 (8.54) 0 2.76 (0.68)

DPC 39.76 24.10 56.30 89.00 0.00 2.32 (0.0097)
elbow 70.14 (3.9311) 51.53 (3.4313) 62.68 (2.1283) 7.90 (0.8756) 0.00 (0.0000) 23.85 (7.1662)
CRP 11.27 (0.1030) 0.00 (0.0072) 0.16 (0.0294) 12.40 (1.9551) 0.00 (0.0000) 397.00 (47.4286)
DPMM 70.37 (1.4710) 55.45 (1.3848) 64.07 (0.9699) 15.20 (0.7888) 0.00 (0.0000) 40.71 (1.3952)
DivHier 58.08 (0.0000) 38.26 (0.0000) 59.82 (0.0000) 5.00 (0.0000) 0.00 (0.0000) 317.69 (10.5432)
k∗means 66.18 (1.55) 46.42 (1.45) 60.20 (0.86) 6.40 (0.70) 0 0.94 (0.34)
kmeans 69.79 (5.18) 55.08 (4.65) 64.16 (2.81) 10.00 0 0.05 (0.04)
GMM 66.85 (6.11) 53.97 (5.44) 64.01 (2.76) 10.00 0 0.30 (0.09)

meanshift 52.08 17.89 59.53 16.00 0 1205.21
DBSCAN 50.60 10.52 61.59 20.00 0 2.22
HDBSCAN 65.35 67.68 67.12 2453.00 24170 53.98 (7.86)

Speech
Commands

domain = audio
n classes = 36 xmeans 26.32 (7.78) 14.33 (8.22) 47.70 (18.56) 190.10 (161.25) 0 16.00 (13.01)

DPC 55.79 39.88 67.80 114.00 0.00 65.47
elbow 62.59 (8.0219) 40.20 (8.7028) 66.34 (4.6024) 21.00 (4.5704) 0.00 (0.0000) 395.99 (25.0698)
DPMM 62.64 (0.3104) 46.56 (0.4448) 70.13 (0.0886) 66.90 (0.7379) 0.00 (0.0000) 66.11 (0.3408)
CRP 11.53 (0.8678) 4.13 (0.6360) 12.86 (0.2315) 30.30 (3.0569) 0.00 (0.0000) 6991.60 (871.0678)
DivHier -1.00 -1.00 -1.00 -1.00 0 36000+
k∗means 68.73 (1.57) 48.43 (2.49) 70.22 (0.67) 26.50 (0.97) 0 20.98 (5.22)
kmeans 71.08 (1.72) 57.78 (1.67) 72.67 (0.47) 36.00 0 0.30 (0.06)
GMM 71.04 (1.27) 56.12 (1.63) 72.90 (0.42) 36.00 0 6.46 (0.89)

meanshift 21.50 9.19 30.45 9.00 0 275.23
DBSCAN 16.40 1.98 18.59 12.00 0 0.40
HDBSCAN 30.08 24.05 47.72 664.00 6153 3.27 (0.03)

20 NG
domain = text
n classes = 20 xmeans 30.01 (10.66) 15.48 (8.18) 37.78 (19.83) 107.60 (56.16) 0 4.78 (2.51)

DPC 39.47 21.83 47.41 143.00 0.00 4.58 (0.1567)
elbow 40.45 (7.1649) 23.53 (7.6900) 43.66 (5.8133) 10.67 (4.1633) 0.00 (0.0000) 99.08 (44.8268)
DPMM 49.75 (0.5689) 31.17 (0.8372) 50.63 (0.1245) 45.00 (1.0000) 0.00 (0.0000) 36.14 (0.7786)
CRP 7.90 (0.0968) -0.00 (0.0067) 0.19 (0.0252) 12.00 (2.0000) 0.00 (0.0000) 1657.05 (233.9947)
DivHier 18.02 (0.0000) 5.55 (0.0000) 20.03 (0.0000) 2.00 (0.0000) 0.00 (0.0000) 6.90 (0.6898)
k∗means 42.33 (1.14) 26.08 (0.44) 46.61 (0.67) 11.20 (0.42) 0 2.46 (0.96)
kmeans 46.73 (1.47) 33.68 (0.53) 50.42 (0.48) 20.00 0 0.07 (0.06)
GMM 47.03 (1.22) 33.71 (0.78) 50.68 (0.50) 20.00 0 0.86 (0.19)

meanshift 41.30 12.82 35.96 15.00 0.00 25.09
DBSCAN 37.65 11.51 39.23 27.00 0.00 0.05
HDBSCAN 18.40 5.90 45.39 321.00 1275.00 0.26 (0.73)

MSRVTT
domain = video & text

n classes = 20 XMEANS 40.64 21.75 45.13 78.00 0.00 0.38
DPC 29.84 13.36 46.53 158.00 0.00 0.52 (0.0218)
elbow 44.44 (1.7576) 20.26 (1.7683) 37.74 (1.5068) 12.20 (1.2293) 0.00 (0.0000) 7.65 (0.3514)
DPMM 45.51 (0.8336) 26.30 (1.1535) 44.91 (0.8652) 25.60 (1.0750) 0.00 (0.0000) 8.48 (1.5417)
CRP 10.66 (1.2531) 0.61 (0.2564) 3.07 (0.1236) 18.00 (3.4641) 0.00 (0.0000) 582.05 (73.6062)
DivHier 27.14 (0.0000) 3.28 (0.0000) 13.57 (0.0000) 2.00 (0.0000) 0.00 (0.0000) 1.12 (0.2435)
k∗means 44.10 (136.25) 25.75 (65.28) 38.16 (33.06) 18.10 (87.56) 0.00 2.57 (40.59)
kmeans 40.07 (108.95) 25.35 (128.11) 38.43 (62.75) 20.00 0.00 0.04 (1.01)
GMM 41.41 (193.57) 25.28 (101.87) 38.44 (49.71) 20.00 0.00 0.31 (9.16)

9

Under review as submission to TMLR

across all frames and tokens). As well as tracking the predicted number of classes, we assess partition quality
by comparing to the ground truth partition arising from the class labels using three metrics: clustering
accuracy (ACC), adjusted rand index (ARI), and normalised mutual information (NMI), as defined, in Mahon
& Lukasiewicz (2024).

As baselines for clustering with unknown k, we compare to the following: affinity propagation
(damping factor = 0.5), mean shift (bandwidth = median of pairwise distances), DBSCAN (eps=0.5,
min-samples = 5), HDBSCAN (eps=0.5, min-samples = 5), OPTICS, (ξ = 0.05, min-samples=5), XMeans
(kmax=

√
dataset size), divisive hierarchical clustering (DivHier) using silhouette score as stopping criterion

for splitting, and the elbow-method with k-means up to k = 200, computed using the public kneed library1.
These methods are all described in Section 3 (see also Table 1). For XMeans, in the absence of any guidance
on selecting kmax, we set it to the value at which the information content is roughly equal between the index
cost and the residual cost. All other parameter values are the sci-kit learn2 defaults.

Our results are summarised in Table 3. k∗means consistently outperforms all other methods that do not
require setting k. Meanshift and DBSCAN tend to underestimate k, while affinity propagation, HDBSCAN,
XMeans, and OPTICS tend to overestimate it, often by a factor of 10 or more. k∗means, on average, slightly
underestimates k, but is much closer than existing methods. It is also much more accurate with respect to
clustering metrics, on some datasets (MNIST, USPS), even performing on par with k-means and GMM,
which have the true value of k specified.

Occasionally (20-NG, MSRVTT), one of the existing methods gets a high NMI score. However, we observe
that they also vastly overpredict k in these cases, indicating that the true and predicted partitions have very
different numbers of classes. This can cause NMI to give unreliable results as the entropy in the latter is then
unnaturally high. For existing methods, it is quite likely that one could obtain better results by manually
tuning the parameters. We find that it is possible to get almost any value of k by such tuning (see Appendix
A), but the focus of the present paper is on cases in which the user does not know the true value of k. In
other words, they do not have a ground truth against which to tune these parameters; instead, they have to
use the defaults. Table 3 shows that k∗means is a much better choice in such cases.

Comparison to Sweeping k A common approach when clustering with unknown k is to train k-means
models with multiple values of k, compute some external model-selection criterion, commonly the Bayesian
information criterion (Schwarz, 1978) for each, and select whichever k gives the lowest BIC (Wessman
et al., 2012; Zhang & Li, 2014; Lancaster & Camarata, 2019; Salmanpour et al., 2022). Table 4 shows the
performance of this common approach compared to k∗means. As we simulate the scenario where k is unknown,
we sweep in increments of 10% up to the dataset size. Sweeping plus BIC selection tends to favour very high
values of k, generally 4-5x the number of annotated classes. It is also 10-50x slower than k∗means.

Runtime Analysis The runtimes from Table 3 already indicate the speed of k∗means compared with existing
methods. To examine this further, and in particular how it depends on dataset size, we use subsets of varying
sizes from the largest dataset in Table 3: Speech Commands, which has 99,000 data points. Figure 2 shows
the runtime of k∗means, compared to the fastest baselines, on subsets of size 1, 000, 2, 000, . . . , 99, 000. The
fastest at all sizes is k-means, which remains well under 1s even for 99,000 samples. The next is DBSCAN,
rising to ∼3s, then the GMM ∼5s, and k∗means ∼8s.

HDBSCAN is efficient for small samples, faster than k∗means and GMM, but increases much faster, and
by 99,000 samples, its runtime is 6x that of k∗means. XMeans is the most erratic, by far the slowest for
small sample sizes, and increases very little or even decreases, ending up close to k∗means. The surprising
decrease could be due to XMeans predicting fewer clusters for larger datasets. It could also be related to the
optimised C-Engine that the public XMeans code makes use of3. Note that Figure 2 shows only the fastest
five algorithms. Mean-shift, affinity propagation, and OPTICS are all substantially slower and would be off
the chart if included.

1https://pypi.org/project/kneed/
2https://scikit-learn.org/stable/
3https://pyclustering.github.io

10

https://scikit-learn.org/stable/
https://pyclustering.github.io

Under review as submission to TMLR

Table 4: Comparison of k∗means with the common approach of sweeping k and selecting with BIC. k∗means
is consistently faster and more accurate.

ACC ARI NMI NC Runtime (s)
MNIST sweepkm 12.86 8.17 56.01 25.00 148.15

k∗means 91.26 (3.56) 84.99 (2.97) 87.44 (1.14) 10.90 (0.32) 3.38 (0.39)
USPS sweepkm 32.36 (0.81) 21.77 (0.77) 65.20 (0.40) 68.40 (3.10) 11.21 (0.73)

k∗means 88.68 (0.00) 81.57 (0.00) 87.14 (0.00) 8.00 (0.00) 0.80 (0.26)
ImageNet (subset) sweepkm 8.16 (0.26) 1.18 (0.05) 7.62 (0.05) 83.20 (4.13) 19.54 (0.23)

k∗means 66.18 (1.55) 46.42 (1.45) 60.20 (0.86) 6.40 (0.70) 0.94 (0.34)
Speech Commands sweepm 32.19 (1.27) 20.10 (0.90) 62.29 (0.30) 239.50 (12.12) 951.58 (11.31)

k∗means 68.73 (1.57) 48.43 (2.49) 70.22 (0.67) 26.50 (0.97) 20.98 (5.22)
20 NG sweepkm 32.75 (0.54) 17.44 (0.54) 46.84 (0.17) 107.30 (5.83) 36.61 (1.28)

k∗means 42.33 (1.14) 26.08 (0.44) 46.61 (0.67) 11.20 (0.42) 2.46 (0.96)
MSRVTT sweepkm 27.50 (89.64) 12.24 (53.57) 41.36 (18.64) 91.60 (464.76) 7.33 (20.57)

k∗means 44.10 (136.25) 25.75 (65.28) 38.16 (33.06) 18.10 (87.56) 2.57 (40.59)

Figure 2: Windowed averages of runtime as a function of dataset size. Each point represents the mean
runtime across 10 randomly sampled subsets of the given size from the Speech Commands dataset.

6 Conclusion
This paper presented a new clustering algorithm, k∗means, that can be applied without knowing k and
does not require setting any other parameters, such as thresholds. We prove that k∗means is guaranteed to
converge, and we show empirically on synthetic data that it can more accurately infer k than comparison
methods, and with near-perfect accuracy for sufficiently separated centroids. We then test it on six labelled
datasets spanning image, text, audio and video domains, and show that it is significantly more accurate
than existing methods in terms of standard clustering metrics. We also compare it to the standard practice
of sweeping k in k-means and selecting with a model selection criterion. Finally, we demonstrate how its
runtime scales with dataset size, and show that it is faster, and scales better than the majority of existing
methods. k∗means can be useful in cases where the user has large uncertainty as to the appropriate value
of k.

References
Afroj Alam. Hybridization of k-means with improved firefly algorithm for automatic clustering in high

dimension. arXiv preprint arXiv:2302.10765, 2023.

11

Under review as submission to TMLR

Mihael Ankerst, Markus M Breunig, Hans-Peter Kriegel, and Jörg Sander. Optics: ordering points to
identify the clustering structure. In Proceedings of the 1999 ACM SIGMOD international conference on
Management of data, pp. 49–60, 1999.

Charles E Antoniak. Mixtures of dirichlet processes with applications to bayesian nonparametric problems.
The annals of statistics, pp. 1152–1174, 1974.

David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. Technical report,
Stanford, 2006.

Ricardo JGB Campello, Davoud Moulavi, and Joerg Sander. Density-based clustering based on hierarchical
density estimates. Pacific-Asia conference on knowledge discovery and data mining, pp. 160–172, 2013.

Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering for unsupervised
learning of visual features. In Proceedings of the European conference on computer vision (ECCV), pp.
132–149, 2018.

Dorin Comaniciu and Peter Meer. Mean shift: A robust approach toward feature space analysis. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 24(5):603–619, 2002.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete data via the
em algorithm. Journal of the royal statistical society: series B (methodological), 39(1):1–22, 1977.

Petros Drineas, Alan Frieze, Ravi Kannan, Santosh Vempala, and Vishwanathan Vinay. Clustering large
graphs via the singular value decomposition. Machine learning, 56(1):9–33, 2004.

Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm for discovering
clusters in large spatial databases with noise. In Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining, pp. 226–231. AAAI Press, 1996.

Enrico Fini, Pietro Astolfi, Karteek Alahari, Xavier Alameda-Pineda, Julien Mairal, Moin Nabi, and Elisa Ricci.
Semi-supervised learning made simple with self-supervised clustering. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 3187–3197, 2023.

Brendan J Frey and Delbert Dueck. Clustering by passing messages between data points. Science, 315(5814):
972–976, 2007.

Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics: A Foundation for
Computer Science. Addison-Wesley, 2nd edition, 1994. ISBN 9780201558029. URL https://archive.
org/details/B-001-002-135.

Nicholas Hebdon, Alexa Ortega, Alexander Orlove, Nichole Wheeler, Mia Pham, Vivian Nguyen, Justin
Gladman, and Lindsay D. Waldrop. Dog skull shape challenges assumptions of performance specialization
from selective breeding. Science Advances, 11(5):eadq9590, 2025. doi: 10.1126/sciadv.adq9590. URL
https://www.science.org/doi/abs/10.1126/sciadv.adq9590.

Jeremy Howard and Sylvain Gugger. Imagenette. https://github.com/fastai/imagenette, 2019.

Tsunenori Ishioka. Extended k-means with an efficient estimation of the number of clusters. Ouyou toukeigaku,
29(3):141–149, 2000.

Ozgur Kisi, Salim Heddam, Kulwinder Singh Parmar, Andrea Petroselli, Christoph Külls, and Mohammad
Zounemat-Kermani. Integration of gaussian process regression and k means clustering for enhanced short
term rainfall runoff modeling. Scientific Reports, 15(1):7444, 2025.

Petri Kontkanen, Petri Myllymäki, Wray Buntine, Jorma Rissanen, and Henry Tirri. An mdl framework for
data clustering. Advances in minimum description length: Theory and applications, pp. 323–354, 2005.

Hope S Lancaster and Stephen Camarata. Reconceptualizing developmental language disorder as a spectrum
disorder: issues and evidence. International Journal of Language & Communication Disorders, 54(3):
319–327, 2019.

12

https://archive.org/details/B-001-002-135
https://archive.org/details/B-001-002-135
https://www.science.org/doi/abs/10.1126/sciadv.adq9590
https://github.com/fastai/imagenette

Under review as submission to TMLR

Yan Li and Lei Li. A novel split and merge em algorithm for gaussian mixture model. In 2009 Fifth
International Conference on Natural Computation, volume 6, pp. 479–483. IEEE, 2009.

Alexander H. Liu, Anmol Gulati, Shubham Narang, Ruoming Pang, and Yonghui Wu. Dinosr: Self-distillation
and online clustering for self-supervised speech representation learning. In Advances in Neural Information
Processing Systems, 2023a. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
b6404bf461c3c3186bdf5f55756af908-Paper-Conference.pdf.

Meng Liu, Yue Liu, Ke Liang, Wenxuan Tu, Siwei Wang, Sihang Zhou, and Xinwang Liu. Deep temporal
graph clustering. arXiv preprint arXiv:2305.10738, 2023b.

Stuart Lloyd. Least squares quantization in pcm. IEEE Transactions on Information Theory, 28(2):129–137,
1982.

Jie Ma, Ling Liu, Cong Chen, and Zhou Yu. Structured federated learning through clustered additive modeling.
In Advances in Neural Information Processing Systems, 2023. URL https://proceedings.neurips.cc/
paper_files/paper/2023/file/8668fdc7b2ddf55a0e235824c66f2eee-Paper-Conference.pdf.

James MacQueen. Some methods for classification and analysis of multivariate observations. 1(14):281–297,
1967.

Louis Mahon and Thomas Lukasiewicz. Selective pseudo-label clustering. In KI 2021: Advances in Artificial
Intelligence: 44th German Conference on AI, Virtual Event, September 27–October 1, 2021, Proceedings
44, pp. 158–178. Springer, 2021.

Louis Mahon and Thomas Lukasiewicz. Hard regularization to prevent deep online clustering collapse without
data augmentation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
14281–14288, 2024.

Amir Markovitz, Gilad Sharir, Itamar Friedman, Lihi Zelnik-Manor, and Shai Avidan. Graph embedded pose
clustering for anomaly detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2020.

Leland McInnes, John Healy, and James Melville. UMAP: Uniform manifold approximation and projection
for dimension reduction. arXiv:1802.03426, 2018.

Ole Meyer, Rebecca Diekmann, Sandra Hellmers, Andreas Hein, and Anna Schumacher. Uncovering hidden
insights in the chair rise performance of older adults using dynamic time warping and k-means clustering.
Scientific Reports, 15(1):7654, 2025.

Lukas Miklautz, Timo Klein, Kevin Sidak, Collin Leiber, Thomas Lang, Andrii Shkabrii, Sebastian Tschi-
atschek, and Claudia Plant. Breaking the reclustering barrier in centroid-based deep clustering. arXiv
preprint arXiv:2411.02275, 2024.

Yujie Mo, Zhihe Lu, Runpeng Yu, Xiaofeng Zhu, and Xinchao Wang. Revisiting self-supervised heterogeneous
graph learning from spectral clustering perspective. Advances in Neural Information Processing Systems,
37:43133–43163, 2024.

Seyed Omid Mohammadi, Ahmad Kalhor, and Hossein Bodaghi. K-splits: Improved k-means clustering
algorithm to automatically detect the number of clusters. In Computer Networks, Big Data and IoT:
Proceedings of ICCBI 2021, pp. 197–213. Springer, 2022.

Andrew Y Ng, Michael I Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm. In
Advances in neural information processing systems, pp. 849–856, 2001.

Shengjie Niu, Wenjie Zhang, Yanyan Liang, and Xia Hu. Owmatch: Conditional self-labeling
with consistency for open-world semi-supervised learning. In Advances in Neural Information
Processing Systems, 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/
b4fd162d3e2d015233486a2e313828a7-Paper-Conference.pdf.

13

https://proceedings.neurips.cc/paper_files/paper/2023/file/b6404bf461c3c3186bdf5f55756af908-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/b6404bf461c3c3186bdf5f55756af908-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/8668fdc7b2ddf55a0e235824c66f2eee-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/8668fdc7b2ddf55a0e235824c66f2eee-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/b4fd162d3e2d015233486a2e313828a7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/b4fd162d3e2d015233486a2e313828a7-Paper-Conference.pdf

Under review as submission to TMLR

Rafail Ostrovsky, Yuval Rabani, Leonard J Schulman, and Chaitanya Swamy. The effectiveness of lloyd-type
methods for the k-means problem. Journal of the ACM (JACM), 59(6):1–22, 2013.

Dan Pelleg and Andrew W Moore. X-means: Extending k-means with efficient estimation of the number of
clusters. In Proceedings of the Seventeenth International Conference on Machine Learning, pp. 727–734.
Morgan Kaufmann, 2000.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning
transferable visual models from natural language supervision. In Marina Meila and Tong Zhang (eds.),
Proceedings of the 38th International Conference on Machine Learning, volume 139 of Proceedings of
Machine Learning Research, pp. 8748–8763. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.
press/v139/radford21a.html.

Alex Rodriguez and Alessandro Laio. Clustering by fast search and find of density peaks. science, 344(6191):
1492–1496, 2014.

Meitar Ronen, Shahaf E Finder, and Oren Freifeld. Deepdpm: Deep clustering with an unknown number of
clusters. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
9861–9870, 2022.

Mohammad R Salmanpour et al. Longitudinal clustering analysis and prediction of parkinson’s disease
progression. Quantitative Imaging in Medicine and Surgery, 12(3):292–300, 2022.

Gideon Schwarz. Estimating the dimension of a model. The annals of statistics, pp. 461–464, 1978.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. Llama: Open and efficient foundation language models, 2023.

Andrea Vattani. K-means requires exponentially many iterations even in the plane. In Proceedings of the
twenty-fifth annual symposium on Computational geometry, pp. 324–332, 2009.

Huy V Vo, Vasil Khalidov, Timothée Darcet, Théo Moutakanni, Nikita Smetanin, Marc Szafraniec, Hugo
Touvron, Camille Couprie, Maxime Oquab, Armand Joulin, et al. Automatic data curation for self-
supervised learning: A clustering-based approach. arXiv preprint arXiv:2405.15613, 2024.

Stefan S. Wagner and Stefan Harmeling. Just cluster it: An approach for exploration in high-dimensions
using clustering and pre-trained representations. In International Conference on Machine Learning, 2024.
URL https://proceedings.mlr.press/v235/wagner24a.html.

Jaana Wessman, Stefan Schönauer, Jouko Miettunen, Hannu Turunen, Pekka Parviainen, Jukka K. Seppänen,
Eliza Congdon, Susan Service, Liisa Keltikangas-Järvinen, Jesper Ekelund, Jouko Lönnqvist, Nelson B.
Freimer, Juha Veijola, Heikki Mannila, and Leena Peltonen. Temperament clusters in a normal population:
Implications for health and disease. PLOS ONE, 7(7):e33088, 2012. doi: 10.1371/journal.pone.0033088.
URL https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0033088.

Gaoqing Xu, Qun Chen, Shuhang Jiang, Xiaohang Fu, Yiwei Wang, and Qingchun Jiao. Analyzing the
capability description of testing institution in chinese phrase using a joint approach of semi-supervised
k-means clustering and bert. Scientific Reports, 15(1):11331, 2025.

Sheng Zhang and Chiang-shan R Li. Functional clustering of the human inferior parietal lobule by whole-brain
connectivity mapping of resting-state fmri signals. Brain Connectivity, 4(7):547–557, 2014.

14

https://proceedings.mlr.press/v139/radford21a.html
https://proceedings.mlr.press/v139/radford21a.html
https://proceedings.mlr.press/v235/wagner24a.html
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0033088

Under review as submission to TMLR

Figure 3: Values of k (number of clusters) found on MNIST for different values of the DBSCAN parameters,
min-pts (x-axis) and eps (y-axis). We sweep min-pts from 1–40, and eps from 0.03 to 1.5 in 5% increments.

A Dependence of k on DBSCAN Parameters

Although DBSCAN does not explicitly require setting k, its two key parameters, eps and min-pts, indirectly
determine a value for k. As can be seen in Figure 3, the different values for k found by DBSCAN for different
values of eps and min-pts range from 6 to over 4,000. In general, smaller eps and smaller min-pts produce
more clusters—the number of annotated classes is 10.

B Derivation of Bit Cost for Clustering Objective

The objective to derive is that from Section 4.1:

P ∗ = arg min
P ∈Π(X)

|P |dm + |X| log |P | + 1
2

∑
S∈P

Q(S) .

The first two terms are direct expressions of the cost to specify the centroids (each costs dm bits and there
are |P | of them), and the cluster labels (each costs log |P | bits, and there are |X| of them. The third term
arises from the expression for the negative log-probability, and the fact that we can drop additive constants

15

Under review as submission to TMLR

in the argmin. Let c(P, x) be the centroid of the cluster x belongs to under partition P . Then

arg min
P ∈Π(X)

|P |dm + |X| log |P | +
∑
x∈X

d log 2π + ||x − c(P, x)||2

2 =

arg min
P ∈Π(X)

|P |dm + |X| log |P | + 1
2

∑
x∈X

||x − c(P, x)||2 =

arg min
P ∈Π(X)

|P |dm + |X| log |P | + 1
2

∑
S∈P

∑
x∈S

||x − c(P, x)||2 =

arg min
P ∈Π(X)

|P |dm + |X| log |P | + 1
2

∑
S∈P

Q(S) .

C Theoretical Guarantee of Performance for Equally-sized Spherical Multivariate
Normal Clusters

Given that k∗means subsumes the familiar Lloyd‘s algorithm for k-means, and given the difficulty reasoning
about the behaviour of Lloyd‘s algorithm itself, we instead prove a guarantee of performance with respect to
the k++ means initialisation. This is a similar approach to that taken by Ostrovsky et al. (2013).

We will prove that, if the data comes from k equally-sized multivariate Normal distributions, with the same
isotropic variance, separated by at least d, then the initialisation (which follows k++ means and selects new
points in proportion to the square of their distance from previous points) produces centroids that are all
with ϵ of their true values, with probability at least a. To simplify notation, we will assume all clusters have
variance 1, but this generalises to any value as the initialisations are made with respect to relative distances
and so are invariant to rescaling.

As k∗means proceeds iteratively, we first analyse the single case of splitting a dataset into two, assuming it
contains k true clusters, where k may be greater than 2. The first point is chosen randomly. The probability of
it falling within ϵ of whatever cluster it is in is therefore erf(ϵ/

√
2). For the second point, the probability can

be expressed as a ratio. The numerator, A, is the integral of the squared distance from the first point times
the probability density, integrated over all ϵ-balls around the means of the other clusters. The denominator,
B, is the expected value of the squared distance of a new point from the first point. We are interested in a
lower bound on the probability of approximately correct cluster centroids; therefore, we consider the worst
case for the location of the first point, which is that it is a distance ϵ from its centroid, and a distance d − ϵ
from every other centroid (the latter being a lower bound via the triangle inequality). WLOG, we can assume
the selected point is at the origin of R2, so the squared distance of a possible second point is equal to its
squared norm.

Let X ∼ N (µx, I) in R2, where µx is the true centroid of X, and let Z = X − µx ∼ N (0, I).

We are interested in the conditional expectation:

E[∥X∥2 | ∥X − µx∥ < ε] = E[∥Z + µx∥2 | ∥Z∥ < ε] (2)

Now expand the squared norm:

∥Z + µx∥2 = ∥Z∥2 + 2Z⊤µx + ∥µx∥2

Take the conditional expectation:

E[∥Z + µx∥2 | ∥Z∥ < ε] = E[∥Z∥2 | ∥Z∥ < ε] + 2E[Z⊤µx | ∥Z∥ < ε] + ∥µx∥2

The middle term vanishes, because it is an integral of an odd function about 0. The third term ||µx||2 is
lower-bounded by (d − ϵ)2, due to the triangle inequality and the assumption that the first sampled point is
at the origin. To calculate the first term, note that ||Z||2 is the sum of the squares of 2 normally distributed

16

Under review as submission to TMLR

variables, so it has a Chi-squared distribution with 2 degrees of freedom. The r = ||Z||2, then the pdf is
re

−r2
2 . Then, we have

E[∥Z∥2 | ∥Z∥ < ε] =
∫ ϵ

0 r2(re
−r2

2)dx∫ ϵ

0 re
−r2

2 dx
.

Substituting u = r2/2, so that du = r dr gives ∫ ϵ2/2
0 2ue−udu∫ ϵ2/2

0 re−u

The numerator becomes
[−(u + 1)e−u]ϵ

/2
0 = 1 + (ϵ2/2 − 1)e−ϵ2/2

The denominator becomes
[−e−u]ϵ

2/2
0 = −eϵ2/2 + e0 = 1 − eϵ2/2 .

So the lower bound on the conditional expectation equation 2 becomes

1 + (ϵ2/2 − 1)e−ϵ2/2

1 − eϵ2/2 + (d − ϵ)2 .

As we are going to renormalise anyway, we instead use the unnormalised expectation

1 + (ϵ2/2 − 1)e−ϵ2/2 + (1 − e−ϵ2/2(d − ϵ)2 . (3)

To find the probability of the new centroid being within ϵ of its true centroid, we use this total unnormalised
expectation across all k − 1 other clusters, and normalised by the total unnormalised expectation of the
squared distance. The latter contains two terms. This first is for each of the other k − 1 clusters, which can
be computed using the same argument as above, except using the limit ∞ instead of ϵ, giving 1 + (d − ϵ)2.
The second is for the same cluster as the first point, which can be computed in the same way except now the
distance to the centroid is ϵ rather than d − ϵ, giving 1 + ϵ2. Putting this together, we get

(k − 1)
(

1 + (ϵ2/2 − 1)e−ϵ2/2 + (1 − e−ϵ2/2)(d − ϵ)2
)

(k − 1)(1 + (d − ϵ)2) + 1 + ϵ2 =

(k − 1)
(

1 + (ϵ2/2 − 1)e−ϵ2/2 + (1 − e−ϵ2/2)(d − ϵ)2
)

(k − 1)(d − ϵ)2 + k + ϵ2 .

As expected, this expression approaches 0 as ϵ approaches 0. Claim this is an increasing function of k. Show
that the derivative wrt k is always positive:

((k − 1)(d − ϵ)2 + k + ϵ2)
(

1 + (ϵ2/2 − 1)e−ϵ2/2 + (1 − e−ϵ2/2)(d − ϵ)2
)

− (k − 1)
(

1 + (ϵ2/2 − 1)e−ϵ2/2 + (1 − e−ϵ2/2)(d − ϵ)2
)

((d − ϵ)2 + 1)

((k − 1)(d − ϵ)2 + k + ϵ2)2 > 0

⇐⇒
((k − 1)(d − ϵ)2 + k + ϵ2 − (k − 1)((d − ϵ)2 + 1) > 0

⇐⇒
k + ϵ2 − (k − 1) > 0

⇐⇒
1 + ϵ2 > 0 .

17

Under review as submission to TMLR

Thus, as a lower bound, we can consider k = 2. We want to determine what value of d will ensure this lower
bound is greater than a:

1 + (ϵ2/2 − 1)e−ϵ2/2 + (1 − e−ϵ2/2)(d − ϵ)2

(d − ϵ)2 + 2 + ϵ2 > a

1 + (ϵ2/2 − 1)e−ϵ2/2 + (1 − e−ϵ2/2)(d − ϵ)2 > a(d − ϵ)2 + 2 + ϵ2

(1 − e−ϵ2/2)(d − ϵ)2 − a(d − ϵ)2 > 2 + ϵ2 − (1 + (ϵ2/2 − 1)e−ϵ2/2)

(d − ϵ)2 >
1 + ϵ2 − (ϵ2/2 − 1)e−ϵ2/2

1 − e−ϵ2/2 − a

d >

√
1 + ϵ2 − (ϵ2/2 − 1)e−ϵ2/2

1 − e−ϵ2/2 − a
+ ϵ (4)

We want, with probability p, to get all initialised centroids with ϵ of their true value, which requires repeating
this successfully k times. The initialisations at each iteration are independent. Thus, we need

(ak > p

a > k
√

p .

Subbing into equation 4, we conclude that all initialised centroids will be within ϵ of their true values, with
probability at least p, as long as

d >

√
1 + ϵ2 − (ϵ2/2 − 1)e−ϵ2/2

1 − e−ϵ2/2 − k
√

p
+ ϵ . (5)

Plugging in some numbers, p = 0.32, k = 4, ϵ = 2.0, we get

d >

√
1 + 4 − (2 − 1)e−2

1 − e−2 − 0.7 + 2

=

√
4.865

0.865 − 4
√

0.32
+ 2.0 = 8.50 .

Thus, we conclude that, with probability at least 0.32, all centroids will be within 2 of their true values, as
long as the centroids are separated by a distance of at least 8.5.

This proof assumes the parent centroid becomes one of the child centroids, but in practice it is initialised and
updated via Lloyd, which would be significantly more accurate, so this is a loose bound.

D Extended Experimental Results

mse acc
k∗means dbscan hdbscan xmeans k∗means dbscan hdbscan xmeans

synthetic s=2 283.44 43.19 232.47 735.91 9.60 7.00 2.60 2.40
synthetic s=3 65.11 41.11 144.05 703.73 32.60 3.60 4.80 8.80
synthetic s=4 1.83 27.12 104.96 669.22 71.20 5.40 12.00 17.00
synthetic s=5 0.19 24.58 76.98 644.44 82.40 4.80 22.40 19.80

Table 5: Clustering performance on synthetic data where the variance differs by cluster. Variance for each
cluster is sampled from a Normal distribution with mean 1 and variance 1 (thresholded at 1e-4 to prevent
negative values).

18

Under review as submission to TMLR

Figure 4: Clusters predicted by k∗means for the UMAP representations on the Speech Commands dataset,
by k∗means (left) and XMeans (right). k∗means predicts 33 classes and XMeans predicts 315, vs. 36 in the
annotations.

19

	Introduction
	Introduction
	Related Work
	The k*means Algorithm
	Quantifying Description Length
	Minimising Description Length
	Theoretical Guarantees
	Proof of Convergence
	Complexity Analysis

	Experimental Evaluation
	Synthetic Data
	Labelled Datasets

	Conclusion
	Dependence of k on DBSCAN Parameters
	Derivation of Bit Cost for Clustering Objective
	Theoretical Guarantee of Performance for Equally-sized Spherical Multivariate Normal Clusters
	Extended Experimental Results

