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Abstract001

Memory capability is a critical aspect of large002
language models (LLMs). However, the dis-003
parity in memory ability between small and004
large LLMs remains unclear. In this pa-005
per, we present a novel investigation into the006
memory capabilities of both small and large007
LLMs, introducing an innovative knowledge-008
based dataset, enriched with frequency an-009
notations. Derived from Wikidata5M, this010
dataset quantifies fact frequency by counting011
the co-occurrences of head and tail entities in012
Wikipedia and Baidu Baike documents. Build-013
ing upon this, we constructed a fact-based014
question-answering dataset called KDF, and015
evaluated the memory performance of state-of-016
the-art pre-trained base model families. Our017
comprehensive experiments demonstrate that018
large LLMs exhibit robust memory capabilities,019
retaining most facts even when they occur infre-020
quently. Conversely, small LLMs are limited to021
recalling only a subset of high-frequency facts,022
struggling significantly with low-frequency in-023
formation. Our study not only illuminates the024
memory discrepancies between different scales025
of LLMs but also offers a valuable resource and026
methodology for future research in LLMs.027

1 Introduction028

Large language models (LLMs) have become the029

focus in the past few years. They can handle030

many fact-based NLP tasks without further fine-031

tuning(Petroni et al., 2019). This phenomenon sug-032

gests that LLMs are capable of recalling facts from033

their pretraining data. There are two main direc-034

tions in the development of LLMs: small LLMs035

and large LLMs. Small LLMs, such as Phi-2(Li036

et al., 2023), Qwen1.5-1.8B (QwenTeam, 2024a)037

and so on, usually have fewer than 4 billion param-038

eters. In contrast, large LLMs like Llama 3-70B,039

Qwen1.5-110B, which have significantly more pa-040

rameters. While both small and large LLMs are041

valuable in their respective contexts, the distinction042

between their memory capabilities remains unclear. 043

Moreover, in the past year, especially after the born 044

of ChatGPT1, a large number of new LLMs have 045

emerged. The newly released models like Llama 046

3 (AI@Meta, 2024) are much well trained than 047

previous models. Exploring the memory ability 048

of these models are necessary. Understanding the 049

differences in how these models retain and recall in- 050

formation from their pretraining data is crucial for 051

optimizing their application in various NLP tasks. 052

Some previous work like Mallen et al. (2022), 053

Kandpal et al. (2023), Carlini et al. (2022) and 054

Sun et al. (2024) show that the memory ability is 055

strongly related to how many times a fact has ap- 056

peared in pre-training data. However, counting the 057

exact frequency is challenging. Yu et al. (2023) 058

sort the entities according to their frequency of 059

occurrence in Wikipedia (Jin et al., 2019), which 060

is used to identify high/low frequency knowledge. 061

However, entities with high frequency in Wikipeida 062

doesn’t mean they would co-occor with high fre- 063

quency. Mallen et al. (2022) uses the Wikipedia 064

monthly page views as an approximation. Simi- 065

larly, Sun et al. (2024) approximate the frequency 066

with traffic (such as views and votes) and density 067

(such as the number of facts about the entity). Al- 068

though the views are much easier to acquire, there 069

is still a distance between views and frequency. 070

Kandpal et al. (2023) first run entity linking on 071

pre-training dataset. Then they extract and link 072

entities from downstream question answer pairs. 073

Finally, they count the co-occur documents of ques- 074

tion entity and answer entity as the fact frequency. 075

The datasets they consider including The Pile (Gao 076

et al., 2021), ROOTS(en) (Laurençon et al., 2023), 077

WikiPedia (Lee et al., 2019) and so on. 078

In this paper, we undertake a comprehensive in- 079

vestigation into the memory capabilities of several 080

newly released model families, including Llama 081

1https://openai.com/blog/chatgpt
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2 family (Touvron et al., 2023), Llama 3 family082

(AI@Meta, 2024), Qwen1.5 family (QwenTeam,083

2024a), Qwen2 family (QwenTeam, 2024b), and084

Yi family (01.AI et al., 2024). Models within a085

family typically share the same pretraining data086

distribution, which facilitates a systematic com-087

parison of the memory capabilities between small088

and large LLMs. To this end, we introduce KDF,089

a novel Knowledge fact Dataset with Frequency090

annotations. KDF is derived from Wikidata5M091

(Wang et al., 2019), and we meticulously count092

the co-occurrences of head and tail entities in both093

the Wikipedia and Baidu Baike datasets to estab-094

lish frequency metrics. Given the prevalence of095

Wikipedia and Baidu Baike as foundational fact-096

based datasets, we assume they have been exten-097

sively utilized in the training processes of the model098

families under consideration.099

Our approach not only allows for an accurate100

assessment of memory retention across different101

model scales but also provides insights into the102

nuances of fact recall capabilities, paving the way103

for future advancements in LLM architecture and104

training methodologies.105

2 Related Work106

Memorization Ability One of the seminal works107

in evaluating the factual and commonsense knowl-108

edge of language models is the LAMA (LAnguage109

Model Analysis) probe introduced by (Petroni et al.,110

2019). LAMA provides a set of knowledge sources111

composed of facts, formatted as either subject-112

relation-object triples or question-answer pairs.113

These facts are converted into cloze statements,114

which are used to query the language model for115

missing tokens. The evaluation metric is based on116

how highly the model ranks the ground truth token117

against other words in a fixed candidate vocabulary.118

KoLA (Yu et al., 2023) emulates human cognitive119

processes to develop a four-level classification of120

knowledge-related abilities, with the lowest level121

focusing on knowledge memorization. Frequency122

is defined based on the occurrence of entities in123

Wikipedia. It examines the correlation between124

memorization and training frequency by creating125

high-frequency and low-frequency test sets, by se-126

lecting 100 entities from the top 2,000 and from the127

least frequent entities, respectively. Unlike KoLA,128

we define frequency based on the co-occurrence129

of head and tail entities, and we further refine the130

frequency intervals into more granular categories.131

Figure 1: The progress of building KDF.

Knowledge Frequency The definition of knowl- 132

edge frequency is not unique. Some stud- 133

ies use popularity as a proxy for frequency. 134

PopQA(Mallen et al., 2022) use Wikipedia page 135

views as a measure of popularity and convert knowl- 136

edge triples from Wikidata, with diverse levels 137

of popularity, into natural language questions, an- 138

chored to the original entities and relationship 139

types. (Sun et al., 2024) proposed Head-to-Tail, 140

which uses two ways to approximate popularity: 141

traffic and density. When there is traffic informa- 142

tion, such as views and votes, they conveniently use 143

traffic to measure the popularity; otherwise, they 144

use density as a proxy, such as the number of facts 145

or authored works about the entity. Since our focus 146

is on pre-trained base models, current popularity 147

data may not be applicable to earlier versions of 148

these models. Additionally, as we are primarily 149

concerned with factual knowledge, popularity data 150

tends to introduce significant noise. 151

We adopt an alternative method for obtaining fre- 152

quency, specifically using the co-occurrence counts 153

of entities in the training dataset as a proxy for 154

frequency. (Kandpal et al., 2023) studied the re- 155

lationship between the knowledge memorized by 156

large language models and the information in pre- 157

training datasets scraped from the web. It starts 158

by identifying the salient entities within a question 159

and its set of ground-truth answer variations. Next, 160

relevant pre-training documents are identified by 161

searching for instances where the key entities from 162

the question and the answer co-occur. Our method 163

for determining knowledge frequency is similar, 164

but instead of using existing QA datasets, we con- 165

struct knowledge based on Wikidata knowledge 166

graph triplets. This approach is more direct and 167

avoids the potential inaccuracies associated with 168

entity extraction. 169

3 KDF 170

Investigating the frequency of knowledge occur- 171

rences in pre-training corpora presents several sig- 172

nificant challenges. 173
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Firstly, the manifestation of knowledge is inher-174

ently diverse. A single piece of knowledge can175

be conveyed through various expressions, and an176

entity may be known by different aliases or names.177

To accurately locate specific knowledge within un-178

structured pre-training data, it is crucial to employ179

techniques that structure the knowledge into a stan-180

dardized format. To tackle this, we opted to use181

knowledge graph, representing knowledge in the182

form of triples, where each triple consists of a (head183

entity, relation, tail entity). We consider each triple184

to represent a distinct piece of knowledge. We de-185

fined the frequency of knowledge occurrences as186

the number of times the head and tail entities co-187

occur in the retrieval corpus. This structured repre-188

sentation serves as the foundation for constructing189

our prompt questions.190

Another key challenge is about the pre-training191

data. Extracting factual knowledge from unstruc-192

tured pre-training data is inherently difficult due to193

the immense size of these datasets and the lack of194

transparency regarding the sources and composi-195

tion of the pre-training material used by most mod-196

els, making comprehensive searches impractical.197

Pre-training datasets like Common Crawl, which198

are derived from web data, are often unstructured199

and contain substantial noise. Conducting searches200

without appropriate filtering would inevitably result201

in inaccurate frequency statistics. To address these202

issues, we restricted our search scope to Wikipedia203

and Baidu Baike, as these two corpora are the most204

widely used factual knowledge bases in the En-205

glish and Chinese domains respectively, and they206

maintain relatively clean data.207

We propose KDF, as shown in Figure 1, a208

knowledge-based question-answering benchmark,209

which is designed to evaluate the performance of210

large language models (LLMs) across knowledge211

of varying frequencies, and ensure a more accu-212

rate representation of knowledge distribution in213

the pre-training corpora. Since we focus on fac-214

tual knowledge, we use the triplets provied by iki-215

data5M(Wang et al., 2019), which is a high-quality216

subset of Wikidata containing about 5M entities,217

20M triplets, and aligned entity descriptions.218

We filtered out relations with the following char-219

acteristics: 1) the relation contains too few triples,220

2) it is highly subjective or ambiguous (e.g., "topic",221

"symptom"), 3) the relation encompasses too few222

tail entities. These selected relations cover multi-223

ple domains such as literature and art, geography,224

business, and politics.225

Frequency Range Number
0 872

[1, 10) 646
[10, 100) 577
[100, inf) 674

Table 1: Frequency distribution of KDF

We obtain the head and tail entities of the triples 226

encompassed by these relations. We get the en- 227

tity name from Wikidata dumps and we only use 228

its Chinese name. We then search for the co- 229

occurrence frequencies of each triple’s head and 230

tail entities in both Baidu Baike and Wikipedia. 231

This co-occurrence frequency serves as a proxy 232

for the frequency of the knowledge represented by 233

each triple(Elsahar et al., 2018). For instance, 234

consider the triple (英国,首都,伦敦). We take the 235

head entity "英国" and the tail entity "伦敦" and 236

calculate the number of documents that mention 237

both entities. 238

Then, we randomly select some triples from each 239

frequency range as our candidate triples. The fre- 240

quency ranges including: 0, [1, 10), [10, 100) and 241

[100, inf). We refer frequency ≤ 10 as low fre- 242

quency and > 100 as high frequency. 243

We aim to have the model predict the tail entity 244

given the head entity and the relation. To ensure 245

natural phrasing, we use a template-based approach 246

to generate the questions. For each triple, we use 247

the sentence pattern "The [relation] of [head] is 248

[masked]," where the [masked] represents the tail 249

entity that the model needs to predict. Given the 250

numerous aliases for entities, we use a multiple- 251

choice format to facilitate post-processing, requir- 252

ing the model to choose the correct answer from 253

four options (A, B, C, and D). To generate distrac- 254

tors for each question, we randomly sample from 255

all tail entities under the current relation, ensuring 256

that the sampled options do not form a valid triple 257

with the given head entity. 258

Finally, there are 2964 triples, including 17 dis- 259

tinct relations. The frequency distribution is shown 260

in Table 1. The relation and it’s template is shown 261

in Appendix Table 3. 262

4 Experiments 263

We evaluated the memory capability of models 264

with different parameter sizes on our newly pro- 265

posed benchmark, focusing on knowledge across 266

various frequency ranges. Our evaluation concen- 267
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(a) (b) (c) (d)

Figure 2: Overall results. (a), (b), and (c) show the results of small, medium, and large-scale models, respectively.
(d) presents the average performance of them.

trated on state-of-the-art pre-trained base model268

families, covering a wide range of parameter sizes,269

including Llama 2 (7B, 13B, 70B), Llama 3 (8B,270

70B), Qwen1.5 (0.5B, 1.8B, 4B, 7B, 14B, 32B,271

72B, 110B), Qwen2(0.5B, 1.5B, 7B, 72B), and Yi272

(6B, 34B).273

We evaluating these base models in 5-shot for-274

mat. An example is shown in Appendix Figure 3.275

We using the logits of A, B, C and D from the first276

generated token, and using the one with maximum277

value as the predict result. This result is stable for278

different runs. We use accuracy as our evaluation279

metric.280

4.1 Overall Results281

As shown in Figure 2, the scores of small LLMs282

like Qwen2-1.5B, Qwen1.5-4B rising with increas-283

ing frequency. As each question in KDF has four284

options, a random baseline could acquire acc of285

0.25. Small LLMs are little better than random286

baseline in low frequency range, which means they287

can barely remember low frequency knowledge.288

For the middle sized models like Yi-6B, Llama289

2-7B, Llama 2-13B, Qwen1.5-32B and so on, they290

perform better than small LLMs but their perfor-291

mance trend is similar to small LLMs.292

The large LLMs like Qwen1.5-110B performs293

well even if the frequency is low. They perform294

even better on the high frequency knowledge. This295

phenomenon demonstrate that large LLMs have296

good memory, they could remember facts from297

pretraining data even with low frequency.298

Scores of each model are shown in Appendix299

Table 2.300

4.2 Discussion301

The models in one model family may not neces-302

sary to be pretrained with the same amount of data,303

could this factor cause the difference? For example,304

Qwen(Bai et al., 2023) report that Qwen-1.8B was305

trained with 2.2T tokens, Qwen-7B was trained 306

with 2.4T tokens, and Qwen-14B was trained with 307

3T tokens. Although Qwen1.5 and Qwen2 didn’t 308

reveal the details, we could assume that they are dif- 309

ferent. However, Yi, Llama 2 and Llama 3 family 310

report the details of their pretraining data, models 311

in these families are trained with the same amount 312

of data. With the model size as the only difference, 313

there is a significant difference of their memory 314

ability. 315

Why our conclusion is different to Kola(Yu et al., 316

2023)? They found that many models perform 317

worse on high frequency knowledge2. They first 318

find the highest/lowest frequency entities accord- 319

ing to their occurrence in Wikipedia. Then, they 320

randomly select 100 entities with highest/lowest en- 321

tities to construct triples, which named as high/low 322

frequency knowledge. However, entities with high 323

frequency in Wikipeida doesn’t mean they co-occor 324

with high frequency. Therefore, the "high fre- 325

quency knowledge" may contains low frequency 326

facts, which lead to lower scores. 327

Compared with Llama 2, which pretrained with 328

2T tokens, Llama 3 was pretrained with 15T tokens. 329

In our experiment, Llama 3 remember much more 330

knowledge than Llama 2. The more the pretraining 331

data, the better the model was trained as a language 332

model. And more pretraining data means the model 333

potentially trained a knowledge fact more times. 334

5 Conclusions 335

We investigate the memory ability of some newly 336

released model families like Llama 3 and Qwen 2. 337

Our experiments find that large LLMs has strong 338

memory ability. Small LLMs, on the contrary, can 339

only remember part of the high frequency facts, not 340

to mention low frequency facts. 341

2See Table 2 in Yu et al. (2023). Models like GPT-4,
GPT-3.5-turbo acquire lower score in 1-1 (high frequency
knowledge), compared with 1-2 (low frequency knowledge).
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6 Limitations342

It’s very difficult to count the frequency of a fact in343

pretraining data due to the diversity of natural lan-344

guage expression and immense size of pretraining345

data. As an approximation, we count the co-occur346

of the entity pair in Wikipeida and Baidu Baike as347

the fact’s proxy frequency. However, this count-348

ing method may underestimate the frequency of a349

fact. As shown in Figure 2, models could acquire350

scores when the fact’s frequency is 0. It doesn’t351

means that the model could learn something that352

has never been shown in the pretraining data. It353

just means that there are no document in Wikipedia354

and Baidu Baike that contains the identical entity355

names. There could be some entity alias that we356

didn’t consider in our method.357

Another limitation of this work is we assume358

each model has trained on Wikipedia and Baidu359

Baike. But models like Qwen1.5 family and360

Qwen2 didn’t report details of their pretraining361

data. Our assumption may not hold.362
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Model 0 [1,10) [10,100) [100,inf) all
Qwen1.5-0.5B 0.305 0.308 0.360 0.455 0.351
Qwen2-0.5B 0.304 0.260 0.360 0.490 0.345
Qwen2-1.5B 0.359 0.370 0.485 0.623 0.447
Qwen1.5-1.8B 0.267 0.271 0.288 0.427 0.309
Qwen1.5-4B 0.334 0.340 0.412 0.553 0.401
Yi-6B 0.518 0.671 0.795 0.850 0.691
Llama2-7B 0.306 0.332 0.385 0.488 0.370
Qwen1.5-7B 0.412 0.504 0.655 0.776 0.568
Qwen2-7B 0.444 0.547 0.678 0.742 0.586
Llama3-8B 0.849 0.875 0.929 0.960 0.897
Llama2-13B 0.461 0.468 0.591 0.804 0.567
Qwen1.5-14B 0.455 0.591 0.704 0.847 0.631
Qwen1.5-32B 0.414 0.565 0.728 0.800 0.606
Yi-34B 0.616 0.805 0.891 0.917 0.792
Qwen2-72B 0.979 0.990 0.993 0.994 0.989
Qwen1.5-72B 0.829 0.898 0.925 0.948 0.894
Llama2-70B 0.700 0.755 0.846 0.899 0.789
Llama3-70B 0.954 0.977 0.981 0.994 0.975
Qwen1.5-110B 0.982 0.983 0.991 0.994 0.987

Table 2: Accuracy of all models across different frequency intervals and their overall accuracy. All values are
presented as percentages with three decimal places.

Relation Count Template
English Chinese
genre 类型 824 [头实体]的类型是[尾实体]。
cast member 演员 820 [头实体]的演员是[尾实体]。
member of 成员属于 274 [头实体]属于[尾实体]的成员。
capital 行政中心 190 [头实体]的行政中心是[尾实体]。
director 导演 167 [头实体]的导演是[尾实体]。
author 作者 119 [头实体]的作者是[尾实体]。
discoverer or inventor 发现者或发明者 86 [头实体]的发现者或发明者是[尾实体]。
composer 作曲者 67 [头实体]的作曲者是[尾实体]。
present in work 登场作品 67 [头实体]是中[尾实体]的人物。
producer 制作人 64 [头实体]的制作人是[尾实体]。
political ideology 政治意识形态 59 [头实体]的政治意识形态是[尾实体]。
publisher 出版者 51 [头实体]的出版者是[尾实体]。
developer 开发者 45 [头实体]的开发者是[尾实体]。
production company 制作商 43 [头实体]的制作商是[尾实体]。
is the study of 研究对象 35 [头实体]的研究对象是[尾实体]。
creator 创作作者 32 [头实体]的创作作者是[尾实体]。
residence 居住地 26 [头实体]的创作作者是[尾实体]。

Table 3: Name of the relationships, number of corresponding data items, and template.
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Figure 3: An example of 5-shot format.
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