
SimpleTIR: End-to-End Reinforcement Learning for
Multi-Turn Tool-Integrated Reasoning

Anonymous Author(s)
Affiliation
Address
email

Abstract

Large Language Models (LLMs) can enhance their reasoning by interacting with1

external tools, a paradigm known as Tool-Integrated Reasoning (TIR). However,2

extending TIR to multi-turn settings using Reinforcement Learning (RL) often3

exhibits training instability and degraded performance. We attribute the instability4

to harmful negative samples resulting from distributional drift and compounding5

errors induced by using external tool outputs during multi-turn rollout. To address6

this issue, we introduce SimpleTIR, a simple method that stabilizes multi-turn7

TIR training via filtering out trajectories with “void turns”, i.e., turns that yield8

neither a code block nor a final answer. Specifically, we remove those trajec-9

tories from the policy update to block harmful gradients, while retaining them10

in advantage estimation to keep the estimate unbiased. Extensive experiments11

show that SimpleTIR effectively mitigates gradient norm explosion and stabilizes12

multi-turn RL training from base models. It achieves state-of-the-art performance13

on challenging math reasoning benchmarks, including an AIME24 score of 50.514

starting from the Qwen2.5-7B base model. SimpleTIR also promotes more diverse15

reasoning behaviors such as self-correction and cross-validation, outperforming16

prior methods trained from stronger instruction-tuned models.17

0 200 400 600 800 1000 1200
Training Steps of Reinforcement Learning

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Av
er

ag
e

AI
M

E2
4

Ac
cu

ra
cy

0 200 400 600 800 1000 1200
Training Steps of Reinforcement Learning

0

5

10

15

20

25

30

35

Gr
ad

ie
nt

 N
or

m

SimpleTIR Naive Multi-turn Training Baseline (DAPO)

Figure 1: Starting from Qwen2.5-7B base model, The training dynamics of SimpleTIR are highly stable, and
it clearly outperforms the baseline method without TIR (DAPO). The gradient norm remains well-behaved
with almost no spikes. In contrast, Naive Multi-turn Training not only suffers from unstable dynamics and
catastrophic gradient norm explosions, but also fails to match the performance of the baseline without TIR.

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

Code 1
solve_a()

Code 2
solve_b()

Validated Results

Result 1 Result 2

Code 1
solve_step1()

Code 2
solve_step2()

Code 3
solve_step3()

Final Results

Code
buggy_func()

Initial Result

Retry
If Error

Final Results

End-to-End Multi-Turn Agent Training

Pattern 1: Cross Validation Pattern 2: Progressive Reasoning Pattern 3: Error Correction Loop

Agent-Env Interaction

Agent
Code
Result

Multiple Turns

Reinforcement Learning

Result 1

Result 2

Trajectory Filtering

Code 2 Results
Reasoning 1 Code 1 Reasoning 2

Incomplete Code

Void Turn
Stop Generation

, ,{
}

, Reasoning 1 Code 1 Reasoning 2, ,{
}

,

,

with Valid Trajectory

Policy Update

Emergent Multi-Turn Reasoning Patterns
Figure 2: The overview of SimpleTIR. During policy update, SimpleTIR filters out trajectories containing void
turns, i.e., an LLM response that fails to produce a complete code block or a final answer.

1 Introduction18

Training Large Language Models (LLMs) to perform multi-turn Tool-Integrated Reasoning (TIR) is19

one of the most promising frontiers in Reinforcement Learning (RL). At each turn, LLMs iteratively20

reason, generate code, execute it, and use the output to help reasoning in the next turn. TIR addresses21

LLMs’ inherent limitations such as limited calculation accuracy and knowledge cutoff. For example,22

LLMs can perform exact mathematical computation via a Python interpreter or retrieve up-to-date23

information via search engines. Despite its clear potential, training LLMs for multi-turn TIR remains24

highly challenging, as the process often suffers from instability and gradient explosion [1, 2, 3, 4].25

To probe training instability, we start from a single-turn TIR setup in which LLMs are allowed26

to generate only one response (text reasoning plus an optional code block). As shown in Fig. 3,27

single-turn TIR training is surprisingly stable, while naive multi-turn TIR training suffers from28

gradient explosion and performance drop. We attribute this gap to the emergence and propagation of29

low-probability tokens induced by using out-of-distribution (OOD) tool outputs as model inputs for30

subsequent turns. Specifically, when the model’s response is concatenated with external tool output,31

the resulting next turn inputs can depart from the model distribution. The subsequent turns inherit32

this drift and accumulate low-probability tokens (Fig. 4), eventually collapsing RL training. We argue33

that multi-turn training instability mainly stems from the following two issues: (i) harmful gradients34

from low-probability tokens, which occur more often in multi-turn settings because external tool35

outputs can push inputs off distribution, making the model sample low-probability tokens that cause36

gradient spikes during RL updates, and (ii) problematic multi-turn credit assignment, where errors in37

later turns cause the correct reasoning in earlier turns to be mistakenly assigned a negative reward.38

Fundamentally, both issues can be understood as the existence of harmful negative samples in the39

training process.40

We propose SimpleTIR, a simple yet effective algorithm that stabilizes multi-turn TIR training. The41

key idea is to leverage void turns to distinguish helpful negative samples from harmful ones. A void42

turn is defined as an LLM response that fails to produce a complete code block or a final answer.43

Typical examples include partial code blocks, repetitive text, or incomplete responses caused by the44

model prematurely sampling an end-of-sequence (eos) token. The core insight of SimpleTIR is to45

filter out trajectories containing void turns. Specifically, SimpleTIR excludes these trajectories46

when computing the policy loss, thus blocking harmful gradients from propagating. Meanwhile, it still47

incorporates them into advantage estimation, so that the estimate is unbiased. This filtering strategy48

effectively mitigates instability caused by harmful negative samples. More importantly, SimpleTIR is49

general and plug-and-play. It requires only minimal modifications and can be seamlessly integrated50

into existing training frameworks to improve stability and performance with almost no extra cost.51

To validate the effectiveness of SimpleTIR, we conduct comprehensive experiments on challenging52

math reasoning tasks across various settings. SimpleTIR exhibits state-of-the-art multi-turn TIR53

performance starting from base models, achieving an AIME24 score of 50.5. Our ablation studies54

further highlight the importance of void turn filtering, demonstrating that excluding trajectories with55

void turns is the key to stabilizing multi-turn TIR training and unlocking performance improvements.56

It directly addresses the instability that hinders naive multi-turn approaches. Finally, we evaluate the57

benefits of Zero RL for multi-turn TIR training. Unlike approaches that first “cold start” LLMs before58

RL [5], SimpleTIR allows LLMs to explore more novel and diverse multi-turn reasoning patterns,59

including cross-validation, progressive reasoning, and self-correction.60

2

2 Preliminaries61

2.1 Training LLMs with RL62

We model the auto-regressive LLM generation process as a Markov Decision Process (MDP) <63

S,A, T,R, q, γ >, where the state space S includes possible prefixes when generating the next token64

and the action space A includes all possible tokens. The transition T appends the new tokens into65

the prefixes. R is the reward function and q is the initial prompt distribution. The discount factor66

γ is usually set to 1 in LLM geenration. Instead of applying the widely-employed Proximal Policy67

Optimization (PPO) [6], Group Relative Policy Optimization (GRPO) [7] is generally more preferable68

due to its efficient computation of trajectory advantage69

Âi,t =
ri −mean

(
{ri}Gi=1

)
Fnorm

((
{ri}Gi=1

)) , (1)

where Fnorm = std in the original GRPO and Fnorm = 1 may also be used to reduce difficulty bias.70

The policy loss in GRPO is71

JGRPO(θ) = E(q,a)∼D,{oi}G
i=1∼πθold (·|q) 1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

(
min

(
ρi,t(θ)Âi,t, clip (ρi,t(θ), 1− ε, 1 + ε) Âi,t

)
− βDKL (πθ||πref)

) ,

(2)
where ρi,t(θ) =

πθ(oi,t|q,oi,<t)
πθold (oi,t|q,oi,<t)

and β is often set to 0 in Zero RL.72

2.2 Tool Integrated Reasoning73

In our TIR setting, each LLM response is truncated after a complete code block. A code interpreter is74

available to detect and execute code blocks in LLM responses. The interpreter feedback f , which75

is either standard output or standard error, will be appended after the LLM response l. The whole76

response at turn k will become o = (q, l0, f0, l1, f1, ..., lk, fk). From the MDP perspective, when77

complete code blocks are generated, the transition function T appends not only the new token,78

but also the code execution result, to the original prefix. We do not consider format rewards or79

intermediate feedback in multi-turn TIR. The outcome reward is provided after a complete response80

o is generated.81

3 Method82

We begin by diagnosing a core source of instability in multi-turn TIR: the emergence of low-83

probability tokens. We show how such tokens drive gradient explosions and misaligned credit84

assignment during Zero-RL training. Building on this analysis, we propose a simple but effective85

trajectory filtering scheme that stabilizes training while preserving multi-turn behaviors. This section86

presents the phenomenon, the analysis, and the algorithm, followed by practical training details.87

3.1 Emergence of Low-probability Tokens in Multi-turn TIR Trajectories88

Given the notorious instability in training multi-turn TIR [1, 2, 3], we begin with a minimal single-turn89

TIR setting where the model produces exactly one response, including text reasoning and an optional90

code block. A final_answer function is provided in each code block for printing the indicated91

answer. As shown in Fig. 3, naive single-turn training is notably more stable than its multi-turn92

counterpart, exhibiting higher performance and fewer gradient spikes. The key difference is that in93

multi-turn TIR, the response lk and the tool feedback fk in turn k are concatenated into the input94

for turn k + 1. Because the feedback is produced by an external code interpreter rather than the95

model itself, it can deviate substantially from the model’s own distribution. With such OOD inputs,96

the model outputs may deviate from pretrained patterns and become highly stochastic, exhibiting97

unnaturally low probabilities on selected tokens.98

3

0 200 400 600 800
Steps

0.0

0.1

0.2

0.3

0.4

AI
M

E2
4

Sc
or

e

0 200 400 600 800
Steps

0

2

4

6

8

Gr
ad

 N
or

m

0 200 400 600 800
Steps

500

750

1000

1250

1500

1750

Re
sp

on
se

 L
en

gt
h

0 200 400 600 800
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Co
de

 U
se

 F
re

qe
nc

y

Naive Multi-turn Training Naive Single-turn Training

Figure 3: Training statistics comparisons between naive single-turn and multi-turn TIR. Single-turn TIR trains
smoothly with reasonably good performance.

Turn 1 with Tool Call Turn 2 with Tool Call Turn 3 without Tool Call Turn 4 with Collapsed Response

0

-2

-4

-6

-8

-10To
ke

n
Pr

ob
ab

ilit
y

(L
og

 S
ca

le
)

Figure 4: Visualization of token probabilities in a response generated by multi-turn TIR. The y-axis is in log
scale and the x-axis is separated by different turns of generations.

To verify this, a case study is conducted on a response generated under multi-turn TIR. As illustrated99

by Fig. 4, the tool feedback of Turn 1 and Turn 2 indeed contain extremely low token probabilities and100

strong OOD characteristics. Similar observations have been reported in previous TIR research [8, 2]101

and can be handled by masking the policy loss on tool feedback. However, even if tool outputs102

themselves are masked, later model responses can still be degraded. The probabilities of tokens103

before tool calls, i.e., in Turn 1, remain relatively high, yet multiple low-probability segments emerge104

in Turn 2 and Turn 3. This distributional drift compounds across turns and culminates in a collapsed105

response with extremely low token probabilities in Turn 4.106

3.2 Low-probability Tokens Compromise Zero RL Training107

We identify a problematic pattern in multi-turn TIR trajectories: existence of low-probability tokens.108

We analyze in the following subsection two consequences of such pattern in Zero RL training. This109

explains the training instability and inefficiency of naive multi-turn TIR, as demonstrated in Fig. 3.110

Gradient Explosion Fig. 3 reveals a dominant failure mode in multi-turn TIR training: gradient111

explosion. Motivated by Li [9], we make theoretical analysis on the policy gradient with respect to112

softmax logits z and connect gradient explosion to the issue of low-probability tokens in Sec. 3.1.113

The gradient on the policy parameters θ depends on the specific network architecture and is not114

considered here. The following theorem describes several influencing factors when computing policy115

gradient.116

Proposition 1. Consider a certain token c in a LLM-generated response o with prompt q. The117

gradient of the GRPO objective with respect to the logits z at the position of c is118

∥∇zJGRPO∥2 =
1

|o|
· πθ(c|q, o)
πθold(c|q, o)

gc |Âc|
√

1− 2P (c) +
∑
j

P (j)2, (3)

where |Âc| is the absolute value of advantage of token c, P is the probability vector at the position of119

c with P (j) = πθ(j|q, o), j ∈ A, and g is the gating function120

g = 1{Âc ≥ 0,
πθ(c|q, o)
πθold(c|q, o)

≤ 1 + ε} + 1{Âc < 0,
πθ(c|q, o)
πθold(c|q, o)

≥ 1− ε}.

4

According to Thm. 1, the scale of gradients on logits is primarily determined by the probability ratio121

πθ(c|q,o)
πθold

(c|q,o) and the probability expression
√
1− 2P (c) +

∑
j P (j)2. We argue that both terms can122

contribute to unhealthy policy gradients in the existence of low-probability tokens as demonstrated in123

Sec. 3.1:124

• Constantly high gradient norm due to
√
1− 2P (c) +

∑
j P (j)2: As shown in Fig. 4, the model125

may place very low probability on the selected token c so that 1−2P (c) is maximized. Furthermore,126

if the policy is already confident and concentrated on other tokens, the collision probability127 ∑
j P (j)2 remains large [9], sustaining high gradient norms.128

• Gradient spikes due to πθ(c|q,o)
πθold

(c|q,o) : When Âc < 0, the ratio πθ(c|q,o)
πθold

(c|q,o) is only clipped from below129

(at 1 − ε) and has no upper-bound. For a low-probability token, πθold(c|·) is extremely small.130

During PPO’s mini-batch updates, even a minor increase in πθ(c|·) can cause this ratio to become131

exceptionally large. When the advantage Âc is negative, this ratio is unclipped, leading directly to132

the gradient spikes observed in Fig. 3.133

Misaligned Credit Assignment In addition to causing large gradients, the emergence of low-134

probability tokens undermines the credit assignment process in Zero RL. According to Fig. 4,135

low-probability tokens are more prone to accumulate with more turns, indicating higher token entropy136

and generation stochasticity. This compromises the overall success rate of responses with multi-turn137

TIR. In our A multi-turn trajectory that fails in its final turns receives a single negative reward for138

the entire sequence. This reward signal does not distinguish between the valid, high-probability139

reasoning tokens in early turns and the faulty, low-probability tokens that caused the eventual failure.140

This inherently discourages multi-turn behavior and collapses the policy toward single-turn, text-only141

reasoning.142

3.3 Stabilizing Multi-Turn TIR Training with Void Turn Masking143

Once we identify the emergence of low-probability tokens as the primary cause of multi-turn144

training, straightforward algorithmic improvements can be masking the policy loss on high-perplexity145

responses or truncating the importance ratio πθ(c|q,o)
πθold

(c|q,o) . While these approaches prove effective in146

single-turn reasoning [10, 11, 12], we show in Fig. 5 (bottom) that they cannot resolve the training147

instability issue in multi-turn TIR. The threshold for loss masking or ratio truncating is hard to148

determine in a dynamic training process. Meanwhile, these approaches cannot efficiently filter out149

samples with incorrect credit assignment.150

Nevertheless, loss masking on specific samples can indeed be helpful [13], as long as a proper filtering151

criterion is selected. From Fig. 4, we observe that the collapsed Turn 4 follows Turn 3 without a152

tool call. Intuitively, a turn with neither a tool call nor a final answer makes no contributions to the153

reasoning process and should not exist in an effective multi-turn trajectory. We define such turns154

as void turns, with Turn 3 in Fig. 4 as an example. In a response with low token probabilities and155

high generation stochasticity, a premature eos token is more likely to be generated, leading to the156

emergence of a void turn. As the void turn rarely exists in normal responses and can be the outcome157

of abnormal ones, we identify it as a key indicator of multi-turn instability.158

This suggests void turns to be a simple rule of trajectory filtering, resulting in the SimpleTIR algorithm159

as demonstrated in Fig. 2. For each turn, we detect whether the response contains a complete code160

block or a final answer. If neither is present, we stop generation for that prompt and mask the policy161

loss of the entire response. This also corrects misaligned credit assignment by excluding normal early162

turns from being penalized. After trajectory filtering, we perform GRPO on effective multi-turn TIR163

trajectories. SimpleTIR is agnostic to specific RL methods and recent algorithmic modifications for164

LLM reasoning [10, 14, 15] are orthogonal to SimpleTIR’s trajectory filtering approach.165

3.4 Implementation Details166

In our training process, we adopt several practices to further improve efficiency and stability. For167

example, techniques from non-TIR reinforcement learning [16], such as clip higher, removing KL,168

dynamic sampling, and progressive length budget, are also effective in TIR training. Meanwhile,169

5

Table 1: Performance comparison on various math benchmarks. Check and cross marks in the “TIR” column
refers to whether the method involves TIR during training and evaluation. Slash, check, and cross marks in the
“Zero RL” column refers to whether the model is untrained, trained with the Zero RL setting, or trained with
other settings. The “From” column indicates the type of We fill the scores with - if they are not provided in
respective reports.

Model TIR Zero RL From AIME24 AIME25 MATH500 Olympiad AMC23 Hmmt 25

Models based on Qwen2.5-7B

Qwen2.5-7B ✗ / Base 3.2 1.1 51.9 15.4 21.7 0.0
Qwen2.5-7B-TIR ✓ / Base 1.7 0.6 18.0 6.2 10.8 1.9
SimpleRL-Zoo-7B ✗ ✓ Base 15.6 - 78.2 40.4 62.5 -
ToRL-7B ✓ ✗ Math-Inst 40.2 27.9 82.2 49.9 75.0 -
Effective TIR-7B ✓ ✗ Math 42.3 29.2 86.4 - 74.2 -
ARPO-7B ✓ ✗ Inst 30.0 30.0 78.8 - - -
ZeroTIR-7B ✓ ✓ Base 39.6 25.0 80.2 - - 22.5
SimpleTIR-7B ✓ ✓ Base 50.5 30.9 88.4 54.8 79.1 29.7

Models based on Qwen2.5-32B

Qwen2.5-32B ✗ / Base 4.2 1.6 43.1 17.8 28.0 0.2
Qwen2.5-32B-TIR ✓ / Base 7.1 5.0 37.0 16.9 20.0 5.2
DAPO ✗ ✓ Base 50.0 - - - -
ReTool ✓ ✗ Math-Inst 67.0 49.3 - - - -
ZeroTIR-32B ✓ ✓ Base 48 27 87.8 - - 20.0
SimpleTIR-32B ✓ ✓ Base 59.9 49.2 92.9 63.7 91.6 34.6

there are some implementation details specific to multi-turn TIR. First, we do not use chat templates,170

since special tokens like |im_end| are out-of-distribution for base models. Instead, when appending171

tool outputs, we simply prepend “Code Execution Result:” before the interpreter output. Second, we172

prepend every LLM-generated code block with a final_answer function, which allows the model173

in single-turn TIR to directly output the final answer inside a code block without an additional turn174

of querying. This technique provides a shortcut for simple tasks and improves training efficiency.175

Finally, we stop LLM generation after a complete code block and append the true tool outputs. We176

do not feed text tokens after each code block into the next turn. This technique helps prevent LLMs177

from hallucinating interpreter outputs after the code block.178

4 Experiments179

4.1 Setup180

Training We prepare our training code with the VeRL [17] and Search-R1 [8] framework. We181

use Sandbox Fusion as an asynchronous code interpreter. The training datasets are Math3-5 from182

SimpleRL [18] and Deepscaler [19]. SimpleTIR follows the Zero RL setting and uses the unaligned183

Qwen-2.5 series as the base models, including Qwen-2.5-7B and Qwen-2.5-32B. During training, the184

rollout batch size is set to 512, and the mini update size is set to 128. The maximum response length185

is initially set to 16K, with a maximum of five turns of code execution. When the average response186

length plateaus, we increase the maximum response length to 24K and the largest number of turns to187

10. Other training hyperparameters are in Appendix B.2.188

Evaluation Our evaluation is conducted on Math500 [20], AIME24, AIME25, AMC23, and Hmmt189

Feb 25, using a temperature of 1 and reporting average@32 scores to reduce variance, following [16].190

For comparison, we consider three categories of baselines. The first is non-TIR Zero RL, where we use191

SimpleRL-Zoo [18] and DAPO [16] as representative baselines. The performance gap between these192

methods and SimpleTIR highlights the advantage of incorporating TIR in mathematical reasoning.193

The second category is TIR RL from cold-start or specialized models, which includes ReTool [5],194

collecting cold-start datasets for supervised finetuning on Qwen2.5-Math-32B-Instruct, ARPO [21],195

finetuning Qwen2.5-7B-Instruct, as well as ToRL [22] and Effective CIR [23], both applying RL196

to the Qwen2.5-Math series. The final category is Zero RL with TIR, where, to the best of our197

knowledge, Zero-TIR [2] is the only method that strictly follows the Zero RL paradigm by training198

TIR models directly from base models.199

6

Figure 5: Top: Training curves for SimpleTIR with different maximum number of turns. SimpleTIR with
maximum 10 turns is resumed at 200 steps from SimpleTIR with maximum 5 turns. SimpleTIR clearly benefits
from scaling interaction turns from 1 to 5. Bottom: The training curves for ablation studies in the first 320 steps.
Trajectory filtering with high importance ratios or low probability tokens cannot resolve the challenge of training
instability, while SimpleTIR suffers less from low probability tokens and gradient explosion.

0 400 800 1200
Steps

1.0

1.5

2.0

2.5

3.0

3.5

Nu
m

be
r o

f T
ur

ns

0 400 800 1200
Steps

1000

2000

3000

4000

Av
er

ag
e

Re
sp

on
se

 L
en

gt
h

0 400 800 1200
Steps

0.2

0.4

0.6

0.8

M
at

h5
00

 S
co

re

0 400 800 1200
Steps

0.0

0.1

0.2

0.3

0.4

0.5

AI
M

E2
4

Sc
or

e

Max Turns=1 Max Turns=5 Max Turns=10

0 80 160 240
Steps

0

1

2

3

4

Gr
ad

 N
or

m

0 80 160 240
Steps

30

25

20

15

10

M
in

 T
ok

en
 P

ro
ba

bi
lit

y

0 80 160 240
Steps

1

2

3

4

5

M
ax

 R
at

io
0 80 160 240

Steps

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Tr
ai

ni
ng

 S
co

re

High Ratio Filtering Low Prob Filtering SimpleTIR

Table 2: Results of ablation studies. Considering the unstable training of ablated methods, we report the highest
scores within 1000 gradient steps. “Naive Multi-Turn” directly applies RLVR in multi-turn TIR. “Low Prob” and
“High Ratio” filtering refers to masking the policy loss on tokens with lowest probabilities or highest importance
ratio.

SimpleTIR-7B Naive Multi-Turn Low Prob Filtering High Ratio Filtering Stop Generation w/o Filtering

AIME24 50.5 20.8 23.3 26.3 26.1

Math500 88.4 73.1 72.8 75.0 77.3

4.2 Training Results200

The training results are listed in Tab. 1. SimpleTIR demonstrates significant performance im-201

provement over base models and outperform all baselines of Zero RL, either with or without TIR.202

SimpleTIR can also outperform baselines starting from Qwen2.5-Math-7B series, such as ToRL203

and Effective TIR. Comparing with methods not following Zero RL, it is shown that cold start204

significantly boosts performance, with ReTool-32B obtaining the highest scores on AIME24 and205

AIME25. The advantage of Zero RL over cold start lies in the diversity of reasoning patterns, as206

discussed in Sec. 4.4.207

4.3 Training Curves and Ablation Studies208

We show the training curve of SimpleTIR with 1, 5, and 10 turns of generation in Fig. 5 (Top). In209

all these settings, SimpleTIR exhibits constant and smooth increases of the average response length210

and performance scores. The average number of turns first arises quickly then remains constant211

for multi-turn SimpleTIR. We also observe that the response length and the Math500 score scales212

with more turns, while the AIME24 score does not benefit clearly. This indicates that different tasks213

require distinct reasoning patterns. Some may be solvable with few steps of reasoning, but others will214

take a number of external feedback before reaching the correct answer.215

We also conduct ablation studies to demonstrate the effectiveness of trajectory filtering in SimpleTIR.216

We first investigate two alternative filtering criteria: high importance ratio and low token probabilities,217

as specified in the first paragraph of Sec. 3.3. As shown in Fig. 5 (Bottom), these two filtering218

7

Figure 6: Demonstration of three reasoning patterns observed in responses generated by SimpleTIR.

Code 1
solve_a()

Code 2
solve_b()

Validated Results

Result 1 Result 2

Code 1
solve_step1()

Code 2
solve_step2()

Code 3
solve_step3()

Final Results

Code
buggy_func()

Initial Result

Retry
If Error

Final Results

End-to-End Multi-Turn Agent Training

Pattern 1: Cross Validation Pattern 2: Progressive Reasoning Pattern 3: Error Correction Loop

Agent-Env Interaction

Agent
Code
Result

Multiple Turns

Reinforcement Learning

Result 1

Result 2

Trajectory Filtering

Code 2 Results
Reasoning 1 Code 1 Reasoning 2

Incomplete Code

Void Turn
Stop Generation

, ,{
}

, Reasoning 1 Code 1 Reasoning 2, ,{
}

,

,

with Valid Trajectory

Policy Update

Emergent Multi-Turn Reasoning Patterns

Table 3: Comparison of reasoning pattern frequencies in ReTool and SimpleTIR-32B responses. The summation
of frequencies may exceed 100% as there may be more than one reasoning patterns in one response.

Progressive
Reasoning (%)

Cross
Verification (%)

Error
Correction (%)

ReTool 18.9 82.4 25.8

SimpleTIR-32B 46.5 86.0 38.0

approach cannot resolve the issue of gradient explosion, exhibiting unstable curves of training scores.219

SimpleTIR features a more stable curve of gradient norm, thanks to the mild token probability220

distributions. This demonstrates the effectiveness of void turn filtering in stabilizing multi-turn TIR221

training. We then consider an ablation method where LLM generation is terminated on void turns222

but resulting trajectories are not filtered when computing policy loss. According to the validation223

results in Tab. 2, this method is also inferior to SimpleTIR. This can be attributed to misaligned credit224

assignment since trajectories containing void turns can hardly obtain positive outcome. SimpleTIR225

handles such issue by masking the loss of whole responses containing void turns.226

4.4 Emergence of Diverse Reasoning Behaviors227

Thanks to the framework of Zero RL training, SimpleTIR automatically reinforces useful reasoning228

patterns obtained in the pretraining phase, rather than sticking to predefined patterns in the SFT229

dataset. In Appendix A.2, we show SimpleTIR responses with diverse multi-turn reasoning behaviors.230

They are mostly combinations of the three main reasoning patterns illustrated in Figure 6, namely231

Cross Validation, Progressive Reasoning, and Error Correction.232

We also use Claude-3.7-Sonnet to identify and count the frequency of reasoning patterns in responses233

generated by ReTool and SimpleTIR-32B. The responses are filtered so that they all lead to the234

correct final answer. Both models demonstrate a strong tendency to conduct multiple rounds of cross235

verification. Meanwhile, SimpleTIR-32B exhibits more instances of progressive reasoning and error236

correction. This illustrates the advantage of Zero RL, which preserves more diversity in reasoning237

patterns.238

5 Related Work239

5.1 Zero RL for LLM Reasoning240

DeepSeek-R1 [7] first shows that starting from an unaligned base model, large-scale RL training241

with outcome reward can unlock emergent chain-of-thought reasoning ability. Such paradigm is242

later referred to as Zero RL. SimpleRL [18] provides a reproducible cookbook to run Zero RL on243

8

various open-source base models. Open-Reasoner-Zero [24] proposes that vanilla PPO with GAE244

(λ = 1, γ = 1) without KL regularization is sufficient to scale up Zero RL training. DAPO [16]245

introduce several training details that makes Zero RL training stable and efficient, such as raising246

the high clip ratio of PPO and GRPO and filtering tasks with 0 or 100% solve rate. Dr. GRPO [25]247

proposes to remove the length normalization term. SimpleTIR also follows the Zero RL pipeline and248

is orthogonal to training algorithms for Zero RL without TIR.249

5.2 RL for Tool Integrated Reasoning250

Several recent works focus on applying RL to improving the tool use ability of LLMs. Search-R1 [8]251

and R1-Search [26] focus on question-answering tasks, utilizing the search tool. For mathemati-252

cal reasoning tasks, python interpreter can be a useful tool to conduct numerical calculations or253

enumerations. ReTool [5] employs a cold-start SFT phase before RL. ToRL [22] and Effective254

CIR [23] explore training recipes on math-specialized bases. These pipelines often rely on domain255

data, instruction tuning, or other supervision that introduce bias and complexity; in contrast, Zero256

RL is more general yet notoriously unstable in multi-turn settings. Our work directly addresses this257

stability gap under Zero RL by filtering trajectories with void turns. ZeroTIR [2] is also explicitly258

framed in the Zero RL setting. It proposes several stabilizing techniques that are orthogonal to our259

approach.260

5.3 Stabilizing RL Training261

Training instability is a significant challenge when applying RL to LLMs, often manifesting as entropy262

collapse and gradient norm explosions. Entropy-based methods explicitly maintain policy entropy263

or encourage re-generation at pivotal tokens to delay distributional narrowing [27, 28, 29]. Recent264

methods control the importance sampling ratio to reduce gradient variance and brittle updates by265

reweighting or constraining likelihood ratios, e.g., from token-level IS to sequence-level objectives and266

clipping [14, 15, 30, 31]. Data and trajectory filtering stabilizes training by discarding uninformative267

or harmful samples, e.g., multi-sample-then-filter schemes [32]. From the perspective of the learning268

signal itself, negative-only gradient updates have been shown to improve stability and generalization269

without sacrificing exploration, and more generally to focus updates on low-probability/high-entropy270

branching tokens [33]. SimpleTIR departs from the above methods by targeting the root cause271

specific to TIR, i.e., distribution shift induced by external tool outputs compounded by multi-turn272

error accumulation. It is also orthogonal to entropy regularization, IS ratio control, and negative-273

gradient schemes.274

6 Conclusion275

In this work, we introduce SimpleTIR, an RL framework designed to stabilize and enhance multi-turn276

TIR under the Zero RL setting. By addressing the key challenge of harmful negative samples via277

filtering out trajectories with void turns, our method achieves stable training dynamics and improves278

reasoning performance across a variety of mathematical benchmarks. Beyond state-of-the-art results,279

SimpleTIR also encourages the emergence of diverse reasoning patterns. These results highlight the280

potential of end-to-end multi-turn TIR RL, without relying on cold-start human data, as a pathway to281

scalable and reliable multi-turn reasoning in future LLM agent development.282

Limitations and Future Work While effective, our method has several limitations. First, we use283

void turns as an indicator of low-probability tokens in multi-turn TIR. However, this indicator may284

not be directly applicable to tasks beyond multi-turn TIR. Second, we currently restrict the maximum285

number of turns to 10 for mathematical reasoning, though more interactions may be required for286

complex multi-turn agent tasks. Third, our training relies on a highly parallel sandbox for code287

execution. Therefore, the development of a faster and more reliable sandbox is an important direction288

for future work. Finally, achieving fully asynchronous rollout and reward calculation remains an open289

challenge. These limitations raise additional concerns around rollout efficiency, memory management,290

and credit assignment, which we leave for future exploration.291

9

References292

[1] Zihan Wang, Kangrui Wang, Qineng Wang, Pingyue Zhang, Linjie Li, Zhengyuan Yang, Xing293

Jin, Kefan Yu, Minh Nhat Nguyen, Licheng Liu, et al. Ragen: Understanding self-evolution in294

llm agents via multi-turn reinforcement learning. arXiv preprint arXiv:2504.20073, 2025.295

[2] Xinji Mai, Haotian Xu, Xing W, Weinong Wang, Yingying Zhang, and Wenqiang Zhang. Agent296

RL Scaling Law: Agent rl with spontaneous code execution for mathematical problem solving.297

CoRR, abs/2505.07773, 2025.298

[3] Carlo Baronio, Pietro Marsella, Ben Pan, and Silas Alberti. Multi-turn rl training for cuda299

kernel generation. https://cognition.ai/blog/kevin-32b, 2025.300

[4] Moonshot AI. Kimi-researcher: End-to-end rl training for emerging agentic capabilities.301

https://moonshotai.github.io/Kimi-Researcher/, June 2025.302

[5] Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan303

Jiang, Jinxin Chi, and Wanjun Zhong. ReTool: Reinforcement learning for strategic tool use in304

llms. CoRR, abs/2504.11536, 2025.305

[6] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal306

policy optimization algorithms. CoRR, abs/1707.06347, 2017.307

[7] DeepSeek-AI Team. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement308

learning. arXiv:2501.12948, 2025. URL https://arxiv.org/abs/2501.12948.309

[8] Bowen Jin, Hansi Zeng, Zhenrui Yue, Dong Wang, Hamed Zamani, and Jiawei Han. Search-310

R1: Training llms to reason and leverage search engines with reinforcement learning. CoRR,311

abs/2503.09516, 2025.312

[9] Yingru Li. Logit dynamics in softmax policy gradient methods. CoRR, abs/2506.12912, 2025.313

[10] Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,314

Yuqiong Liu, Rui Men, An Yang, Jingren Zhou, and Junyang Lin. Group sequence policy315

optimization. CoRR, abs/2507.18071, 2025.316

[11] Deheng Ye, Zhao Liu, Mingfei Sun, Bei Shi, Peilin Zhao, Hao Wu, Hongsheng Yu, Shaojie317

Yang, Xipeng Wu, Qingwei Guo, Qiaobo Chen, Yinyuting Yin, Hao Zhang, Tengfei Shi, Liang318

Wang, Qiang Fu, Wei Yang, and Lanxiao Huang. Mastering complex control in MOBA games319

with deep reinforcement learning. In AAAI, pages 6672–6679. AAAI Press, 2020.320

[12] Yifan Zhang, Xingyu Lu, Xiao Hu, Chaoyou Fu, Bin Wen, Tianke Zhang, Changyi Liu, Kaiyu321

Jiang, Kaibing Chen, Kaiyu Tang, Haojie Ding, Jiankang Chen, Fan Yang, Zhang Zhang,322

Tingting Gao, and Liang Wang. R1-reward: Training multimodal reward model through stable323

reinforcement learning. CoRR, abs/2505.02835, 2025.324

[13] Wei Xiong, Jiarui Yao, Yuhui Xu, Bo Pang, Lei Wang, Doyen Sahoo, Junnan Li, Nan Jiang,325

Tong Zhang, Caiming Xiong, and Hanze Dong. A minimalist approach to LLM reasoning: from326

rejection sampling to reinforce. CoRR, abs/2504.11343, 2025.327

[14] Feng Yao, Liyuan Liu, Dinghuai Zhang, Chengyu Dong, and Jianfeng Gao. Your efficient rl328

framework secretly brings you off-policy rl training, August 2025. URL https://fengyao.329

notion.site/off-policy-rl.330

[15] Aili Chen, Aonian Li, Bangwei Gong, Binyang Jiang, Bo Fei, Bo Yang, Boji Shan, Changqing331

Yu, Chao Wang, Cheng Zhu, et al. Minimax-m1: Scaling test-time compute efficiently with332

lightning attention. arXiv preprint arXiv:2506.13585, 2025.333

[16] Qiying Yu, Zheng Zhang, Ruofei Zhu, et al. DAPO: An open-source llm reinforcement learning334

system at scale. arXiv:2503.14476, 2025. URL https://arxiv.org/abs/2503.14476.335

[17] Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua336

Peng, Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv337

preprint arXiv: 2409.19256, 2024.338

10

https://moonshotai.github.io/Kimi-Researcher/
https://arxiv.org/abs/2501.12948
https://fengyao.notion.site/off-policy-rl
https://fengyao.notion.site/off-policy-rl
https://fengyao.notion.site/off-policy-rl
https://arxiv.org/abs/2503.14476

[18] Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He.339

Simplerl-zoo: Investigating and taming zero reinforcement learning for open base models in the340

wild. CoRR, abs/2503.18892, 2025.341

[19] Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan342

Roongta, Colin Cai, Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica.343

Deepscaler: Surpassing o1-preview with a 1.5b model by scaling rl. https://pretty-344

radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-345

RL-19681902c1468005bed8ca303013a4e2, 2025. Notion Blog.346

[20] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn347

Song, and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset.348

In NeurIPS Datasets and Benchmarks, 2021.349

[21] Fanbin Lu, Zhisheng Zhong, Shu Liu, Chi-Wing Fu, and Jiaya Jia. Arpo:end-to-end policy350

optimization for GUI agents with experience replay. CoRR, abs/2505.16282, 2025.351

[22] Xuefeng Li, Haoyang Zou, and Pengfei Liu. ToRL: Scaling tool-integrated RL. CoRR,352

abs/2503.23383, 2025.353

[23] Fei Bai, Yingqian Min, Beichen Zhang, Zhipeng Chen, Wayne Xin Zhao, Lei Fang, Zheng354

Liu, Zhongyuan Wang, and Ji-Rong Wen. Towards effective code-integrated reasoning. arXiv355

preprint arXiv:2505.24480, 2025.356

[24] Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.357

Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base358

model. arXiv:2503.24290, 2025. URL https://arxiv.org/abs/2503.24290.359

[25] Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,360

and Min Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint361

arXiv:2503.20783, 2025.362

[26] Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, Lei Fang,363

and Ji-Rong Wen. R1-searcher: Incentivizing the search capability in llms via reinforcement364

learning. CoRR, abs/2503.05592, 2025.365

[27] Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li,366

Yuchen Fan, Huayu Chen, Weize Chen, et al. The entropy mechanism of reinforcement learning367

for reasoning language models. arXiv preprint arXiv:2505.22617, 2025.368

[28] Qingbin Li, Rongkun Xue, Jie Wang, Ming Zhou, Zhi Li, Xiaofeng Ji, Yongqi Wang, Miao369

Liu, Zheming Yang, Minghui Qiu, et al. Cure: Critical-token-guided re-concatenation for370

entropy-collapse prevention. arXiv preprint arXiv:2508.11016, 2025.371

[29] Mingjie Liu, Shizhe Diao, Ximing Lu, Jian Hu, Xin Dong, Yejin Choi, Jan Kautz, and Yi Dong.372

Prorl: Prolonged reinforcement learning expands reasoning boundaries in large language models.373

arXiv preprint arXiv:2505.24864, 2025.374

[30] Yuzhong Zhao, Yue Liu, Junpeng Liu, Jingye Chen, Xun Wu, Yaru Hao, Tengchao Lv, Shaohan375

Huang, Lei Cui, Qixiang Ye, et al. Geometric-mean policy optimization. arXiv preprint376

arXiv:2507.20673, 2025.377

[31] Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,378

Yuqiong Liu, Rui Men, An Yang, et al. Group sequence policy optimization. arXiv preprint379

arXiv:2507.18071, 2025.380

[32] Vaishnavi Shrivastava, Ahmed Awadallah, Vidhisha Balachandran, Shivam Garg, Harkirat Behl,381

and Dimitris Papailiopoulos. Sample more to think less: Group filtered policy optimization for382

concise reasoning. arXiv preprint arXiv:2508.09726, 2025.383

[33] Xinyu Zhu, Mengzhou Xia, Zhepei Wei, Wei-Lin Chen, Danqi Chen, and Yu Meng. The surpris-384

ing effectiveness of negative reinforcement in llm reasoning. arXiv preprint arXiv:2506.01347,385

2025.386

11

https://arxiv.org/abs/2503.24290

A Example Responses387

A.1 Incomplete Response388

We present representative failure cases that contain void turns, i.e., turns that produce neither a389

complete, executable code block nor a boxed final answer. These examples serve a diagnostic role:390

they illustrate how OOD tool feedback and compounding errors precipitate collapsed generations391

and gradient spikes during Zero RL. Tab. 4 shows a typical trajectory in which a void turn disrupts392

subsequent decoding and leads to corrupted outputs, motivating our trajectory filtering rule.393

A.2 Response with Emergent Reasoning Behaviors394

We provide qualitative rollouts that demonstrate the diverse multi-turn behaviors SimpleTIR elicits395

without instruction-level biases. Tab 5 illustrates progressive reasoning with code improvement.396

Taken together with the quantitative pattern analysis in the main text, these cases substantiate our397

claim that Zero RL with TIR encourages richer strategies than cold-start SFT.398

B Experiments399

B.1 Prompt for Multi-turn TIR Generation400

We include the exact prompt template used to generate multi-turn TIR trajectories in Tab. 6b. The401

design emphasizes: (1) selective use of Python wrapped in triple backticks as complete scripts (with402

imports); (2) explicit printing of intermediate quantities so that execution feedback can guide later403

turns; and (3) a standardized answer channel (final_answer(...) or \boxed{...}) that cleanly404

terminates trajectories when a solution is reached. These choices stabilize interaction with the405

interpreter, reduce format variance, and make it easy to detect valid tool calls versus void turns.406

B.2 Hyperparameters407

We show the training hyperparameters of SimpleTIR in Tab. 6a. Below we explain the rationale408

behind the hyperparameters. We cap the initial max response length at 16,384 tokens to accommodate409

complete code blocks and verbose execution traces without premature truncation. Initial max410

interaction turns = 5 bounds episode length and compute while still allowing the model to plan,411

execute, and verify within a single trajectory. We set rollout temperature = 1.0 to preserve diversity in412

candidate solutions and rely on selection/credit assignment rather than explicit entropy bonuses to413

drive exploration. Each update uses a sampling batch size of 1,280 responses with n = 16 rollouts414

per prompt, which yields broad coverage of tool-use strategies per input while keeping variance415

manageable.416

We use standard PPO with clip ratio = 0.2 / 0.28 (low/high) to constrain policy updates; the slightly417

looser upper bound avoids over-penalizing advantageous moves identified by execution feedback.418

PPO epochs = 4 provide sufficient reuse of samples without overfitting to batch noise. The train batch419

size = 512 balances gradient estimate quality and memory use. A small actor learning rate = 1e-6 and420

gradient clipping = 1 (global-norm) prevent instability from long-context backprop and occasional421

high-magnitude advantages produced by sparse rewards. We treat each dialogue as an undiscounted422

episodic task with γ = 1.0. We also set entropy coefficient = 0 and KL coefficient = 0. Exploration is423

instead induced by temperature and multi-rollout sampling.424

B.3 Prompt for Extracting Reasoning Patterns425

To analyze behaviors systematically, in Tab. 7 we provide the prompt used to label reasoning behaviors426

in trajectories . It first enforces minimal bookkeeping (e.g., number of code blocks, whether any427

execution equals the final answer), then queries four patterns: decomposed sub-solves (with non-final428

execution), induction, self-verification, and bug-fixing via additional code. The constrained output429

format improves label consistency and allows fair frequency comparisons across methods.430

12

Table 4: An example from SimpleTIR-7B on AIME24 dataset. Responses generated in different turns are
separated with a vertical line. Response Part-II contains a void turn, where no complete code blocks nor boxed
answers are generated. Both in and after the void turn, the model generates corrupted responses.

Example #1 from AIME24 Dataset

Question:
Eight circles of radius 34 are sequentially tangent, and two of the circles are tangent to AB and BC of triangle
ABC, respectively. 2024 circles of radius 1 can be arranged in the same manner. The inradius of triangle
ABC can be expressed as m

n
, where m and n are relatively prime positive integers. Find m+ n.

A

B C
Labeled Answer:
197

Model Output by SimpleTIR-7B (Part-I)

To solve this problem, we need to determine the inradius of triangle ABC given the arrangement of circles.
Here is the step-by-step reasoning:
Understand the Geometry:
- We have eight circles of radius 34 that are tangent to each other sequentially, with two of them being tangent
to the sides AB and BC of triangle ABC. - Additionally, 2024 circles of radius 1 can fit in the same manner.
Determine the Distance Between Centers of the Larger Circles:
- The centers of the eight tangent circles of radius 34 will form a chain where each circle is tangent to the
next, meaning the distance between the centers of two consecutive circles is 34 + 34 = 68. - Since there
are 8 circles, the total distance from the center of the first circle to the center of the last circle would be
68× (8− 1) = 68× 7 = 476. However, we need to consider that the first circle is tangent to AB and the
last circle is tangent to BC. This distance of 476 actually represents the length of the tangent chain along the
line connecting the points of tangency on AB and BC.
Relate to Triangle ABC:
- If we look at the centers of these circles, they form a line parallel to BC and AB, and the distance between
this line and either AB or BC is equal to the radius of the circles (34 for the larger circles, 1 for the smaller
circles).
Calculate the Lengths:
- For the larger circles (radius 34):
- The total distance connecting the points of tangency on AB and BC is effectively the distance between the
parallel line formed by the centers of these circles and the line BC or AB, which is 8 × 34 = 272 (since
there are 8 circles, and each has a radius of 34, the total vertical distance covered would be the diameter of
7 circles if we think about it in terms of centers plus radius). However, since they are tangent to each other
sequentially, the distance between the lines AB and BC (parallel to the line connecting the centers) should be
34 + 34× (8− 1) = 34 + 34× 7 = 34× 8 = 272.
- For the smaller circles (radius 1):
- Similarly, if we can fit 2024 circles of radius 1, the total vertical distance from the line of tangency on AB to
the line of tangency on BC would be 2024× 1 = 2024.
Inradius Relationship:
- The inradius r of triangle ABC is the radius of the inscribed circle. To find this, we need to understand how
the heights and lengths of the triangle are affected by these tangent circles.
- Let’s denote the length of AB = c, BC = a, and CA = b. The height from A to BC can be considered by
looking at how the circles stack up vertically.
- For the larger circles:
- If two circles are tangent to AB and BC, the length along AB and BC would create a configuration where
if you think about the points of tangency, the distance covered by the centers vertically for 8 circles should
match up with the triangle height minus twice the radius (since the circles are also on the boundary of the
triangle).

13

Model Output by SimpleTIR-7B (Part-II)

......Some Response Omitted......
Given this, distance between sides should follow proportionally: Distance apart: smaller = 2024×1

8×34
Total height

h of the triangle should include this detailed intermediary:
Let’s re-evaluate and verify it step-by-step via coding:

import sympy as sp
Define the radius of larger and smaller circles
R_large = 34
R_small = 1
num_large_circles = 8
num_small_circles = 2024
Total vertical distance covered by the larger circles ’ centers

from base to the point of tangency
distance_large_centers = num_large_circles * (2 * R_large)
How many points can fit in this same height but smaller the

vertical line can stack:
distance_small_centers = num_small_circles * (2 * R_small)
Height from tangency to the actual top parallel line keeping them

tangent:
height_large = distance_large_centers # actually includes the

tangency start:
height_small = distance_small_centers
Deriving the total height by proportionality:
R_ratio = R_small / R_large
num_ratio = num_small_circles / num_large_circles
HR_length = (num_large_circles * 2 * R_large) # covering space.
H_effective = HR_length
This total covers height only parallelly: from base and top

distance:
h_total = HR_length
inradius = height_large / (num_ratio + 1)
inradius = sp.Rational(h_total / (num_ratio + 1))
print(f"calculated inradius: {inradius}")

Code execution result: calculated inradius: 4822752356869193/2251799813685248

This calculation seems overly complex; let’s simplify using simpler, geometric visualization and relationships:
Simplified Geometric Relationship:
Large Circle Tangent Arrangement:
- We have 8 circles of radius 34, and 2 of these circles are tangent to AB and BC. The effective vertical
distance taken by these circles, considering their arrangement repeating pattern of centers, is given by:

8 · (2 · 34) = 8 · 68

Small Circle Arrangement:
- For smaller circles of radius 1, such that 2024 circles fit similarly: - The vertical distance arrangement for
2024 circles would be:

2024 · 2 · 1 = 2024 · 2 = 4048

......Some Response Omitted......
We repeat arranging parallel: Consider:
each pair arrangement, verifying circles top-height Even scan: If each arrangement euclidean , height method
involving polygons: solved for ratio translating through unique noting: Combining parameters: This par;
valid:

\(\frac{m}{n}\] sum ratio sorts in idlegate ration 1} . However, i’ sequential seek refining this calculation more
consistently: iterating setup considered overall expression precise: Now we solve ensuring configurations
understandable suggest circle distributions proportionally: If):
- \(\(each step repeated configurations: compute \(largest Thus: We need to find side cognize area further on:
triangle holds hold altitude relation contractive step:

14

Table 5: An example from SimpleTIR-7B on AIME24 dataset. It demonstrates the behavior of progressive
reasoning and code improvement. Responses generated in different turns are separated with a vertical line.

Example #1 from AIME24 Dataset

Question:
Let ABCD be a tetrahedron such that AB = CD =

√
41, AC = BD =

√
80, and BC = AD =

√
89.

There exists a point I inside the tetrahedron such that the distances from I to each of the faces of the tetrahedron
are all equal. This distance can be written in the form m

√
n

p
, where m, n, and p are positive integers, m and p

are relatively prime, and n is not divisible by the square of any prime. Find m+ n+ p.
Labeled Answer:
104

Model Output by SimpleTIR-7B (Part-I)

To solve the given problem, we need to find the distance from point I (which is the incenter of the tetrahedron
ABCD) to each of the faces of the tetrahedron, given that the distances are all equal. This distance is the
radius r of the inscribed sphere of the tetrahedron.
First, we need to determine the volume V of the tetrahedron and the surface area S. The formula for the radius
r of the inscribed sphere is given by:

r =
3V

S
Step 1: Calculate the Volume V of the Tetrahedron
We can use the Cayley-Menger determinant to find the volume of the tetrahedron. The Cayley-Menger
determinant for a tetrahedron with edge lengths a, b, c, d, e, f (where a = AB, b = AC, c = AD, d =
BC, e = BD, f = CD) is given by:

288V 2 =

∣∣∣∣∣∣∣∣∣∣
0 1 1 1 1
1 0 a2 b2 c2

1 a2 0 d2 e2

1 b2 d2 0 f2

1 c2 e2 f2 0

∣∣∣∣∣∣∣∣∣∣
Substituting a =

√
41, b =

√
80, c =

√
89, d =

√
89, e =

√
80, f =

√
41:

288V 2 =

∣∣∣∣∣∣∣∣∣∣
0 1 1 1 1
1 0 41 80 89
1 41 0 89 80
1 80 89 0 41
1 89 80 41 0

∣∣∣∣∣∣∣∣∣∣
We can calculate the determinant of the matrix:

import sympy as sp

Define the matrix
matrix = sp.Matrix ([[0, 1, 1, 1, 1], [1, 0, 41, 80, 89], [1, 41, 0,

89, 80], [1, 80, 89, 0, 41], [1, 89, 80, 41, 0]])

Calculate the determinant
det = matrix.det()

Volume squared
V_squared = det / 288

Volume
V = sp.sqrt(V_squared)

print(f"Volume V: {V}")

Code Execution Result: Volume V: 160/3

15

Model Output by SimpleTIR-7B (Part-II)

Step 2: Calculate the Surface Area S of the Tetrahedron
The surface area S is the sum of the areas of the four triangular faces. We can find the area of each triangle
using Heron’s formula.
For triangle ABC:
- AB =

√
41 - AC =

√
80 - BC =

√
89

The semi-perimeter s is:

s =

√
41 +

√
80 +

√
89

2
Using Heron’s formula:

Area =
√

s(s−AB)(s−AC)(s−BC)

We need to find the areas of triangles ABD,ACD, and BCD similarly. Let’s calculate these areas step by
step using Python.

import sympy as sp

Define the edge lengths
AB = sp.sqrt (41)
AC = sp.sqrt (80)
AD = sp.sqrt (89)
BC = sp.sqrt (89)
BD = sp.sqrt (80)
CD = sp.sqrt (41)

Function to compute the area of a triangle using Heron ’s formula
def triangle_area(a, b, c):

s = (a + b + c) / 2
area = sp.sqrt(s * (s - a) * (s - b) * (s - c))
return area

Calculate the areas of the triangular faces
area_ABC = triangle_area(AB , AC, BC)
area_ABD = triangle_area(AB , AD, BD)
area_ACD = triangle_area(AC , AD, CD)
area_BCD = triangle_area(BC , BD, CD)

Total surface area
S = area_ABC + area_ABD + area_ACD + area_BCD

print(f"Area of triangle ABC: {area_ABC}")
print(f"Area of triangle ABD: {area_ABD}")
print(f"Area of triangle ACD: {area_ACD}")
print(f"Area of triangle BCD: {area_BCD}")
print(f"Total surface area S: {S}")

Code Execution Result: Area of triangle ABC: sqrt(-sqrt(41)/2 + 2sqrt(5) + sqrt(89)/2)sqrt(sqrt(41)/2
+ 2sqrt(5) + sqrt(89)/2)sqrt(-2sqrt(5) + sqrt(41)/2 + sqrt(89)/2)sqrt(-sqrt(89)/2 + sqrt(41)/2 + 2sqrt(5))
Area of triangle ABD: sqrt(-sqrt(41)/2 + 2sqrt(5) + sqrt(89)/2
...This content has been truncated to stay below 512 characters...
)/2 + sqrt(89)/2)sqrt(-sqrt(89)/2 + sqrt(41)/2 + 2sqrt(5)) Total surface area S: 4sqrt(-sqrt(41)/2 + 2sqrt(5) +
sqrt(89)/2)sqrt(sqrt(41)/2 + 2sqrt(5) + sqrt(89)/2)sqrt(-2sqrt(5) + sqrt(41)/2 + sqrt(89)/2)sqrt(-sqrt(89)/2
+ sqrt(41)/2 + 2sqrt(5))

It appears the individual areas calculated by Heron’s formula are quite complicated and expressed in a form
needing simplification to find the total surface area S. Let’s simplify the expressions to make the calculations
clearer and ensure we obtain a numerical value for the surface area S. We can use simplify to get more
manageable expressions and then compute the numerical value. Let’s also calculate r = 3V

S
step by step to

simplify finding the equal distances. We know the volume V = 160
3

.

16

Model Output by SimpleTIR-7B (Part-III)

We will now simplify our approach and focus on calculating these areas numerically to find S. Afterward, we
will compute r and ensure the result is in the required form m

√
n

p
. Let’s simplify our strategy and calculate

this accurately in Python.

import sympy as sp
Define symbolic variables
sqrt_41 = sp.sqrt (41)
sqrt_80 = sp.sqrt (80)
sqrt_89 = sp.sqrt (89)
Function to compute area using Heron’s formula
def area_heron(a, b, c):

s = (a + b + c) / 2
area = sp.sqrt(s * (s - a) * (s - b) * (s - c))
return sp.simplify(area)

Calculate areas of the triangles
area_ABC = area_heron(sqrt_41 , sqrt_80 , sqrt_89)
area_ABD = area_heron(sqrt_41 , sqrt_89 , sqrt_80)
area_ACD = area_heron(sqrt_80 , sqrt_89 , sqrt_41)
area_BCD = area_heron(sqrt_89 , sqrt_80 , sqrt_41)
Total surface area
S = area_ABC + area_ABD + area_ACD + area_BCD
Volume
V = sp.Rational (160, 3)
Radius of the inscribed sphere
r = 3 * V / S
Simplify r
r_simplified = sp.simplify(r)
print("Radius r:", r_simplified)

Code Execution Result: Radius r: 20*sqrt(21)/63

The radius r of the inscribed sphere is 20
√
21

63
.

This is in the form m
√
n

p
, where m = 20, n = 21, and p = 63. Here, m and p are relatively prime, and n is

not divisible by the square of any prime.
Step 3: Finding m+ n+ p
Now, we need to calculate m+ n+ p:

m+ n+ p = 20 + 21 + 63

Let’s calculate this:

import sympy as sp

Values
m = 20
n = 21
p = 63

Sum
result = m + n + p
print(result)

Code Execution Result: 104

The value of m+ n+ p is 104 .

This completes the solution. The distance from point I to each of the faces of the tetrahedron is 20
√
21

63
, and

the final answer is 104 .

17

Table 6: Key hyperparameters (left) and the prompt for generating multi-turn TIR responses (right).

(a) Key Hyperparameters

Hyperparameter Value

Initial max response length 16384
Rollout Temperature 1
Initial max interaction turns 5
Train batch size 512
Sampling batch size 1280
Rollouts per prompt (n) 16
PPO clip ratio (low / high) 0.2 / 0.28
Entropy coefficient 0
Discount factor γ 1.0
GAE λ 1.0
KL coefficient (β) 0
PPO epochs 4
Actor learning rate 1e-6
Gradient Clipping 1

(b) The Prompt for Generating Multi-turn TIR Responses

Solve the following problem step by step. You now have
the ability to selectively write executable Python code to
enhance your reasoning process. The Python code will be
executed by an external sandbox, and the output (after “Code
execution result: ”) is returned to aid your reasoning and
help you arrive at the final answer. The Python code should
be complete scripts, including necessary imports.

Code Format:
Each code snippet is wrapped between ```. You need to use
print() to output intermediate results.

Answer Format:
You can use the final_answer() function in the code to
return your final answer. For example, to answer the User
Question: What is the result of the 5 + 3 + 1294.678?, you
can write:

answer = 5 + 3 + 1294.678
final_answer(answer)

You can also use \boxed to return your answer. The last part
of your response should be: \boxed{“The final answer goes
here.”}

User Question:

Table 7: The prompt that instructs Claude-3.7-Sonnet to extract reasoning patterns from the TIR trajectories.

I have a reasoning process of an LLM. The LLM can write code and get code execution result. According to
the following reasoning process, please first answer the following questions:
1. Is the code execution result or interpreter output equal to the final answer?
2. How many code blocks are there in the reasoning process?
3. If there are several code blocks, are the code execution results all the same?

Format:
1. xxx
2. xxx
3. xxx

Please then determine whether the following reasoning process contains following four reasoning patterns:
1. Include at least two code blocks, each solving unique sub-questions. **Important: in such case, the code
execution result or interpreter output should not be equal to the final answer**
2. Use induction, from special case to general conclusions
3. Use code or text to do self-verification
4. Write another code block when the previous code has some bugs

Format:
Reasoning Pattern 1: Yes/No
Reasoning Pattern 2: Yes/No
Reasoning Pattern 3: Yes/No
Reasoning Pattern 4: Yes/No

Please do not output any other words.

Reasoning process:

18

	Introduction
	Preliminaries
	Training LLMs with RL
	Tool Integrated Reasoning

	Method
	Emergence of Low-probability Tokens in Multi-turn TIR Trajectories
	Low-probability Tokens Compromise Zero RL Training
	Stabilizing Multi-Turn TIR Training with Void Turn Masking
	Implementation Details

	Experiments
	Setup
	Training Results
	Training Curves and Ablation Studies
	Emergence of Diverse Reasoning Behaviors

	Related Work
	Zero RL for LLM Reasoning
	RL for Tool Integrated Reasoning
	Stabilizing RL Training

	Conclusion
	Example Responses
	Incomplete Response
	Response with Emergent Reasoning Behaviors

	Experiments
	Prompt for Multi-turn TIR Generation
	Hyperparameters
	Prompt for Extracting Reasoning Patterns

