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Abstract

Mixup, which creates synthetic training instances by linearly interpolating random
sample pairs, is a simple yet effective regularization technique to boost the per-
formance of deep models trained with SGD. In this work, we report a previously
unobserved phenomenon in Mixup training: on a number of standard datasets,
the performance of Mixup-trained models starts to decay after training for a large
number of epochs, giving rise to a U-shaped generalization curve. This behavior
is further aggravated when the size of the original dataset is reduced. To help
understand such a behavior of Mixup, we show theoretically that Mixup training
may introduce undesired data-dependent label noises to the synthesized data. Via
analyzing a least-square regression problem with a random feature model, we
explain why noisy labels may cause the U-shaped curve to occur: Mixup improves
generalization through fitting the clean patterns at the early training stage, but as
training progresses, Mixup becomes over-fitting to the noise in the synthetic data.

1 Introduction

Mixup, a simple interpolation-based regularization technique, has empirically shown its effectiveness
in improving the generalization and robustness of deep classification models (Zhang et al., 2018;
Guo et al., 2019a,b; Thulasidasan et al., 2019; Zhang et al., 2022b). Unlike the vanilla empirical risk
minimization (ERM), in which networks are trained using the original training set, Mixup trains the
networks with synthetic examples. These examples are created by linearly interpolating both the
input features and the labels of instance pairs randomly sampled from the original training set.

Owning to Mixup’s simplicity and its effectiveness in boosting the accuracy and calibration of deep
classification models, there has been a recent surge of interest attempting to better understand Mixup’s
working mechanism, training characteristics, regularization potential, and possible limitations. For
example, Thulasidasan et al. (2019) empirically show that Mixup helps improve the calibration of
the trained networks. Guo et al. (2019a) identify the manifold intrusion issue in Mixup, where the
synthetic data “intrude” the data manifolds of the real data. Zhang et al. (2021) theoretically explain
the effectiveness via analyzing an upper bound of loss function used in Mixup. Zhang et al. (2022b)
suggest that the calibration effect of Mixup is correlated with the capacity of the network. In this
work, we carry out an exploration along these research lines. In this paper, we further investigate the
generalization properties of Mixup training.
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We first report a previously unobserved phenomenon in Mixup training. Through extensive experi-
ments on various benchmark datasets, we observe that over-training the networks with Mixup may
result in significant degradation of the networks’ generalization performance. As a result, along with
training epochs, the generalization performance of the network measured by its testing error may
exhibit a U-shaped curve. Figure 1 shows such a curve obtained from over-training ResNet18 (He
et al., 2016) with Mixup on Cifar10. As can be seen from Figure 1, when training with Mixup
for a long time, both ERM and Mixup keep decreasing their training loss, but the testing accuracy
of the Mixup-trained ResNet18 gradually reduces, while that of the ERM-trained ResNet18 keeps
decreasing.
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Figure 1: Over-training ResNet18 on CIFAR10. It shows that over-
training reduces both the ERM and Mixup training loss, but the testing
error of the Mixup-trained ResNet18 decreases first and then gradually
increases, while that of the ERM-trained ResNet18 keeps decreasing.

Motivated by this obser-
vation, we conduct a the-
oretical analysis, aiming
to better understand the
aforementioned behavior of
Mixup training. We show
theoretically that Mixup
training may introduce un-
desired data-dependent la-
bel noises to the synthe-
sized data: under label
noise, the early phase of
training is primarily driven
by the clean data pattern,
which moves the model pa-
rameter closer to the correct solution. But as training progresses, the effect of label noise accumulates
through iterations and gradually over-weighs that of the clean pattern and dominates the training
process. In this phase, the model parameter gradually moves away from the correct solution until it is
sufficient apart and approaches a location depending on the noise realization.

2 Related Work

Mixup Improves Generalization After the initial work of Zhang et al. (2018), a series of Mixup
variants have been proposed (Guo et al., 2019a; Verma et al., 2019; Yun et al., 2019; Guo, 2020; Kim
et al., 2020; Greenewald et al., 2021; Han et al., 2022; Sohn et al., 2022). For example, AdaMixup
(Guo et al., 2019a) trains an extra network to dynamically determine the interpolation coefficient
parameter α. Manifold Mixup (Verma et al., 2019) performs the linear mixing on the hidden states
of the neural networks. Due to its regularization effectiveness, Mixup’s working mechanism and
possible limitations are also being explored constantly. For example, Zhang et al. (2021) demonstrate
that Mixup yields an upper bound of the Rademacher complexity of the class of functions that the
network fits, which in turn bounds the generalization error of the network. Thulasidasan et al. (2019)
show that Mixup helps to improve the calibration of the trained networks. Zhang et al. (2022b)
theoretically demonstrate that the calibration effect of Mixup is correlated with the capacity of the
network. Guo et al. (2019a) introduce the concept of manifold intrusion. It refers to a phenomenon in
Mixup training where the synthetic data “intrude” the data manifolds of the real data.

Training on Random Labels, Epoch-Wise Double Descent and Robust Overfitting The thought-
provoking work of Zhang et al. (2017) highlights that neural networks are able to fit data with
random labels. After that, the generalization behavior on corrupted label dataset has been widely
investigated (Arpit et al., 2017; Liu et al., 2020; Feng & Tu, 2021; Wang & Mao, 2022; Liu et al.,
2022). Specifically, Arpit et al. (2017) observe that neural networks will learn the clean pattern first
before fitting to data with random labels. This is further explained by Arora et al. (2019) where they
demonstrate that under the overparameterization regime, the convergence of loss depends on the
projections of labels on the eigenvectors of some Gram matrix and these projections are different for
true labels and random labels. As a parallel research line, an epoch-wise double descent behavior
of testing loss of deep neural networks is observed in Nakkiran et al. (2020). While the model-wise
double descent is largely studied (Belkin et al., 2019; Hastie et al., 2022; Mei & Montanari, 2022; Ba
et al., 2020), theoretical works studying the epoch-wise double descent are still very limited (Heckel
& Yilmaz, 2021; Stephenson & Lee, 2021; Pezeshki et al., 2022). Among the related works, we
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note that the work of Advani et al. (2020) inspires our theoretical analysis of the U-sharped curve
of Mixup training. Moreover, robust overfitting is also another yet related research line, which is
found by Rice et al. (2020). In particular, robust overfitting is referred to a phenomenon in adversarial
training that robust accuracy will first increase then decrease after a long training time. Chen et al.
(2020) shows that robust overfitting is deemed to the early part of epoch-wise double descent due to
the implicit label noise induced by adversarial training. Since Mixup training has been connected to
adversarial training or adversarial robustness in the previous works (Archambault et al., 2019; Zhang
et al., 2021), the work of Chen et al. (2020) indeed motivates us to study the label noise induced by
Mixup training.

3 Preliminaries

Consider a C-class classification setting with input space X = Rd0 and label space Y :=
{1, 2, . . . , C}. Denote by P(Y) the space of distributions over Y . Let S = {(xi, yi)}ni=1 be a
training set, where each yi ∈ Y may also be treated as a one-hot vector in P(Y). Suppose the model
is parameterized by θ ∈ Θ, and let fθ : X → [0, 1]C denote the predictive function associated with θ,
which maps an input feature to a distribution in P(Y). For any pair (x, y) ∈ X × P(Y), let ℓ(θ, x, y)
denote the loss of the prediction fθ(x) with respect to the target label y. The empirical risk of the
predictor θ on S is defined as

R̂S(θ) :=
1

n

n∑
i=1

ℓ(θ, xi, yi).

In Mixup, instead of using the original training set S, a synthetic dataset S̃ is generated by repeatedly
sampling a random pair of examples ((x, y), (x′, y′)) from S and creating a synthetic example (x̃, ỹ)
by

x̃ = λx + (1− λ)x′, ỹ = λy + (1− λ)y′, (1)

where λ ∈ [0, 1] is drawn from some prescribed distribution, independently across all synthesized
examples. The optimization objective, or the “Mixup loss”, is then

R̂S̃(θ) :=
1

|S̃|

∑
(x̃,ỹ)∈S̃

ℓ(θ, x̃, ỹ).

Mixup training aims to find a θ∗ that minimizes the above Mixup loss.

Most often, the interpolating parameter λ is drawn from a symmetric Beta distribution, Beta(α, α).
The default option is to take α = 1. In this case, the following can be proved.
Lemma 3.1. Suppose that S is a balanced dataset, ℓ(·) is the cross-entropy loss, and {λ} is drawn
i.i.d. from Beta(1, 1) (or the uniform distribution on [0, 1]). Then

E{λ}R̂S̃(θ) ≥
C − 1

2C
,

where the equality holds if and only if fθ(x̃) = ỹ for each synthetic example (x̃, ỹ) ∈ S̃.

The lower bound
C − 1

2C
in the lemma allows us to make sense of the Mixup loss during training. For

example, for 10-class classification tasks, the bound has value 0.45. Then only when the Mixup loss
approaches this value, we may conclude that the model parameter is near an optimum (assuming the
model has sufficient capacity).

4 Empirical Observations

We conduct experiments using CIFAR10, CIFAR100 and SVHN. For CIFAR10 and SVHN, we
adopt both the original training set and a balanced subset of it containing 30% of the data. For
CIFAR100, we only use the original training set, since downsampling CIFAR100 appears to result in
high variances for the testing baselines. We train ResNet networks on the three datasets using both
ERM and Mixup, while adopting SGD with weight decay. No data augmentation is used.
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In each training trial, we train the network for in total a fixed number of epochs. We record the
minimal training loss achieved by the network during the training process, and we also record the
network’s testing accuracy of the epoch at which the minimal training loss is achieved. Additionally,
we visualize the local loss landscape around the solution found by the network at the aforementioned
training epoch. We gradually increase the total number of the training epochs in different trials of
training so as to gradually over-train the network.

We repeat each training trial for 10 times (using 10 different random seeds) and then average the
recorded training losses and testing accuracies. For example, Figure 2a illustrates the results of
training ResNet18 on 30% of the CIFAR10 data. Each point represents the average of the recorded
training losses in a training trial, and its label on the horizontal axis denotes the setting of total number
of epochs of that trial. The width of the shade beside each point reflects the deviation of the recorded
results in the corresponding trial.

ResNet18 is used for the CIFAR10 and SVHN datasets. Training is performed for up to 1600 epochs
for CIFAR10, and the results are shown in Figure 2. For both the 30% dataset and the full dataset, we
see clearly that after some number of epochs (e.g, epoch 200 for the full dataset), the test accuracy of
the Mixup-trained network starts decreasing and this trend continues. This confirms that over-training
with Mixup hurts the network’s generalization. One would observe a U-shaped curve, as shown in
Figure 1 (right), if we were to plot test error and include results from earlier epochs. Notably, this
phenomenon is not observed in ERM. Furthermore, we have also visualized the local loss landscape
(where “loss” refers to the empirical risk defined using the real data) around the found solution in 2D
following Li et al. (2018). The plots are given in Appendix B.
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(a) Train loss (30%)
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(b) Test acc (30%)
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(c) Train loss (100%)
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(d) Test acc (100%)

Figure 2: Training loss and test accuracy of training ResNet18 on CIFAR10 (30% data and 100%
data) without data augmentation.

Training is performed for up to 1000 epochs for SVHN, and the results are presented in Appendix B.
Mixup exhibits a similar phenomenon as it does on CIFAR10. What differs notably is that over-
training with ERM on the original SVHN training set appears to also lead to worse test accuracy.
However, this does not occur on the 30% SVHN training set2.

ResNet34 is used for the more challenging task CIFAR100. This choice allows Mixup training to
drive its loss to lower values, closer to the lower bound given in Lemma 3.1. Training is performed
for up to 1600 epochs. The results for CIFAR100 are illustrated in Appendix B. Additional results of
over-training ResNet34 on CIFAR10 and SVHN are also given in Appendix B.

5 Theoretical Explanation: Mixup Induces Label Noise

We will use the capital letters X and Y to denote the random variables corresponding to the input
feature and output label, while reserving the notations x and y to denote their realizations respectively.
In particular, we consider that each true label y is an element, i.e, a token, in Y , not a one-hot vector in
P(Y). Let P (Y |X) be the ground-truth conditional distribution of the label Y given input feature X .
For simplicity of notation, we will also express P (Y |X) using a vector-valued function f : X → RC ,
where fj(x) ≜ P (Y = j|X = x) for each dimension j ∈ Y and input x. Under this ground truth,
the correct hard-assignment of label for x is argmaxj∈Y fj(x).

2This might be related to the epoch-wise double descent behavior of ERM training. That is, when over-
training ResNet18 on the whole training set with a total of 1000 epochs, the network is still in the first stage
of over-fitting the training data, while when over-training the network on 30% of the training set, the network
learns faster on the training data due to the smaller sample size, thus it passes the turning point of the double
descent curve earlier.
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For simplicity, we consider Mixup with a fixed λ ∈ [0, 1]; extension to random λ is straight-forward.
Let X̃ and Ỹ be the random variables corresponding to the synthetic feature and synthetic label
respectively. Then X̃ ≜ λX + (1 − λ)X ′. Let P (Ỹ |X̃) be the conditional distribution of the
synthetic label conditioned on the synthetic feature, induced by Mixup, namely, P (Ỹ = j|X̃) =

λfj(X) + (1− λ)fj(X
′) for each j. Then for a synthetic feature X̃ , there are two ways to assign it a

hard label. The first is based on the ground truth, assigning Ỹ ∗
h ≜ argmaxj∈Y fj(X̃). The second is

based on the Mixup-induced conditional P (Ỹ |X̃), assigning Ỹh ≜ argmaxj∈Y P (Ỹ = j|X̃). When
the two assignments disagree, or Ỹh ̸= Ỹ ∗

h , we say that the Mixup-assigned label Ỹh is noisy.

Theorem 5.1. Given a synthetic feature X̃ = λX + (1 − λ)X ′ for λ ∈ [0, 1]. The probability of
assigning a noisy label is lower bounded by

P (Ỹh ̸= Ỹ ∗
h |X̃) ≥ TV(P (Ỹ |X̃), P (Y |X)) ≥ 1

2
sup
j∈Y

∣∣∣fj(X̃)− [(1− λ)fj(X) + λfj(X
′)]
∣∣∣ ,

where TV(·, ·) is total variation distance (see Appendix F).

Remark 5.1. This lower bound hints that label noises induced by Mixup training depends on the
distribution of original data PX , the convexity of f(X) and the value of λ. Clearly, Mixup will not
create any noisy label almost surely when fj is linear for each j.

Remark 5.2. In practice, we often use the one-hot vector to denote the real data label, that is to say,
we let maxj∈Y fj(X) = 1 and

∑C
j=1 fj(X) = 1. Thus, the probability of assigning noisy label to a

given synthetic data can be discussed in three situations: i) if Ỹ ∗
h /∈ {Y, Y ′}, where Y could be the

same as Y ′, then Ỹ is a noisy label with probability one; ii) if Ỹ ∗
h ∈ {Y, Y ′} where Y ̸= Y ′, then a

noisy label is assigned with probability at least λ or 1− λ; iii) if Ỹ ∗
h = Y = Y ′, then Ỹ ∗

h = Ỹ .

As shown in some previous works (Arpit et al., 2017; Arora et al., 2019), when neural networks
are trained with a fraction of random labels, they will first learn the clean data and then will overfit
to the data with noisy labels. In the Mixup training case, we indeed create much more data than
traditional ERM training (e.g., n2 for a fixed λ). Thus, Mixup training will give higher testing
performance in the first stage of learning (where neural networks learn the true pattern of data (Arpit
et al., 2017)), and then performance will be impaired due to overfitting to noisy data. In some cases,
if Ỹ ∗

h /∈ {Y, Y ′} happens with a high chance, a phenomenon known as “manifold intrusion” (Guo
et al., 2019a), then synthetic dataset contains too many noisy labels, Mixup training may be unable to
give better performance than ERM training. The training dynamics on dataset with noisy labels is
illustrated in Appendix C via a simple least squares regression problem, and the theoretical results
are empirically verified in Appendix D. Also, we have further investigated the other properties of the
aforementioned behavior of Mixup over-training, including that Mixup may generalize well without
converging to any stationary points. The details are in Appendix E.

6 Concluding Remarks

We empirically discovered a previously unobserved phenomenon in Mixup training: over training
with Mixup may give rise to a U-shaped generalization curve. We further theoretically showed that
Mixup training may introduce undesired data-dependent label noises to the synthesized data, and such
noises facilitate the U-shaped generalization curve to occur. That is, Mixup improves generalization
through fitting the clean patterns at the early training stage, but as training progresses, Mixup becomes
over-fitting to the noise introduced.

Our research here uncovers a unique generalization behavior of the effective Mixup regularizer, which
paves ways for several promising directions that are worth further studying. First, leveraging the
U-shaped generalization behavior identified to devise a training paradigm for Mixup to automatically
optimize its regularization effect would be beneficial. Second, unifying Mixup’s generalization
behavior here with that being pointed out by previous works would be useful. Finally, theoretically
verifying that Mixup generalizes well without converging to any stationary points would help improve
our understanding on Mixup’s generalization capabilities.
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A Experimental Setups of Over-training

In each training trial, we train the network for in total a fixed number of epochs. We record the
minimal training loss achieved by the network during the training process, and we also record the
network’s testing accuracy of the epoch at which the minimal training loss is achieved. Additionally,
we visualize the local loss landscape around the solution found by the network at the aforementioned
training epoch. We gradually increase the total number of the training epochs in different trials of
training so as to gradually over-train the network.

We repeat each training trial for 10 times (using 10 different random seeds) and average the recorded
training losses and testing accuracies. For example, Figure 2a illustrates the results of training
ResNet18 on 30% of CIFAR10 data. Each point represents the average of the recorded training losses
in a training trial, and its label on the horizontal axis represents the setting of total number of epochs
of that trial. The width of the shade beside each point reflects the deviation of the recorded results in
the corresponding trial.

B Additional Experimental Results of Over-training

The local loss landscapes of Resnet18 trained on CIFAR10 (30% of the dataset and the full dataset)
are visualized in Figure 3. We found that over-training with Mixup tends to force the network to learn
a solution located at the sharper local minima on the loss landscape, a phenomenon correlated with
degraded generalization performance (Hochreiter & Schmidhuber, 1997; Keskar et al., 2016).

(a) 200 epochs (b) 400 epochs (c) 800 epochs (d) 200 epochs (e) 400 epochs (f) 800 epochs

Figure 3: The loss landscape of the Mixup-trained ResNet18 at various training epochs; left 3 figures
are for the 30% CIFAR10 dataset, and the right 3 are for the full CIFAR10 dataset.

The results of training ResNet18 on SVHN are given in Figure 4.
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Figure 4: Results of training ResNet18 on SVHN (100% data and 30% data) without data augmenta-
tion. Top row: training loss and testing accuracy of ERM and Mixup. Bottom row: loss landscape
of the Mixup-trained ResNet18 at various training epochs: the left 3 figures are for the 30% SVHN
dataset, and the right 3 are for the full SVHN dataset.

The results of training ResNet34 on CIFAR100 are illustrated in Figure 5. A U-shaped testing loss
curve (obtained from a single trial) is also observed in Figure 5c.
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Figure 5: Training loss, test accuracy and a U-shaped test loss curve (subfigure (c), yellow) of training
ResNet34 on CIFAR100 without data augmentation.

Besides CIFAR100, ResNet34 is also used for the CIFAR10 and the SVHN datasets. Training is
performed on both CIFAR10 and SVHN for in total 200, 400 and 800 epochs respectively. The
results for CIFAR10 are shown in Figure 6. For both the 30% dataset and the original dataset, Mixup
exhibits a similar phenomenon as it does in training ResNet18 on CIFAR10. The difference is that
over-training ResNet34 with ERM makes the testing accuracy gradually increase on both the 30%
dataset and the original dataset.
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Figure 6: Results of the recorded training losses and testing accuracies of training ResNet34 on
CIFAR10 (100% data and 30% data) without data augmentation.

The results for SVHN with ResNet34 are shown in Figure 7. These results are consistent with those
of training ResNet18 on both 30% and 100% of the SVHN dataset.
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Figure 7: Results of the recorded training losses and testing accuracies of training ResNet34 on
SVHN (100% data and 30% data) without data augmentation.

C Regression Setting With Random Feature Models

To further illustrate the training dynamics on dataset with noisy labels, we now consider a simple least
squares regression problem. Let Y = R and let f : X → Y be the ground-truth labelling function.
Let (X̃, Ỹ ) be a synthetic pair obtained by mixing (X,Y ) and (X ′, Y ′). Let Ỹ ∗ = f(X̃) and
Z ≜ Ỹ − Ỹ ∗. Then Z can be regarded as noise introduced by Mixup, which may be data-dependent.
For example, if f is strongly convex with some parameter ρ > 0, then Z ≥ ρ

2λ(1− λ)||X −X ′||22.
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Given a synthesized training dataset S̃ = {(X̃i, Ỹi)}mi=1, consider a random feature model, θTϕ(X),
where ϕ : X → Rd and θ ∈ Rd. We will train the model using gradient descent on the MSE loss

R̂S̃(θ) ≜
1

2m

∣∣∣∣∣∣θT Φ̃− ỸT
∣∣∣∣∣∣2
2
,

where Φ̃ = [ϕ(X̃1), ϕ(X̃2), . . . , ϕ(X̃m)] ∈ Rd×m and Ỹ = [Ỹ1, Ỹ2, . . . , Ỹm] ∈ Rm. Notably, we
will consider ϕ as fixed and only update θ.

For a fixed λ, Mixup can create m = n2 synthesized examples. Thus it is reasonable to assume
m > d (e.g., under-parameterized regime) in Mixup training. For example, ResNet-50 has less than
30 million parameters while the square of CIFAR10 training dataset size is larger than 200 million
without using other data augmentation techniques. Then the gradient flow is

θ̇ = −η∇R̂S̃(θt) =
η

m
Φ̃Φ̃T

(
Φ̃†Ỹ − θt

)
, (2)

where η is the learning rate and Φ̃† = (Φ̃Φ̃T )−1Φ̃ is the Moore–Penrose inverse of Φ̃T (only possible
when m > d). Thus, we have the following important lemma.

Lemma C.1. Let θ∗ = Φ̃†Ỹ∗ and θnoise = Φ̃†Z wherein Z = [Z1, Z2, . . . , Zm] ∈ Rm, the ODE of
Eq. (2) has the following closed form solution

θt − θ∗ = (θ0 − θ∗)e−
η
m Φ̃Φ̃T t + (Id − e−

η
m Φ̃Φ̃T t)θnoise. (3)

Remark C.1. Lemma C.1 indicates that the dynamics of θ gives a U-shaped curve in each dimension,
and the increasing behavior results from the second term that contains the noise Z. More precisely,
the first term in Eq. (3) is monotonically decreasing and it dominates the dynamics of θt in the
early phase of learning. Remarkably θ∗ = Φ̃†Ỹ∗ may be understood as the “clean pattern” of
the training data. Then we see that the model, in the early phase, is learning the “clean pattern”,
which generalizes to the unseen data (i.e. (X,Y )). In the later training phase, the second term in
Eq. (3) gradually dominates the trajectory of θt, and the model learns the“noisy pattern”, namely
θnoise = Φ̃†Z. This then hurts generalization.

For a given synthesized dataset S̃, the expected population risk as a function of time step t is

Rt ≜ Eθt,X,Y

∣∣∣∣θTt ϕ(X)− Y
∣∣∣∣2
2
.

The following theorem shows the dynamics of the population risk under mild assumptions.

Theorem C.1 (Dynamic of Population Risk). Given a synthesized dataset S̃, assume θ0 ∼
N (0, ξ2Id), ||ϕ(X)||2 ≤ C1/2 for some constant C1 > 0 and |Z| ≤

√
C2 for some constant

C2 > 0, then we have the following upper bound

Rt −R∗ ≤ C1

d∑
k=1

(
ξ2k + θ∗2k

)
e−2ηµ̃kt +

C2

µk

(
1− e−ηµkt

)2
+ 2
√
C1R∗ζ,

where R∗ = EX,Y

∣∣∣∣Y − θ∗Tϕ(X)
∣∣∣∣2
2
, ζ =

∑d
k=1 max{ξ2k + θ∗2k , C2

µk
} and µk is the kth eigenvalue

of the matrix 1
m Φ̃Φ̃T .

Remark C.2. The additive noise Z is usually assumed as a zero mean Gaussian in the literature of
generalization dynamics analysis (Advani et al., 2020; Pezeshki et al., 2022; Heckel & Yilmaz, 2021).
We note that the boundness assumption of the data-dependent noise in the theorem is easily satisfied
as long as the output of f is bounded, while there is no clue to assume Z is Gaussian.

Theorem C.1 indicates that the population risk in each dimension will first convexly decrease due to
the first term,

(
ξ2k + θ∗2k

)
e−2ηµ̃kt, then it will concavely grow due to the existence of label noises

(i.e. C2

µk
(1− e−ηµkt)

2). Overall, the population risk will be endowed with the U-shaped behavior.
Notice that the quantity ηµk plays a key role in the upper bound, the larger of ηµk, the inflection
point of the U-shaped curve comes earlier. This explains why reducing the learning rate will make
the population risk again decrease in a certain interval. That is, smaller learning rate forces the risk to
jump from the second stage of the original U-shaped curve to the first stage of a new U-shaped curve
with a latter inflection point.
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C.1 Results of Mean Square Error Loss

We also conduct Mixup training experiments using mean square error (MSE) loss on CIFAR10 and
SVHN. Figure 8 shows that the U-shaped behavior also holds for the MSE loss. Note that the learning
rate is divided by 10 at epoch 100 and 150.
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Figure 8: Dynamics of MSE during Mixup training.

D Empirical Verification of the Theoretical Explanation

In this section, we present empirical evidences to validate our theoretical results in Section 5 and
Appendix C.

D.1 A Teacher-Student Toy Setup
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Figure 9: Dynamics of Testing Loss in
the Teacher-Student setting.

To empirically verify our theoretical results discussed in
Appendix C, we invoke a simple teacher-student setting.
Consider the original data {Xi}ni=1 are drawn i.i.d. from
a standard Gaussian N (0, Id0

), where the dimension of
the input feature d0 = 10. The teacher network is a two-
layer neural networks with Tanh as the activation function.
The student network is also a two-layer neural network
with Tanh, where we fix the parameters in the first layer
and only train the second layer. The output dimension of
the first layer is 100 (i.e. d = 100) For the value of λ,
we consider two cases: a fixed value with λ = 0.5 and
random values drawn from a Beta(1, 1) distribution at
each epoch. We choose n = 20 (so that n < d is the overparameterized regime and m ≥ n2 > d is
the underparameterized regime) and the learning rate is 0.1. We use full-batch gradient descent to
train the student network with MSE. Notice that here the “full-batch” indicates the batch size is equal
to n, so that we can fairly compare the fixed λ and random λ.

As a comparison, we also present the result of ERM training in an overparameterized regime (i.e.,
n < d). All the testing loss dynamics are presented in Figure 9. From Figure 9, we first note that
Mixup still outperforms ERM in this regression problem, but clearly, only Mixup training has a
U-shaped curve while the testing loss of ERM training converges to a constant value. Furthermore,
the testing loss of Mixup training is endowed with a U-shaped behavior for both the two λ scenarios,
namely constant value of 0.5 and Beta(1, 1). This indeed justifies that our analysis does not depend
on specific λ distribution. Moreover, Figure 9 indicates that when λ is fixed to 0.5, the increasing
stage of the U-shaped curve comes earlier than that of λ with Beta(1, 1). This is again consistent
with our theoretical results in Appendix C. That is, owning to the fact that λ with a constant value
of 0.5 provides larger noise level for Mixup, the noise domination effect for Mixup training comes
earlier.

D.2 Using Mixup Only in the Early Stage of Training

We here aim to empirically verify that Mixup can induce label noises as discussed in Section 5.

If Mixup training learns “clean patterns” in the early stage of the training and then overfits the “noisy
patterns” in the latter stage of training, then we can stop using Mixup after a certain number of epochs.
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Doing so, we can prevent the training from overfitting the noises induced by Mixup. We present the
results of utilizing such training schema for both CIFAR10 and SVHN in Figure 10.
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Figure 10: Switching from Mixup training to ERM training. The number in the bracket is the epoch
number where we let α = 0 (i.e. Mixup training becomes ERM training).

Results in Figure 10 clearly indicate that switching from Mixup to ERM at a proper time can
successfully avoid the generalization degradation of Mixup training. Figure 10 also suggests that it
may not boost the model performance if we change Mixup to ERM before the clean samples created
by Mixup have large effect. In addition, if we change Mixup to ERM too late then the memorization
of noisy data may already has negative effect on the generalization. We note that our results here can
be regarded as a complement to (Golatkar et al., 2019), where the authors show that regularization
techniques only matter during the early phase of learning.

E Further Investigations

Impact of Data Size on U-shaped Curve Although the U-shaped behavior occurs for using both
100% and 30% of the original data of CIFAR10 and SVHN, we notice that smaller size datasets
facilitate the U-shaped behavior to present. We present such experimental results in Figure 11.
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Figure 11: Over-training on Different Number of Samples.

It may be tempting to think
that we can apply the usual
analysis of generalization
dynamics in the existing lit-
erature (Liao & Couillet,
2018; Advani et al., 2020;
Stephenson & Lee, 2021),
where they utilize some
tools from random matrix
theory. For example one
can analyze the distribution
of the eigenvalues in Theo-

rem C.1. Specifically, if entries in Φ are independent identically distributed with zero mean, then the
eigenvalues {µk}dk=1 follow the Marchenko-Pasteur (MP) distribution (Marčenko & Pastur, 1967) in
the limit d,m → ∞ with d/m = γ ∈ (0,+∞), which is defined as

PMP (µ|γ) = 1

2π

√
(γ+ − µ)(µ− γ−)

µγ
1µ∈[γ−,γ+],

where γ± = (1 ± γ)2. Note that the PMP are only non-zero when µ = 0 or µ ∈ [γ−, γ+]. When
γ is close to one, the probability of extremely small eigenvalues is immensely increased. From
Theorem C.1, when µk is small, the second term that contains noise will badly dominate the behavior
of population risk and converge to a larger value. Thus, letting d ≪ m will alleviate the domination
of the noise term in Theorem C.1. However, it is important to note that such analysis is not rigorous
enough since columns in Φ are not independent (each two columns might come from the linear
combination of the same two original instances). To apply the similar analysis here, one may need
to remove or relax the independence conditions for the MP distribution to hold, for example, by
invoking some techniques developed in Bryson et al. (2021). This is beyond the scope of this paper,
and we would like to leave it for future study.
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Gradient Norm in Mixup Training Does Not Vanish Normally, ERM training will obtain zero
gradient norm at the end of training, which indicates that a local minimum is found by SGD. However,
We observe that the gradient norm of Mixup training does not converge to zero, as shown in Figure 12.
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Figure 12: Dynamics of Gradient Norm.

Indeed, gradient norm in
the Mixup training even in-
creases until converging to
a maximum value instead of
converging to zero. When
models are trained on ran-
dom labels, this increasing
trend of gradient norm is
also observed in the pre-
vious works (Feng & Tu,
2021; Wang & Mao, 2022).
Specifically, in Wang &
Mao (2022), such increasing behavior is interpreted as a sign that the training of SGD enters a
“memorization regime”, and after the overparameterized neural networks memorize all the noisy
labels, the gradient norm (or gradient dispersion in Wang & Mao (2022)) will decrease again until
it converges to zero. In Mixup training, since the size of synthetic dataset is usually larger than the
number of parameters (i.e., m > d), neural networks may not be able to memorize all the noisy labels
in this case. Notice that m is larger than n2 in practice since λ is not fixed for all the pairs of original
data.

Notably, although ERM training is able to find a local minimum in the first 130 epochs on CIFAR10,
Figure 1 indicates that Mixup training outperforms ERM in the first 400 epochs. Similar observation
also holds for SVHN. This result indeed suggests that Mixup can generalize well without converging
to any stationary points. Notice that there is a close observation in the recent work of Zhang et al.
(2022a), where they show that large-scale neural networks generalize well without vanishing of the
gradient norm during training.

Additionally, by switching Mixup training to ERM training, as what we did in Figure 10, the gradient
norm will instantly become zero (see Figure 13 in Appendix E.1). This further justifies that the “clean
patterns” are already learned by Mixup trained neural networks at the early stage of training, and the
original data may not provide any useful gradient signal.

E.1 Gradient Norm Vanishes When Changing Mixup to ERM

In Figure 12, we know that the gradient norm of Mixup training will not vanish at the end of training
and will even explode to a very high value. In contrast, ERM will have zero gradient norm at the
end. Figure 13 shows that the gradient norm will instantly become zero. This is because the “clean
patterns” are already learned by Mixup trained neural networks and the original data will not provide
any useful gradient signal. This further justifies that the latter stage of Mixup training is only for
memorizing noisy data.
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(c) SVHN (30%)
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Figure 13: Dynamics of Gradient Norm when changing Mixup training to ERM training.
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F Omitted Definitions and Proofs

Definition F.1 (Total Variation). The total variation between two probability measures P and Q is
TV(P,Q) ≜ supE |P (E)−Q(E)|, where the supremum is over all measurable set E.

Lemma F.1 ((Levin & Peres, 2017, Proposition 4.2)). Let P and Q be two probability distributions
on X . If X is countable, then

TV(P,Q) =
1

2

∑
x∈X

|P (x)−Q(x)| .

Lemma F.2 (Coupling Inequality (Levin & Peres, 2017, Proposition 4.7)). Given two random
variables X and Y with probability distributions P and Q, any coupling P̂ of P , Q satisfies

TV(P,Q) ≤ P̂ (X ̸= Y ).

F.1 Proof of Lemma 3.1

Proof. We first prove the closed-form of the cross-entropy loss’s lower bound. For any two discrete
distributions P and Q defined on the same probability space Y , the KL divergence of P from Q is
defined as follows:

DKL(P∥Q) :=
∑
y∈Y

P (y) log

(
P (y)

Q(y)

)
. (4)

It is non-negative and it equals 0 if and only if P = Q.

Let’s denote the ith element in fθ(x) by fθ(x)i. By adapting the definition of the cross-entropy loss,
we have

ℓ(θ, (x, y)) = −yT log
(
fθ(x)

)
= −

K∑
i=1

yi log
(
fθ(x)i

)
= −

K∑
i=1

yi log

(
fθ(x)i
yi

yi

)

= −
K∑
i=1

yi log
fθ(x)i
yi

−
C∑
i=1

yi log yi

= DKL
(
y∥fθ(x)

)
+H(y)

≥ H(y),

(5)

where the equality holds if and only if fθ(x) = y. Here H(y) :=
∑C

i=1 yi log yi is the entropy of the
discrete distribution y. Particularly in ERM training, since y is one-hot, by definition its entropy is
simply 0. Therefore the lower bound of the empirical risk is given as follows.

R̂S(θ) =
1

n

n∑
i=1

ℓ(θ, (x, y)) ≥ 0. (6)

The equality holds if fθ(xi) = yi is true for each i ∈ {1, 2, · · · , n}.

We then prove the lower bound of the expectation of empirical Mixup loss. From Eq. (5), the lower
bound of the general Mixup loss for a given λ is also given by:

ℓ(θ, (x̃, ỹ)) ≥ H(ỹ)

= −
C∑
i=1

yi log yi

= −
(
λ log λ+ (1− λ) log(1− λ)

)
.

(7)
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if (x̃, ỹ) is formulated via cross-class mixing. Recall the definition of the Mixup loss,

R̂S̃(θ, α) = E
λ∼Beta(α,α)

1

n2

n∑
i=1

n∑
j=1

ℓ(θ, (x̃, ỹ)), (8)

we can exchange the computation of the expectation and the empirical average:

R̂S̃(θ, α) =
1

n2

n∑
i=1

n∑
j=1

E
λ∼Beta(α,α)

ℓ(θ, (x̃, ỹ)). (9)

Note that when α = 1, Beta(α, α) is simply the uniform distribution in the interval [0, 1]: U(0, 1).
Using the fact that the probability density of U(0, 1) is constantly 1 in the interval [0, 1], the lower
bound of E

λ∼Beta(1,1)
ℓ(θ, (x̃, ỹ)) where y ̸= y′ is given by:

E
λ∼Beta(1,1)

ℓ(θ, (x̃, ỹ)) ≥ − E
λ∼U(0,1)

(
λ log λ+ (1− λ) log(1− λ)

)
= −

∫ 1

0

λ log λ+ (1− λ) log(1− λ) dλ

= −2

∫ 1

0

λ log λ dλ

= −2

(
log λ

∫ 1

0

λ dλ−
∫ 1

0

1

λ

(∫ 1

0

λ dλ

)
dλ

)

= −2

(
λ2 log λ

2
− λ2

4

)∣∣∣∣1
0

= 0.5

(10)

Note that if the synthetic example is formulated via in-class mixing, the synthetic label is still one-hot,
thus the lower bound of its general loss is 0. In a balanced C-class training set, with probability 1

C
the in-class mixing occurs. Therefore, the lower bound of the overall Mixup loss is given as follows,

R̂S̃(θ, α = 1) ≥ C − 1

2C
. (11)

The equality holds if fθ(x̃) = ỹ is true for each synthetic example (x̃, ỹ) ∈ S̃. This completes the
proof.

F.2 Proof of Theorem 5.1

Proof. By the coupling inequality i.e. Lemma F.2, we have

TV(P (Ỹh|X̃), P (Ỹ ∗
h |X̃)) ≤ P (Ỹh ̸= Ỹ ∗

h |X̃),

Since TV(P (Ỹh|X̃), P (Y |X)) = TV(P (Ỹh|X̃), P (Ỹ ∗
h |X̃)), then the first inequality is straightfor-

ward.

For the second inequality, by Lemma F.1, we have

TV(P (Ỹh|X̃), P (Ỹ ∗
h |X̃)) =

1

2

C∑
j=1

∣∣∣P (Ỹ ∗ = j|X̃)− P (Ỹ = j|X̃)
∣∣∣

=
1

2

C∑
j=1

∣∣∣fj(X̃)− ((1− λ)fj(X) + λfj(X
′))
∣∣∣

≥ sup
j

1

2

∣∣∣fj(X̃)− ((1− λ)fj(X) + λfj(X
′))
∣∣∣ .

This completes the proof.
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F.3 Proof of Lemma C.1

Proof. The proof here is trivial. The ordinary differential equation of Eq. (2) (Newton’s law of
cooling) has the closed form solution

θt = Φ̃†Ỹ + (θ0 − Φ̃†Ỹ)e−
η
m Φ̃Φ̃T t. (12)

Recall that Ỹ = Ỹ∗ + Z,

θt =Φ̃†
(
Ỹ∗ + Z

)
+ (θ0 − Φ̃†

(
Ỹ∗ + Z

)
)e−

η
m Φ̃Φ̃T t

=Φ̃†Ỹ∗ + Φ̃†Z+
(
θ0 − Φ̃†Ỹ∗

)
e−

η
m Φ̃Φ̃T t − Φ̃†Ze−

η
m Φ̃Φ̃T t

=θ∗ + (θ0 − θ∗)e−
η
m Φ̃Φ̃T t + (Id − e−

η
m Φ̃Φ̃T t)θnoise,

which concludes the proof.

F.4 Proof of Theorem C.1

Proof. We first notice that

Rt =Eθt,X,Y

∣∣∣∣θTt ϕ(X)− Y
∣∣∣∣2
2

=Eθt,X,Y

∣∣∣∣θTt ϕ(X)− θ∗Tϕ(X) + θ∗Tϕ(X)− Y
∣∣∣∣2
2

=Eθt,X

∣∣∣∣θTt ϕ(X)− θ∗Tϕ(X)
∣∣∣∣2
2
+ EX,Y

∣∣∣∣θ∗Tϕ(X)− Y
∣∣∣∣2
2
+ 2Eθt,X,Y ⟨θTt ϕ(X)− θ∗Tϕ(X), θ∗Tϕ(X)− Y ⟩

≤EX ||ϕ(X)||22 Eθt

∣∣∣∣θTt − θ∗T
∣∣∣∣2
2
+R∗ + 2

√
Eθt,X

∣∣∣∣θTt ϕ(X)− θ∗Tϕ(X)
∣∣∣∣2
2
EX,Y ||θ∗Tϕ(X)− Y ||22

≤C1

2
Eθt

∣∣∣∣θTt − θ∗T
∣∣∣∣2
2
+R∗ + 2

√
C1R∗

2
Eθt

∣∣∣∣θTt − θ∗T
∣∣∣∣2
2
, (13)

where the first inequality is by the Cauchy–Schwarz inequality and the second inequality is by the
assumption.

Recall Eq. (3),

θt − θ∗ = (θ0 − θ∗)e−
η
m Φ̃Φ̃T t + (Id − e−

η
m Φ̃Φ̃T t)Φ̃†Z.

By eigen-decomposition we have

1

m
Φ̃Φ̃T = V ΛV T =

d∑
k=1

µkvkv
T
k ,

where {vk}dk=1 are orthonormal eigenvectors and {µk}dk=1 are corresponding eigenvectors.

Then, for each dimension k,

(θt,k − θ∗k)
2 ≤ 2(θ0,k − θ∗k)

2e−2ηµkt + 2(1− e−ηµkt)2
mC2

mµk
,

Taking expectation over θ0 for both side, we have

Eθ0 (θt,k − θ∗k)
2 ≤ 2(ξ2k + θ∗2k )e−2ηµkt + 2(1− e−ηµkt)2

C2

µk
. (14)

Notich that the RHS in Eq. 14 first monotonically decreases and then monotonically increases, so the
maximum value of RHS is achieved either at t = 0 or t → ∞. That is,

Eθ0

∣∣∣∣θTt − θ∗T
∣∣∣∣2
2
≤

d∑
k=1

2max{ξ2k + θ∗2k ,
C2

µk
}. (15)
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Plugging Eq. 14 and Eq. 15 into Eq. 13, we have

Rt ≤
C1

2
Eθt

∣∣∣∣θTt − θ∗T
∣∣∣∣2
2
+R∗ + 2

√
C1R∗

2
Eθt

∣∣∣∣θTt − θ∗T
∣∣∣∣2
2

≤R∗ + C1

d∑
k=1

(ξ2k + θ∗2k )e−2ηµkt + (1− e−ηµkt)2
C2

µk
+ 2
√

C1R∗ζ,

where ζ =
∑d

k=1 max{ξ2k + θ∗2k , C2

µk
}. This concludes the proof.
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