
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HIERARCHICAL REPRESENTATIONS FOR CROSS-TASK
AUTOMATED HEURISTIC DESIGN USING LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Designing heuristic algorithms for complex optimization problems is a time-
consuming and expert-driven process. Recently, Automated Heuristic Design
(AHD) using Large Language Models (LLMs) has shown significant promise for
automating algorithm development. However, existing works mainly rely on pro-
grams to represent heuristics, which are inherently task-specific and fail to gener-
alize as effectively as established metaheuristics like tabu search or guided local
search. To bridge this gap, we introduce Multi-Task Hierarchical Search (MTHS),
an LLM-guided evolutionary method that co-designs general-purpose metaheuris-
tics and task-specific programs. MTHS employs a hierarchical representation and
adopts a two-level evolution framework to evolve task-agnostic metaheuristics and
task-specific program implementations simultaneously across multiple heuristic
design tasks. During this evolution, a knowledge transfer mechanism allows learn-
ing from elite programs designed for other tasks. We evaluated MTHS on distinct
combinatorial optimization problems, where it outperforms both commonly-used
heuristics and existing LLM-driven AHD approaches. Our results demonstrate
that the hierarchical representations facilitate effective multi-task AHD, and the
evolved metaheuristics exhibit strong generalization to related tasks.

1 INTRODUCTION

Designing high-performance heuristic algorithms for complex problem-solving tasks is a notori-
ously challenging endeavor, traditionally relying on a time-consuming, expert-driven process of trial
and error. Recently, Large Language Model (LLM)-driven Automated Heuristic Design (AHD) (Liu
et al., 2024b; Ye et al., 2024; Zheng et al., 2025; Ye et al., 2025) has emerged as a powerful paradigm
to automate algorithm development and mitigate this tedious process. This approach has already
demonstrated its potential by automating the design of high-performance heuristics in diverse opti-
mization domains including combinatorial optimization (Liu et al., 2024b; Ye et al., 2024), black-
box optimization (van Stein & Bäck, 2024; Xie et al., 2025a), and Bayesian optimization (Yao et al.,
2024).

A prevalent strategy in LLM-driven AHD is to embed LLMs as heuristic designers within iterative
search frameworks (Zhang et al., 2024). Various search paradigms have been explored, from Evo-
lutionary Computation (EC) (Liu et al., 2024b; Ye et al., 2024; Dat et al., 2025; Yao et al., 2025)
to Monte Carlo Tree Search (MCTS) (Zheng et al., 2025). For instance, EoH (Liu et al., 2024b)
evolves both natural language thoughts and executable code, ReEvo (Ye et al., 2024) integrates
reflection strategies to refine the design process, and MCTS-AHD (Zheng et al., 2025) organizes
heuristics in a tree to systematically explore the heuristic space.

However, a fundamental limitation persists in current AHD methods: they produce monolithic,
task-specific heuristics. These approaches typically represent heuristics as either low-level pro-
grams (Zheng et al., 2025) or high-level thoughts (Liu et al., 2024b). Task-specific programs offer
limited portability to new problems, while high-level thoughts are often too abstract to guarantee
a direct correspondence with a high-performing implementation (Liu et al., 2024b). Consequently,
existing systems must essentially restart the discovery process for each new problem, failing to in-
stitutionalize learning and generalize algorithmic knowledge across domains. This stands in stark
contrast to human experts, who design and reuse metaheuristics, such as tabu search (Glover &
Laguna, 1998) or simulated annealing (Van Laarhoven & Aarts, 1987), as general-purpose meta-
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heuristics that are effective across a vast range of optimization tasks (Gendreau et al., 2010; Martı́
et al., 2025).

To bridge this gap, we argue that the key lies in creating hierarchical representations that separate
general algorithmic logic from task-specific components, enabling cross-task automated heuristic
design. We introduce the Multi-Task Hierarchical Search (MTHS), an LLM-guided hierarchical evo-
lutionary framework designed to co-design general-purpose metaheuristics and their task-specific
program implementations across multiple tasks simultaneously. MTHS leverages its hierarchical
structure to explicitly transfer knowledge across tasks, allowing effective programs discovered in
one task to inform and accelerate program design in others. Our primary contributions are threefold:

• We propose a hierarchical representation for LLM-driven AHD that consists of a task-
agnostic metaheuristic and its task-specific program instantiations. This mirrors expert
practice, where general metaheuristics are paired with tailored implementations.

• We introduce the MTHS framework, which jointly designs the general metaheuristic and its
task-specific implementations across diverse optimization tasks. At the high level, MTHS
evolves metaheuristics; at the low level, it creates and refines programs and their associated
key functions for each task. A cross-task knowledge transfer is adopted to learn from elite
programs from other tasks.

• We conduct extensive experiments on diverse combinatorial optimization problems. MTHS
consistently discovers heuristics that outperform widely used heuristic baselines and state-
of-the-art LLM-driven AHD methods. Crucially, the evolved metaheuristics exhibit strong
generalization to related problems.

2 MULTI-TASK HIERARCHICAL SEARCH

2.1 HIERARCHICAL REPRESENTATION

This work addresses the problem of automated heuristic design across multiple, related tasks. The
central goal is to discover high-level, general-purpose metaheuristics that can be specialized to
achieve superior performance across multiple tasks. Formally, we are given a set of m tasks,
T = {T1, . . . ,Tm}. Each task Tt is defined by a concise natural language description Dt, a pro-
gram template Tempt providing the necessary inputs and outputs for execution, and a black-box
evaluation function Et(·) that returns a scalar performance score for a given program. Without loss
of generality, we consider minimization problems in this paper.

Our representation for a candidate, which we term an individual Ii, is composed of two hierarchical
levels: To be precise, each individual represents a complete metaheuristic for our multi-task AHD,
encompassing both its high-level metaheuristic description and its task-specific program implemen-
tations. This structure is composed of two levels:

1. Task-Agnostic Metaheuristic (MHi): At the highest level is a general-purpose meta-
heuristic, MHi. Represented as a high-level algorithmic description, it captures the core
problem-solving logic independent of any specific task.

2. Task-Specific Programs (Xi,t): For each task Tt, the metaheuristic MHi is instantiated
into a concrete, executable program, Xi,t. This program adapts the general logic of MHi to
the specific requirements of task Tt. Within each program Xi,t, we identify a performance-
critical key function, denoted Fi,t.

The performance of an individual Ii is evaluated based on the collective performance of its instanti-
ated programs. Let Si,t = Et(Xi,t) be the score obtained by program Xi,t on task Tt. The score list
{Si,1, . . . ,Si,m} is assigned to each individual Ii, which will be used in population management.

To ensure clarity, we will use the term individual to refer to this entire hierarchical entity and meta-
heuristic to refer specifically to the high-level description within it. While the distinction between
”heuristic” and ”metaheuristic” lacks a universal consensus in the literature (Gendreau et al., 2010;
Martı́ et al., 2025), we adopt the view that metaheuristics represent a more general problem-solving
paradigm. Nevertheless, given their conceptual overlap, we may use these terms interchangeably
where the context allows.
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Figure 1: Overview of the MTHS pipeline. The pipeline consists of three main components: (1)
High-level metaheuristic search, (2) Low-level program search, and (3) Knowledge transfer. In the
high-level search, a population of metaheuristics is evolved, where each individual contains one
metaheuristic paired with m task-specific programs. For each newly generated metaheuristic, a
low-level program search is performed for each task: a program is created for each task, and its
key function is identified and refined using LLMs. This produces a new candidate comprising the
metaheuristic and its m programs. Next, a knowledge transfer phase is applied for each task: the
best-performing program across both the existing population and the new candidate is identified and
used to update the other m-1 programs within the same metaheuristic. Candidates produced from
both low-level search and knowledge transfer are added to the population. Finally, a Pareto-based
population management step selects individuals to form the next generation.

2.2 FRAMEWORK

We introduce Multi-Task Heuristic Search (MTHS), a framework that automates heuristic design
across a set of related tasks using a two-level evolutionary algorithm (see Figure 1 and Algorithm 1).
The process begins by prompting LLMs with descriptions of all tasks to seed an initial high-level
population (PH ) of diverse, task-agnostic metaheuristics. Each metaheuristic represents a general
problem-solving strategy intended to be effective across multiple tasks. For each of these meta-
heuristics, MTHS initiates a distinct low-level search for every individual task. This low-level pro-
cess evolves separate populations (PL,t) of task-specific programs. A knowledge transfer mecha-
nism then shares insights from the best-performing programs across tasks. This hierarchical struc-
ture enables MTHS to simultaneously conduct broad strategic exploration at the shared metaheuristic
level and specialized, fine-grained program optimization at the individual task level. We introduce
each phase as follows. We expand the subalgorithms and present the detailed specific prompts in
Appendix B.

2.3 HIGH-LEVEL EVOLUTION

The high-level evolution maintains a population of individuals, PH . In each generation, we employ
the LLM as an evolutionary operator to generate a new candidate metaheuristic. The process begins
by selecting a set of k parent individuals, {I1, . . . , Ik}, from PH . The corresponding metaheuris-
tic descriptions of these parents, {MH1, . . . ,MHk}, are then formatted into a carefully designed
prompt. This prompt instructs the LLM, L, to synthesize a novel and potentially superior meta-
heuristic, adhering to a predefined description template. The LLM’s textual output constitutes the
metaheuristic description, MHnew, for the new offspring.
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Algorithm 1 Multi-Task Heuristic Search (MTHS)

Input:
1: T = {T1, . . . ,Tm}: Set of m tasks, each with description Dt, template Tempt, and evaluator

Et(·)
2: L: Large Language Model
3: Neval: total evaluation limits
4: NH , k,NL: High-level population size and number of parents, Low-level evaluation budget

Output: The final population of high-performing individuals PH

5: procedure MTHS(T ,L,Neval,NH , k)
6: PH ← ∅
7: InitialMHs← L(BuildInitialPrompt({Dt}mt=1))
8: for each MHinit in InitialMHs do
9: Inew ← LowLevelEvolution(MHinit, T ,NL,L)

10: PH ← PH ∪ {Inew}
11: while evaluation count ≤ Neval do
12: {I1, . . . , Ik} ← SelectParents(PH , k)
13: {MH1, . . . ,MHk} ← {I1, . . . , Ik}
14: prompt← BuildEvolutionPrompt({Dt}mt=1, {MHj}kj=1)
15: MHnew ← L(prompt)
16: Inew ← LowLevelEvolution(MHnew, T ,NL,L) ▷ Sec. 2.4
17: if Inew is valid then
18: Inew ← KnowledgeTransfer(Inew, T ,L) ▷ Sec. 2.5
19: PH ← UpdatePopulation(PH ∪ {Inew},NH) ▷ Sec. 2.6
20: return PH

21: procedure LOWLEVELEVOLUTION(MHnew, T ,NL,L)
22: Inew ← new Individual with MHnew

23: for t← 1 to m do
24: Xnew,t ← L(BuildProgramPrompt(MHnew,Tt.Temp,L))
25: Fnew,t ← L(BuildKeyFuncPrompt(Tt.D,Xnew,t,L))
26: (X∗

new,t,S
∗
new,t)← EvolveKeyFunction(Xnew,t,Fnew,t,Tt.E,L)

27: Inew.Xnew,t ← X∗
new,t

28: Inew.Snew,t ← S∗
new,t

29: return Inew

2.4 LOW-LEVEL EVOLUTION

Each newly generated metaheuristic MHnew must be instantiated and optimized for all m tasks to
determine its fitness. This evaluation is a multi-step procedure executed for each task Tt. First, in
i) Task-Specific Program Generation, the LLM generates a full, compilable program Xnew,t by
integrating the logic of MHnew with the task-specific template Tempt. Second, during ii) Key
Function Identification, the LLM is prompted to analyze the generated code Xnew,t and identify
its most performance-critical component, which we designate as the key function Fnew,t. Third, a
dedicated low-level evolutionary search is performed to refine the key function in a process of iii)
Key Function Refinement. An ephemeral population PL,t is initialized with variants of Fnew,t

generated by the LLM. This population then undergoes a short evolutionary process for a fixed bud-
get of NL evaluations. The LLM acts as a mutation operator, creating new function variants from
existing high-performing ones. Each new variant is injected back into the base program Xnew,t and
evaluated using Et(·). Finally, for iv) Fitness Assignment, after the low-level search concludes,
the best-performing key function variant, F ∗

new,t, is identified. The program incorporating this opti-
mized function, X∗

new,t, yields the fitness score Snew,t for the metaheuristic MHnew on task Tt.

Once this process is completed for all m tasks, a new individual Inew is formed, comprising the
metaheuristic MHnew, its vector of scores {Snew,1, . . . ,Snew,m}, and the set of optimized pro-
grams {X∗

new,1, . . . ,X
∗
new,m}. This individual is then added to the high-level population PH .

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

2.5 KNOWLEDGE TRANSFER

To facilitate explicit cross-task learning, we introduce a knowledge transfer phase. For the new
individual Inew, we identify its best-performing program, X∗

new,src, on some source task Tsrc. The
LLM is then prompted to adapt the logic of this program to every other target task Ttgt (where
tgt ̸= src). This adaptation creates a new set of candidate programs. If an adapted program for Ttgt

achieves a better score than the incumbent program X∗
new,tgt, it replaces it. This process directly

transfers successful algorithmic patterns discovered on one task to others within the context of the
same metaheuristic, MHnew.

2.6 PARETO-BASED POPULATION MANAGEMENT

MTHS uses a Pareto-based survival strategy to manage the high-level population PH . Since
each metaheuristic is evaluated on m tasks, its performance is represented by a score vector
Si = (Si,1, . . . ,Si,m), framing the search as a multi-objective optimization problem. The most
straightforward way to tackle multi-objective search is to transfer the multiple objectives into a
single objective using some scalarization method, such as weighted-sum. However, it is hard to
determine proper weights because the task scores are on different scales.

Therefore, we adopt a Pareto-based approach that works as follows: i): Task Champions (Elitism):
For each task t ∈ {1, . . . ,m}, the individual with the highest score Si,t on that task is automatically
preserved for the next generation. This ensures that the best-known performance on any single task
is never lost. ii): Pareto Dominance Ranking: All remaining individuals in the candidate pool
are ranked based on Pareto dominance. An individual Ii is said to dominate Ij if: (∀t, Si,t ≥
Sj,t) ∧ (∃t′, Si,t′ > Sj,t′), where missing scores are treated as −∞. Individuals are sorted into
non-dominated fronts. iii): Selection and Truncation: The next generation is populated by adding
individuals from the first non-dominated front, then the second, and so on, until the population size
NH is reached. If adding an entire front would exceed the population size, individuals from that front
are selected based on their average scores on all tasks. An illustration of populations in objective
space is presented in Appendix E.

3 EXPERIMENTAL STUDIES

3.1 TASKS AND DATASETS

We evaluate our method on four combinatorial optimization problems: the Traveling Salesman Prob-
lem (TSP), Capacitated Vehicle Routing Problem (CVRP), Flow Shop Scheduling Problem (FSSP),
and Bin Packing Problem (BPP). For each problem, we generate a set of 64 diverse instances for
the heuristic evolution phase. The final performance of the evolved heuristics is then validated on
established, standard benchmark datasets. Further details on instance generation and benchmark
specifics are provided in Appendix C.

• Traveling Salesman Problem (TSP): We aim to find the shortest tour visiting a set of locations.
Our evolution set consists of 100node instances with locations uniformly sampled in [0, 1]2. Fit-
ness is the average optimality gap relative to the Concorde solver (Applegate et al., 2006). For
final evaluation, we use standard instances from TSPLib (Reinelt, 1991).

• Capacitated Vehicle Routing Problem (CVRP): The goal is to design minimum-cost routes
for a fleet of capacitated vehicles to serve a set of customers. The evolution set contains 100-
customer instances. Fitness is measured as the average gap to solutions found by the LKH3
solver (Helsgaun, 2017). We test the final heuristics on CVRPLib benchmarks (Uchoa et al.,
2017).

• Flow Shop Scheduling Problem (FSSP): We seek to schedule n jobs on m machines to minimize
the makespan (total completion time). Our evolution instances feature 50 jobs and a variable
number of machines (m ∈ [2, 20]). Fitness is the average makespan. Final validation is performed
on the Taillard benchmark suite (Taillard, 1993).

• Bin Packing Problem (BPP): The objective is to pack items of various sizes into the minimum
number of fixed-capacity bins. Following prior work (Ye et al., 2024; Zheng et al., 2025), our
evolution instances feature a bin capacity of 150 and item sizes sampled from [20, 100]. Fitness is
the average number of bins used.

5
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Table 1: Results on standard benchmark instances from TSPLib and CVRPLib (Sets A, B, E, F,
M, P, and X). The table reports the average percentage gap to the best-known solutions for four
distinct groups of heuristics: constructive heuristics, metaheuristics, LLM-designed heuristics, and
our methods. The best result for each instance set is highlighted in bold, and the second-best one is
underlined.

TSPLib CVRPLib
50-99 100-199 200-499 500-1000 A B E F M P X

NN 27.07 23.76 24.79 26.57 39.40 42.32 41.51 60.01 52.88 36.18 27.63
Insert 13.99 16.15 20.00 26.30 33.86 33.07 32.51 65.45 44.49 25.96 31.19

Or-tools SA 3.01 3.74 4.62 10.08 6.58 5.40 7.48 9.44 15.54 5.60 7.82
Or-tools TS 1.81 3.20 4.62 10.11 1.05 1.12 1.57 4.56 5.74 1.11 6.06

Or-tools GLS 0.63 1.62 3.34 6.84 1.24 1.14 1.30 3.49 7.74 1.07 6.29
MS 1.82 2.92 4.15 6.58 8.19 11.60 10.25 9.65 42.66 7.52 42.85

ALNS 1.62 1.90 5.24 8.28 6.39 5.80 3.93 3.56 14.94 4.61 11.33
TS 4.10 5.54 7.52 12.61 5.06 4.00 5.83 4.51 6.40 5.56 5.77

ACO EoH 7.95 8.09 14.71 22.36 20.11 16.05 18.15 34.48 31.20 12.90 19.72
ACO MCTS 3.68 3.40 9.13 22.64 15.70 10.90 17.80 35.53 29.34 12.82 18.77

GLS EoH 0.67 0.63 1.62 2.67 2.69 3.89 3.99 6.56 4.43 5.23 5.17
GLS ReEvo 0.79 0.68 1.71 2.72 2.60 3.72 4.00 6.96 2.45 5.61 5.62
GLS MCTS 0.75 0.64 1.53 2.93 3.07 3.97 4.79 6.89 4.23 5.02 6.22

STHS 0.87 0.60 1.47 3.59 3.48 3.88 4.41 3.41 6.80 5.64 5.36
MTHS 0.72 0.49 1.03 2.64 1.08 1.50 0.94 1.23 3.51 1.06 4.29

3.2 METHODS AND SETTINGS

We compare our method, MTHS, against a diverse set of baselines representing the state of the art
in both conventional and LLM-assisted heuristic design.

• Conventional Heuristics: We include widely-used constructive: Nearest Neighbor
(NN) (Rosenkrantz et al., 1977) and a standard Insertion heuristic (Insert) (Rosenkrantz et al.,
1977) and metaheuristic: Tabu Search (TS) (Glover & Laguna, 1998), Adaptive Large Neighbor-
hood Search (ALNS) (Pisinger & Ropke, 2018), Memetic Search (MS) (Neri et al., 2011), and
Guided Local Search (GLS) (Voudouris et al., 2010). For FSSP, we investgate GUPTA (Gupta,
1971),CDS (Campbell et al., 1970), NEH (Nawaz et al., 1983) and NEHFF (Fernandez-Viagas &
Framinan, 2014), where NEH (Nawaz et al., 1983) and NEHFF (Fernandez-Viagas & Framinan,
2014) are widely recognized heuristics for this problem.

• Google OR-Tools: A high-performance, unified solver for CO problems. We utilize its standard
metaheuristic solvers: Guided Local Searach (OR-Tools GLS), Simulated Annealing (OR-Tools
SA) (Van Laarhoven & Aarts, 1987), and Tabu Search (OR-Tools TS) with their default parameter
configurations.

• LLM-driven Methods: We compare against three recent LLM-based AHD methods: EoH (Liu
et al., 2024b), ReEvo (Ye et al., 2024), and MCTS-AHD (Zheng et al., 2025). As these methods
operate on a base heuristic framework, we test them with Ant Colony Optimization (ACO) and
GLS, consistent with their original papers.

• MTHS (Ours): We evaluate our method in two configurations: MTHS (Multi-Task): The full
proposed method, and STHS (Single-Task): An ablation where knowledge transfer and Pareto-
based population management are disabled to assess the single-task performance of our hierarchi-
cal search.

Experimental Setup for LLM-driven AHD For MTHS, we conduct AHD on three tasks (i.e.,
TSP, CVRP and FSSP) with a budget of 1,000 program evaluations (i.e., Neval = 1, 000). The
high-level population size is NH = 8 and the low-level search budget is NL = 4. For STHS and all
compared LLM-driven AHD methods, including EoH, ReEvo, and MCTS-AHD, we conduct one
search run per task with a budget of 1,000 program evaluations with their default settings. To prevent
excessively long evaluations from stalling the search process, we impose a 20-minute time limit on
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Table 2: Results on benchmark FSSP instances. The average gap (%) to the upper bounds from
Taillard’s FSSP benchmarks (Taillard, 1993), calculated over the 10 instances in each problem set.
A set with n jobs and m machines is denoted as n m. The best result in each row is shown in bold,
and the second-best is underlined.

20 5 20 10 20 20 50 5 50 10 50 20 100 5 100 10 100 20 Average

GUPTA 12.89 23.42 21.79 12.23 20.11 22.78 5.98 15.03 21.00 17.25
CDS 9.03 12.87 10.35 6.98 12.72 15.03 5.10 9.36 13.55 10.55
NEH 3.24 4.05 3.06 0.57 3.47 5.48 0.39 2.07 3.58 2.88

NEHFF 2.30 4.15 2.72 0.40 3.62 5.10 0.31 1.88 3.73 2.69
LS 1.91 2.77 2.60 0.32 3.33 4.67 0.28 1.38 3.51 2.31
ILS 0.18 0.59 0.45 0.03 1.27 1.99 -0.03 0.34 1.29 0.68

MTHS -0.01 0.03 0.03 0.00 0.22 0.45 -0.02 0.52 0.98 0.24

each individual heuristic evaluation. We use GPT-5-mini as the underlying LLM for all LLM-driven
methods, except for ACO framework, where we directly adopt the best heuristics reported by Zheng
et al. (2025) for EoH, ReEvo, and MCTS-AHD, rather than re-running the search. A summary of
settings and running times is listed in Appendix D.

Implementation and Execution Environment All heuristic algorithms were implemented in
Python, with the exception of Google OR-Tools, which uses a C++ library with a Python inter-
face. Following standard practice in LLM-driven AHD research, we use the Numba JIT compiler to
accelerate computationally intensive components, such as local search operators, for all metaheuris-
tics, including those designed by the LLM-based methods.

Establishing a perfectly fair comparison based on a fixed evaluation budget is challenging due to the
diverse frameworks and iterative components of different metaheuristics. Therefore, we adopted a
time-based comparison protocol. We carefully configured the parameters of all baseline methods to
commonly accepted values, ensuring that all algorithms had a comparable average wall-clock time
for their execution. Detailed parameter settings are provided in the Appendix D.

The LLM-driven AHD experiments were conducted on a workstation equipped with two Intel Xeon
6248R CPUs and 128 GB of RAM. A single multi-task AHD using MTHS, utilizing 8-core par-
allel evaluations, took approximately 1.5 days to complete. The final heuristic evaluations were
performed on a machine with an Intel Core Ultra 7 CPU and 32 GB of RAM.

3.3 MAIN RESULTS

We present our main experimental results in Table 1 and Table 2. A key contribution of our work is
the ability of MTHS to discover a general-purpose metaheuristic. To demonstrate this, we selected a
single metaheuristic from the final MTHS population and applied its associated three programs to the
three distinct problem domains. This approach highlights the task-agnostic nature and generalization
capabilities of the designed metaheuristic across different tasks. In contrast, existing LLM-driven
AHD frameworks, including EoH, ReEvo, and MCTS-AHD, must execute a separate search to
design a specialized heuristic for each task. The performance metric is the percentage gap relative
to best-known solutions (for TSP and CVRP) or established upper bounds (for FSSP), with lower
values signifying superior performance. For clarity, the best-performing heuristic is marked in bold,
while the second-best is underlined.

Table 1 summarizes the results on the TSPLib and CVRPLib benchmarks. Our proposed method,
MTHS, demonstrates superior performance, consistently outperforming all baseline methods across
nearly all instance sets. For the TSP, MTHS achieves the lowest average optimality gaps on three size
categories, from smaller instances to the largest ones (500-1000 nodes). The performance advantage
of MTHS is consistent on the CVRP benchmarks. It secures the best results on four out of the
seven CVRPLib sets (E, F, P, X) and is highly competitive on the remaining three. In contrast, while
highly optimized solvers like Google OR-Tools perform well, especially on smaller CVRP instances,
their performance degrades on larger TSP instances compared to the best LLM-evolved heuristics.
Furthermore, comparing MTHS to its single-task ablation, STHS, reveals the clear benefit of multi-
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Figure 2: A comparison of different metaheuristic representations on CVRP and FSSP.

task learning; MTHS consistently outperforms STHS, underscoring the effectiveness of knowledge
transfer in discovering more robust and powerful heuristics.

Table 2 shows the results on the Taillard benchmark for FSSP. The heuristic discovered by MTHS
establishes a new state of the art, substantially outperforming all conventional constructive heuristics
and local search methods. It achieves an average gap of just 0.24%. On several instance sets (20 5
and 100 5), the MTHS-designed heuristic finds solutions that are slightly better than or close to the
existing upper bounds provided in Taillard (1993).

3.4 METAHEURISTIC REPRESENTATION

We now analyze the representation MTHS uses to design metaheuristics, a key part of its success.
The representation determines the LLM’s level of abstraction, which in turn affects search efficiency
and the quality of the resulting algorithms.

We compare four distinct metaheuristic representation strategies. Examples of different metaheuris-
tic representations are provided in Appendix E.

• Abstract: The LLM is prompted to design a task-agnostic code structure directly, without a
predefined template. This offers maximum flexibility but minimal structural guidance.

• Pseudocode: The LLM is prompted to design a task-agnostic pseudocode, which is then translated
into executable code.

• Thought: The LLM describes the high-level strategy or “thought proces” of a metaheuristic.
• MTHS (Template): Our proposed method, which uses a structured, task-agnostic template to

define the metaheuristic’s components and control flow.

We use different metaheuristic representation in MTHS and perform the cross-task AHD on the three
tasks with the same settings. Figure 2 illustrates the convergence behaviour of the automated search
process for each representation on the CVRP and FSSP. It depicts the current best score (related gap
to baseline on training instances) with respect to the number of program samples. The results clearly
demonstrate the superiority of the template-based metaheuristic representation used in MTHS. For
both problems, MTHS achieves a faster convergence compared to the other representations. This
suggests that providing the LLM with a well-defined, modular structure is helpful for efficiently
navigating the vast search space of possible metaheuristics.

3.5 GENERALIZATION TO NEW TASKS AND LLMS

A key hypothesis of our work is that a well-designed, task-agnostic metaheuristic can serve as a
powerful and generalizable scaffold for solving new problems. To test this, we evaluate the general-
ization of the metaheuristic discovered by MTHS to an unseen task and across different LLMs.

Specifically, we prompt LLMs to generate code for solving BPP without any evolution (i.e., re-
peated sampling). We evaluate three models, including GPT-5-mini, Gemini-2.5-pro, and Claude-
3.7-Sonnet, under two conditions: i) the model writes a solver from scratch, and ii) the model is
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Figure 3: A comparison of results on BPP in-
stances. + MH represents that we inform LLM
to create programs using a given metaheuristic
automatically designed by MTHS.

Table 3: Results on two sets of BPP in-
stances. The results of three baseline methods
are from (Zheng et al., 2025). + MH represents
that we inform LLM to create programs using a
given metaheuristic automatically designed by
MTHS.

Method n500, c150 n1000, c150

EoH 0.75% 0.85%
ReEvo 1.76% 2.06%
MCTS-AHD 0.48% 0.53%

GPT-5-mini 0.98% 0.98%
GPT-5-mini + MH 0.82% 0.65%
Gemini-2.5-pro 1.32% 1.25%
Gemini-2.5-pro + MH 0.34% 0.25%

explicitly instructed to implement a solver based on the metaheuristic template designed by MTHS
(+MH). For each model and condition, we generate 100 programs and evaluate their performance
on five BPP instances.

Figure 3 presents the performance distribution of the top 10 programs from each setting. The results
show a notable and consistent improvement when the LLMs are guided by the MTHS-designed
metaheuristic. For all three models, the + MH setting yields programs with significantly lower
optimality gaps. Notably, Gemini-2.5-pro, when guided by the metaheuristic, produced a solver
achieving a near-optimal gap of 0.002%, while when no metaheuristic is given, it struggled in de-
signing high-quality BPP solvers. Results demonstrate that the task-agnostic metaheuristic designed
by MTHS provides a general problem-solving logic that effectively transfers to new related tasks
and can be leveraged by different LLMs.

To further validate the effectiveness of this generalization, we evaluate the top-performing LLM-
generated solvers against established baselines on two BPP test sets with 500 and 1000 items. Each
set contains 64 instances, and the average gap to the lower bound is reported. The solver generated
by Gemini-2.5-pro with our metaheuristic guidance (+ MH) achieves state-of-the-art performance,
recording optimality gaps of just 0.34% and 0.25% on the n=500 and n=1000 instances, respec-
tively. This significantly outperforms not only the scratch-generated LLM solvers but also existing
task-specific approaches like MCTS-AHD (0.48% and 0.53%). This demonstrates that the MTHS-
discovered metaheuristic can generalized to other related tasks and enables LLMs to create programs
that are not only conceptually sound but also highly competitive.

4 CONCLUSION

This paper addresses the limited cross-task generalization of current task-specific LLM-dirven AHD.
We introduced Multi Task Hierarchical Search (MTHS), a framework that shifts the focus from
crafting monolithic solvers to co-designing task-agnostic metaheuristics together with their task-
specific realizations. Through a hierarchical representation and evolution, the method creates high-
level metaheuristics that are reusable across tasks. Experiments on four problems show that meta-
heuristics produced by our approach outperform strong classical baselines, specialized metaheuristic
solvers, and existing LLM-driven AHD methods. More importantly, the learned metaheuristic ex-
hibits strong out-of-distribution behaviour. Used as a template on an unseen BPP, it enabled different
LLMs to instantiate high-quality solvers without iterative search. These results indicate that design-
ing at the metaheuristic level within a hierarchical representation offers a viable path to cross-task
generalization in LLM-driven automated algorithm design.

In future work, we plan to expand the task suite, refine transfer mechanisms, and incorporate re-
source and reliability constraints directly into the search process. A deeper analysis of when and
why transfer succeeds could further amplify the benefits of this paradigm.
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A RELATED WORKS

A.1 AUTOMATED HEURISTIC DESIGN (AHD)

Automated Heuristic Design (AHD), often discussed under the umbrella of hyper-heuristics (Burke
et al., 2018; Stützle & López-Ibáñez, 2018), aims to automate the process of selecting, combining, or
generating simpler heuristics to solve complex computational search problems (Pillay & Qu, 2018).
AHD methods are broadly categorized into selection and generation approaches.

Genetic programming or grammatical evolution (O’Neill & Ryan, 2001) are commonly used in
generating new algorithms from fundamental building blocks. Recent advances in this area include
component-based frameworks that assemble novel algorithms by integrating diverse operators and
algorithmic stages (Bezerra et al., 2015; Qu et al., 2020). While powerful, these approaches often
rely on hand-crafted components and require significant domain-specific knowledge, which can limit
their flexibility and ease of application.

A.2 LLM-DRIVEN AHD

The advent of LLMs has introduced a new paradigm for AHD. A prominent strategy employs an
evolutionary framework where LLMs iteratively propose and refine algorithms (Zhang et al., 2024;
van Stein & Bäck, 2024). For example, Evolution of Heuristics (EoH) (Liu et al., 2024b) evolves
both high-level thoughts and executable code using distinct prompt strategies to guide the search.
FunSearch (Romera-Paredes et al., 2024) uses a multi-island evolutionary approach with a focused
prompt strategy for refinement, while ReEvo (Ye et al., 2024) integrates reflection mechanisms to
provide LLMs with more structured guidance. Other search strategies, such as Monte Carlo Tree
Search (MCTS) (Zheng et al., 2025) and neighborhood search (Xie et al., 2025b), have also been
explored to steer the design process.

Despite their success, a common limitation of these methods is their focus on discovering a single
heuristic optimized for average performance on a specific task. The heuristic and knowledge can
hardly be generalized to solving other tasks.

A.3 MULTI-TASK LEARNING FOR AHD

In the adjacent field of neural combinatorial optimization, multi-task learning has emerged as a
key strategy for improving cross-problem generalization (Liu et al., 2024a; Berto et al., 2024).
Researchers have developed single neural solvers trained across multiple problem types. Others
demonstrate that models pre-trained on one problem (e.g., TSP) can be efficiently fine-tuned for re-
lated tasks (e.g., VRPs) using techniques like LoRA (Lin et al., 2024). Moverover, recent work (Shi
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et al., 2025) has explored using LLMs to extract symbolic features that enhance the generaliza-
tion of a backbone neural solver. However, these neural solvers are often black-box models that
lack interpretability and typically require large datasets and substantial computational resources for
training.

A.4 HEURISTIC REPRESENTATION IN LLM-DRIVEN AHD

The representation of the heuristic itself is a critical design choice in LLM-driven AHD. A com-
mon approach, popularized by EoH (Liu et al., 2024b), is a dual “thought-and-code” representation,
where a high-level idea guides the generation of executable code. This or single code-based rep-
resentations have been adopted by many subsequent works (Ye et al., 2024; Zheng et al., 2025;
van Stein & Bäck, 2024). Recent explorations have introduced intermediate representations like
pseudocode (Gurkan et al., 2025) or more flexible code structures (Novikov et al., 2025).

Closer to our work, some methods have used high-level algorithmic templates to enable meta-
learning across different distributions of the same problem (Shi et al., 2025). However, to our
knowledge, the challenge of learning generalizable metaheuristic structures that can be applied
across entirely different tasks has not yet been addressed. Our hierarchical representation is de-
signed specifically to fill this gap.

B MORE METHOD DETAILS

B.1 HIGH-LEVEL POPULATION INITIALIZATION

The InitializePopulation procedure (Algorithm 2) is responsible for seeding the initial
high-level population, PH , which serves as the starting point for the main evolutionary search. The
goal is to generate a diverse and competent set of initial individuals, where each individual represents
a complete multi-task problem-solving strategy.

The procedure begins by constructing a single, comprehensive prompt using the
BuildInitialPrompt function. This prompt aggregates the descriptions, {Dt}mt=1, of
all m tasks in the set T . This contextual information guides the LLMs (L) to generate a set of initial
metaheuristics, denoted as InitialMHs. Each metaheuristic, MHinit, is a high-level textual
description of a problem-solving approach.

For each generated MHinit, the procedure invokes LowLevelEvolution (as defined in the main
MTHS algorithm). This critical step translates the abstract metaheuristic into a concrete, executable
individual, Inew. The LowLevelEvolution procedure instantiates the metaheuristic into task-
specific programs, refines them, and evaluates their performance, consuming a low-level evalua-
tion budget of NL. The resulting individual, Inew, contains a collection of optimized programs
{X∗

new,t}mt=1 and their corresponding scores {S∗
new,t}mt=1.

If the newly created individual Inew is deemed valid (e.g., it compiles and runs without fatal errors),
it is added to the high-level population PH . This process repeats until the population reaches its
target size, |PH |. The final, fully populated PH is then returned, ready for the main evolutionary
loop of the MTHS algorithm.

B.2 LOW-LEVEL KEY FUNCTION EVOLUTION

The EvolveKeyFunction procedure (Algorithm 3) implements a fine-grained, task-specific op-
timization process. It is a core component of the LowLevelEvolution routine and is responsible
for refining a single program by iteratively improving its most critical component: the key function.
Its inputs are the initial program code Xt for a task Tt, the identified key function Ft within that
code, the task object Tt (which provides the description Dt and evaluator Et(·)), the LLM L, and
the low-level evaluation budget NL.
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The procedure operates as a micro-evolutionary search. It first initializes a local, low-level popu-
lation, PL,t, by seeding it with the initial program Xt, its key function Ft, and its evaluated score.
The main loop then commences, running until the evaluation budget NL is exhausted.

In each iteration, a parent program, pparent, is selected from PL,t using a selection strategy (e.g.,
tournament selection). A mutation prompt is then constructed via BuildMutationPrompt,
providing the LLM with the task description Tt.D and the body of the parent’s key function,
pparent.function. The LLM acts as a sophisticated mutation operator, generating a new function
body, F ′

body , that represents a plausible variation of the original.

This new function body is integrated back into the parent’s base code to create a new program
candidate, X ′

new. This candidate is then executed and evaluated using the task-specific evaluator
Tt.E(·), yielding a new score, S′

new. The new program, its function, and its score are registered as
a new member of the low-level population PL,t. After the loop terminates, the procedure identifies
the best-performing program in PL,t and returns its optimized code, X∗

t , and final score, S∗
t .

B.3 KNOWLEDGE TRANSFER

The KnowledgeTransfer procedure (Algorithm 4) is designed to enhance the multi-task profi-
ciency of a newly generated individual, Inew, before it is integrated into the main population. This
is achieved by systematically attempting to adapt its successful solutions from one task to another,
leveraging the inherent relationships between tasks. The procedure takes the new individual Inew,
the set of all tasks T , and the LLM L as input.

The process operates through a series of pairwise comparisons across all tasks. It iterates through
every possible source task, tsrc, and target task, ttgt, within the individual’s repertoire. For each pair
where tsrc ̸= ttgt, the procedure attempts to transfer knowledge.

Specifically, it constructs a transfer-oriented prompt using BuildTransferPrompt. This
prompt provides the LLM with the description of the target task (Ttgt.D), the full program code
of the successful solution for the source task (Inew.Xnew,tsrc ), and the code template for the tar-
get task (Ttgt.Temp). The LLM’s objective is to synthesize this information and generate a new
program, X ′

transfer, that is a plausible adaptation of the source solution for the target context.

This newly generated program is immediately evaluated on the target task using its evaluator,
Ttgt.E(·), to obtain a transfer score, S′

transfer. This score is then compared against the individual’s
existing score for the target task, Inew.Snew,ttgt . If the transfer results in a performance improve-
ment (S′

transfer > Inew.Snew,ttgt), the individual is updated: its program and score for the target
task, ttgt, are replaced with the superior transferred versions, X ′

transfer and S′
transfer. After all

possible transfers have been attempted, the potentially improved individual Inew is returned.
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Prompt for Metaheuristic Generation

You are an expert algorithm designer. Your task is to create one novel algorithm for the following
tasks:
{tasks formatted}

Design and present the high-level task-agnostic pseudocode for your new algorithm refer to the fol-
lowing template.

ALGORITHM <Algorithm_Name>

/* PURPOSE: Brief description of the algorithm’s purpose */

INPUT: <Description of input parameters/data>
OUTPUT: <Description of expected results/return values>

/* Initialization Phase */
Initialize necessary data structures, variables, or state
Set up initial conditions or constraints

/* Main Processing Loop (if applicable) */
WHILE termination criteria not satisfied DO

Perform core algorithm operations
Update algorithm state
Evaluate progress or intermediate results
Adjust parameters if needed

END WHILE

/* Post-Processing Phase (if applicable) */
Finalize results
Perform any cleanup or final transformations

RETURN output

- The pseudocode must describe the core strategy and logical flow of the algorithm at a conceptual
level.
- Crucially, avoid low-level task-specific implementation details. Do not include specific variable
names, data structures, or numerical constants.
- Ensure the pseudocode has a consistent shape ( 10–20 lines).

Enclose the entire pseudocode block within a single code block marked by ’’’pseudocode and
’’’.
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Prompt for Program Generation

You are an expert algorithm implementer. Given a pseudocode algorithm, convert it to an efficient
Python implementation.

PSEUDOCODE:
{pseudocode}

IMPLEMENTATION REQUIREMENTS:
1. Use the template structure provided below
2. Ensure the implementation runs in acceptable time complexity
3. Maintain the core logic of the pseudocode
4. Use appropriate Python data structures and libraries

TEMPLATE:
{template program str}

RESPONSE FORMAT:
Return ONLY the Python code without explanations or examples, enclosed between “‘python and ”’
markers as shown:
“‘python
# Your program here
”’

Prompt for Key Function Identification

You are given a program. Please identify the most important function in this program that would
benefit most from optimization.
Program:
{program str}

Task Description:
{task description}

Return only the key function. It should be enclosed between “‘python and”’ markers exactly as shown
below:
“‘python
# Your key function here
”’

Prompt for Key Function Generation

You are given a function. Please create a variation of this function that with the same inputs and
outputs but might be more effective or use a different approach.
The function is part of a larger program solving the following task:

Task Description:
{task description}

Original function body:
{original function}

Return only the modified function. It should be enclosed between “‘python and”’ markers exactly as
shown below:
“‘python
# Your key function here
”’
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Prompt for Knowledge Transfer

You are an expert algorithm designer specialized in translating knowledge between related problems.
Your task is to implement an algorithm for the specified target problem by drawing inspiration from a
reference algorithm that solves a related task.

Target Problem:
{Task Description}

Reference Algorithm:
The following is a high-quality implementation for a related problem that can inform your approach:
{refer program}

Implementation Template:
Your implementation should follow this template structure:
{template program str}

Return ONLY the Python code without explanations or examples, enclosed between “‘python
and ”’ markers as shown:
“‘python
# Your program here
”’

Algorithm 2 Initialization of High-Level Population

Input:
1: T = {T1, . . . ,Tm}: Set of tasks, each with description Dt

2: L: Large Language Model
3: NH : Target size for the high-level population
4: NL: Low-level evaluation budget per individual

Output: Initialized high-level population PH

5: procedure INITIALIZEPOPULATION(T ,L,NH ,NL)
6: PH ← ∅
7: prompt← BuildInitialPrompt({Dt}mt=1)
8: InitialMHs← L(prompt) ▷ Generate a set of initial metaheuristics
9: for each MHinit in InitialMHs do

10: if NH ≥ NH then break
11: Inew ← LowLevelEvolution(MHinit, T ,NL,L) ▷ Use main evaluation procedure
12: if Inew is valid then
13: PH ← PH ∪ {Inew}
14: return PH

C PROBLEM AND EXPERIMENTAL SETTINGS

C.1 TRAVELING SALESMAN PROBLEM (TSP)

Problem Definition: Let G = (V ,E) be a complete graph where: V = {v1, . . . , vn} represents n
cities with coordinates xi ∈ [0, 1]2 and E contains edges with costs cij = ∥xi − xj∥2 (we consider
Euclidean distance).

The objective is to find a Hamiltonian cycle π = (π1, . . . ,πn,π1) minimizing:

LTSP =

n−1∑
k=1

cπkπk+1
+ cπnπ1

.

Task Description and Template: TSP Task Description: Develop an algorithm to address the
Traveling Salesman Problem. The objective is to determine the shortest route that visits each city in
a given list exactly once and then returns to the starting city, thereby minimizing the total distance
traveled.
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Algorithm 3 Low-Level Key Function Evolution

Input:
1: Xt: Program code for task t
2: Ft: Identified key function for task t
3: Tt: Task object, containing description Dt and evaluator Et(·)
4: L: Large Language Model
5: NL: Low-level evaluation budget (can be used to limit iterations)

Output: Optimized program code X∗
t and its score S∗

t
6: procedure EVOLVEKEYFUNCTION(Xt,Ft,Tt,L,NL)
7: PL,t ← Initialize with (Xt,Ft,Et(Xt)) ▷ Seed low-level population
8: eval count L← 1
9: while eval count L < NL do

10: pparent ← PL,t.Selection() ▷ Select a program from the low-level pool
11: prompt← BuildMutationPrompt(Tt.D, pparent.function)
12: F ′

body ← L(prompt) ▷ Mutate key function body
13: X ′

new ← IntegrateFunction(pparent.code,F ′
body) ▷ Insert new function into base code

14: S′
new ← Tt.E(X ′

new)
15: eval count L← eval count L+ 1
16: Register new program (X ′

new,F
′
body,S

′
new) in PL,t

17: (X∗
t ,S

∗
t )← GetBest(PL,t) ▷ Get code and score of the best program

18: return (X∗
t ,S

∗
t )

Algorithm 4 Knowledge Transfer

Input:
1: Inew: A new high-level individual with programs {Xnew,t}mt=1 and scores {Snew,t}mt=1
2: T = {T1, . . . ,Tm}: Set of tasks
3: L: Large Language Model

Output: Updated individual Inew
4: procedure KNOWLEDGETRANSFER(Inew, T ,L)
5: for tsrc ← 1 to m do
6: for ttgt ← 1 to m do
7: if ttgt = tsrc then continue
8: prompt← BuildTransferPrompt(Ttgt.D, Inew.Xnew,tsrc ,Ttgt.Temp)
9: X ′

transfer ← L(prompt) ▷ Adapt source solution to target task
10: S′

transfer ← Ttgt.E(X ′
transfer)

11: if S′
transfer < Inew.Snew,ttgt then

12: Inew.Snew,ttgt ← S′
transfer ▷ Update score if transfer is successful

13: Inew.Xnew,ttgt ← X ′
transfer ▷ Update program code

14: return Inew

Training Instances: For the heuristic evolution process, we use a set of 64 TSP instances, each
with 100 locations randomly sampled from a uniform distribution over [0, 1]2. The fitness of a can-
didate heuristic is measured by its average optimality gap, calculated against the optimal solutions
found by the Concorde solver.

Testing Instances: For testing, we select commonly used 49 symmetric Euclidean TSPLib in-
stances (Reinelt, 1991), with problem sizes ranging from 52 to 1,000 nodes.

C.2 CAPACITATED VEHICLE ROUTING PROBLEM (CVRP)

Problem Definition: CVRP aims to minimize the total traveling distances of a fleet of vehicles
given a depot and a set of customers with coordinates and demands. Given: 1) Depot v0 and cus-
tomers {v1, ..., vn} with coordinates xi ∈ [0, 1]2, 2) Demands di ∈ Z+ (d0 = 0), 3) Vehicle
capacity Q ∈ Z+, 4) Distance metric cij = ∥xi−xj∥2, find routesR = {r1, ..., rm}. Each route rk
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Template for TSP

1 import numpy as np
2

3 class TSPSolver:
4 def __init__(self, coordinates: np.ndarray, distance_matrix: np.

ndarray):
5 """
6 Initialize the TSP solver.
7

8 Args:
9 coordinates: Numpy array of shape (n, 2) containing the (x, y)

coordinates of each city.
10 distance_matrix: Numpy array of shape (n, n) containing pairwise

distances between cities.
11 """
12 self.coordinates = coordinates
13 self.distance_matrix = distance_matrix
14

15 \# --- your code here ---
16

17 def solve(self) -> np.ndarray:
18 """
19 Solve the Traveling Salesman Problem (TSP).
20

21 Returns:
22 A numpy array of shape (n,) containing a permutation of integers
23 [0, 1, ..., n-1] representing the order in which the cities are

visited.
24

25 The tour must:
26 - Start and end at the same city (implicitly, since it’s a loop)
27 - Visit each city exactly once
28 """
29 n = len(self.coordinates)
30

31 \# --- your code here ---
32

33 \# Example (naive ordered tour replace with your algorithm):
34 tour = np.arange(n)
35

36 return tour

starts/ends at v0. Capacity constraints are satisfied
∑

vi∈rk
di ≤ Q and all customers served exactly

once. The objective is to minimize total distance.

Task Description and Template: CVRP Task Description: Develop an algorithm to solve the
Capacitated Vehicle Routing Problem (CVRP). The objective is to determine the optimal set of
routes for a fleet of vehicles that all start and end at a central depot. Each vehicle has a maximum
capacity, and the routes must collectively serve all customer nodes exactly once without exceeding
the vehicle’s capacity. The goal is to minimize the total distance traveled across all routes.

Training Instances: The heuristic evolution is conducted on 64 randomly generated CVRP in-
stances, each with 100 customers. Customer and depot locations are randomly sampled from [0, 1]2.
Each vehicle has a capacity of 50, and customer demands are integers sampled uniformly from
{1, . . . , 9}. The fitness value is the average gap to LKH solver (Helsgaun, 2017).

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Testing Instances: We select 7 commonly used benchmark sets, including A, B, E, F, M, P, and
X, from CVRPLib (Uchoa et al., 2017). The chosen sets and their characteristics are summarized in
Table 4. Due to the time limit, we do not test on all instances from the X set.

Table 4: CVRPLib benchmark sets

Benchmark Set Number of Instances Instance Size

Set A 27 31-79
Set B 23 30-77
Set E 11 22-101
Set F 3 44-134
Set M 5 100-199
Set P 23 15-100
Set X 43 100-500

C.3 FLOW SHOP SCHEDULING PROBLEM (FSSP)

Problem Definition: The Flow Shop Scheduling Problem (FSSP) aims to minimize the makespan
(total time to complete all jobs) for a set of jobs that must be processed on a series of machines
in a fixed order. Given: 1) A set of n jobs J = {J1, ...,Jn}, 2) A set of m machines M =
{M1, ...,Mm}, 3) The processing time pij ∈ Z+ for each job Ji on each machine Mj . The problem
is to find a permutation (sequence) π of the jobs. This sequence dictates the order in which jobs are
processed on the first machine, and this same order is maintained for all subsequent machines. The
objective is to find the sequence π that minimizes the makespan, Cmax(π), which is the completion
time of the last job on the last machine.

Task Description and Template: FSSP Task Description: Develop an algorithm to solve the
Flow Shop Scheduling Problem (FSSP) by determining the optimal sequence of jobs to minimize
makespan. In FSSP, all jobs must be processed on all machines in the same order (machine 0, then
machine 1, then machine 2, etc.). The goal is to find the job sequence that minimizes the makespan
(total completion time) while ensuring that: (1) all jobs follow the same machine processing order,
(2) each machine processes only one job at a time, and (3) each job can only be processed on one
machine at a time. The algorithm should return a permutation of job indices representing the order
in which jobs should be processed.

Training Instances: For heuristic evolution, we use 64 randomly generated instances, each com-
prising 50 jobs and a number of machines varying between 2 and 20. The processing times for
each job are sampled from a uniform distribution over [0, 1]2. The average makespan (gap to lower
bound) is used as the fitness value.

Testing Instances: We evaluate the algorithms on the widely-used Taillard instances (Taillard,
1993). We test 9 different test sets. The number of jobs in these instances ranges from 20 to 100,
and the number of machines ranges from 5 to 20.

C.4 BIN PACKING PROBLEM (BPP)

Problem Definition: We consider one-dimensional bin packing problem. The primary goal is to
pack a set of n items, each with a specific size or weight wj ∈ Z+, into the minimum number of
identical bins, each having a uniform capacity C ∈ Z+. The core challenge is to find a partition of
the items into a set of bins B = {B1, . . . ,Bm} such that the sum of item sizes in any single bin
does not exceed the capacity C, and the total number of bins used, m, is minimized.

Task Description and Template: BPP Task Description: You are given a set of items, each with
a specific weight, and a number of identical bins, each with a fixed capacity. The goal is to pack all
items into the minimum number of bins possible, such that the sum of the weights of the items in
each bin does not exceed the bin’s capacity.
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Instances: Following the setup of Ye et al. (2024) and Zheng et al. (2025), we generate instances
where bins have a capacity of 150 and item sizes are uniformly sampled from the range [20, 100].

D MORE DETAILS ON METAHEURISTICS

Table 5 details the configuration and average running times of several metaheuristic solvers on stan-
dard TSPLib and CVRPLib benchmarks. We compare our Python implementations of Tabu Search,
ALNS, and Memetic Search—accelerated using Numba, against Google’s C++ OR-Tools solvers,
an existing LLM-based AHD approach, and our proposed MTHS.

Table 5: Average Running Time and Configuration of Metaheuristic Solvers on Benchmark Datasets.
Our Python-based implementations are compared against the highly optimized C++ solvers from
Google OR-Tools, existing LLM-driven AHD approach and our proposed MTHS. Average running
times are reported for standard TSPLib and CVRPLib instances.

Category Metaheuristic Key Parameters Key Accelerated Functions (Numba/C++) Average Running Time
TSPLib CVRPLib

Our Python
Implementations

Tabu Search (TS) max iterations: 100
tabu tenure: 20

calculate tour distance numba
find best neighbor numba 58s 8s

Adaptive Large
Neighborhood Search (ALNS)

max iterations: 1000
removal rate: [0.1, 0.4]
reaction factor: 0.5

calculate tour cost
greedy insertion
shaw removal

155s 138s

Memetic Search (MS)

population size: 30
generations: 50
tournament size: 5
patience: 40

calculate tour distance
two opt local search
generate nearest neighbor tour

190s 156s

OR-Tools Solvers
Tabu Search (TS) Default C++ 60s 60s
Simulated Annealing (SA) Default C++ 60s 60s
Guided Local Search (GLS) Default C++ 60s 60s

Existing AHD Approach GLS
(EoH, ReEvo, MCTS-AHD)

iter limit: 100
perturbation moves: 30

two opt once
relocate once 60–100s 25–30s

MTHS (Ours) ACSS
(MTHS)

time limit: 100
population size: 10

two opt
insert
swap

100s 60s

E MORE EXPERIMENTAL RESULTS AND ANALYSES

E.1 PARETO FRONT

Figure 4 illustrates the search trajectory and final population of our proposed method, MTHS, in
the three-dimensional objective space for the multi-task AHD. The background points represent all
candidate metaheuristics in the population throughout the evolutionary process, colored by their
generation index from early (dark purple) to late (bright yellow). This visualization demonstrates
the algorithm’s progression, showing how it initially explores a broad region of the objective space
before intensifying its search and converging towards the Pareto front. The final, non-dominated
population is highlighted in red, showcasing a well-distributed set of high-quality trade-off solutions
across the three conflicting objectives: TSP, CVRP, and FSSP. The distinct separation and advance-
ment of the final front from the historical samples underscore the effectiveness of our approach in
achieving both convergence and diversity.
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Figure 4: Metaheuristics generated by MTHS colored by generation and the final non-dominated
front highlighted in red. The three objectives are fitness on three tasks (i.e., TSP, CVRP and FSSP).
These metaheuristics that are removed during population management are not included.

E.2 METAHEURISTIC REPRESENTATION

We identify and illustrate four distinct levels of abstraction for describing a metaheuristic algorithm:
i) a high-level metaheuristic in MTHS, ii) an algorithmic pseudocode, iii) a code-level abstraction,
and iv) a natural language thought description. The conceptual design outlines the overarching
strategy, while pseudocode and code-level abstractions provide structured, implementation-oriented
views. The thought description captures the core inventive idea in a dense, human-readable format.

For brevity and due to their structural similarity, we present a single example for the pseudocode
and code-level abstraction formats. Each format is demonstrated below with a representative meta-
heuristic.
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Metaheuristic designed by MTHS

Adaptive Cooperative Substructure Search (ACSS)
Purpose: A unified, task-agnostic metaheuristic to find high-quality feasible solutions for routing and
scheduling problems by combining constructive heuristics, cooperative memory of useful substruc-
tures, adaptive perturbation, and constraint-aware repair.

INPUT: A problem instance with a solution representation, an objective evaluator, and a constraint
checker
OUTPUT: A feasible solution (permutation or set of routes) with a near-optimal objective value

▷ Initialization Phase
Construct a diverse set of initial candidate solutions using problem-aware constructive methods
and randomization
Extract and record promising substructures from initial candidates into a cooperative memory

▷ Main Processing Loop
while stopping condition not met do

Select one or more candidates for improvement based on quality and diversity
Intensify: apply local improvement operators guided by cooperative memory to reduce objec-

tive while preserving feasibility
Diversify: apply adaptive, constraint-aware perturbations to escape local optima and generate

varied neighborhood proposals
Repair: enforce feasibility by applying generic constraint-handling procedures that adapt to

problem specifics
Recombine: optionally merge complementary substructures from cooperative memory into

candidates to create new high-quality solutions
Evaluate updated candidates with objective evaluator and constraint checker
Update cooperative memory with newly discovered high-quality substructures and adjust op-

erator selection probabilities based on recent success

▷ Post-Processing Phase
Polish the best feasible solution using targeted local refinement and a final constraint-aware repair
if needed

RETURN best feasible solution found

Metaheuristic as Code Abstract/Pseudocode

1: procedure AMOCGS(problem, params)
2: population← multi construct(problem, params.heuristics) ▷ task-specific constructive seeds
3: population← map(lambda s: repair and evaluate(s, problem), population) ▷ enforce

constraints and score
4: operators← init operator pool(problem) ▷ problem-aware neighborhood & crossover
5: op scores← init scores(operators); memory← init elite memory(population)
6: best← argmin(population)
7: while not termination condition(params) do
8: parents← select parents(population, op scores, params) ▷ biased by quality and diversity
9: op← adaptive select(operators, op scores, params)

10: offspring← apply operator(op, parents, problem)
11: offspring← local search and repair(offspring, problem, params) ▷ e.g., tabu/SA/LNS

respecting constraints
12: offspring.score← evaluate(offspring, problem)
13: population← replace population(population, offspring, params) ▷ elite preservation +

diversity maintenance
14: op scores ← update op scores(op scores, op, offspring, improvement metric(best, off-

spring))
15: best← select best(best, offspring)
16: adapt parameters(params, op scores, population, memory) ▷ temperature, operator

weights, restart triggers
17: if intensify trigger(params) then
18: path relink and intensify(population, memory, problem)
19: return best
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Metaheuristic as Thought Description

Recursively partition the instance into manageable clusters (spatial for routing, temporal for schedul-
ing), stochastically generate diverse candidate partial sequences within each cluster using lightweight
local cost models, and iteratively merge clusters with a capacity- and precedence-aware repair operator
that enforces feasibility; concurrently adapt sampling biases via online learning of high-value move
patterns to concentrate search.
During merges apply a multi-objective adaptive acceptance criterion that balances global cost reduction
and constraint satisfaction, allowing focused local search and occasional exploratory perturbations to
rapidly converge to high-quality feasible permutations and route sets.

E.3 TOKENS AND COST

The computational cost of MTHS is dominated by LLM API calls, measured in latency and token
usage. We analyze the cost to generate and evaluate a single new metaheuristic individual, Inew,
across m tasks.

High-Level Evolution This step generates one new metaheuristic, MHnew, from k parents.

• LLM Calls: 1

• Token Cost: The input includes a prompt and k parent metaheuristics; the output is
MHnew.

Low-Level Evolution This is the most expensive phase, executed for each of the m tasks to eval-
uate MHnew. The cost for a single task Tt includes:

• i) Program Generation: 1 LLM call to combine MHnew and a task template Tempt into
a program Xnew,t.

• ii) Key Function Identification: 1 LLM call to analyze Xnew,t and extract the key function
Fnew,t.

• iii) Key Function Refinement: An evolutionary loop with a budget of NL evaluations,
where each step uses the LLM as a mutation operator. This requires NL LLM calls.

The total cost for this stage scales linearly with the number of tasks (m) and the refinement budget
(NL).

Knowledge Transfer After evaluation, this optional step adapts the best-performing program from
a source task, X∗

new,src, to the other m− 1 target tasks.

• LLM Calls: m− 1

• Token Cost: Each call prompts the LLM with X∗
new,src and a target task template.

Summary of Costs The total number of LLM calls required to evaluate one new metaheuristic
individual is:

Callstotal = 1︸︷︷︸
High-Level

+m× (2 +NL)︸ ︷︷ ︸
Low-Level

+ (m− 1)︸ ︷︷ ︸
Knowledge Transfer

(1)

The dominant cost factor is the Low-Level Evolution, particularly the Key Function Refinement
loop (m×NL calls), making it the primary bottleneck in terms of time and expense.

When compared to existing LLM-driven AHD methods that target a single task, evaluating one
MTHS individual requires a larger number of LLM requests due to the per-task evaluations. How-
ever, because MTHS simultaneously designs heuristics for multiple tasks within a single evolution-
ary run, the total computational budget required to find effective heuristics for an entire set of tasks is
lower than running a single-task AHD method independently for each task. Table 6 lists the tokens
used for each components in one run of MTHS on three tasks. It costs around 10 dollars when using
GPT-5-mini.
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Table 6: Breakdown of token cost and number of LLM requests in MTHS.

Type Sub-type Tokens/
Sample No. Total

Tokens Percentage

High-level
Evolution Metaheuristic generation 1k 80 80k 1%

Lower-level
Evolution

Initial program
generation 6k 240 1440k 18%

Key function
identification 4k 240 960k 12%

Key function
generation 0.6k 720 432k 5%

Program generation
using new key function 6k 720 4320k 52%

Knowledge
Transfer

Program generation with
knowledge transfer 6k 160 960k 12%

Total 8192k 100%

Table 7: Detailed results for selected TSPLib instances (first seven instances in alphabetical order
with different sizes and distributions): Gap Performance and Runtimes.

Method
a280 berlin52 bier127 ch130 ch150 d198 d493

Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time

NN 27.43 0.23 19.08 0.01 14.86 0.19 23.98 0.19 25.53 0.21 19.33 0.21 24.02 0.34

Insert 20.13 0.02 4.55 0.00 12.02 0.00 6.31 0.00 9.45 0.01 12.48 0.01 24.48 0.06

Or-tools SA 4.39 60.13 4.80 60.04 2.25 60.18 1.73 60.39 1.67 60.11 1.23 60.01 3.29 60.68

Or-tools TS 4.67 60.23 0.03 60.04 1.43 60.18 1.73 60.42 1.67 60.14 1.23 60.25 3.58 60.17

Or-tools GLS 5.27 60.07 0.03 60.06 1.43 60.05 0.49 60.13 0.73 60.19 2.86 60.22 4.65 60.22

MS 6.24 35.30 0.03 1.98 1.03 7.08 3.53 6.59 2.85 3.64 2.24 13.78 4.76 409.47

ALNS 7.04 40.82 0.03 1.03 2.14 10.20 1.57 9.44 3.24 9.19 1.85 19.06 6.32 300.42

TS 11.32 124.54 3.42 70.16 6.37 83.09 4.23 87.29 5.81 92.50 3.73 116.51 9.46 113.10

ACO EoH 27.77 39.56 1.79 4.59 N/A 10.39 22.45 3.97 31.06 12.03 23.46 18.52 862.68

ACO MCTS 9.50 83.46 0.03 28.92 3.23 18.79 3.40 27.90 1.63 29.78 2.61 20.38 18.88 909.84

GLS EoH 1.78 351.41 0.03 2.72 0.04 2.02 1.15 4.49 0.84 4.10 0.95 259.85 1.66 563.71

GLS ReEvo 2.94 349.71 0.03 3.09 0.62 2.51 0.64 5.62 0.97 4.39 1.16 400.06 2.72 563.09

GLS MCTS 3.22 340.82 0.03 1.43 0.59 2.71 0.32 4.18 0.97 4.21 1.06 265.00 1.78 559.99

STHS 2.07 49.46 0.03 37.28 0.39 42.05 1.05 41.56 0.45 38.89 0.59 43.50 2.16 57.56

MTHS 1.34 100.17 0.03 81.26 0.39 100.00 0.64 100.00 0.37 100.01 0.39 100.00 1.63 100.01

E.4 DETAILED RESULTS ON BENCHMARK INSTANCES

F REPRODUCTION

We are committed to making our research fully reproducible and accessible to the broader com-
munity. We have made our code for metaheuristics and data publicly available. Our resources are
hosted on an anonymous link https://anonymous.4open.science/r/MTHS-E80B.

The following components are provided:
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Table 8: Detailed results for selected CVRPLib instances (middle-size X instances): Gap Perfor-
mance and Runtimes.

OR-Tools TS OR-Tools SA GLS EoH GLS ReEvo GLS MCTS MTHS

Instance Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time

X-n303-k21 7.5 60.0 6.6 60.0 3.7 43.3 5.6 33.1 8.9 49.2 4.7 60.0
X-n308-k13 8.9 60.0 10.4 60.0 5.4 28.9 5.9 29.7 8.4 47.2 6.8 60.0
X-n313-k71 8.1 60.0 9.3 60.0 7.8 72.5 10.7 57.6 10.9 89.5 3.4 60.0
X-n317-k53 1.3 60.0 1.3 60.0 1.5 39.9 1.4 40.5 1.4 70.2 1.4 60.0
X-n322-k28 8.1 60.0 8.4 60.0 4.7 42.8 10.4 33.3 7.8 81.4 5.1 60.0
X-n327-k20 7.6 60.0 7.4 60.0 3.4 38.3 5.9 31.8 6.5 51.7 6.2 60.0
X-n331-k15 7.6 60.0 6.4 60.0 4.6 34.0 5.5 28.8 5.0 46.8 5.5 60.0
X-n336-k84 4.0 60.0 4.1 60.0 4.8 93.0 4.4 71.1 4.8 95.2 3.8 60.0
X-n344-k43 5.1 60.0 5.1 60.0 6.3 45.8 6.2 42.6 7.3 65.3 4.7 60.0
X-n351-k40 9.7 60.0 9.1 60.0 6.0 65.6 8.4 52.6 9.2 73.8 4.4 60.0
X-n359-k29 7.1 60.0 6.9 60.0 4.2 64.9 4.8 42.0 5.7 64.3 3.0 60.0
X-n367-k17 10.0 60.0 6.8 60.0 10.0 86.5 9.5 108.6 8.6 182.0 10.6 60.0
X-n376-k94 0.7 60.0 0.7 60.0 0.8 106.6 0.8 114.7 0.8 156.9 1.0 60.0
X-n384-k52 5.6 60.0 5.3 60.0 4.9 135.4 5.7 101.4 5.0 160.9 3.8 60.0
X-n393-k38 8.6 60.0 8.2 60.0 9.1 108.5 7.8 111.5 8.7 164.1 4.4 60.0
X-n401-k29 3.7 60.0 3.7 60.0 3.2 155.4 5.3 162.6 3.7 233.3 2.5 60.0
X-n411-k19 13.4 60.0 13.4 60.0 9.3 155.3 9.1 139.8 10.0 218.7 12.9 60.0

X-n420-k130 6.4 60.0 6.9 60.2 4.9 180.1 4.7 159.5 5.3 221.2 5.0 60.0
X-n429-k61 5.4 60.0 5.8 60.0 5.5 141.8 5.7 128.2 8.0 184.1 4.1 60.0
X-n439-k37 4.7 60.0 4.9 60.1 3.0 140.2 2.9 120.5 3.3 180.6 5.2 60.0
X-n449-k29 11.0 60.0 10.4 60.0 7.4 145.9 7.6 156.8 8.2 201.4 4.3 60.0
X-n459-k26 12.6 60.0 10.6 60.0 12.8 161.8 10.4 168.9 10.4 207.4 7.9 60.0

X-n469-k138 4.2 60.0 4.5 60.0 6.9 154.9 7.2 158.1 8.0 180.1 6.1 60.0
X-n480-k70 4.1 60.0 4.0 60.0 4.7 139.2 5.3 137.5 5.6 169.4 3.7 60.0
X-n491-k59 10.4 60.0 8.5 60.0 8.3 257.5 7.1 232.8 8.6 193.4 4.0 60.0
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1. Detailed Experimental Results: In the sections of this appendix, we present detailed
tables and figures that elaborate on the results discussed in the main text. This includes
per-instance performance and running times.

2. Open-Sourced Algorithms: The core contribution of our work, the generated metaheuris-
tics, is available in our public repository. The code is commented to facilitate understanding
and extension.

3. Open-Sourced Evaluation Datasets and Scripts: To ensure fair and consistent compari-
son, we have released the complete set of evaluation datasets, including TSP, CVRP, FSSP
and BPP, used in our experiments. The repository also contains the exact scripts used to
run the evaluations.

G USE OF LLMS

First, for manuscript preparation, the LLM was employed as a writing assistant to check grammar
and refine phrasing, particularly in the introduction section. Second, the LLM was integrated as a
core component of our proposed method to design and generate heuristics and programs.
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Template for CVRP

1 import numpy as np
2 class CVRPSolver:
3 def __init__(self, coordinates: np.ndarray, distance_matrix: np.

ndarray, demands: list, vehicle_capacity: int):
4 """
5 Initialize the CVRP solver.
6

7 Args:
8 coordinates: Numpy array of shape (n, 2) containing the (x, y)

coordinates of each node, including the depot.
9 distance_matrix: Numpy array of shape (n, n) containing pairwise

distances between nodes.
10 demands: List of integers representing the demand of each node (

first node is typically the depot with zero demand).
11 vehicle_capacity: Integer representing the maximum capacity of

each vehicle.
12 """
13 self.coordinates = coordinates
14 self.distance_matrix = distance_matrix
15 self.demands = demands
16 self.vehicle_capacity = vehicle_capacity
17

18 \# --- your code here ---
19

20 def solve(self) -> list:
21 """
22 Solve the Capacitated Vehicle Routing Problem (CVRP).
23

24 Returns:
25 A one-dimensional list of integers representing the sequence of

nodes visited by all vehicles.
26 The depot (node 0) is used to separate different vehicle routes

and appears at the start and end
27 of each route. For example: [0, 1, 4, 0, 2, 3, 0] represents:
28 - Route 1: 0 - 1 - 4 - 0
29 - Route 2: 0 - 2 - 3 - 0
30 """
31 n = len(self.coordinates)
32

33 \# --- your code here ---
34

35 \# Example (naive solution replace with your algorithm):
36 solution = [0] \# Start at the depot
37 current_capacity = 0
38

39 for i in range(1, n):
40 if current_capacity + self.demands[i] > self.vehicle_capacity:
41 solution.append(0) \# return to depot and start a new route
42 current_capacity = 0
43

44 solution.append(i)
45 current_capacity += self.demands[i]
46

47 if solution[-1] != 0:
48 solution.append(0) \# end the last route at the depot
49

50 return solution
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Template for FSSP

1 import numpy as np
2

3 class FSSPSolver:
4 def __init__(self, num_jobs: int, num_machines: int,

processing_times: list):
5 """
6 Initialize the FSSP solver.
7

8 Args:
9 num_jobs: Number of jobs in the problem

10 num_machines: Number of machines in the problem
11 processing_times: List of lists where processing_times[j][m] is

the processing time of job j on machine m
12 """
13 self.num_jobs = num_jobs
14 self.num_machines = num_machines
15 self.processing_times = processing_times
16

17 \# --- your code here ---
18

19 def solve(self) -> list:
20 """
21 Solve the Flow Shop Scheduling Problem (FSSP).
22

23 Returns:
24 A list representing the sequence of jobs to be processed.
25 For example, [0, 2, 1] means job 0 is processed first, then job

2, then job 1.
26 All jobs must be processed on all machines in the same order.
27

28 The sequence must include all jobs exactly once.
29 """
30

31 \# --- your code here ---
32

33 \# Simple solution: process jobs in their original order (0, 1, 2,
...)

34 job_sequence = list(range(self.num_jobs))
35

36 return job_sequence
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Template for BPP

1 import numpy as np
2

3 class BPPSolver:
4 def __init__(self, capacity: int, weights: list[int | float]):
5 """
6 Initialize the BPP solver.
7

8 Args:
9 capacity (int): The capacity of each bin.

10 weights (list[int | float]): A list of item weights.
11 """
12 self.capacity = capacity
13 self.weights = weights
14 self.num_items = len(weights)
15

16 \# --- your code here ---
17

18 def solve(self) -> list[list[int]]:
19 """
20 Solve the Bin Packing Problem.
21

22 Returns:
23 A list of lists, where each inner list represents a bin and

contains the
24 original indices of the items packed into it.
25 e.g., [[0, 2], [1, 3]] means item 0 and 2 are in the first bin,
26 and item 1 and 3 are in the second.
27 """
28

29 \# --- your code here ---
30

31 bins = [] \# Stores the content (indices) of each bin
32 bin_loads = [] \# Stores the current load of each bin
33

34 \# Store items as tuples of (index, weight) to keep track of original
indices

35 items = sorted([(i, w) for i, w in enumerate(self.weights)], key=
lambda x: x[1], reverse=True)

36

37 for item_index, item_weight in items:
38 placed = False
39 \# Try to place the item in an existing bin
40 for i in range(len(bins)):
41 if bin_loads[i] + item_weight <= self.capacity:
42 bins[i].append(item_index)
43 bin_loads[i] += item_weight
44 placed = True
45 break
46

47 \# If not placed, open a new bin
48 if not placed:
49 bins.append([item_index])
50 bin_loads.append(item_weight)
51

52 return bins
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