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Abstract001

Domain-specific LLMs have become an in-002
creasingly important research issue in recent003
years and various LLMs has been proposed004
to specific domains, such as finance, health-005
care and legal. However, the current LLMs006
adopted in auditing faces critical challenges007
like cloud-API restrictions under data privacy008
compliance, hardware limitations in deploy-009
ing trillion-parameter models, and deficiencies010
in factual accuracy and logical rigor exhib-011
ited by general-purpose LLMs in auditing con-012
texts. This paper addresses training LLMs for013
auditing and proposes a two-phase framework014
to develop compact, audit-specialized LLMs015
tailored for Chinese auditing workflows. First,016
Qwen2.5 is selected as the base model through017
systematic comparisons of sub-5B parameter018
architectures. Subsequently, domain-adaptive019
continual pre-training by a carefully designed020
data sampling strategy is performed on a cu-021
rated corpus of Chinese audit texts to inject do-022
main expertise. Finally, multi-task instruction-023
tuning aligns the model with practical audit024
requirements. Extensive experiments demon-025
strate that the proposed framework can signif-026
icantly improve the performance of domain027
specific LLMs in audit tasks, enhancing their028
accuracy and practicality for real-world appli-029
cations. This study underscores the impor-030
tance of domain-adaptive pre-training. The031
source codes, models, and audit-domain dataset032
are publicly available at https://anonymous.033
4open.science/r/AuditLLM-E004034

1 Introduction035

The rapid advancement of large language model036

(LLM) has revolutionized natural language pro-037

cessing, enabling breakthroughs across diverse do-038

mains such as healthcare, finance and legal services039

(Brown et al., 2020). Increasingly, domain LLMs040

fine-tuning specialized tasks have emerged to ad-041

dress unique requirements, including compliance042

analysis, medical diagnostics and contract review.043

In audit domain, the evolution of intelligent au- 044

diting system has intensified the demand for tai- 045

lored LLMs capable of handling domain-specific 046

tasks such as regulatory compliance verification, fi- 047

nancial anomaly detection and risk assessment (On- 048

wubuariri et al., 2024). Initial attempts to employ 049

LLMs have either relied on cloud-based APIs or fo- 050

cused on developing retrieval-augmented LLM sys- 051

tems for rule-based compliance checking or struc- 052

tured data processing. 053

However, intelligent audit workflows impose 054

three critical constraints: (1) Uploading enterprise 055

data to cloud services is unsuitable for auditing 056

duo to data privacy and regulatory compliance con- 057

sideration. (2) Deploying a large-scale model with 058

hundreds of billions of parameters present signifi- 059

cant hardware resource challenges for enterprises 060

(Victor et al., 2019). (3)Based on our overall evalua- 061

tion of current mainstream LLMs, existing general- 062

purposed LLMs have exhibited deficiencies in fac- 063

tual accuracy and logical rigor in their outputs in 064

auditing applications. 065

This gap underscores the urgent demand for 066

compact yet high-performing language models tai- 067

lored to modern auditing practices. A related open- 068

source LLM, named AuditWen (Huang et al., 2024) 069

is proposed for auditing by fine-tuning Qwen-7B, 070

which shows significant performance on various 071

of audit NLP tasks compared with the state-of-the- 072

art LLMs. In this study, we focus on continual 073

pre-training of LLMs for Chinese auditing and pro- 074

pose a two-phase framework to develop a compact, 075

audit-specialized LLM. This initiative will lead to 076

the release of a series of auditing-specific LLMs. 077

First, following comparative benchmarking of 078

sub-5B parameter models, Qwen2.5 was selected 079

as the foundational architecture for subsequent 080

training. Second, continuous pre-training is per- 081

formed on a curated corpus of Chinese audit-related 082

texts (including normative documents, audit re- 083

ports and audit cases) to inject domain-specific 084
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knowledge into the base model. Finally, fine-085

tune the continual pre-trained model with instruc-086

tion dataset with consisting of multi-audit-specific-087

tasks. This approach not only preserves the ability088

to semantically understand unstructured audit data,089

but also ensures efficient inference of the 5B model090

on resource-constrained mobile and embedded de-091

vices, enabling practical adoption in field auditing092

workflows. To our knowledge, no prior work has093

established a localized, parameter-efficient LLM094

family explicitly designed for intelligent auditing095

while balancing domain expertise and computa-096

tional practicality. The contributions of this study097

are as follows:098

(1) An two-stage continual pre-training frame-099

work for domain LLM. We systematically explore100

methodologies for adapting compact models to au-101

diting needs, including a two-stage training frame-102

work (i.e., domain-adaptive pre-training followed103

by task-specified instruction-tuning) and parameter-104

efficient optimization strategies.105

(2) First open-source continual pre-trianed106

audit LLM family. We introduce the first fam-107

ily of Chinese audit-specialized LLMs with mod-108

els ranging from 0.5B to 3B parameters, includ-109

ing both base and instruction-tuned variants.These110

models are designed to bridge the gap between111

domain expertise and deployability intelligent au-112

diting.113

(3) An audit-domain dataset for continual114

pre-train LLM. To support further research, we115

will openly release a comprehensive audit-domain116

dataset for continual pre-training LLMs.117

Outstanding performance. Extensive experi-118

ments results suggest that continual pre-training119

enhances domain knowledge absorption, while120

instruction-tuning aligns models with practical au-121

dit workflows.122

2 Related Works123

Continual pre-train learning. Existing works em-124

phasize the importance of continual pre-training125

with high-quality knowledge data to enhance lan-126

guage model’s performance (Luo et al., 2022; Belt-127

agy et al., 2019), where the typical representa-128

tive models include BloombergGPT (Wu et al.,129

2023) and FinBERT (Liu et al., 2020). During130

the continual pre-training process of LLMs, new131

datasets from emerging domains (such as the med-132

ical field (Yuan et al., 2024)) or those targeting133

specific tasks (such as event temporal reasoning134

(Han et al., 2021)) are collected and used to update 135

pre-trained models, rather than re-training them 136

from scratch. Current methods of continual pre- 137

train mainly focused on the effects of parameters 138

and their combination on the train process, such 139

as warm-up strategies (Gupta et al., 2023), learn- 140

ing rate (LR) re-warming (Ibrahim et al., 2024), 141

LR re-decaying (Ibrahim et al., 2024; Raffel et al., 142

2020), and replay of previous data (Ibrahim et al., 143

2024). In addition, it becomes available and is a 144

much cheaper and more efficient solution to enable 145

pre-trained LLM to adapt domain-specific knowl- 146

edge. Xie et al. (2024b) proposed a data selection 147

strategy with just 10% of corpus size that reduces 148

the computational cost of continuous pre-training. 149

Wu et al. (2024) introduced LLaMA Pro, enabling 150

continual LLM pre-training via Transformer block 151

expansion to learn new tasks without catastrophic 152

forgetting. Que et al. (2024) introduced the D- 153

CPT law to minimize domain loss by fixing model 154

sizes and training token volumes, while Gu et al. 155

(2024) proposed critical mixture ratio of general 156

and domain data to trade-off between general and 157

domain-specific capabilities. 158

SFT for domain LLMs. Supervised fine- 159

tuning (SFT) technology of LLMs for domain 160

tasks has emerged to improve the adaptability of 161

LLMs on domain tasks with lower data volume 162

and training cost. A methodology for obtain- 163

ing a domain-adapted LLM involves fine-tuning 164

a domain-specific base LLM using specialized do- 165

main target tasks, like XuanYuan 2.0 (Xuanyu 166

and Qing, 2023) built upon the BLOOM-176B, 167

Baichuan4-Finance (Zhang et al., 2024) built upon 168

the Baichuan4-Turbo base model. Other studies 169

explore directly fine-tuning general open-source 170

LLMs to adapt downstream tasks. For exam- 171

ple, PiXiu (Xie et al., 2023) and FinBen (Xie 172

et al., 2024a) are LLMs specialized in financial 173

domain by fine-tuning LLaMA series LLMs, med- 174

ical LLMs Huatuo (Wang et al., 2023)and legal 175

LLM ChatLaw (Cui et al., 2023)are also fine-tuned 176

from LLaMA, AuditWen is fine-tuned for auditing 177

from Qwen-7B and the result shows significant per- 178

formance on various of audit NLP tasks compared 179

with the state-of-the-art LLMs. 180

To our knowledge, no prior work has systemat- 181

ically developed a compact and audit-specialized 182

LLM family (0.5B–3B parameters) that balances 183

Chinese domain expertise, task adaptability and 184

deployability. 185
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3 Methodology186

This study presents a systematic framework de-187

signed to enhance LLMs for auditing tasks. It188

employs a two-stage optimization process, begin-189

ning with domain-adaptive continual pre-training190

(CPT), followed by multi-task supervised fine-191

tuning (SFT) based on the outcomes of the first192

stage, as illustrated in Figure 1. Note that, the opti-193

mal base model need to be selected from a series194

candidate LLMs before CPT progress.195

The framework is detailed in three key com-196

ponents. Section 3.1 elaborates on the continual197

pre-training process, which focuses on optimiz-198

ing the proportion of domain-specific data. Sec-199

tion 3.2 describes the supervised fine-tuning stage200

which emphasizes multi-task instruction tuning to201

enhance task-specific capabilities. Section 3.3 in-202

troduces the evaluation benchmark used to evalu-203

ate the model’s performance at each stage. This204

structured approach ensures that the model is pro-205

gressively refined to address the unique demands206

of auditing applications effectively.207

3.1 Continual Pre-training208

This study collects and constructs four types of209

datasets, namely, (1)finance domain dataset, (2)210

laws and regulations dataset from audit domain,211

(3) Chinese general dataset and (4) English gen-212

eral dataset. We further explore the corresponding213

matching strategies by systematically integrating214

the four domain datasets for continual pre-training.215

3.1.1 Data Construction for CPT216

AuditCorpus. This dataset includes three sources:217

audit-related regulations, Baidu encyclopedia en-218

tries of audit-related concept and audit-related219

news, with totaling of 500MB. The details of the220

dataset is: (1)Audit Regulations encompass regula-221

tory documents and standards pertinent to auditing;222

(2) Baidu Encyclopedia Entries provides encyclope-223

dic knowledge on audit-related entities; (3) News224

Articles covers audit-related news. The dataset225

composition strikes a balance between adequately226

representing audit knowledge and facilitating effec-227

tive domain adaptation for auditing tasks.228

FinCorpus. The pre-training dataset for the fi-229

nancial domain is collected from XuanYuan and is230

referred to as FinCorpus dataset. XuanYuan is a231

large-scale text dataset specialized in the financial232

domain, including listed company announcements,233

financial news, financial articles and financial exam234

questions, with totaling of 60GB.235

Chinese General Corpus. This dataset is col- 236

lected from two sources: (1) Wikimedia, a pub- 237

licly accessible dataset comprising Wikipedia and 238

(2) TigerBot, an open-source Chinese pre-training 239

dataset of containing Chinese books, internet text 240

and encyclopedia. The sources are combined to 241

construct a comprehensive general Chinese pre- 242

training corpus. 243

English General Corpus. This dataset is also 244

collected from Wikimedia, which provides a vast 245

amount of information across various domains in 246

multiple languages.Here, the English dataset from 247

Wikimedia is selected to construct a comprehensive 248

general English pre-training corpus. 249

To processing the pre-training data, data chunk- 250

ing is conducted at first to ensure the length of each 251

data segment limited to 4096 tokens with using 252

the Qwen2.5 tokenizer. Furthermore, the Data- 253

Juicer toolkit 1 is employed to sample and clean 254

the pre-training data to obtain high-quality inputs. 255

Specifically, the general pre-training data and the 256

FinCorpus were downsampled to 10M tokens from 257

each to balance the dataset sizes of four corpus. 258

Table 4 provides the details of the data pre-process, 259

including the original and resulting sample sizes of 260

each dataset, along with respective sampling ratios. 261

3.1.2 Sampling from Each Dataset 262

In the pre-training process, dataset sampled from 263

different domains exhibit distinct linguistic fea- 264

tures, vocabulary distributions and semantic struc- 265

tures. A domain-skewed pre-training corpus risks 266

overfitting to domain-specific patterns, compromis- 267

ing cross-domain generalization. Underrepresented 268

domains in training data impede the model’s acqui- 269

sition of domain-specific patterns, thereby degrad- 270

ing task-specific performance. Therefore, carefully 271

sampling and balancing domain proportions is cru- 272

cial to optimize the model’s cross-domain general- 273

ization performance. 274

Research by (Gururangan et al., 2020) on 275

domain-adaptive pre-training highlights that tailor- 276

ing the pre-training data distribution to downstream 277

tasks can significantly enhance model performance, 278

further justifying the need for sampling exploration. 279

In this study, to investigate the impact of domain- 280

specific data proportions on continual pre-training, 281

we designed a structured sampling strategy that 282

allows controlled adjustments while maintaining 283

consistency across experiments. The sampling pro- 284

cess focuses on two main components: a baseline 285

1https://github.com/modelscope/data-juicer
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Figure 1: Overview framework of training Audit Language Model (AuditLLM). The framework consists of three
phases: (1) Base Model Selection, i.e, select an optimal base model from open-source LLMs; (2) Continual Pre-
Training (CPT) with a domain-specific dataset by designing a series of sampling strategies and result in base model,
called "OpenAuditLLM Base"; (3) Supervised Fine-Tuning (SFT) the base models by multi-tasking instruction
tuning on datasets and result in instruct model, called "OpenAuditLLM Instrust".

setting with equal domain contributions and pro-286

portion adjustments for individual domains.287

First, a baseline configuration was established by288

synchronously scaling data from the four domains289

in equal proportions, namely, finance, English, Chi-290

nese and auditing. For example, in the initial setup,291

each domain contributes 0.0125 billion (B) tokens,292

totaling 0.05B tokens. This balanced design en-293

sures that the model is exposed to a uniform distri-294

bution of knowledge across domains at the starting295

point. The configurations generated under equal296

scaling are visualized in Figure 2, where all do-297

main token counts increase synchronously across298

different configurations.299

To further analyze the impact of varying a single300

domain’s representation on the model, we intro-301

duced proportion adjustments where one domain302

was over-sampled or under-sampled while the oth-303

ers remained equally scaled. Over-sampling starts304

from 0.025B tokens with a step size of 0.025B, and305

under-sampling starts from 0.00625B tokens with306

a step size of 0.00625B. This design allows to in-307

dependently evaluate how increasing or decreasing308

the data volume of a specific domain affects the309

model performance.310

The specific adjustment for the auditing domain311

is illustrated in Figure 2. Here, the "Regulation312

Over" and "Regulation Under" lines represent the313

cases where the auditing domain was respectively314

over-sampled and under-sampled, while the rest 315

domains maintained equal proportions. This fig- 316

ure highlights how the auditing data proportion 317

changes across configurations, demonstrating the 318

flexibility of the sampling framework. 319

Figure 2: Proportion adjustment for the auditing domain,
showing equal-sampling, over-sampling and under-
sampling settings relative to other domains.

3.2 Supervised Fine-Tuning 320

3.2.1 Data Construction for SFT 321

The supervised fine-tuning (SFT) phase leverages 322

datasets of containing audit & finance domain in- 323

structions and general instructions. The datasets 324

are collected to reflect diverse linguistic patterns 325

and domain knowledg relevant to each domain and 326

ensures a balanced representation of the domains. 327

The details of the instruction fine-tuning datasets 328
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are introduced as follows.329

ICE-FIND dataset derived from the ICE-PIXIU330

framework2 is selected as the domain-specific in-331

struction dataset. ICE-PIXIU is a comprehensive332

cross-lingual financial instruction framework of333

containing 32 tasks with 604k instructions, encom-334

passing various Chinese financial NLP tasks.335

Audit dataset is optimized from audit-specific336

fine-tuning dataset developed by AuditWen3,337

which consists of 14 tasks, with totaling of 30,269338

instructions.339

Chinese-LLaMA-Alpaca-3 dataset 4 is em-340

ployed as general instructions, which contains341

kinds of high-quality instruction tasks in both Chi-342

nese and English, with a total of 307k instructions.343

3.2.2 SFT Data Exploration344

We fine-tune the OpenAuditLLM 0.5B model345

with three distinct datasets, namly the ICE-FIND346

dataset, the Audit dataset and the Chinese-LLaMA-347

Alpaca-3 dataset. The performance of the models348

are evaluated at each training stages to determine349

the optimal dataset for subsequent fine-tuning of350

the 1.5B and 3B models.351

3.3 Evaluation Benchmark352

The auditing domain specific dataset, referred as353

AuditEva Datasets, is employed to test the model’s354

ability in audit domain. The dataset includes four355

different classification tasks, namely audit-item356

entity classification (AIEC), audit-problem entity357

classification (APEC), audit legal name classifi-358

cation (ALNC) and audit relation classification359

(ARC). These diverse tasks collectively evaluate360

the model’s robustness and versatility in handling361

auditing-specific content. Table 5 in Appendices362

provides a detailed overview of these datasets, in-363

cluding their descriptions and examples categories.364

FinanceIQ5 evaluates the model’s understand-365

ing of financial concepts, terminology and rea-366

soning, which are also relevant to audit domain.367

Furthermore, this study employed a standardized368

evaluation pipeline by combining FinanceIQ and369

AuditEva dataset, enabling fair comparisons and370

reflecting the models’ performance on auditing-371

relevant capabilities throughout the experimenta-372

tion process.373

2https://github.com/YY0649/ICE-PIXIU
3https://github.com/HooRin/AuditWen
4https://github.com/ymcui/

Chinese-LLaMA-Alpaca-3
5https://huggingface.co/datasets/Duxiaoman-DI/

FinanceIQ

4 Experimental Results 374

To evaluate the performance of our approach, com- 375

prehensive benchmark is conducted against exist- 376

ing models. The evaluation focused on both base 377

models and instruct models to assess their capabili- 378

ties across various settings. 379

4.1 Baseline LLMs selection for continual 380

pre-training 381

We curated a diverse set of baseline models that en- 382

compass various architectures and parameter scales, 383

which are publicly available and constrained to un- 384

der 5B. This parameter ceiling was chosen to bal- 385

ance computational efficiency with model capacity. 386

Table 1 provides an overview of the evaluated base- 387

line models. 388

To enables a systematic comparison of their ini- 389

tial performance on auditing-relevant tasks and pro- 390

vides a foundation for identifying the most promis- 391

ing candidates for subsequent experiments, these 392

models were subjected to the evaluation benchmark 393

outlined in Section 3.3. The evaluation focused on 394

accuracy for all tasks. Table 1 demonstrates the 395

evaluation result of different models. The Qwen2.5 396

series consistently outperformed other candidates 397

across the majority of the benchmark tasks. This 398

superior capability is attributed to their robust gen- 399

eralization across financial and audit contexts, mak- 400

ing them well-suited as baseline models for the 401

auditing-focused experiments in this study. Conse- 402

quently, the Qwen2.5 series are selected as the foun- 403

dation for continual pre-training and SFT phases. 404

4.2 Continued Pretraining Result 405

Experimental Setup. The pre-training process 406

utilized 64 A100 80GB GPUs across 8 nodes, re- 407

quiring 250 hours for one epoch. The key hyperpa- 408

rameters were set to tackle the research question, 409

with learning rate of 1 x 10−5 using the cosine 410

schedule, a weight decay of 0.00001, a warm-up 411

ratio of 0.05, a batch size of 2 per device, and the 412

maximum sequence length of 8,192 tokens. 413

Figure 3 illustrate the impact of under-sampling 414

and over-sampling strategies on the model perfor- 415

mance respectively. The horizontal axis represents 416

the total parameter count of the four datasets (Fin- 417

Corpus, English General Corpus, Chinese General 418

Corpus, and AuditCorpus), while the vertical axis 419

denotes their proportion configurations. 420

Results and Analysis. We evaluated multiple 421

data proportion configurations for the Qwen2.5- 422
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Model Size Model Name FinanceIQ AIEC APEC ALNC ARC Average

EleutherAI/pythia-410M 24.54 40.56 7.19 5.96 17.95 19.24

<1B HuggingFaceTB/SmolLM2-135M 24.23 41.45 16.99 9.63 17.09 21.878

HuggingFaceTB/SmolLM2-360M 25.21 41.45 16.34 8.26 14.53 21.158

Qwen/Qwen2.5-0.5B 44.03 41.78 26.80 14.68 14.53 28.364

Meta-Llama/Llama-3.2-1B 26.52 41.45 14.38 15.14 42.74 28.046

Qwen/Qwen2.5-1.5B 55.55 81.25 36.60 34.40 51.28 51.816
1B∼2B Internlm/internlm2.5-1.8B 52.56 50.79 33.99 22.94 39.32 39.92

IBM-granite/granite-3.0-2B-Base 37.25 70.38 28.76 29.82 29.91 39.224

Google/gemma-2-2B 33.83 51.05 33.99 27.52 5.98 30.474

Qwen/Qwen2.5-3B 65.51 81.75 42.20 38.53 52.99 56.196
2B∼5B meta-llama/Llama-3.2-3B 39.90 68.40 35.29 46.79 25.64 43.204

Nvidia/Minitron-4B-Base 40.71 66.05 36.60 42.66 7.69 38.742

Table 1: Overall performance of different models on the evaluation dataset. Models with sizes below 5B were
selected for evaluation. The results indicate that the Qwen series, including Qwen2.5 0.5B, 1.5B, and 3B models,
achieve the highest scores on most tasks and exhibit the best overall performance.

Figure 3: Model Performance with Under-sampling and Over-Sampling Configurations.

0.5B base model, with results presented in Tables423

6, 7 and 8 in Appendices. Table 6 indicates that424

within a certain range, increasing the total parame-425

ter count of the pre-training dataset enhances model426

performance. A heatmap in Figure 5, derived from427

Tables 7 and 8, visually illustrates the experimental428

outcomes. By analyzing result, we identified the429

optimal data mixing strategy, namely 2:2:2:1 of the430

four dataset, which involves under-sampling the431

AuditCorpus dataset. Consequently, we adopted432

a configuration with a total parameter count of433

0.175B under-sampling AuditCorpus as the most434

effective strategy.435

To further evaluate the effectiveness of the pro-436

posed continued pre-training approach, we con-437

ducted a comprehensive comparison between the 438

Qwen2.5 base models and our pre-trained OpenAu- 439

ditLLM models, as shown in Table 2. The results 440

demonstrate the effectiveness of the optimized data 441

proportion strategy. For instance, OpenAuditLLM- 442

0.5B achieves an average performance of 33.77, 443

surpassing Qwen2.5-0.5B’s 32.62 with notable 444

gains in AIEC task (61.09 vs. 56.19). Simi- 445

larly, OpenAuditLLM-3B outperforms Qwen2.5- 446

3B with an average score of 57.31 compared to 447

56.07 particularly in ALNC (44.50 vs. 39.45) and 448

ARC tasks (52.99 vs. 47.86). These improvements 449

highlight the consistent benefits of our continued 450

pre-training strategy across different model scales. 451
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Metrics 0.5B 1.5B 3B

Qwen2.5 OALLM Qwen2.5 OALLM Qwen2.5 OALLM

FinanceIQ 43.12 41.75 56.07 56.27 65.76 65.13
AIEC 56.19 61.09 81.69 81.50 82.84 82.77
APEC 25.49 25.49 37.25 37.91 44.44 41.18
ALNC 16.06 17.43 36.23 39.45 39.45 44.50
ARC 22.22 23.08 52.14 51.28 47.86 52.99

Average 32.62 33.77 52.68 53.28 56.07 57.31

Table 2: Performance comparison between Qwen2.5 and OpenAuditLLM (OALLM) at different parameter scales
on financial tasks.

4.3 Instruction Tuning452

Experimental Setup. In Stage 2, instruction tun-453

ing is conducted to enhance the OpenAuditLLM454

model’s ability to follow task-specific instructions455

tailored to the auditing domain. The process uti-456

lized four NVIDIA A6000 GPUs with mixed-457

precision training (bf16) to improve computational458

efficiency and minimize memory usage. The con-459

figuration utilizes the AdamW optimizer with criti-460

cal hyperparameters set to a learning rate of 1e-4,461

a batch size of 8, a single training epoch, applied462

LoRA with a rank of 8 and alpha value of 16.463

Results and Analysis. The OpenAuditLLM464

0.5B model is instruction-tuned using three distinct465

datasets as described in Section 3.2.1. The baseline466

used in all comparisons is the Qwen2.5-0.5B In-467

struct model, while the 20% to 100% stages repre-468

sent sampling data of different proportions for fine-469

tuning on the respective datasets. The experimental470

results are shown in the Figures 4, which denotes471

that using the ICE-FIND and Chinese-LLaMA-472

Alpaca-3 datasets leads to suboptimal performance473

across most evaluation metrics. In contrast, the474

Audit dataset consistently delivers significant per-475

formance improvements with larger training data476

volumes. Based on these findings, the Audit dataset477

is selected exclusively for the instruction tuning478

stage.479

By comparing the instruction tuning results, we480

adopted a 5-shot setting for ARC task and zero-shot481

for the rest tasks. Here, OpenAuditLLM instruct482

model denotes supervised fine-tuning of the Ope-483

nAuditLLM base model with the Audit dataset.484

Table 3 shows the overall performane of differ-485

ent models on four tasks. From Table 3, it is evi-486

dent that the OpenAuditLLM instruct model outper-487

forms the Qwen2.5 instruct model across most met-488

rics and model sizes. Notably, OpenAuditLLM in- 489

struct achieves substantial improvements in AIEC, 490

APEC and ALNC across all model sizes, with par- 491

ticularly strong gains in the 1.5B and 3B config- 492

urations. While its performance in ARC is less 493

consistent, the overall average scores of OpenAu- 494

ditLLM instruct surpass those of Qwen2.5 instruct. 495

The overall results demonstrate the effectiveness of 496

instruction tuning with the Audit dataset and high- 497

lights the robustness of OpenAuditLLM instruct in 498

handling domain-specific tasks. 499

Effect of Sampling Strategy. Beyond basic 500

quality, the domain sampling strategy during con- 501

tinued pretraining also plays a critical role. As 502

discussed in Section 3, we introduced two kinds of 503

sampling: equal domain scaling and controlled do- 504

main proportion adjustment.The sampling settings 505

(illustrated in Figure 1 and Figure 2) show that both 506

the volume and proportion of domain-specialized 507

data can impact the model’s specialization and gen- 508

eralization. Particularly, auditing domain perfor- 509

mance was sensitive to the amount of audit dataset: 510

over-sampling auditing data improved performance 511

on auditing-specific tasks but slightly reduced gen- 512

eral generalization, while under-sampling had the 513

opposite effect. 514

These findings emphasize that the quality and 515

the quantity, distribution of data must be carefully 516

designed according to domain-specific application 517

requirements. 518

5 Conclusion 519

In this work, we proposed a framework for adapting 520

lightweight large language models (LLMs) to the 521

auditing domain, with a particular emphasis on con- 522

tinual pretraining and task-aware instruction tuning. 523

Our experimental results underscore the efficacy 524

of the two-stage training paradigm, namely contin- 525
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Figure 4: Performance comparison of models fine-tuned with three datasets (ICE-FIND, Audit, Chinese-LLaMA-
Alpaca-3) on various tasks. "Base" corresponds to the Qwen2.5 0.5B Instruct model without instruction tuning,
while "20%" to "100%" indicate different proportions of instruction tuning data used from each dataset.

Model Size Model Name FinanceIQ AIEC APEC ALNC ARC Average

0.5B Qwen2.5 instruct 37.85 63.64 47.06 47.25 19.66 43.09

OpenAuditLLM instruct 36.08 65.54 53.59 77.52 10.26 48.60

1.5B Qwen2.5 instruct 54.51 55.12 10.46 44.95 52.99 43.61

OpenAuditLLM instruct 51.82 60.46 49.67 78.44 56.41 59.36

3B Qwen2.5 instruct 60.41 53.59 32.68 48.62 47.86 48.63

OpenAuditLLM instruct 60.66 76.10 55.56 79.36 47.86 63.91

Table 3: Performance of Qwen2.5 instruct and OpenAuditLLM instruct across model sizes on five sub-tasks and
their average.

Figure 5: Performance Radar of Supervised Fine-Tuned
OpenAuditLLM and Qwen2.5 Models

ual pretraining significantly enhances the model’s526

ability to internalize domain-specific knowledge,527

and instruction tuning refines the model’s capac-528

ity to perform realistic auditing tasks. Finally, we529

obtained the first family of open-sourced Chinese530

audit-specialized LLMs, covering models with pa-531

rameter sizes from 0.5B to 3B. In the future, rein-532

forcement learning strategy is considered after the533

SFT parse to further improve the performance of534

the OpenAuditLLM. 535

Limitations 536

Our approach depends heavily on the availability 537

of high-quality domain-specialized data. While 538

we curated improved datasets for continued pre- 539

training and instruction tuning, the process is labor- 540

intensive and not easily generalizable to other do- 541

main or languages without similar data quality. 542

In addition, our evaluation is constrained to 543

five datasets primarily focused on classification 544

tasks. This narrow scope may not fully capture the 545

broader range of audit-related reasoning and gen- 546

eration capabilities, leaving generalization to other 547

audit tasks an open question. Our future work will 548

incorporate more evaluation tasks related to audit 549

application scenarios. 550
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A Appendix685

A.1 Summary of Data Cleaning and Sampling686

for Pre-training Datasets687

Table 4 provides a detailed summary of the data688

cleaning and sampling processes applied to the689

pre-training datasets. It includes the dataset type,690

specific dataset names, original and resulting to-691

ken counts, and the ratio of retained tokens after692

cleaning. The "origin tokens" and "res tokens"693

columns denote the number of tokens before and694

after processing respectively, while the "ratio" col-695

umn indicates the proportion of tokens retained.696

A.2 Overview of Audit-Related Datasets697

Table 5 presents an overview of the audit-related698

datasets evaluated in this study. The table includes699

descriptions of each dataset, example entities, and700

classification choices used for audit tasks. Each701

entry details the dataset’s role in audit-related eval-702

uations, with the "Examples" column providing703

representative instances and the "Choices" column704

listing possible categories for annotation or classi-705

fication.706

A.3 Model Performance with707

Equal-Proportion Datasets708

Table 6 shows the performance of models trained709

on equal-proportion datasets, reporting final scores710

across different total parameter counts. The table711

highlights how model performance varies with pa-712

rameter scale, with scores reflecting accuracy or713

other relevant metrics.714

A.4 Model Performance with715

Under-Sampling Configurations716

Table 7 details the performance of models under717

under-sampling configurations, presenting scores718

for different dataset proportions and parameter 719

counts, along with average performance metrics. 720

The table illustrates the impact of reducing dataset 721

sizes on model outcomes. 722

A.5 Model Performance with Over-Sampling 723

Configurations 724

Table 8 summarizes the performance of mod- 725

els under over-sampling configurations, showing 726

scores for various dataset proportions and parame- 727

ter counts, along with averages. The table demon- 728

strates how increasing dataset sizes affects model 729

performance. 730

A.6 Overview of Language Models from 731

Various Organizations 732

Table 9 provides an overview of language mod- 733

els developed by various organizations, including 734

model names and their key characteristics. The 735

table outlines critical features such as architecture, 736

training data, or intended applications, facilitating 737

a comparison of models across different providers. 738
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Dataset type dataset origin tokens origin num res tokens ratio

AuditCorpus regulation 0.1B 59737 51860 0.8681
baike – 4768 4466 0.9367
news – 8807 1573 0.1786

FinCorpus fincorpus 0.4B 439601 112443 0.2558

Chinese General
Corpus

wiki-zh 0.15B 257180 118353 0.4602

tiger-bot-zh 0.4B 866254 221013 0.2551

English General Corpus wiki-en 0.15B 336495 316133 0.9395

Table 4: Summary of data cleaning and sampling for pre-training datasets, including original and resulting token
counts and ratios.

Dataset Description Examples Choices

Audit-Item Entity An entity (or phrase) representing an au-
dit item

坐支管理费用审计,环境治理审计,应交税
金审计

财政审计,公共工程审计,海关审计,金融审计,民生审计,
税收审计,资源环保审计

Audit-Problem En-
tity

An entity (or phrase) expressing an audit
doubt

扶持资金管理制度不完善, 自然资源被违
法占用,伪造税务登记证件

财政审计, 公共工程审计, 海关审计, 金融审计, 经
济Sass审计, 民生审计, 农业农村审计, 审计共性问题,企
业审计,税收审计,资源环保审计

Legal-Name Entity An entity (or phrase) expressing a legal
name used in auditing

中华人民共和国财政违法行为处罚处分条
例,天津市水资源税改革试点实施办法,中
华人民共和国税收征收管理法

财经法规,财政法规,个人所得税,金融综合,劳动就业,上
市公司,社会保障,行业管理,增值税,征收管理,资产评估
法规,资源税,综合管理,综合税收政策

Regulation Relation
Extraction

Classify the given audit-relevant entity
pair to one of the given choices, extracted
from a sentence

[规避招标,招标投标法], [合同履行情况审
计,检查]

审计问题,审计事项,审计依据,审计方法,审计机构,审计
成果,被审计单位,涉及的行业或领域

Table 5: Overview of audit-related datasets evaluated in this study, including descriptions, example entities, and
classification choices. Each entry details the dataset’s role in audit tasks.

Total Parameter Count (B) Final Score

0.05 28.362
0.1 29.028
0.15 30.758
0.2 31.976

Table 6: Model performance with equal-proportion datasets, showing final scores for different total parameter
counts.

Proportion Total Parameter Count (B) Average
0.04375 0.0875 0.13125 0.175

1:2:2:2 29.398 28.828 29.612 30.524 29.5905
2:1:2:2 29.672 32.388 33.086 32.664 31.9525
2:2:1:2 29.140 31.910 31.300 33.152 31.3755
2:2:2:1 28.858 33.806 34.580 33.768 32.7530

Table 7: Model performance with under-sampling
configurations, showing scores for different
proportions and parameter counts, along with
averages.

ProportionTotal Parameter Count (B) Average
0.0625 0.125 0.1875 0.25

2:1:1:1 29.672 32.388 33.086 32.664 31.9525
1:2:1:1 29.560 32.864 32.278 31.924 31.6565
1:1:2:1 32.438 31.582 31.926 30.880 31.7065
1:1:1:2 28.582 31.684 32.892 33.378 31.6340

Table 8: Model performance with over-sampling
configurations, showing scores for different
proportions and parameter counts, along with
averages.
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Organization Model(s) Description

Google Google gemma-2-2b Gemma-2-2B is a 2B-parameter model from the Gemma family, designed
for efficient performance in NLP tasks.

IBM ibm-granite granite-3.0-2b-base Granite-3.0-2B-Base is a 2B-parameter model from IBM’s Granite series,
optimized for enterprise applications.

xAI internlm2.5-1.8B InternLM2.5-1.8B is a 1.8B-parameter model developed by xAI, focusing
on efficient and scalable language modeling.

Meta AI Llama-3.1-Minitron-4B-Depth-Base, Llama-3.1-
Minitron-4B-Width-Base, Llama-3.2-1B, Llama-
3.2-3B

LLaMA models are from Meta AI, including Minitron variants (4B pa-
rameters) optimized for depth and width, and LLaMA-3.2 models with
1B and 3B parameters. The models are known for efficiency in research
applications.

NVIDIA Minitron-4B-Base Minitron-4B-Base is a 4B-parameter model by NVIDIA, designed for high
efficiency in natural language tasks.

EleutherAI pythia-410m Pythia-410M is a 410M-parameter model by EleutherAI, developed for
research with a focus on transparency and reproducibility.

Hugging Face SmolLM2-135M, SmolLM2-360M, SmolLM2-
1.7B

SmolLM2 series by Hugging Face, with parameter sizes of 135M, 360M,
and 1.7B, are optimized for lightweight and efficient language modeling.

Alibaba Qwen2.5-0.5B, Qwen2.5-1.5B, Qwen2.5-3B Qwen2.5 series by Alibaba, with parameter sizes of 0.5B, 1.5B, and 3B,
are designed for robust performance in multilingual and domain-specific
tasks.

Table 9: Overview of large language models from various organizations, including model names and their key
characteristics.
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