® N o g b~ 0w N =

- o ©

SimpleTIR: End-to-End Reinforcement Learning for

Multi-Turn Tool-Integrated Reasoning

50%

45%

w w »
o u o
S-S

Average AIME24 Accuracy
pry ey N N
w o w o w
XX R X R

o
X

Anonymous Author(s)
Affiliation
Address

email

Abstract

Large Language Models (LLMs) can enhance their reasoning by interacting with
external tools, a paradigm known as Tool-Integrated Reasoning (TIR). However,
extending TIR to multi-turn settings using Reinforcement Learning (RL) often
exhibits training instability and degraded performance. We attribute the instability
to harmful negative samples resulting from distributional drift and compounding
errors induced by using external tool outputs during multi-turn rollout. To address
this issue, we introduce SimpleTIR, a simple method that stabilizes multi-turn
TIR training via filtering out trajectories with “void turns”, i.e., turns that yield
neither a code block nor a final answer. Specifically, we remove those trajec-
tories from the policy update to block harmful gradients, while retaining them
in advantage estimation to keep the estimate unbiased. Extensive experiments
show that SimpleTIR effectively mitigates gradient norm explosion and stabilizes
multi-turn RL training from base models. It achieves state-of-the-art performance
on challenging math reasoning benchmarks, including an AIME24 score of 50.5
starting from the Qwen2.5-7B base model. SimpleTIR also promotes more diverse
reasoning behaviors such as self-correction and cross-validation, outperforming
prior methods trained from stronger instruction-tuned models.

‘ —— SimpleTIR —— Naive Multi-turn Training Baseline (DAPO)

35

30

Gradient Norm
- N N
w o w

-
o

o

U]

0 . A

[200 400 600 800 1000 1200 0 200 400 600 800 1000

1200

Training Steps of Reinforcement Learning Training Steps of Reinforcement Learning

Figure 1: Starting from Qwen2.5-7B base model, The training dynamics of SimpleTIR are highly stable, and
it clearly outperforms the baseline method without TIR (). The gradient norm remains well-behaved
with almost no spikes. In contrast, Naive Multi-turn Training not only suffers from unstable dynamics and
catastrophic gradient norm explosions, but also fails to match the performance of the baseline without TIR.

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

19
20
21
22
23
24
25

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60

End-to-End Multi-Turn Agent Training

Agent-Env Interaction Trajectory Filtering Reinforcement Learning
Code { Reasoning1 Code 1 Reasoning 2 | { Reasoning1 , Codel | Reasoning2
_, , .
Agent Result Incomplete Code } © Code2 ., Results }
—
Void Turn
Multiple Turns S(op%en:rromon with Valid Trajectory

Policy Update

Figure 2: The overview of SimpleTIR. During policy update, SimpleTIR filters out trajectories containing void
turns, i.e., an LLM response that fails to produce a complete code block or a final answer.

1 Introduction

Training Large Language Models (LLMs) to perform multi-turn Tool-Integrated Reasoning (TIR) is
one of the most promising frontiers in Reinforcement Learning (RL). At each turn, LLMs iteratively
reason, generate code, execute it, and use the output to help reasoning in the next turn. TIR addresses
LLMs’ inherent limitations such as limited calculation accuracy and knowledge cutoff. For example,
LLMs can perform exact mathematical computation via a Python interpreter or retrieve up-to-date
information via search engines. Despite its clear potential, training LLMs for multi-turn TIR remains
highly challenging, as the process often suffers from instability and gradient explosion [2} 13, 4].

To probe training instability, we start from a single-turn TIR setup in which LLMs are allowed
to generate only one response (text reasoning plus an optional code block). As shown in Fig. 3]
single-turn TIR training is surprisingly stable, while naive multi-turn TIR training suffers from
gradient explosion and performance drop. We attribute this gap to the emergence and propagation of
low-probability tokens induced by using out-of-distribution (OOD) tool outputs as model inputs for
subsequent turns. Specifically, when the model’s response is concatenated with external tool output,
the resulting next turn inputs can depart from the model distribution. The subsequent turns inherit
this drift and accumulate low-probability tokens (Fig. d), eventually collapsing RL training. We argue
that multi-turn training instability mainly stems from the following two issues: (i) harmful gradients
from low-probability tokens, which occur more often in multi-turn settings because external tool
outputs can push inputs off distribution, making the model sample low-probability tokens that cause
gradient spikes during RL updates, and (ii) problematic multi-turn credit assignment, where errors in
later turns cause the correct reasoning in earlier turns to be mistakenly assigned a negative reward.
Fundamentally, both issues can be understood as the existence of harmful negative samples in the
training process.

We propose SimpleTIR, a simple yet effective algorithm that stabilizes multi-turn TIR training. The
key idea is to leverage void turns to distinguish helpful negative samples from harmful ones. A void
turn is defined as an LLM response that fails to produce a complete code block or a final answer.
Typical examples include partial code blocks, repetitive text, or incomplete responses caused by the
model prematurely sampling an end-of-sequence (eos) token. The core insight of SimpleTIR is to
filter out trajectories containing void turns. Specifically, SimpleTIR excludes these trajectories
when computing the policy loss, thus blocking harmful gradients from propagating. Meanwhile, it still
incorporates them into advantage estimation, so that the estimate is unbiased. This filtering strategy
effectively mitigates instability caused by harmful negative samples. More importantly, SimpleTIR is
general and plug-and-play. It requires only minimal modifications and can be seamlessly integrated
into existing training frameworks to improve stability and performance with almost no extra cost.

To validate the effectiveness of SimpleTIR, we conduct comprehensive experiments on challenging
math reasoning tasks across various settings. SimpleTIR exhibits state-of-the-art multi-turn TIR
performance starting from base models, achieving an AIME24 score of 50.5. Our ablation studies
further highlight the importance of void turn filtering, demonstrating that excluding trajectories with
void turns is the key to stabilizing multi-turn TIR training and unlocking performance improvements.
It directly addresses the instability that hinders naive multi-turn approaches. Finally, we evaluate the
benefits of Zero RL for multi-turn TIR training. Unlike approaches that first “cold start” LLMs before
RL [5], SimpleTIR allows LLMs to explore more novel and diverse multi-turn reasoning patterns,
including cross-validation, progressive reasoning, and self-correction.

62

63
64
65
66
67
68
69

70
71

72

73

74
75
76
77
78
79
80
81

82

83
84
85
86
87

88

89
90
91
92
93
94
95
%
97
98

2 Preliminaries

2.1 Training LLMs with RL

We model the auto-regressive LLM generation process as a Markov Decision Process (MDP) <
S, A, T, R, q,v >, where the state space S includes possible prefixes when generating the next token
and the action space A includes all possible tokens. The transition 7" appends the new tokens into
the prefixes. R is the reward function and q is the initial prompt distribution. The discount factor
v is usually set to 1 in LLM geenration. Instead of applying the widely-employed Proximal Policy
Optimization (PPO) [6], Group Relative Policy Optimization (GRPO) [7] is generally more preferable
due to its efficient computation of trajectory advantage

. r; — mean ({rl}f;)

T e ((002)

where Fjom = std in the original GRPO and F},,;y = 1 may also be used to reduce difficulty bias.
The policy loss in GRPO is

ey

Jerro(9) = B a)op, {0:)E ~ray, (o)

[oi]

e
éz ‘0*1,| Z (min (Pi,t(e)fii,t’dip (pit(0),1 —¢,1+¢) Ai,t) — Dk (7T9||7Tref)) ,
i=1 "t =1

@)
where p; +(6) = %‘M*)) and f3 is often set to 0 in Zero RL.

T Moy (04,t19,05,<¢

2.2 Tool Integrated Reasoning

In our TIR setting, each LLM response is truncated after a complete code block. A code interpreter is
available to detect and execute code blocks in LLM responses. The interpreter feedback f, which
is either standard output or standard error, will be appended after the LLM response [. The whole
response at turn k will become o = (q, lo, fo,1, f1, -, Ik, fx). From the MDP perspective, when
complete code blocks are generated, the transition function 7' appends not only the new token,
but also the code execution result, to the original prefix. We do not consider format rewards or
intermediate feedback in multi-turn TIR. The outcome reward is provided after a complete response
o is generated.

3 Method

We begin by diagnosing a core source of instability in multi-turn TIR: the emergence of low-
probability tokens. We show how such tokens drive gradient explosions and misaligned credit
assignment during Zero-RL training. Building on this analysis, we propose a simple but effective
trajectory filtering scheme that stabilizes training while preserving multi-turn behaviors. This section
presents the phenomenon, the analysis, and the algorithm, followed by practical training details.

3.1 Emergence of Low-probability Tokens in Multi-turn TIR Trajectories

Given the notorious instability in training multi-turn TIR [1}12, 3], we begin with a minimal single-turn
TIR setting where the model produces exactly one response, including text reasoning and an optional
code block. A final_answer function is provided in each code block for printing the indicated
answer. As shown in Fig. [3] naive single-turn training is notably more stable than its multi-turn
counterpart, exhibiting higher performance and fewer gradient spikes. The key difference is that in
multi-turn TIR, the response [;, and the tool feedback fj, in turn k& are concatenated into the input
for turn k£ + 1. Because the feedback is produced by an external code interpreter rather than the
model itself, it can deviate substantially from the model’s own distribution. With such OOD inputs,
the model outputs may deviate from pretrained patterns and become highly stochastic, exhibiting
unnaturally low probabilities on selected tokens.

99
100
101
102
103
104
105
106

107

108
109
110

111
112
113
114
115
116

17
118

119
120

—— Naive Multi-turn Training —— Naive Single-turn Training

8 1750 10
1500

0.4
0.2
L ne X

0o 200 400 600 800 o 200 400 600 800) 200 400 600 800 0o 200 400 600 800
Steps Steps Steps Steps

o
w
o

~
a
o

°
by
N
Code Use Fregency

AIME24 Score

o
N

Grad Norm
»

Response Length

3 R
o w
S o

u
i=3
o

o
o
o
o
o

Figure 3: Training statistics comparisons between naive single-turn and multi-turn TIR. Single-turn TIR trains
smoothly with reasonably good performance.

/S Aagnacas WV’

o

'
N
N

-6

-8

Token Probability (Log Scale)

-10 T T T T l
Turn 1 with Tool Call Turn 2 with Tool Call Turn 3 without Tool Call Turn 4 with Collapsed Response

Figure 4: Visualization of token probabilities in a response generated by multi-turn TIR. The y-axis is in log
scale and the x-axis is separated by different turns of generations.

To verify this, a case study is conducted on a response generated under multi-turn TIR. As illustrated
by Fig.[] the tool feedback of Turn 1 and Turn 2 indeed contain extremely low token probabilities and
strong OOD characteristics. Similar observations have been reported in previous TIR research [8, 2]
and can be handled by masking the policy loss on tool feedback. However, even if tool outputs
themselves are masked, later model responses can still be degraded. The probabilities of tokens
before tool calls, i.e., in Turn 1, remain relatively high, yet multiple low-probability segments emerge
in Turn 2 and Turn 3. This distributional drift compounds across turns and culminates in a collapsed
response with extremely low token probabilities in Turn 4.

3.2 Low-probability Tokens Compromise Zero RL Training

We identify a problematic pattern in multi-turn TIR trajectories: existence of low-probability tokens.
We analyze in the following subsection two consequences of such pattern in Zero RL training. This
explains the training instability and inefficiency of naive multi-turn TIR, as demonstrated in Fig. 3]

Gradient Explosion Fig. [3|reveals a dominant failure mode in multi-turn TIR training: gradient
explosion. Motivated by Li [9], we make theoretical analysis on the policy gradient with respect to
softmax logits z and connect gradient explosion to the issue of low-probability tokens in Sec. [3.1]
The gradient on the policy parameters 6 depends on the specific network architecture and is not
considered here. The following theorem describes several influencing factors when computing policy
gradient.

Proposition 1. Consider a certain token c in a LLM-generated response o with prompt q. The
gradient of the GRPO objective with respect to the logits z at the position of c is

1
[V.JaerpPol2 = — - _Tolclg.0) ge | Ac| \/)+ZP(j)2, (3)
J

|O| TOo14 (C|q’

where |/1c\ is the absolute value of advantage of token c, P is the probability vector at the position of
cwith P(j5) = mg(jlg,0), j € A, and g is the gating function

7(-9(6‘(]70)

g = 1{A, >0, ")y 4 <o,
0,14 (C|Qa 0)

>1—c}h.
T0o1a (C|Q7 0) }

121

122

123
124

125

126
127
128

129

130
131

132
133

134
135
136
137

139
140
141
142

143

144
145

146

147
148
149
150

151
152
153
154
155
156
157
158

159
160
161
162
163
164
165

166

167
168
169

According to Thm.[T} the scale of gradients on logits is primarily determined by the probability ratio
—m0(cl9:) 4nd the probability expression \/ 1—2P(c) + >, P(j)* We argue that both terms can

6,14 (cld,0)
contribute to unhealthy policy gradients in the existence of low-probability tokens as demonstrated in

Sec.B 1L
* Constantly high gradient norm due to \/ 1—2P(c) + > ; P(j)*: As shown in Fig. , the model

may place very low probability on the selected token c¢ so that 1 —2P(c) is maximized. Furthermore,
if the policy is already confident and concentrated on other tokens, the collision probability
> Pl)2 remains large [9], sustaining high gradient norms.

* Gradient spikes due to %: When A, < 0, the ratio % is only clipped from below
old ’ old ’

(at 1 — ¢) and has no upper-bound. For a low-probability token, 7y, (c|-) is extremely small.
During PPO’s mini-batch updates, even a minor increase in 7y (c|-) can cause this ratio to become

exceptionally large. When the advantage A, is negative, this ratio is unclipped, leading directly to
the gradient spikes observed in Fig.[3]

Misaligned Credit Assignment In addition to causing large gradients, the emergence of low-
probability tokens undermines the credit assignment process in Zero RL. According to Fig. 4}
low-probability tokens are more prone to accumulate with more turns, indicating higher token entropy
and generation stochasticity. This compromises the overall success rate of responses with multi-turn
TIR. In our A multi-turn trajectory that fails in its final turns receives a single negative reward for
the entire sequence. This reward signal does not distinguish between the valid, high-probability
reasoning tokens in early turns and the faulty, low-probability tokens that caused the eventual failure.
This inherently discourages multi-turn behavior and collapses the policy toward single-turn, text-only
reasoning.

3.3 Stabilizing Multi-Turn TIR Training with Void Turn Masking

Once we identify the emergence of low-probability tokens as the primary cause of multi-turn
training, straightforward algorithmic improvements can be masking the policy loss on high-perplexity

responses or truncating the importance ratio %. While these approaches prove effective in
old V7142

single-turn reasoning [[10} 11} [12], we show in Fig. E] (bottom) that they cannot resolve the training
instability issue in multi-turn TIR. The threshold for loss masking or ratio truncating is hard to
determine in a dynamic training process. Meanwhile, these approaches cannot efficiently filter out
samples with incorrect credit assignment.

Nevertheless, loss masking on specific samples can indeed be helpful [13], as long as a proper filtering
criterion is selected. From Fig.] we observe that the collapsed Turn 4 follows Turn 3 without a
tool call. Intuitively, a turn with neither a tool call nor a final answer makes no contributions to the
reasoning process and should not exist in an effective multi-turn trajectory. We define such turns
as void turns, with Turn 3 in Fig.] as an example. In a response with low token probabilities and
high generation stochasticity, a premature eos token is more likely to be generated, leading to the
emergence of a void turn. As the void turn rarely exists in normal responses and can be the outcome
of abnormal ones, we identify it as a key indicator of multi-turn instability.

This suggests void turns to be a simple rule of trajectory filtering, resulting in the SimpleTIR algorithm
as demonstrated in Fig.2] For each turn, we detect whether the response contains a complete code
block or a final answer. If neither is present, we stop generation for that prompt and mask the policy
loss of the entire response. This also corrects misaligned credit assignment by excluding normal early
turns from being penalized. After trajectory filtering, we perform GRPO on effective multi-turn TIR
trajectories. SimpleTIR is agnostic to specific RL methods and recent algorithmic modifications for
LLM reasoning [[10} |14} [15] are orthogonal to SimpleTIR’s trajectory filtering approach.

3.4 Implementation Details

In our training process, we adopt several practices to further improve efficiency and stability. For
example, techniques from non-TIR reinforcement learning [[16]], such as clip higher, removing KL,
dynamic sampling, and progressive length budget, are also effective in TIR training. Meanwhile,

170
171
172
173
174
175
176
177
178

179

180

181
182
183
184
185
186
187
188

189
190
191
192
193
194
195
196
197
198
199

Table 1: Performance comparison on various math benchmarks. Check and cross marks in the “TIR” column
refers to whether the method involves TIR during training and evaluation. Slash, check, and cross marks in the
“Zero RL” column refers to whether the model is untrained, trained with the Zero RL setting, or trained with
other settings. The “From” column indicates the type of We fill the scores with - if they are not provided in
respective reports.

Model TIR Zero RL From AIME24 AIME25 MATHS500 Olympiad AMC23 Hmmt 25

Models based on Qwen2.5-7B

Qwen2.5-7B X / Base 32 1.1 51.9 15.4 21.7 0.0
Qwen2.5-7B-TIR v / Base 1.7 0.6 18.0 6.2 10.8 1.9
SimpleRL-Zoo-7B X v Base 15.6 - 78.2 404 62.5 -
ToRL-7B v X Math-Inst 40.2 27.9 82.2 49.9 75.0

Effective TIR-7B v X Math 423 29.2 86.4 - 74.2

ARPO-7B v X Inst 30.0 30.0 78.8 - - -
ZeroTIR-7B v v Base 39.6 25.0 80.2 - - 22.5
SimpleTIR-7B v v Base 50.5 30.9 88.4 54.8 79.1 29.7

Models based on Qwen2.5-32B

Qwen2.5-32B X / Base 4.2 1.6 43.1 17.8 28.0 0.2
Qwen2.5-32B-TIR v / Base 7.1 5.0 37.0 16.9 20.0 52
DAPO X v Base 50.0 - - - -

ReTool v X Math-Inst 67.0 493 - - - -
ZeroTIR-32B v v Base 48 27 87.8 - - 20.0
SimpleTIR-32B v v Base 59.9 49.2 92.9 63.7 91.6 34.6

there are some implementation details specific to multi-turn TIR. First, we do not use chat templates,
since special tokens like |im_end| are out-of-distribution for base models. Instead, when appending
tool outputs, we simply prepend “Code Execution Result:” before the interpreter output. Second, we
prepend every LLM-generated code block with a final_answer function, which allows the model
in single-turn TIR to directly output the final answer inside a code block without an additional turn
of querying. This technique provides a shortcut for simple tasks and improves training efficiency.
Finally, we stop LLM generation after a complete code block and append the true tool outputs. We
do not feed text tokens after each code block into the next turn. This technique helps prevent LLMs
from hallucinating interpreter outputs after the code block.

4 Experiments

4.1 Setup

Training We prepare our training code with the VeRL [17] and Search-R1 [8] framework. We
use Sandbox Fusion as an asynchronous code interpreter. The training datasets are Math3-5 from
SimpleRL [18] and Deepscaler [19]. SimpleTIR follows the Zero RL setting and uses the unaligned
Qwen-2.5 series as the base models, including Qwen-2.5-7B and Qwen-2.5-32B. During training, the
rollout batch size is set to 512, and the mini update size is set to 128. The maximum response length
is initially set to 16K, with a maximum of five turns of code execution. When the average response
length plateaus, we increase the maximum response length to 24K and the largest number of turns to
10. Other training hyperparameters are in Appendix [B.2]

Evaluation Our evaluation is conducted on Math500 [20], AIME24, AIME25, AMC23, and Hmmt
Feb 25, using a temperature of 1 and reporting average @32 scores to reduce variance, following [16].
For comparison, we consider three categories of baselines. The first is non-TIR Zero RL, where we use
SimpleRL-Zoo [18] and DAPO [16] as representative baselines. The performance gap between these
methods and SimpleTIR highlights the advantage of incorporating TIR in mathematical reasoning.
The second category is TIR RL from cold-start or specialized models, which includes ReTool [3],
collecting cold-start datasets for supervised finetuning on Qwen2.5-Math-32B-Instruct, ARPO [21]],
finetuning Qwen2.5-7B-Instruct, as well as ToRL [22] and Effective CIR [23]], both applying RL
to the Qwen2.5-Math series. The final category is Zero RL with TIR, where, to the best of our
knowledge, Zero-TIR [2] is the only method that strictly follows the Zero RL paradigm by training
TIR models directly from base models.

200

201
202
203
204
205
206
207

208

209
210
211
212
213
214
215

216
217
218

Figure 5: Top: Training curves for SimpleTIR with different maximum number of turns. SimpleTIR with
maximum 10 turns is resumed at 200 steps from SimpleTIR with maximum 5 turns. SimpleTIR clearly benefits
from scaling interaction turns from 1 to 5. Bottom: The training curves for ablation studies in the first 320 steps.
Trajectory filtering with or low probability tokens cannot resolve the challenge of training
instability, while SimpleTIR suffers less from low probability tokens and gradient explosion.

35 £ 0.5
@ 3.0 gmoo 08 0.4
c 7 o .
£ P 5 g
Cas g 3000 306 o3
o 2] <
320 3] & o2
a“ 2000 <04 § -
£ g g z
15
z g 1000 02 0.1
g .
10 < 0.0
o 400 800 1200 o) 400 800 1200 o 400 800 1200 0 400 800 1200
Steps Steps Steps Steps
‘ Max Turns=1 —— Max Turns=5 —— Max Turns=10
4 5
-10 0.55
2 0.50
3 515 4 ©
13 a [] 0 045
5 ° 5 a
z, a -20 3 ©0.40
3 5 5 £
o] 8 -25 z, 5 035
1 < " 030
= -30
] 0.25
)
o) 80 160 240 o 80 160 240 0 80 160 240 0 80 160 240
Steps Steps Steps Steps
High Ratio Filtering —— Low Prob Filtering —— SimpleTIR

Table 2: Results of ablation studies. Considering the unstable training of ablated methods, we report the highest
scores within 1000 gradient steps. “Naive Multi-Turn” directly applies RLVR in multi-turn TIR. “Low Prob” and
“High Ratio” filtering refers to masking the policy loss on tokens with lowest probabilities or highest importance
ratio.

SimpleTIR-7B Naive Multi-Turn ~ Low Prob Filtering ~ High Ratio Filtering ~ Stop Generation w/o Filtering

AIME24 50.5 20.8 233 26.3 26.1
Math500 88.4 73.1 72.8 75.0 71.3

4.2 Training Results

The training results are listed in Tab. [l SimpleTIR demonstrates significant performance im-
provement over base models and outperform all baselines of Zero RL, either with or without TIR.
SimpleTIR can also outperform baselines starting from Qwen2.5-Math-7B series, such as ToRL
and Effective TIR. Comparing with methods not following Zero RL, it is shown that cold start
significantly boosts performance, with ReTool-32B obtaining the highest scores on AIME24 and
AIME?2S5. The advantage of Zero RL over cold start lies in the diversity of reasoning patterns, as
discussed in Sec. 44

4.3 Training Curves and Ablation Studies

We show the training curve of SimpleTIR with 1, 5, and 10 turns of generation in Fig. [5](Top). In
all these settings, SimpleTIR exhibits constant and smooth increases of the average response length
and performance scores. The average number of turns first arises quickly then remains constant
for multi-turn SimpleTIR. We also observe that the response length and the Math500 score scales
with more turns, while the AIME24 score does not benefit clearly. This indicates that different tasks
require distinct reasoning patterns. Some may be solvable with few steps of reasoning, but others will
take a number of external feedback before reaching the correct answer.

We also conduct ablation studies to demonstrate the effectiveness of trajectory filtering in SimpleTIR.
We first investigate two alternative filtering criteria: high importance ratio and low token probabilities,
as specified in the first paragraph of Sec.[33] As shown in Fig. 5] (Bottom), these two filtering

219
220
221
222
223
224
225
226

227

228
229
230
231
232

233
234
235
236
237
238

239

240

241
242
243

Figure 6: Demonstration of three reasoning patterns observed in responses generated by SimpleTIR.

Emergent Multi-Turn Reasoning Patterns

Pattern 1: Cross Validation Pattern 2: Progressive Reasoning Pattern 3: Error Correction Loop
.
[Code 1] [Code 2] Code 1 _

//Retrg
1
/ 1 ResultT . _If Error

/ /
Code 2 -~ L
COHECD

[> | Result 2
[Validated Results] Final Results

Code 3

Final Results

Table 3: Comparison of reasoning pattern frequencies in ReTool and SimpleTIR-32B responses. The summation
of frequencies may exceed 100% as there may be more than one reasoning patterns in one response.

Progressive Cross Error

Reasoning (%) Verification (%) Correction (%)
ReTool 18.9 82.4 25.8
SimpleTIR-32B 46.5 86.0 38.0

approach cannot resolve the issue of gradient explosion, exhibiting unstable curves of training scores.
SimpleTIR features a more stable curve of gradient norm, thanks to the mild token probability
distributions. This demonstrates the effectiveness of void turn filtering in stabilizing multi-turn TIR
training. We then consider an ablation method where LLM generation is terminated on void turns
but resulting trajectories are not filtered when computing policy loss. According to the validation
results in Tab. 2] this method is also inferior to SimpleTIR. This can be attributed to misaligned credit
assignment since trajectories containing void turns can hardly obtain positive outcome. SimpleTIR
handles such issue by masking the loss of whole responses containing void turns.

4.4 Emergence of Diverse Reasoning Behaviors

Thanks to the framework of Zero RL training, SimpleTIR automatically reinforces useful reasoning
patterns obtained in the pretraining phase, rather than sticking to predefined patterns in the SFT
dataset. In Appendix[A.2] we show SimpleTIR responses with diverse multi-turn reasoning behaviors.
They are mostly combinations of the three main reasoning patterns illustrated in Figure [6] namely
Cross Validation, Progressive Reasoning, and Error Correction.

We also use Claude-3.7-Sonnet to identify and count the frequency of reasoning patterns in responses
generated by ReTool and SimpleTIR-32B. The responses are filtered so that they all lead to the
correct final answer. Both models demonstrate a strong tendency to conduct multiple rounds of cross
verification. Meanwhile, SimpleTIR-32B exhibits more instances of progressive reasoning and error
correction. This illustrates the advantage of Zero RL, which preserves more diversity in reasoning
patterns.

5 Related Work

5.1 Zero RL for LLM Reasoning

DeepSeek-R1 [[7] first shows that starting from an unaligned base model, large-scale RL training
with outcome reward can unlock emergent chain-of-thought reasoning ability. Such paradigm is
later referred to as Zero RL. SimpleRL [[18] provides a reproducible cookbook to run Zero RL on

244
245
246
247
248
249

250

251
252
253
254
255
256
257
258
259

261

262
263
264
265
266
267
268
269
270
271
272
273
274

275

276
277
278
279
280
281
282

284

various open-source base models. Open-Reasoner-Zero [24] proposes that vanilla PPO with GAE
(A = 1,7 = 1) without KL regularization is sufficient to scale up Zero RL training. DAPO [16]
introduce several training details that makes Zero RL training stable and efficient, such as raising
the high clip ratio of PPO and GRPO and filtering tasks with 0 or 100% solve rate. Dr. GRPO [_25]
proposes to remove the length normalization term. SimpleTIR also follows the Zero RL pipeline and
is orthogonal to training algorithms for Zero RL without TIR.

5.2 RL for Tool Integrated Reasoning

Several recent works focus on applying RL to improving the tool use ability of LLMs. Search-R1 [8]
and R1-Search [26]] focus on question-answering tasks, utilizing the search tool. For mathemati-
cal reasoning tasks, python interpreter can be a useful tool to conduct numerical calculations or
enumerations. ReTool [5] employs a cold-start SFT phase before RL. ToRL [22] and Effective
CIR [23]] explore training recipes on math-specialized bases. These pipelines often rely on domain
data, instruction tuning, or other supervision that introduce bias and complexity; in contrast, Zero
RL is more general yet notoriously unstable in multi-turn settings. Our work directly addresses this
stability gap under Zero RL by filtering trajectories with void turns. ZeroTIR [2] is also explicitly
framed in the Zero RL setting. It proposes several stabilizing techniques that are orthogonal to our
approach.

5.3 Stabilizing RL Training

Training instability is a significant challenge when applying RL to LLMs, often manifesting as entropy
collapse and gradient norm explosions. Entropy-based methods explicitly maintain policy entropy
or encourage re-generation at pivotal tokens to delay distributional narrowing [27, 128} 29]. Recent
methods control the importance sampling ratio to reduce gradient variance and brittle updates by
reweighting or constraining likelihood ratios, e.g., from token-level IS to sequence-level objectives and
clipping [14} 15130, [31]]. Data and trajectory filtering stabilizes training by discarding uninformative
or harmful samples, e.g., multi-sample-then-filter schemes [32]]. From the perspective of the learning
signal itself, negative-only gradient updates have been shown to improve stability and generalization
without sacrificing exploration, and more generally to focus updates on low-probability/high-entropy
branching tokens [33]]. SimpleTIR departs from the above methods by targeting the root cause
specific to TIR, i.e., distribution shift induced by external tool outputs compounded by multi-turn
error accumulation. It is also orthogonal to entropy regularization, IS ratio control, and negative-
gradient schemes.

6 Conclusion

In this work, we introduce SimpleTIR, an RL framework designed to stabilize and enhance multi-turn
TIR under the Zero RL setting. By addressing the key challenge of harmful negative samples via
filtering out trajectories with void turns, our method achieves stable training dynamics and improves
reasoning performance across a variety of mathematical benchmarks. Beyond state-of-the-art results,
SimpleTIR also encourages the emergence of diverse reasoning patterns. These results highlight the
potential of end-to-end multi-turn TIR RL, without relying on cold-start human data, as a pathway to
scalable and reliable multi-turn reasoning in future LLM agent development.

Limitations and Future Work While effective, our method has several limitations. First, we use
void turns as an indicator of low-probability tokens in multi-turn TIR. However, this indicator may
not be directly applicable to tasks beyond multi-turn TIR. Second, we currently restrict the maximum
number of turns to 10 for mathematical reasoning, though more interactions may be required for
complex multi-turn agent tasks. Third, our training relies on a highly parallel sandbox for code
execution. Therefore, the development of a faster and more reliable sandbox is an important direction
for future work. Finally, achieving fully asynchronous rollout and reward calculation remains an open
challenge. These limitations raise additional concerns around rollout efficiency, memory management,
and credit assignment, which we leave for future exploration.

292

293
294
295

296
297
298

300

301
302

303
304
305

306

308
309

310
311
312

313

314
315
316

317
318
319
320

321
322
323
324

325
326
327

328
329
330

331
332
333

334
335

336
337
338

References

[1] Zihan Wang, Kangrui Wang, Qineng Wang, Pingyue Zhang, Linjie Li, Zhengyuan Yang, Xing
Jin, Kefan Yu, Minh Nhat Nguyen, Licheng Liu, et al. Ragen: Understanding self-evolution in
IIm agents via multi-turn reinforcement learning. arXiv preprint arXiv:2504.20073, 2025.

[2] Xinji Mai, Haotian Xu, Xing W, Weinong Wang, Yingying Zhang, and Wenqiang Zhang. Agent
RL Scaling Law: Agent 1l with spontaneous code execution for mathematical problem solving.
CoRR, abs/2505.07773, 2025.

[3] Carlo Baronio, Pietro Marsella, Ben Pan, and Silas Alberti. Multi-turn 1l training for cuda
kernel generation. https://cognition.ai/blog/kevin-32b, 2025.

[4] Moonshot Al. Kimi-researcher: End-to-end 1l training for emerging agentic capabilities.
https://moonshotai.github.io/Kimi-Researcher/, June 2025.

[5] Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan
Jiang, Jinxin Chi, and Wanjun Zhong. ReTool: Reinforcement learning for strategic tool use in
Ilms. CoRR, abs/2504.11536, 2025.

[6] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. CoRR, abs/1707.06347, 2017.

[7] DeepSeek-Al Team. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement
learning. arXiv:2501.12948, 2025. URL https://arxiv.org/abs/2501.12948|

[8] Bowen Jin, Hansi Zeng, Zhenrui Yue, Dong Wang, Hamed Zamani, and Jiawei Han. Search-
R1: Training llms to reason and leverage search engines with reinforcement learning. CoRR,
abs/2503.09516, 2025.

[9] Yingru Li. Logit dynamics in softmax policy gradient methods. CoRR, abs/2506.12912, 2025.

[10] Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
Yugiong Liu, Rui Men, An Yang, Jingren Zhou, and Junyang Lin. Group sequence policy
optimization. CoRR, abs/2507.18071, 2025.

[11] Deheng Ye, Zhao Liu, Mingfei Sun, Bei Shi, Peilin Zhao, Hao Wu, Hongsheng Yu, Shaojie
Yang, Xipeng Wu, Qingwei Guo, Qiaobo Chen, Yinyuting Yin, Hao Zhang, Tengfei Shi, Liang
Wang, Qiang Fu, Wei Yang, and Lanxiao Huang. Mastering complex control in MOBA games
with deep reinforcement learning. In AAAI, pages 6672—6679. AAAI Press, 2020.

[12] Yifan Zhang, Xingyu Lu, Xiao Hu, Chaoyou Fu, Bin Wen, Tianke Zhang, Changyi Liu, Kaiyu
Jiang, Kaibing Chen, Kaiyu Tang, Haojie Ding, Jiankang Chen, Fan Yang, Zhang Zhang,
Tingting Gao, and Liang Wang. R1-reward: Training multimodal reward model through stable
reinforcement learning. CoRR, abs/2505.02835, 2025.

[13] Wei Xiong, Jiarui Yao, Yuhui Xu, Bo Pang, Lei Wang, Doyen Sahoo, Junnan Li, Nan Jiang,
Tong Zhang, Caiming Xiong, and Hanze Dong. A minimalist approach to LLM reasoning: from
rejection sampling to reinforce. CoRR, abs/2504.11343, 2025.

[14] Feng Yao, Liyuan Liu, Dinghuai Zhang, Chengyu Dong, and Jianfeng Gao. Your efficient rl
framework secretly brings you off-policy rl training, August 2025. URL https://fengyao!
notion.site/off-policy-rll

[15] Aili Chen, Aonian Li, Bangwei Gong, Binyang Jiang, Bo Fei, Bo Yang, Boji Shan, Changqing
Yu, Chao Wang, Cheng Zhu, et al. Minimax-m1: Scaling test-time compute efficiently with
lightning attention. arXiv preprint arXiv:2506.13585, 2025.

[16] Qiying Yu, Zheng Zhang, Ruofei Zhu, et al. DAPO: An open-source llm reinforcement learning
system at scale. arXiv:2503.14476,2025. URL https://arxiv.org/abs/2503.14476,

[17] Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua

Peng, Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv
preprint arXiv: 2409.19256, 2024.

10

https://moonshotai.github.io/Kimi-Researcher/
https://arxiv.org/abs/2501.12948
https://fengyao.notion.site/off-policy-rl
https://fengyao.notion.site/off-policy-rl
https://fengyao.notion.site/off-policy-rl
https://arxiv.org/abs/2503.14476

339
340
341

342
343
344
345
346

347
348
349

350
351

352
353

354

363
364
365

366

368

369
370
371

372
373
374

375
376
377

379
380

381
382
383

385
386

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He.
Simplerl-zoo: Investigating and taming zero reinforcement learning for open base models in the
wild. CoRR, abs/2503.18892, 2025.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan
Roongta, Colin Cai, Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica.
Deepscaler: Surpassing ol-preview with a 1.5b model by scaling rl. https://pretty-
radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-
RL-19681902c1468005bed8ca303013a4e2, 2025. Notion Blog.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset.
In NeurIPS Datasets and Benchmarks, 2021.

Fanbin Lu, Zhisheng Zhong, Shu Liu, Chi-Wing Fu, and Jiaya Jia. Arpo:end-to-end policy
optimization for GUI agents with experience replay. CoRR, abs/2505.16282, 2025.

Xuefeng Li, Haoyang Zou, and Pengfei Liu. ToRL: Scaling tool-integrated RL. CoRR,
abs/2503.23383, 2025.

Fei Bai, Yingqian Min, Beichen Zhang, Zhipeng Chen, Wayne Xin Zhao, Lei Fang, Zheng
Liu, Zhongyuan Wang, and Ji-Rong Wen. Towards effective code-integrated reasoning. arXiv
preprint arXiv:2505.24480, 2025.

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung- Yeung Shum.
Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
model. arXiv:2503.24290, 2025. URL https://arxiv.org/abs/2503.24290.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
and Min Lin. Understanding rl-zero-like training: A critical perspective. arXiv preprint
arXiv:2503.20783, 2025.

Huatong Song, Jinhao Jiang, Yinggian Min, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, Lei Fang,
and Ji-Rong Wen. R1-searcher: Incentivizing the search capability in llms via reinforcement
learning. CoRR, abs/2503.05592, 2025.

Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li,
Yuchen Fan, Huayu Chen, Weize Chen, et al. The entropy mechanism of reinforcement learning
for reasoning language models. arXiv preprint arXiv:2505.22617, 2025.

Qingbin Li, Rongkun Xue, Jie Wang, Ming Zhou, Zhi Li, Xiaofeng Ji, Yongqi Wang, Miao
Liu, Zheming Yang, Minghui Qiu, et al. Cure: Critical-token-guided re-concatenation for
entropy-collapse prevention. arXiv preprint arXiv:2508.11016, 2025.

Mingjie Liu, Shizhe Diao, Ximing Lu, Jian Hu, Xin Dong, Yejin Choi, Jan Kautz, and Yi Dong.
Prorl: Prolonged reinforcement learning expands reasoning boundaries in large language models.
arXiv preprint arXiv:2505.24864, 2025.

Yuzhong Zhao, Yue Liu, Junpeng Liu, Jingye Chen, Xun Wu, Yaru Hao, Tengchao Lv, Shaohan
Huang, Lei Cui, Qixiang Ye, et al. Geometric-mean policy optimization. arXiv preprint
arXiv:2507.20673, 2025.

Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
Yugiong Liu, Rui Men, An Yang, et al. Group sequence policy optimization. arXiv preprint
arXiv:2507.18071, 2025.

Vaishnavi Shrivastava, Ahmed Awadallah, Vidhisha Balachandran, Shivam Garg, Harkirat Behl,
and Dimitris Papailiopoulos. Sample more to think less: Group filtered policy optimization for
concise reasoning. arXiv preprint arXiv:2508.09726, 2025.

Xinyu Zhu, Mengzhou Xia, Zhepei Wei, Wei-Lin Chen, Danqgi Chen, and Yu Meng. The surpris-
ing effectiveness of negative reinforcement in llm reasoning. arXiv preprint arXiv:2506.01347,
2025.

11

https://arxiv.org/abs/2503.24290

387

388

389
390
391
392
393

394

395
396
397
398

399

400

401
402
403
404
405
406

407

408
409
410
411
412
413
414
415
416

417
418
419
420
421
422
423
424

425

426
427
428
429
430

A Example Responses

A.1 Incomplete Response

We present representative failure cases that contain void turns, i.e., turns that produce neither a
complete, executable code block nor a boxed final answer. These examples serve a diagnostic role:
they illustrate how OOD tool feedback and compounding errors precipitate collapsed generations
and gradient spikes during Zero RL. Tab.] shows a typical trajectory in which a void turn disrupts
subsequent decoding and leads to corrupted outputs, motivating our trajectory filtering rule.

A.2 Response with Emergent Reasoning Behaviors

We provide qualitative rollouts that demonstrate the diverse multi-turn behaviors SimpleTIR elicits
without instruction-level biases. Tab [5]illustrates progressive reasoning with code improvement.
Taken together with the quantitative pattern analysis in the main text, these cases substantiate our
claim that Zero RL with TIR encourages richer strategies than cold-start SFT.

B Experiments

B.1 Prompt for Multi-turn TIR Generation

We include the exact prompt template used to generate multi-turn TIR trajectories in Tab. [6b] The
design emphasizes: (1) selective use of Python wrapped in triple backticks as complete scripts (with
imports); (2) explicit printing of intermediate quantities so that execution feedback can guide later
turns; and (3) a standardized answer channel (final_answer(...) or \boxed{...}) that cleanly
terminates trajectories when a solution is reached. These choices stabilize interaction with the
interpreter, reduce format variance, and make it easy to detect valid tool calls versus void turns.

B.2 Hyperparameters

We show the training hyperparameters of SimpleTIR in Tab. [6a] Below we explain the rationale
behind the hyperparameters. We cap the initial max response length at 16,384 tokens to accommodate
complete code blocks and verbose execution traces without premature truncation. Initial max
interaction turns = 5 bounds episode length and compute while still allowing the model to plan,
execute, and verify within a single trajectory. We set rollout temperature = 1.0 to preserve diversity in
candidate solutions and rely on selection/credit assignment rather than explicit entropy bonuses to
drive exploration. Each update uses a sampling batch size of 1,280 responses with n = 16 rollouts
per prompt, which yields broad coverage of tool-use strategies per input while keeping variance
manageable.

We use standard PPO with clip ratio = 0.2 / 0.28 (low/high) to constrain policy updates; the slightly
looser upper bound avoids over-penalizing advantageous moves identified by execution feedback.
PPO epochs = 4 provide sufficient reuse of samples without overfitting to batch noise. The train batch
size = 512 balances gradient estimate quality and memory use. A small actor learning rate = le-6 and
gradient clipping = 1 (global-norm) prevent instability from long-context backprop and occasional
high-magnitude advantages produced by sparse rewards. We treat each dialogue as an undiscounted
episodic task with v = 1.0. We also set entropy coefficient = 0 and KL coefficient = 0. Exploration is
instead induced by temperature and multi-rollout sampling.

B.3 Prompt for Extracting Reasoning Patterns

To analyze behaviors systematically, in Tab.[7]we provide the prompt used to label reasoning behaviors
in trajectories . It first enforces minimal bookkeeping (e.g., number of code blocks, whether any
execution equals the final answer), then queries four patterns: decomposed sub-solves (with non-final
execution), induction, self-verification, and bug-fixing via additional code. The constrained output
format improves label consistency and allows fair frequency comparisons across methods.

12

Table 4: An example from SimpleTIR-7B on AIME24 dataset. Responses generated in different turns are
separated with a vertical line. Response Part-II contains a void turn, where no complete code blocks nor boxed
answers are generated. Both in and after the void turn, the model generates corrupted responses.

Example #1 from AIME24 Dataset

Question:

Eight circles of radius 34 are sequentially tangent, and two of the circles are tangent to AB and BC of triangle
ABC, respectively. 2024 circles of radius 1 can be arranged in the same manner. The inradius of triangle
ABC can be expressed as 7, where m and n are relatively prime positive integers. Find m + n.

A

B C
Labeled Answer:
197

Model Output by SimpleTIR-7B (Part-I)

To solve this problem, we need to determine the inradius of triangle ABC' given the arrangement of circles.
Here is the step-by-step reasoning:

Understand the Geometry:

- We have eight circles of radius 34 that are tangent to each other sequentially, with two of them being tangent
to the sides AB and BC of triangle ABC'. - Additionally, 2024 circles of radius 1 can fit in the same manner.
Determine the Distance Between Centers of the Larger Circles:

- The centers of the eight tangent circles of radius 34 will form a chain where each circle is tangent to the
next, meaning the distance between the centers of two consecutive circles is 34 4+ 34 = 68. - Since there
are 8 circles, the total distance from the center of the first circle to the center of the last circle would be
68 x (8 — 1) = 68 x 7 = 476. However, we need to consider that the first circle is tangent to AB and the
last circle is tangent to BC'. This distance of 476 actually represents the length of the tangent chain along the
line connecting the points of tangency on AB and BC.

Relate to Triangle ABC:

- If we look at the centers of these circles, they form a line parallel to BC' and AB, and the distance between
this line and either AB or BC is equal to the radius of the circles (34 for the larger circles, 1 for the smaller
circles).

Calculate the Lengths:

- For the larger circles (radius 34):

- The total distance connecting the points of tangency on AB and BC' is effectively the distance between the
parallel line formed by the centers of these circles and the line BC' or AB, which is 8 x 34 = 272 (since
there are 8 circles, and each has a radius of 34, the total vertical distance covered would be the diameter of
7 circles if we think about it in terms of centers plus radius). However, since they are tangent to each other
sequentially, the distance between the lines AB and BC' (parallel to the line connecting the centers) should be
34434 x(8—1)=34+34x7=34x8=272.

- For the smaller circles (radius 1):

- Similarly, if we can fit 2024 circles of radius 1, the total vertical distance from the line of tangency on AB to
the line of tangency on BC would be 2024 x 1 = 2024.

Inradius Relationship:

- The inradius 7 of triangle ABC' is the radius of the inscribed circle. To find this, we need to understand how
the heights and lengths of the triangle are affected by these tangent circles.

- Let’s denote the length of AB = ¢, BC = a, and C A = b. The height from A to BC' can be considered by
looking at how the circles stack up vertically.

- For the larger circles:

- If two circles are tangent to AB and BC, the length along AB and BC' would create a configuration where
if you think about the points of tangency, the distance covered by the centers vertically for 8 circles should
match up with the triangle height minus twice the radius (since the circles are also on the boundary of the
triangle).

13

Model Output by SimpleTIR-7B (Part-II)

...... Some Response Omitted......

Given this, distance between sides should follow proportionally: Distance apart: smaller = 2214321 Total height
h of the triangle should include this detailed intermediary:

Let’s re-evaluate and verify it step-by-step via coding:

import sympy as sp

R_large = 34
R_small = 1

num_large_circles = 8

num_small_circles = 2024

distance_large_centers = num_large_circles * (2 *x R_large)
distance_small_centers = num_small_circles * (2 * R_small)
\height_large = distance_large_centers

height_small = distance_small_centers

R_ratio = R_small / R_large

num_ratio = num_small_circles / num_large_circles
HR_length = (num_large_circles * 2 * R_large)
H_effective = HR_length

h_total = HR_length

inradius = height_large / (num_ratio + 1)
inradius = sp.Rational(h_total / (num_ratio + 1))
print (f"calculated inradius: {inradius}")

Code execution result: calculated inradius: 4822752356869193/2251799813685248

This calculation seems overly complex; let’s simplify using simpler, geometric visualization and relationships:
Simplified Geometric Relationship:

Large Circle Tangent Arrangement:

- We have 8 circles of radius 34, and 2 of these circles are tangent to AB and BC'. The effective vertical
distance taken by these circles, considering their arrangement repeating pattern of centers, is given by:

8-(2-34) =868

Small Circle Arrangement:
- For smaller circles of radius 1, such that 2024 circles fit similarly: - The vertical distance arrangement for
2024 circles would be:

2024 -2-1=2024-2 = 4048

...... Some Response Omitted......

We repeat arranging parallel: Consider:

each pair arrangement, verifying circles top-height Even scan: If each arrangement euclidean , height method
involving polygons: solved for ratio translating through unique noting: Combining parameters: This par;
valid:

\(\frac{m}{n}\] sum ratio sorts in idlegate ration 1} . However, i’ sequential seek refining this calculation more
consistently: iterating setup considered overall expression precise: Now we solve ensuring configurations
understandable suggest circle distributions proportionally: If):

-\(\(each step repeated configurations: compute \(largest Thus: We need to find side cognize area further on:
triangle holds hold altitude relation contractive step:

14

Table 5: An example from SimpleTIR-7B on AIME24 dataset. It demonstrates the behavior of progressive
reasoning and code improvement. Responses generated in different turns are separated with a vertical line.

Example #1 from AIME24 Dataset

Question:

Let ABCD be a tetrahedron such that AB = CD = v/41, AC = BD = /80, and BC = AD = /9.
There exists a point I inside the tetrahedron such that the distances from I to each of the faces of the tetrahedron
are all equal. This distance can be written in the form mﬁ, where m, n, and p are positive integers, m and p
are relatively prime, and 7 is not divisible by the square of any prime. Find m + n + p.

Labeled Answer:

104

Model Output by SimpleTIR-7B (Part-I)

To solve the given problem, we need to find the distance from point I (which is the incenter of the tetrahedron
ABCD) to each of the faces of the tetrahedron, given that the distances are all equal. This distance is the
radius r of the inscribed sphere of the tetrahedron.

First, we need to determine the volume V of the tetrahedron and the surface area S. The formula for the radius
r of the inscribed sphere is given by:

Step 1: Calculate the Volume V' of the Tetrahedron

We can use the Cayley-Menger determinant to find the volume of the tetrahedron. The Cayley-Menger
determinant for a tetrahedron with edge lengths a, b, c,d, e, f (where a = AB,b = AC,c = AD,d =
BC,e = BD, f = CD)is given by:

0 1 1 1 1
1 0 a® v &2
288Vi=1{1 a®> 0 d*° ¢
1 v & 0 f?
1 2 e f2 0

Substituting a = v/41,b = v/80,c = v/89,d = v/89,e = v/80, f = v41:

11 1 1

0 41 80 89
41 0 89 80
80 89 0 41
89 80 41 O

28812 =

— === O

We can calculate the determinant of the matrix:

import sympy as sp

matrix = sp.Matrix([[0, 1, 1, 1, 1], [1, O, 41, 80, 891, [1, 41, O,
89, 80], [1, 80, 89, O, 41], [1, 89, 80, 41, 011)

det = matrix.det ()

V_squared = det / 288

V = sp.sqrt(V_squared)

print (£"Volume V: {V}")

Code Execution Result: Volume V: 160/3

15

Model Output by SimpleTIR-7B (Part-II)

Step 2: Calculate the Surface Area S of the Tetrahedron

The surface area S is the sum of the areas of the four triangular faces. We can find the area of each triangle
using Heron’s formula.

For triangle ABC"

-AB = +/41- AC =+/80- BC = /89

The semi-perimeter s is:
< V41 + /80 + /89
- 2

Using Heron’s formula:

Area = /s(s — AB)(s — AC)(s — BO)

We need to find the areas of triangles ABD, AC D, and BC'D similarly. Let’s calculate these areas step by
step using Python.

import sympy as sp

Define the edge lengths

AB = sp.sqrt(41)
AC = sp.sqrt(80)
AD = sp.sqrt(89)
BC = sp.sqrt(89)
BD = sp.sqrt(80)
CD = sp.sqrt(41)

Function to compute the area of a triangle using Heron’s formula
def triangle_area(a, b, c):

s =(a+b+c) /2

area = sp.sqrt(s * (s - a) * (s - b) * (s - c))

return area

Calculate the areas of the triangular faces

area_ABC = triangle_area(AB, AC, BC)
area_ABD = triangle_area(AB, AD, BD)
area_ACD = triangle_area(AC, AD, CD)
area_BCD = triangle_area(BC, BD, CD)
Total surface area

S = area_ABC + area_ABD + area_ACD + area_BCD
print (f"Area of triangle ABC: {area_ABC}")
print (f"Area of triangle ABD: {area_ABD}")
print (f"Area of triangle ACD: {area_ACD}")
print (f"Area of triangle BCD: {area_BCD}")

{s¥")

print (f"Total surface area S:

Code Execution Result: Area of triangle ABC: sqrt(-sqrt(41)/2 + 2sqrt(5) + sqrt(89)/2)sqrt(sqrt(41)/2
+ 2sqrt(5) + sqrt(89)/2)sqrt(-2sqrt(5) + sqrt(41)/2 + sqrt(89)/2)sqrt(-sqrt(89)/2 + sqrt(41)/2 + 2sqrt(5))
Area of triangle ABD: sqrt(-sqrt(41)/2 + 2sqrt(5) + sqrt(89)/2

...This content has been truncated to stay below 512 characters...

)2 + sqrt(89)/2)sqrt(-sqrt(89)/2 + sqrt(41)/2 + 2sqrt(5)) Total surface area S: 4sqrt(-sqrt(41)/2 + 2sqrt(5) +
sqrt(89)/2)sqrt(sqrt(41)/2 + 2sqrt(5) + sqrt(89)/2)sqrt(-2sqrt(5) + sqrt(41)/2 + sqrt(89)/2)sqrt(-sqrt(89)/2
+ sqrt(41)/2 + 2sqrt(5))

It appears the individual areas calculated by Heron’s formula are quite complicated and expressed in a form
needing simplification to find the total surface area S. Let’s simplify the expressions to make the calculations
clearer and ensure we obtain a numerical value for the surface area S. We can use simplify to get more
manageable expressions and then compute the numerical value. Let’s also calculate r = % step by step to
simplify finding the equal distances. We know the volume V' = 1%0.

16

Model Output by SimpleTIR-7B (Part-III)

We will now simplify our approach and focus on calculating these areas numerically to find S. Afterward, we
will compute 7 and ensure the result is in the required form mTﬁ. Let’s simplify our strategy and calculate
this accurately in Python.

import sympy as sp

sqrt_41 = sp.sqrt (41)
sqrt_80 = sp.sqrt(80)
sqrt_89 = sp.sqrt(89)

def area_heron(a, b, c):
s = (a+b+c) /2
area = sp.sqrt(s * (s - a) * (s - b) * (s - c))
return sp.simplify(area)

area_ABC = area_heron(sqrt_41, sqrt_80, sqrt_89)
area_ABD = area_heron(sqrt_41, sqrt_89, sqrt_80)
area_ACD = area_heron(sqrt_80, sqrt_89, sqrt_41)
area_BCD = area_heron(sqrt_89, sqrt_80, sqrt_41)

S = area_ABC + area_ABD + area_ACD + area_BCD
V = sp.Rational (160, 3)
r=3xV /S

r_simplified = sp.simplify(r)
print ("Radius r:", r_simplified)

Code Execution Result: Radius r: 20*sqrt(21)/63

The radius r of the inscribed sphere is %.

This is in the form mTﬁ, where m = 20, n = 21, and p = 63. Here, m and p are relatively prime, and n is
not divisible by the square of any prime.
Step 3: Findingm +n +p

Now, we need to calculate m + n + p:

m+n+p=20+21+63

Let’s calculate this:

import sympy as sp

m = 20
n = 21
p = 63
result = m + n + p

print (result)

Code Execution Result: 104

The value of m +n + pis .

This completes the solution. The distance from point [to each of the faces of the tetrahedron is

the final answer is .

20v/21
=5 and

17

Table 6: Key hyperparameters (left) and the prompt for generating multi-turn TIR responses (right).

(a) Key Hyperparameters (b) The Prompt for Generating Multi-turn TIR Responses
Hyperparameter Value Solve the following problem step by step. You now have
Initial max response length 16384 the ability to selectively write executable Python code to
Rollout Temperature 1 enhance your reasoning process. The Python code will be
Tnitial max interaction turns 5 executed by an external sandbox, and the output (after “Code
Train batch size 512 execution result: ”) is returned to aid your reasoning and
Sampling batch size 1280 help you arrive at the final answer. The Python code should
Rollouts per prompt () 16 be complete scripts, including necessary imports.

PPO clip ratio (low / high) 0.2/ 0.28

Entropy coefficient 0 Code Format:

Discount factor ~y 1.0 Each code snippet is wrapped between ~**. You need to use
GAE X\ 1.0 print () to output intermediate results.

KL coefficient (3) 0

PPO epochs 4 Answer Format:

Actor learning rate 1e-6 You can use the final_answer () function in the code to
Gradient Clipping 1 return your final answer. For example, to answer the User

Question: What is the result of the 5 + 3 + 1294.678?, you
can write:

answer = 5 + 3 + 1294.678
final_answer (answer)

You can also use \boxed to return your answer. The last part
of your response should be: \boxed{“The final answer goes
here.”}

User Question:

Table 7: The prompt that instructs Claude-3.7-Sonnet to extract reasoning patterns from the TIR trajectories.

I have a reasoning process of an LLM. The LLM can write code and get code execution result. According to
the following reasoning process, please first answer the following questions:

1. Is the code execution result or interpreter output equal to the final answer?

2. How many code blocks are there in the reasoning process?

3. If there are several code blocks, are the code execution results all the same?

Format:
1. xxx
2. XXX
3. XXX

Please then determine whether the following reasoning process contains following four reasoning patterns:
1. Include at least two code blocks, each solving unique sub-questions. **Important: in such case, the code
execution result or interpreter output should not be equal to the final answer**

2. Use induction, from special case to general conclusions

3. Use code or text to do self-verification

4. Write another code block when the previous code has some bugs

Format:

Reasoning Pattern 1: Yes/No
Reasoning Pattern 2: Yes/No
Reasoning Pattern 3: Yes/No
Reasoning Pattern 4: Yes/No

Please do not output any other words.

Reasoning process:

18

	Introduction
	Preliminaries
	Training LLMs with RL
	Tool Integrated Reasoning

	Method
	Emergence of Low-probability Tokens in Multi-turn TIR Trajectories
	Low-probability Tokens Compromise Zero RL Training
	Stabilizing Multi-Turn TIR Training with Void Turn Masking
	Implementation Details

	Experiments
	Setup
	Training Results
	Training Curves and Ablation Studies
	Emergence of Diverse Reasoning Behaviors

	Related Work
	Zero RL for LLM Reasoning
	RL for Tool Integrated Reasoning
	Stabilizing RL Training

	Conclusion
	Example Responses
	Incomplete Response
	Response with Emergent Reasoning Behaviors

	Experiments
	Prompt for Multi-turn TIR Generation
	Hyperparameters
	Prompt for Extracting Reasoning Patterns

