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Abstract

Memory capability is a critical aspect of large
language models (LLMs). However, the dis-
parity in memory ability between small and
large LLMs remains unclear. In this pa-
per, we present a novel investigation into the
memory capabilities of both small and large
LLMs, introducing an innovative knowledge-
based dataset, enriched with frequency an-
notations. Derived from WikidataSM, this
dataset quantifies fact frequency by counting
the co-occurrences of head and tail entities in
Wikipedia and Baidu Baike documents. Build-
ing upon this, we constructed a fact-based
question-answering dataset called KDF, and
evaluated the memory performance of state-of-
the-art pre-trained base model families. Our
comprehensive experiments demonstrate that
large LLMs exhibit robust memory capabilities,
retaining most facts even when they occur infre-
quently. Conversely, small LLMs are limited to
recalling only a subset of high-frequency facts,
struggling significantly with low-frequency in-
formation. Our study not only illuminates the
memory discrepancies between different scales
of LLMs but also offers a valuable resource and
methodology for future research in LLMs.

1 Introduction

Large language models (LLMs) have become the
focus in the past few years. They can handle
many fact-based NLP tasks without further fine-
tuning(Petroni et al., 2019). This phenomenon sug-
gests that LLMs are capable of recalling facts from
their pretraining data. There are two main direc-
tions in the development of LLMs: small LLMs
and large LLMs. Small LLMs, such as Phi-2(Li
et al., 2023), Qwenl1.5-1.8B (QwenTeam, 2024a)
and so on, usually have fewer than 4 billion param-
eters. In contrast, large LLMs like Llama 3-70B,
Qwenl.5-110B, which have significantly more pa-
rameters. While both small and large LLMs are
valuable in their respective contexts, the distinction

between their memory capabilities remains unclear.
Moreover, in the past year, especially after the born
of ChatGPT!, a large number of new LLMs have
emerged. The newly released models like Llama
3 (AI@Meta, 2024) are much well trained than
previous models. Exploring the memory ability
of these models are necessary. Understanding the
differences in how these models retain and recall in-
formation from their pretraining data is crucial for
optimizing their application in various NLP tasks.

Some previous work like Mallen et al. (2022),
Kandpal et al. (2023), Carlini et al. (2022) and
Sun et al. (2024) show that the memory ability is
strongly related to how many times a fact has ap-
peared in pre-training data. However, counting the
exact frequency is challenging. Yu et al. (2023)
sort the entities according to their frequency of
occurrence in Wikipedia (Jin et al., 2019), which
is used to identify high/low frequency knowledge.
However, entities with high frequency in Wikipeida
doesn’t mean they would co-occor with high fre-
quency. Mallen et al. (2022) uses the Wikipedia
monthly page views as an approximation. Simi-
larly, Sun et al. (2024) approximate the frequency
with traffic (such as views and votes) and density
(such as the number of facts about the entity). Al-
though the views are much easier to acquire, there
is still a distance between views and frequency.
Kandpal et al. (2023) first run entity linking on
pre-training dataset. Then they extract and link
entities from downstream question answer pairs.
Finally, they count the co-occur documents of ques-
tion entity and answer entity as the fact frequency.
The datasets they consider including The Pile (Gao
et al., 2021), ROOTS(en) (Laurencon et al., 2023),
WikiPedia (Lee et al., 2019) and so on.

In this paper, we undertake a comprehensive in-
vestigation into the memory capabilities of several
newly released model families, including Llama

"https://openai.com/blog/chatgpt



2 family (Touvron et al., 2023), Llama 3 family
(Al@Meta, 2024), Qwen1.5 family (QwenTeam,
2024a), Qwen?2 family (QwenTeam, 2024b), and
Yi family (01.AI et al., 2024). Models within a
family typically share the same pretraining data
distribution, which facilitates a systematic com-
parison of the memory capabilities between small
and large LLMs. To this end, we introduce KDF,
a novel Knowledge fact Dataset with Frequency
annotations. KDF is derived from WikidataSM
(Wang et al., 2019), and we meticulously count
the co-occurrences of head and tail entities in both
the Wikipedia and Baidu Baike datasets to estab-
lish frequency metrics. Given the prevalence of
Wikipedia and Baidu Baike as foundational fact-
based datasets, we assume they have been exten-
sively utilized in the training processes of the model
families under consideration.

Our approach not only allows for an accurate
assessment of memory retention across different
model scales but also provides insights into the
nuances of fact recall capabilities, paving the way
for future advancements in LLLM architecture and
training methodologies.

2 Related Work

Memorization Ability One of the seminal works
in evaluating the factual and commonsense knowl-
edge of language models is the LAMA (LAnguage
Model Analysis) probe introduced by (Petroni et al.,
2019). LAMA provides a set of knowledge sources
composed of facts, formatted as either subject-
relation-object triples or question-answer pairs.
These facts are converted into cloze statements,
which are used to query the language model for
missing tokens. The evaluation metric is based on
how highly the model ranks the ground truth token
against other words in a fixed candidate vocabulary.
KoL A (Yu et al., 2023) emulates human cognitive
processes to develop a four-level classification of
knowledge-related abilities, with the lowest level
focusing on knowledge memorization. Frequency
is defined based on the occurrence of entities in
Wikipedia. It examines the correlation between
memorization and training frequency by creating
high-frequency and low-frequency test sets, by se-
lecting 100 entities from the top 2,000 and from the
least frequent entities, respectively. Unlike KoL A,
we define frequency based on the co-occurrence
of head and tail entities, and we further refine the
frequency intervals into more granular categories.

WikidatasM } Relation |

| Frequency ‘
Filtering | \

Counting

KDE | Multiple=Choice |

Random
\ Questions Construction |

Sampling

Figure 1: The progress of building KDF.

Knowledge Frequency The definition of knowl-
edge frequency is not unique. Some stud-
ies use popularity as a proxy for frequency.
PopQA(Mallen et al., 2022) use Wikipedia page
views as a measure of popularity and convert knowl-
edge triples from Wikidata, with diverse levels
of popularity, into natural language questions, an-
chored to the original entities and relationship
types. (Sun et al., 2024) proposed Head-to-Tail,
which uses two ways to approximate popularity:
traffic and density. When there is traffic informa-
tion, such as views and votes, they conveniently use
traffic to measure the popularity; otherwise, they
use density as a proxy, such as the number of facts
or authored works about the entity. Since our focus
is on pre-trained base models, current popularity
data may not be applicable to earlier versions of
these models. Additionally, as we are primarily
concerned with factual knowledge, popularity data
tends to introduce significant noise.

We adopt an alternative method for obtaining fre-
quency, specifically using the co-occurrence counts
of entities in the training dataset as a proxy for
frequency. (Kandpal et al., 2023) studied the re-
lationship between the knowledge memorized by
large language models and the information in pre-
training datasets scraped from the web. It starts
by identifying the salient entities within a question
and its set of ground-truth answer variations. Next,
relevant pre-training documents are identified by
searching for instances where the key entities from
the question and the answer co-occur. Our method
for determining knowledge frequency is similar,
but instead of using existing QA datasets, we con-
struct knowledge based on Wikidata knowledge
graph triplets. This approach is more direct and
avoids the potential inaccuracies associated with
entity extraction.

3 KDF

Investigating the frequency of knowledge occur-
rences in pre-training corpora presents several sig-
nificant challenges.



Firstly, the manifestation of knowledge is inher-
ently diverse. A single piece of knowledge can
be conveyed through various expressions, and an
entity may be known by different aliases or names.
To accurately locate specific knowledge within un-
structured pre-training data, it is crucial to employ
techniques that structure the knowledge into a stan-
dardized format. To tackle this, we opted to use
knowledge graph, representing knowledge in the
form of triples, where each triple consists of a (head
entity, relation, tail entity). We consider each triple
to represent a distinct piece of knowledge. We de-
fined the frequency of knowledge occurrences as
the number of times the head and tail entities co-
occur in the retrieval corpus. This structured repre-
sentation serves as the foundation for constructing
our prompt questions.

Another key challenge is about the pre-training
data. Extracting factual knowledge from unstruc-
tured pre-training data is inherently difficult due to
the immense size of these datasets and the lack of
transparency regarding the sources and composi-
tion of the pre-training material used by most mod-
els, making comprehensive searches impractical.
Pre-training datasets like Common Crawl, which
are derived from web data, are often unstructured
and contain substantial noise. Conducting searches
without appropriate filtering would inevitably result
in inaccurate frequency statistics. To address these
issues, we restricted our search scope to Wikipedia
and Baidu Baike, as these two corpora are the most
widely used factual knowledge bases in the En-
glish and Chinese domains respectively, and they
maintain relatively clean data.

We propose KDF, as shown in Figure 1, a
knowledge-based question-answering benchmark,
which is designed to evaluate the performance of
large language models (LLMs) across knowledge
of varying frequencies, and ensure a more accu-
rate representation of knowledge distribution in
the pre-training corpora. Since we focus on fac-
tual knowledge, we use the triplets provied by iki-
dataSM(Wang et al., 2019), which is a high-quality
subset of Wikidata containing about 5M entities,
20M triplets, and aligned entity descriptions.

We filtered out relations with the following char-
acteristics: 1) the relation contains too few triples,
2) it is highly subjective or ambiguous (e.g., "topic",
"symptom"), 3) the relation encompasses too few
tail entities. These selected relations cover multi-
ple domains such as literature and art, geography,
business, and politics.

Frequency Range | Number
0 872
[1,10) 646
[10, 100) 577
[100,inf) 674

Table 1: Frequency distribution of KDF

We obtain the head and tail entities of the triples
encompassed by these relations. We get the en-
tity name from Wikidata dumps and we only use
its Chinese name. We then search for the co-
occurrence frequencies of each triple’s head and
tail entities in both Baidu Baike and Wikipedia.
This co-occurrence frequency serves as a proxy
for the frequency of the knowledge represented by
each triple(Elsahar et al., 2018).  For instance,
consider the triple (JE[E, B #T, {6 FX). We take the
head entity "9<[E" and the tail entity "{EZ" and
calculate the number of documents that mention
both entities.

Then, we randomly select some triples from each
frequency range as our candidate triples. The fre-
quency ranges including: 0, [1, 10), [10, 100) and
[100,inf). We refer frequency < 10 as low fre-
quency and > 100 as high frequency.

We aim to have the model predict the tail entity
given the head entity and the relation. To ensure
natural phrasing, we use a template-based approach
to generate the questions. For each triple, we use
the sentence pattern "The [relation] of [head] is
[masked]," where the [masked] represents the tail
entity that the model needs to predict. Given the
numerous aliases for entities, we use a multiple-
choice format to facilitate post-processing, requir-
ing the model to choose the correct answer from
four options (A, B, C, and D). To generate distrac-
tors for each question, we randomly sample from
all tail entities under the current relation, ensuring
that the sampled options do not form a valid triple
with the given head entity.

Finally, there are 2964 triples, including 17 dis-
tinct relations. The frequency distribution is shown
in Table 1. The relation and it’s template is shown
in Appendix Table 3.

4 Experiments

We evaluated the memory capability of models
with different parameter sizes on our newly pro-
posed benchmark, focusing on knowledge across
various frequency ranges. Our evaluation concen-
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Figure 2: Overall results. (a), (b), and (c) show the results of small, medium, and large-scale models, respectively.

(d) presents the average performance of them.

trated on state-of-the-art pre-trained base model
families, covering a wide range of parameter sizes,
including Llama 2 (7B, 13B, 70B), Llama 3 (8B,
70B), Qwenl.5 (0.5B, 1.8B, 4B, 7B, 14B, 32B,
72B, 110B), Qwen2(0.5B, 1.5B, 7B, 72B), and Yi
(6B, 34B).

We evaluating these base models in 5-shot for-
mat. An example is shown in Appendix Figure 3.
We using the logits of A, B, C and D from the first
generated token, and using the one with maximum
value as the predict result. This result is stable for
different runs. We use accuracy as our evaluation
metric.

4.1 Overall Results

As shown in Figure 2, the scores of small LLMs
like Qwen2-1.5B, Qwen1.5-4B rising with increas-
ing frequency. As each question in KDF has four
options, a random baseline could acquire acc of
0.25. Small LLMs are little better than random
baseline in low frequency range, which means they
can barely remember low frequency knowledge.

For the middle sized models like Yi-6B, Llama
2-7B, Llama 2-13B, Qwen1.5-32B and so on, they
perform better than small LLMs but their perfor-
mance trend is similar to small LLMs.

The large LLMs like Qwen1.5-110B performs
well even if the frequency is low. They perform
even better on the high frequency knowledge. This
phenomenon demonstrate that large LL.Ms have
good memory, they could remember facts from
pretraining data even with low frequency.

Scores of each model are shown in Appendix
Table 2.

4.2 Discussion

The models in one model family may not neces-
sary to be pretrained with the same amount of data,
could this factor cause the difference? For example,
Qwen(Bai et al., 2023) report that Qwen-1.8B was

trained with 2.2T tokens, Qwen-7B was trained
with 2.4T tokens, and Qwen-14B was trained with
3T tokens. Although Qwenl.5 and Qwen2 didn’t
reveal the details, we could assume that they are dif-
ferent. However, Yi, Llama 2 and Llama 3 family
report the details of their pretraining data, models
in these families are trained with the same amount
of data. With the model size as the only difference,
there is a significant difference of their memory
ability.

Why our conclusion is different to Kola(Yu et al.,
2023)? They found that many models perform
worse on high frequency knowledge?. They first
find the highest/lowest frequency entities accord-
ing to their occurrence in Wikipedia. Then, they
randomly select 100 entities with highest/lowest en-
tities to construct triples, which named as high/low
frequency knowledge. However, entities with high
frequency in Wikipeida doesn’t mean they co-occor
with high frequency. Therefore, the "high fre-
quency knowledge" may contains low frequency
facts, which lead to lower scores.

Compared with Llama 2, which pretrained with
2T tokens, Llama 3 was pretrained with 15T tokens.
In our experiment, Llama 3 remember much more
knowledge than Llama 2. The more the pretraining
data, the better the model was trained as a language
model. And more pretraining data means the model
potentially trained a knowledge fact more times.

5 Conclusions

We investigate the memory ability of some newly
released model families like Llama 3 and Qwen 2.
Our experiments find that large LLLMs has strong
memory ability. Small LLMs, on the contrary, can
only remember part of the high frequency facts, not
to mention low frequency facts.

See Table 2 in Yu et al. (2023). Models like GPT-4,

GPT-3.5-turbo acquire lower score in 1-1 (high frequency
knowledge), compared with 1-2 (low frequency knowledge).



6 Limitations

It’s very difficult to count the frequency of a fact in
pretraining data due to the diversity of natural lan-
guage expression and immense size of pretraining
data. As an approximation, we count the co-occur
of the entity pair in Wikipeida and Baidu Baike as
the fact’s proxy frequency. However, this count-
ing method may underestimate the frequency of a
fact. As shown in Figure 2, models could acquire
scores when the fact’s frequency is 0. It doesn’t
means that the model could learn something that
has never been shown in the pretraining data. It
just means that there are no document in Wikipedia
and Baidu Baike that contains the identical entity
names. There could be some entity alias that we
didn’t consider in our method.

Another limitation of this work is we assume
each model has trained on Wikipedia and Baidu
Baike. But models like Qwenl.5 family and
Qwen2 didn’t report details of their pretraining
data. Our assumption may not hold.
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Model 0 [1,10) [10,100) [100,inf)  all

Qwenl.5-0.5B | 0.305 0.308  0.360 0455  0.351
Qwen2-0.5B 0.304 0.260  0.360 0490  0.345
Qwen2-1.5B 0.359 0370  0.485 0.623  0.447
Qwenl.5-1.8B | 0.267 0.271 0.288 0427  0.309
Qwenl.5-4B 0.334 0340 0412 0.553  0.401
Yi-6B 0.518 0.671 0.795 0.850  0.691
Llama2-7B 0.306 0332  0.385 0488  0.370
Qwenl.5-7B 0412 0504  0.655 0.776  0.568
Qwen2-7B 0444 0547  0.678 0.742  0.586
Llama3-8B 0.849 0.875 0929 0.960  0.897
Llama2-13B 0461 0468  0.591 0.804  0.567
Qwenl.5-14B | 0.455 0.591 0.704 0.847  0.631
Qwenl.5-32B | 0.414 0.565  0.728 0.800  0.606
Yi-34B 0.616 0.805 0.891 0917  0.792
Qwen2-72B 0.979 0990  0.993 0994  0.989
Qwenl.5-72B | 0.829 0.898  0.925 0.948  0.894
Llama2-70B 0.700 0.755  0.846 0.899  0.789
Llama3-70B 0954 0977 0981 0994 0975
Qwenl.5-110B | 0.982 0.983  0.991 0.994  0.987

Table 2: Accuracy of all models across different frequency intervals and their overall accuracy. All values are
presented as percentages with three decimal places.

Relation Count Template
English Chinese
genre Bl 824 RS R Z R -
cast member T 820 [k SR A TE B2 R SRR
member of AT 274 [%iﬁs]}:ﬂ:[)—%j&ﬁi] HIAL I -
capital B 190 LSRR AT E DR B SR -
director SIE 167  [BK3E4E] E’Jv@im[ﬁ%;&%]
author 1E%& 119 RSB IV 2 R SE 1A -
discoverer or inventor A INEHELIHE 86 [k SR 1) & B Bl & R R [ R S
composer ik 67 (K SR BOVE & 2 RS2 -
present in work BI1E M 67 LR 2 PRSI A -
producer HIEN 64 (L SEAR BV E N R SER] -
political ideology BUaEIRES 59 A SR AENA BIRTESZ B A] -
publisher & 51 [k SR HE RS S [ SR -
developer Vaw ] 45 KSR TE & B 2 RS A -
production company  HI{EF 43 K SEAR TSIV E R 2 B S AE] -
is the study of R 5 35 [k SEAR AR TN S & B 5L
creator BEIEE 32 LSRR B EES & RS A] -
residence JEFH 26 [Sk SR I BITEVERE B SR

Table 3: Name of the relationships, number of corresponding data items, and template.



(SIRTTE) KERE
A: RE-BER

B: Xf8-HFEE

c: PIES 48R

D: X4 1§ EFRAHT

E&:a

IMTE9051MRIMENRIAER N
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Figure 3: An example of 5-shot format.
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