
Published as a conference paper at ICLR 2025

TRANSFORMER-SQUARED: SELF-ADAPTIVE LLMS

Qi Sun1,2*, Edoardo Cetin1*, Yujin Tang1*

1Sakana AI, Japan 2Institute of Science Tokyo, Japan
{qisun,edo,yujintang}@sakana.ai
*Equal contribution

ABSTRACT

Self-adaptive large language models (LLMs) aim to solve the challenges posed
by traditional fine-tuning methods, which are often computationally intensive
and static in their ability to handle diverse tasks. We introduce Transformer2

(Transformer-Squared), a novel self-adaptation framework that adapts LLMs for
unseen tasks in real-time by selectively adjusting only the singular components of
their weight matrices. During inference, Transformer2 employs a two-pass mech-
anism: first, a dispatch system identifies the task properties, and then task-specific
“expert” vectors, trained using reinforcement learning, are dynamically mixed to
obtain targeted behavior for the incoming prompt. Our method consistently out-
performs ubiquitous approaches such as LoRA, with fewer parameters and greater
efficiency. Furthermore, Transformer2 demonstrates versatility across different
LLM architectures and modalities, including vision-language tasks. Transformer2

represents a significant leap forward, offering a scalable, efficient solution for en-
hancing the adaptability and task-specific performance of LLMs, paving the way
for truly dynamic, self-organizing AI systems. We provide our full source code at
https://github.com/SakanaAI/self-adaptive-llms.

1 INTRODUCTION

SVD of Weights

Self-Adaptation Vectors

Coding VLM

…
Dispatch

User Query

H
id

de
n

St
at

es

“This is a math question”

H
id

de
n

St
at

es

Answer to User Query

<latexit sha1_base64="N1vdtuDDj/v4W8Gh3EJBeDVKdH4=">AAAB9HicbVBNS8NAEJ34WetX1aOXYCt4KolI9WbBi8cK9gPaWDbbabt0s4m7m0IJ/R2ieFDEq3f/hjf/jZu2B219MPB4b4aZeX7EmdKO820tLa+srq1nNrKbW9s7u7m9/ZoKY0mxSkMeyoZPFHImsKqZ5tiIJJLA51j3B1epXx+iVCwUt3oUoReQnmBdRok2kleo3bWY0Cgp4YV2Lu8UnQnsReLOSP7y8zHFU6Wd+2p1QhoHKDTlRKmm60TaS4jUjHIcZ1uxwojQAelh01BBAlReMjl6bB8bpWN3Q2lKaHui/p5ISKDUKPBNZ0B0X817qfif14x198JLmIhijYJOF3VjbuvQThOwO0wi1XxkCKGSmVtt2ieSUBODypoQ3PmXF0nttOiWiqUbN18+gykycAhHcAIunEMZrqECVaBwDw/wAq/W0Hq23qz3aeuSNZs5gD+wPn4AOWeWLw==</latexit>

V|<latexit sha1_base64="N1vdtuDDj/v4W8Gh3EJBeDVKdH4=">AAAB9HicbVBNS8NAEJ34WetX1aOXYCt4KolI9WbBi8cK9gPaWDbbabt0s4m7m0IJ/R2ieFDEq3f/hjf/jZu2B219MPB4b4aZeX7EmdKO820tLa+srq1nNrKbW9s7u7m9/ZoKY0mxSkMeyoZPFHImsKqZ5tiIJJLA51j3B1epXx+iVCwUt3oUoReQnmBdRok2kleo3bWY0Cgp4YV2Lu8UnQnsReLOSP7y8zHFU6Wd+2p1QhoHKDTlRKmm60TaS4jUjHIcZ1uxwojQAelh01BBAlReMjl6bB8bpWN3Q2lKaHui/p5ISKDUKPBNZ0B0X817qfif14x198JLmIhijYJOF3VjbuvQThOwO0wi1XxkCKGSmVtt2ieSUBODypoQ3PmXF0nttOiWiqUbN18+gykycAhHcAIunEMZrqECVaBwDw/wAq/W0Hq23qz3aeuSNZs5gD+wPn4AOWeWLw==</latexit>

V|
<latexit sha1_base64="eBMAWvMj6r7BRZByVUOzrFT18f0=">AAAB73icbZC5TgMxEIZnwxXCFY6OxiJBoop2KQIdkSigDIIcUrKKvI6TWLG9i+1FCqu8BA0FCNHSUPEkdJS8Cc5RQMIvWfr0/zPyzAQRZ9q47peTWlhcWl5Jr2bW1jc2t7LbO1UdxorQCgl5qOoB1pQzSSuGGU7rkaJYBJzWgv75KK/dUaVZKG/MIKK+wF3JOoxgY616vnnNugLnW9mcW3DHQvPgTSF39nH/ffG+l5Rb2c9mOySxoNIQjrVueG5k/AQrwwinw0wz1jTCpI+7tGFRYkG1n4znHaJD67RRJ1T2SYPG7u+OBAutByKwlQKbnp7NRuZ/WSM2nVM/YTKKDZVk8lEn5siEaLQ8ajNFieEDC5goZmdFpIcVJsaeKGOP4M2uPA/V44JXLBSvvFzJhYnSsA8HcAQenEAJLqEMFSDA4QGe4Nm5dR6dF+d1Uppypj278EfO2w9IDpMn</latexit>

⌃
<latexit sha1_base64="eBMAWvMj6r7BRZByVUOzrFT18f0=">AAAB73icbZC5TgMxEIZnwxXCFY6OxiJBoop2KQIdkSigDIIcUrKKvI6TWLG9i+1FCqu8BA0FCNHSUPEkdJS8Cc5RQMIvWfr0/zPyzAQRZ9q47peTWlhcWl5Jr2bW1jc2t7LbO1UdxorQCgl5qOoB1pQzSSuGGU7rkaJYBJzWgv75KK/dUaVZKG/MIKK+wF3JOoxgY616vnnNugLnW9mcW3DHQvPgTSF39nH/ffG+l5Rb2c9mOySxoNIQjrVueG5k/AQrwwinw0wz1jTCpI+7tGFRYkG1n4znHaJD67RRJ1T2SYPG7u+OBAutByKwlQKbnp7NRuZ/WSM2nVM/YTKKDZVk8lEn5siEaLQ8ajNFieEDC5goZmdFpIcVJsaeKGOP4M2uPA/V44JXLBSvvFzJhYnSsA8HcAQenEAJLqEMFSDA4QGe4Nm5dR6dF+d1Uppypj278EfO2w9IDpMn</latexit>

⌃
<latexit sha1_base64="matz0JW476ILPpVL90CB+3EA69o=">AAAB6nicbZDNTsJAFIVv8Q/xD3XpZiKYuCKtIehOEjcuMVoggYZMhylMmE6bmakJaXgENy406NaX8DXc+TZOgYWCJ5nkyzn3Zu69fsyZ0rb9beXW1jc2t/LbhZ3dvf2D4uFRU0WJJNQlEY9k28eKciaoq5nmtB1LikOf05Y/usny1iOVikXiQY9j6oV4IFjACNbGui+75V6xZFfsmdAqOAsoXX9OM701esWvbj8iSUiFJhwr1XHsWHsplpoRTieFbqJojMkID2jHoMAhVV46G3WCzozTR0EkzRMazdzfHSkOlRqHvqkMsR6q5Swz/8s6iQ6uvJSJONFUkPlHQcKRjlC2N+ozSYnmYwOYSGZmRWSIJSbaXKdgjuAsr7wKzYuKU6vU7pxSvQpz5eEETuEcHLiEOtxCA1wgMIAneIFXi1vP1tR6n5fmrEXPMfyR9fEDiQqRvg==</latexit>

U
<latexit sha1_base64="matz0JW476ILPpVL90CB+3EA69o=">AAAB6nicbZDNTsJAFIVv8Q/xD3XpZiKYuCKtIehOEjcuMVoggYZMhylMmE6bmakJaXgENy406NaX8DXc+TZOgYWCJ5nkyzn3Zu69fsyZ0rb9beXW1jc2t/LbhZ3dvf2D4uFRU0WJJNQlEY9k28eKciaoq5nmtB1LikOf05Y/usny1iOVikXiQY9j6oV4IFjACNbGui+75V6xZFfsmdAqOAsoXX9OM701esWvbj8iSUiFJhwr1XHsWHsplpoRTieFbqJojMkID2jHoMAhVV46G3WCzozTR0EkzRMazdzfHSkOlRqHvqkMsR6q5Swz/8s6iQ6uvJSJONFUkPlHQcKRjlC2N+ozSYnmYwOYSGZmRWSIJSbaXKdgjuAsr7wKzYuKU6vU7pxSvQpz5eEETuEcHLiEOtxCA1wgMIAneIFXi1vP1tR6n5fmrEXPMfyR9fEDiQqRvg==</latexit>

U

Math

First pass
Second pass

Element-wise multiplication

Matrix multiplication

N
la

ye
rs

 in
si

de
 a

n
LL

M

Figure 1: Overview of Transformer2. In the training
phase, we tune the scales of the singular values of the weight
matrices to generate a set of “expert” vectors, each of which
specializes in one type of tasks. In the inference phase, a
two-pass process is adopted where the first applies the task-
specific expert and the second generates the answer.

Self-adaptive large language models
(LLMs) would represent a significant
advancement in artificial intelligence,
providing a framework where mod-
els can adjust to varied tasks and dy-
namic contexts in real time. This con-
cept draws inspiration from the long-
standing idea of neural networks
modifying their own weights to adapt
to tasks dynamically (Schmidhuber,
1993; Irie et al., 2022) and neural net-
works generating weights for other
networks, as popularized by Hyper-
Networks and related methods (Ha
et al., 2017; Stanley et al., 2009).
While compositionality and scalabil-
ity are crucial for effective adapta-
tion, current LLM training method-
ologies fall short of achieving both
these properties simultaneously. Our
research aims to present a pioneering
solution to realize this vision and address these gaps.

Traditionally, LLM post-training has sought to optimize a model for a wide range of capabilities
in a single, extensive training session. While this “one-shot” fine-tuning framework is ideal from
a simplicity perspective, it is also difficult to achieve in practice. For instance, post-training is
still resource-intensive. Additionally, expanding data breadth often creates performance trade-offs,
making it difficult to simultaneously address overfitting and task interference.

1

https://github.com/SakanaAI/self-adaptive-llms

Published as a conference paper at ICLR 2025

In contrast, self-adaptive models offer a more flexible and efficient approach. Rather than attempting
to train an LLM for all tasks in one step, expert modules can be developed offline and augmented
to the base LLM on-demand (Kang et al., 2024). This allows the model to dynamically modify its
behavior based on the task at hand, without the need for constant re-tuning. In addition to the bene-
fit of having independent components, this modularity also supports continual learning, enabling
the model to add new skills over time without catastrophic forgetting. Moreover, self-adaptive
LLMs mirror a well-established principle in neuroscience and computational biology, where the
brain activates specific regions depending on the task at hand (Loose et al., 2017) and dynamically
reconfigures its functional networks in response to changing task demands (Davison et al., 2015).

In principle, the first step toward achieving self-adaptive LLMs can be realized through the devel-
opment of specialized expert modules, each fine-tuned (Kaplan et al., 2020) via techniques such
as low-rank adaptation (LoRA) (Hu et al., 2021). These expert modules can then be dynamically
composed at runtime based on the task demands, a process that can be efficiently managed through
Mixture of Experts (MoE)-like systems (Tianlong et al., 2024). However, several challenges need to
be addressed to make this approach both scalable and compositional. First, fine-tuning LLMs to cre-
ate multiple expert modules significantly increases the number of parameters that need to be trained.
In practice, even with parameter-efficient methods like LoRA, the cumulative size of these mod-
ules can quickly escalate, leading to increased storage and computational demands. Second, these
expert modules are often prone to overfitting, a phenomenon especially prevalent when training on
smaller datasets or narrow task domains. Third, the flexible composition of these expert modules
also presents largely unresolved challenges currently posing as open research problems.

To overcome these limitations, we first propose Singular Value Fine-tuning (SVF), a novel
parameter-efficient fine-tuning (PEFT) method to obtain effective building blocks for self-
adaptation. SVF works by extracting and tuning only the singular values within the model’s weight
matrices. By focusing on this principled parameterization, our approach mitigates the risk of over-
fitting, drastically reduces computational demands, and allows for inherent compositionality. We
show these properties enable us to cheaply obtain a set of effective domain-specific “expert” vectors
by training on narrow datasets with RL, directly optimizing task performance on individual topics.

We then introduce our full Transformer2 (Transformer-Squared) framework to empower LLMs
through the underlying principles of self-adaptation. Given a prompt from an unknown task,
Transformer2 entails a two-pass inference mechanism which we illustrate in Figure 1. During the
first pass, Transformer2 executes the model and observes its test-time behavior, gathering the rele-
vant information to understand the necessary skills to tackle the current problem. During the second
pass, our framework uses this information to combine the available expert vectors and provide a
new modification to the base weights of the LLM specifically tailored to its test-time conditions. We
design three different adaptation strategies that can be used within Transformer2, which we show
provide monotonic performance benefits with increasing access to the test-time conditions.

We evaluate SVF and the full Transformer2 framework through extensive experiments across a di-
verse range of LLMs and tasks. First, when trained on domain-specific datasets, we show that SVF
consistently outperforms traditional strategies for efficient fine-tuning such as LoRA, and at the
same time, with orders of magnitudes fewer parameters. Then we show that Transformer2 is able
to push performance far further, effectively adapting the weights of the base model even in entirely
out-of-distribution applications such as visual question answering. Finally, we analyze the proper-
ties of our new framework, validating that it provides increasing benefits with additional access to
its current test-time conditions and even allow for recycling pre-trained SVF experts across model
architectures. In summary, our key technical contributions are the following:

• The development of Transformer2 as a pivotal self-adaptation framework for LLMs, pro-
viding a universal blueprint to dynamically adapt the behavior of LLMs from a growing set
of pre-trained skills.

• The introduction of SVF, a novel PEFT method trainable with RL on small datasets, pro-
ducing compact expert vectors with inherent compositionality, all key properties necessary
for our scalable self-adaptation framework.

• The implementation of three adaptation strategies within Transformer2, effectively dis-
patching SVF-trained experts with properties designed to cope with different requirements
and deployment scenarios.

2

Published as a conference paper at ICLR 2025

2 RELATED WORKS

Self-adaptive LLMs We define self-adaptive LLMs as a group of LLMs or a standalone LLM that
can evaluate and modify its behavior in response to changes in its operating environment or internal
state, without external intervention. This dynamic adjustment has parallels to concepts like fast-
weight memories, which enable networks to update weights in response to task demands (Schmid-
huber, 1992; Gomez & Schmidhuber, 2005), and neural network weights being treated as dynamic
programs (Schmidhuber, 2015). Recently, Panigrahi et al. (2023) introduces an approach where a
smaller auxiliary transformer is updated dynamically within a larger model, aligning with the prin-
ciples of self-adaptive behavior.

This adaptation can be explored from two perspectives: a macroview, where multiple LLMs collab-
orate and/or compete, and a microview, where internal adaptations allow a single LLM to specialize
in different tasks.

Macroview: From this perspective, the system directs queries to LLMs with domain specific exper-
tise, prioritizing outputs from expert models, thereby achieving higher accuracy and task-specific
optimization. Such task-specific ensembles can be realized through various mechanisms: multiple
LLMs playing distinct roles and coordinate toward a shared goal (Zhuge et al., 2023), engaging
in mutual listening and debate (Du et al., 2023), or using meticulously crafted prompt construc-
tions (Zhang et al., 2024) to integrate knowledge library and skill planning. Naturally, the improve-
ment in the specialization and adaptive capabilities of individual LLMs in the ensemble enhances
the collective performance. Thus, in this paper, we focus on the microview of self-adaptive LLMs.

Microview: MoE in LLMs plays a critical role in this perspective (Tianlong et al., 2024). In MoE
systems, inputs are dynamically routed to a subset of specialized modules or layers (e.g., MLPs)
containing domain-specific knowledge (Rajbhandari et al., 2022; Fedus et al., 2022). To reduce
inference time, researchers introduce sparsely activated MoE where only a subset of the experts are
selected per token Jiang et al. (2024); Qwen Team (2024). While it is possible to view Transformer2

loosely as a type of MoE, there are two major differences. In the aforementioned systems, self-
adaptation is achieved through token-level routing, whereas Transformer2 employs a sample-level
module selection strategy. The second difference lies in the construction of expert modules. In
traditional MoE systems, expert modules are either trained from scratch (Fedus et al., 2022; Jiang
et al., 2024) or dense models (e.g., upcycling) (Qwen Team, 2024; Zhu et al., 2024), without an
auxiliary loss to ensure module specialization. In contrast, Transformer2 specifically trains expert
vectors with RL to acquire domain specific-knowledge, making them true experts.

Low-rank adaptation PEFT methods such as LoRA (Hu et al., 2021) works by freezing the original
model’s parameters and introducing small trainable low-rank matrices for task-specific updates. It
significantly lowers the computational and memory costs while providing performance comparable
to full fine-tuning. Inspired by LoRA’s design, various modifications have been proposed (Zhang
et al., 2023; Kopiczko et al., 2023; Liu et al., 2024; Bałazy et al., 2024; Cetoli, 2024; Kaushik et al.,
2025). Transformer2 does not rely on low-rank matrices, and instead scales the singular vectors of
the original parameter matrix that span the full rank space.

SVD for LLM Fine-tuning SVD is increasingly being used as an inductive bias for PEFT in LLMs.
For example, Wang et al. (2024) decompose a weight matrix and use the minor singular components,
associated with noisy or long-tail information, to initialize low-rank matrices for LoRA fine-tuning.
Earlier work proposed using compressed forms like DCT coefficients for generating weight matrices
in neural networks (Koutnik et al., 2010), offering efficiency in memory-constrained environments,
which resonates with our approach. In a similar vein, SVD is employed to approximate an original
weight matrix with the top r singular vectors, corresponding to the highest singular values. A
small trainable matrix is then introduced on top of the truncated singular value matrix to adjust the
magnitude and orientations within this top-r subspace (Bałazy et al., 2024; Cetoli, 2024). However,
the drawback of this approach is that retaining only the top singular components can result in the
loss of important information, particularly when the singular values distribution is less skewed. The
work most similar to ours is a concurrent effort by Lingam et al. (2024), where they introduce various
sparsification methods that utilize the SVD of the weights. However, it is not for self-adaptive LLMs
and does not use RL to enhance learning efficiency.

3

Published as a conference paper at ICLR 2025

3 METHODS

3.1 PRELIMINARIES

Singular value decomposition (SVD) offers a fundamental view of matrix multiplications. In the
context of neural networks, each weight matrix W ∈ Rn×m can be decomposed into three compo-
nents W = UΣV ⊺, yielding semi-orthogonal matrices U ∈ Rm×r and V ∈ Rn×r together with an
ordered vector of r singular values (in descending order) arranged in the diagonal matrix Σ ∈ Rr×r.
The linear operation defined by applying W onto x, can be then decomposed into a sum of indepen-
dent terms, derived from mapping each column vi from V into the corresponding column ui from
U as y =

∑r
i=1 σiuiv

⊺
i x. Hence, each singular component represented by the rank-1 matrix uiv

⊺
i

independently processes the input, providing an orthogonal contribution to the layer’s outputs, with
the singular values σi modulating the degree of the contributions.

Cross-entropy method (CEM) is a Monte Carlo method for importance sampling and optimiza-
tion (Rubinstein & Kroese, 2004). The method is based on the concept of minimizing the KL
divergence between two probability distributions DKL(P∥Q), where P is the target distribution and
Q is a maintained distribution. At its core, CEM repeatedly generates a set of samples from Q,
evaluates these samples with a performance function, and then updates the distribution Q with the
characteristics of the elite samples that have performed best. In the standard setup employed in most
applications, Q is set to a diagonal multivariate Gaussian, reducing the problem to simply estimating
the empirical mean and standard deviation of the latest elites until a stopping criterion is met. We
illustrate a complete CEM step in the Python pseudocode below.

3.2 TRANSFORMER2

The construction of Transformer2 comprises two main steps, for which we provide an illustrative
overview in Figure 2. First, we introduce Singular Value Fine-tuning (SVF), a method to learn
with RL compact and compositional expert vectors based on the SVD of the base model’s weights.
Then, we describe three different adaptation strategies within Transformer2, inspired by three or-
thogonal principles, which adaptively combine the SVF-trained expert vectors during inference. We
motivate how the properties of SVF are highly complementary to our adaptation strategies, making
Transformer2 an effective and scalable framework for the design of new self-adaptive LLMs.

Layer Norm

<latexit sha1_base64="hnfzLeUw92WJ9yYUkRkk/DJmo2g=">AAAB8nicbZDLSgMxFIYzXmu9VV26CRbBVZkRqe4suHFZwV5gOpZMmmlDM8mQnBHK0MdwYReKuPUFfA13vo2Ztgtt/SHw8f/nkHNOmAhuwHW/nZXVtfWNzcJWcXtnd2+/dHDYNCrVlDWoEkq3Q2KY4JI1gINg7UQzEoeCtcLhTZ63Hpk2XMl7GCUsiElf8ohTAtbymw8dLoFpSkS3VHYr7lR4Gbw5lK8/n3NN6t3SV6enaBozCVQQY3zPTSDIiAZOBRsXO6lhCaFD0me+RUliZoJsOvIYn1qnhyOl7ZOAp+7vjozExozi0FbGBAZmMcvN/zI/hegqyLhMUmCSzj6KUoFB4Xx/3OOaURAjC4RqbmfFdEA0ofYKpmiP4C2uvAzN84pXrVTvvHLtAs1UQMfoBJ0hD12iGrpFddRAFCn0hF7QqwPOxHlz3melK8685wj9kfPxA3w0ldM=</latexit>

V |<latexit sha1_base64="hnfzLeUw92WJ9yYUkRkk/DJmo2g=">AAAB8nicbZDLSgMxFIYzXmu9VV26CRbBVZkRqe4suHFZwV5gOpZMmmlDM8mQnBHK0MdwYReKuPUFfA13vo2Ztgtt/SHw8f/nkHNOmAhuwHW/nZXVtfWNzcJWcXtnd2+/dHDYNCrVlDWoEkq3Q2KY4JI1gINg7UQzEoeCtcLhTZ63Hpk2XMl7GCUsiElf8ohTAtbymw8dLoFpSkS3VHYr7lR4Gbw5lK8/n3NN6t3SV6enaBozCVQQY3zPTSDIiAZOBRsXO6lhCaFD0me+RUliZoJsOvIYn1qnhyOl7ZOAp+7vjozExozi0FbGBAZmMcvN/zI/hegqyLhMUmCSzj6KUoFB4Xx/3OOaURAjC4RqbmfFdEA0ofYKpmiP4C2uvAzN84pXrVTvvHLtAs1UQMfoBJ0hD12iGrpFddRAFCn0hF7QqwPOxHlz3melK8685wj9kfPxA3w0ldM=</latexit>

V |<latexit sha1_base64="8jULmK0JRDiG/w9c6wlV1jj7guI=">AAAB7XicbZC7SgNBFIbPxluMt6ilIINBSBV2LaKdARvLBM0FkhBmJ7PJmNmZZWZWCEtKexsLRWztrPMcdj6DL+HkUmjiDwMf/38Oc87xI860cd0vJ7Wyura+kd7MbG3v7O5l9w9qWsaK0CqRXKqGjzXlTNCqYYbTRqQoDn1O6/7gapLX76nSTIpbM4xoO8Q9wQJGsLFWrXXDeiHuZHNuwZ0KLYM3h9zlx7jy/XA8Lneyn62uJHFIhSEca9303Mi0E6wMI5yOMq1Y0wiTAe7RpkWBQ6rbyXTaETq1ThcFUtknDJq6vzsSHGo9DH1bGWLT14vZxPwva8YmuGgnTESxoYLMPgpijoxEk9VRlylKDB9awEQxOysifawwMfZAGXsEb3HlZaidFbxioVjxcqU8zJSGIziBPHhwDiW4hjJUgcAdPMIzvDjSeXJenbdZacqZ9xzCHznvPxkHky0=</latexit>

⌃
<latexit sha1_base64="8jULmK0JRDiG/w9c6wlV1jj7guI=">AAAB7XicbZC7SgNBFIbPxluMt6ilIINBSBV2LaKdARvLBM0FkhBmJ7PJmNmZZWZWCEtKexsLRWztrPMcdj6DL+HkUmjiDwMf/38Oc87xI860cd0vJ7Wyura+kd7MbG3v7O5l9w9qWsaK0CqRXKqGjzXlTNCqYYbTRqQoDn1O6/7gapLX76nSTIpbM4xoO8Q9wQJGsLFWrXXDeiHuZHNuwZ0KLYM3h9zlx7jy/XA8Lneyn62uJHFIhSEca9303Mi0E6wMI5yOMq1Y0wiTAe7RpkWBQ6rbyXTaETq1ThcFUtknDJq6vzsSHGo9DH1bGWLT14vZxPwva8YmuGgnTESxoYLMPgpijoxEk9VRlylKDB9awEQxOysifawwMfZAGXsEb3HlZaidFbxioVjxcqU8zJSGIziBPHhwDiW4hjJUgcAdPMIzvDjSeXJenbdZacqZ9xzCHznvPxkHky0=</latexit>

⌃<latexit sha1_base64="ka/WwxC9Nk0i99aMsQm1DvJgrg0=">AAAB6HicbZDPTsJAEMan+A/xH+rRSyMx8URaY9CbJF48QmKBBBqyXaawst02u1sTQngCLx40Bo++ha/hzbdxCxwU/JJNfvm+mezMBAlnSjvOt5VbW9/Y3MpvF3Z29/YPiodHDRWnkqJHYx7LVkAUcibQ00xzbCUSSRRwbAbD2yxvPqJULBb3epSgH5G+YCGjRBur7nWLJafszGSvgruA0s3nNNN7rVv86vRimkYoNOVEqbbrJNofE6kZ5TgpdFKFCaFD0se2QUEiVP54NujEPjNOzw5jaZ7Q9sz93TEmkVKjKDCVEdEDtZxl5n9ZO9XhtT9mIkk1Cjr/KEy5rWM729ruMYlU85EBQiUzs9p0QCSh2tymYI7gLq+8Co2LslspV+puqXoJc+XhBE7hHFy4gircQQ08oIDwBC/waj1Yz9abNZ2X5qxFzzH8kfXxA9F0kWI=</latexit>

U
<latexit sha1_base64="ka/WwxC9Nk0i99aMsQm1DvJgrg0=">AAAB6HicbZDPTsJAEMan+A/xH+rRSyMx8URaY9CbJF48QmKBBBqyXaawst02u1sTQngCLx40Bo++ha/hzbdxCxwU/JJNfvm+mezMBAlnSjvOt5VbW9/Y3MpvF3Z29/YPiodHDRWnkqJHYx7LVkAUcibQ00xzbCUSSRRwbAbD2yxvPqJULBb3epSgH5G+YCGjRBur7nWLJafszGSvgruA0s3nNNN7rVv86vRimkYoNOVEqbbrJNofE6kZ5TgpdFKFCaFD0se2QUEiVP54NujEPjNOzw5jaZ7Q9sz93TEmkVKjKDCVEdEDtZxl5n9ZO9XhtT9mIkk1Cjr/KEy5rWM729ruMYlU85EBQiUzs9p0QCSh2tymYI7gLq+8Co2LslspV+puqXoJc+XhBE7hHFy4gircQQ08oIDwBC/waj1Yz9abNZ2X5qxFzzH8kfXxA9F0kWI=</latexit>

U

Attention

Layer Norm

MLP

<latexit sha1_base64="WPTq7ovTCCel7T147D53/f38NRg=">AAAB6HicbZC7SgNBFIbPxluMt3jpbAaDYBV2LaKdAQutJAFzgWQJs5OzyZjZCzOzQlzyBDYWitj6AFY+iZ2lb+LkUmj0h4GP/z+HOed4seBK2/anlVlYXFpeya7m1tY3Nrfy2zt1FSWSYY1FIpJNjyoUPMSa5lpgM5ZIA09gwxucj/PGLUrFo/BaD2N0A9oLuc8Z1caqXnXyBbtoT0T+gjODwtn73dfF215a6eQ/2t2IJQGGmgmqVMuxY+2mVGrOBI5y7URhTNmA9rBlMKQBKjedDDoih8bpEj+S5oWaTNyfHSkNlBoGnqkMqO6r+Wxs/pe1Eu2fuikP40RjyKYf+YkgOiLjrUmXS2RaDA1QJrmZlbA+lZRpc5ucOYIzv/JfqB8XnVKxVHUKZRumysI+HMAROHACZbiECtSAAcI9PMKTdWM9WM/Wy7Q0Y816duGXrNdvyOqQmg==</latexit> N<latexit sha1_base64="WPTq7ovTCCel7T147D53/f38NRg=">AAAB6HicbZC7SgNBFIbPxluMt3jpbAaDYBV2LaKdAQutJAFzgWQJs5OzyZjZCzOzQlzyBDYWitj6AFY+iZ2lb+LkUmj0h4GP/z+HOed4seBK2/anlVlYXFpeya7m1tY3Nrfy2zt1FSWSYY1FIpJNjyoUPMSa5lpgM5ZIA09gwxucj/PGLUrFo/BaD2N0A9oLuc8Z1caqXnXyBbtoT0T+gjODwtn73dfF215a6eQ/2t2IJQGGmgmqVMuxY+2mVGrOBI5y7URhTNmA9rBlMKQBKjedDDoih8bpEj+S5oWaTNyfHSkNlBoGnqkMqO6r+Wxs/pe1Eu2fuikP40RjyKYf+YkgOiLjrUmXS2RaDA1QJrmZlbA+lZRpc5ucOYIzv/JfqB8XnVKxVHUKZRumysI+HMAROHACZbiECtSAAcI9PMKTdWM9WM/Wy7Q0Y816duGXrNdvyOqQmg==</latexit> N
 la

ye
rs

<latexit sha1_base64="yC9X/vIczvf0cNc9NaHz45Lo31s=">AAAB6HicbZC7SgNBFIbPxluMt6ilIItBSBV2LaKdARvLBMwFkxBmJ2eTMbOzy8ysEJaUVjYWitj6ANZ5DjufwZdwcik08YeBj/8/hznneBFnSjvOl5VaWV1b30hvZra2d3b3svsHNRXGkmKVhjyUDY8o5ExgVTPNsRFJJIHHse4NriZ5/R6lYqG40cMI2wHpCeYzSrSxKredbM4pOFPZy+DOIXf5Ma58PxyPy53sZ6sb0jhAoSknSjVdJ9LthEjNKMdRphUrjAgdkB42DQoSoGon00FH9qlxurYfSvOEtqfu746EBEoNA89UBkT31WI2Mf/LmrH2L9oJE1GsUdDZR37MbR3ak63tLpNINR8aIFQyM6tN+0QSqs1tMuYI7uLKy1A7K7jFQrHi5kp5mCkNR3ACeXDhHEpwDWWoAgWER3iGF+vOerJerbdZacqa9xzCH1nvP2ZpkQg=</latexit>

Z
<latexit sha1_base64="yC9X/vIczvf0cNc9NaHz45Lo31s=">AAAB6HicbZC7SgNBFIbPxluMt6ilIItBSBV2LaKdARvLBMwFkxBmJ2eTMbOzy8ysEJaUVjYWitj6ANZ5DjufwZdwcik08YeBj/8/hznneBFnSjvOl5VaWV1b30hvZra2d3b3svsHNRXGkmKVhjyUDY8o5ExgVTPNsRFJJIHHse4NriZ5/R6lYqG40cMI2wHpCeYzSrSxKredbM4pOFPZy+DOIXf5Ma58PxyPy53sZ6sb0jhAoSknSjVdJ9LthEjNKMdRphUrjAgdkB42DQoSoGon00FH9qlxurYfSvOEtqfu746EBEoNA89UBkT31WI2Mf/LmrH2L9oJE1GsUdDZR37MbR3ak63tLpNINR8aIFQyM6tN+0QSqs1tMuYI7uLKy1A7K7jFQrHi5kp5mCkNR3ACeXDhHEpwDWWoAgWER3iGF+vOerJerbdZacqa9xzCH1nvP2ZpkQg=</latexit>

Z

Learnable parameters
trained with RL

Frozen parameters

Training Time Inference Time

<latexit sha1_base64="Zy7mRheCx49r7k9l9pfYkhWF0qk=">AAAB6HicbZC7SgNBFIbPxluMt3jpbAaDYBV2LaKdAQtthATMBZIlzE7OJmNmL8zMCnHJE9hYKGLrA1j5JHaWvomTS6HRHwY+/v8c5pzjxYIrbdufVmZhcWl5JbuaW1vf2NzKb+/UVZRIhjUWiUg2PapQ8BBrmmuBzVgiDTyBDW9wPs4btygVj8JrPYzRDWgv5D5nVBuretXJF+yiPRH5C84MCmfvd18Xb3tppZP/aHcjlgQYaiaoUi3HjrWbUqk5EzjKtROFMWUD2sOWwZAGqNx0MuiIHBqnS/xImhdqMnF/dqQ0UGoYeKYyoLqv5rOx+V/WSrR/6qY8jBONIZt+5CeC6IiMtyZdLpFpMTRAmeRmVsL6VFKmzW1y5gjO/Mp/oX5cdErFUtUplG2YKgv7cABH4MAJlOESKlADBgj38AhP1o31YD1bL9PSjDXr2YVfsl6/AcdmkJk=</latexit>

M
<latexit sha1_base64="Zy7mRheCx49r7k9l9pfYkhWF0qk=">AAAB6HicbZC7SgNBFIbPxluMt3jpbAaDYBV2LaKdAQtthATMBZIlzE7OJmNmL8zMCnHJE9hYKGLrA1j5JHaWvomTS6HRHwY+/v8c5pzjxYIrbdufVmZhcWl5JbuaW1vf2NzKb+/UVZRIhjUWiUg2PapQ8BBrmmuBzVgiDTyBDW9wPs4btygVj8JrPYzRDWgv5D5nVBuretXJF+yiPRH5C84MCmfvd18Xb3tppZP/aHcjlgQYaiaoUi3HjrWbUqk5EzjKtROFMWUD2sOWwZAGqNx0MuiIHBqnS/xImhdqMnF/dqQ0UGoYeKYyoLqv5rOx+V/WSrR/6qY8jBONIZt+5CeC6IiMtyZdLpFpMTRAmeRmVsL6VFKmzW1y5gjO/Mp/oX5cdErFUtUplG2YKgv7cABH4MAJlOESKlADBgj38AhP1o31YD1bL9PSjDXr2YVfsl6/AcdmkJk=</latexit>

M matrices

<latexit sha1_base64="hnfzLeUw92WJ9yYUkRkk/DJmo2g=">AAAB8nicbZDLSgMxFIYzXmu9VV26CRbBVZkRqe4suHFZwV5gOpZMmmlDM8mQnBHK0MdwYReKuPUFfA13vo2Ztgtt/SHw8f/nkHNOmAhuwHW/nZXVtfWNzcJWcXtnd2+/dHDYNCrVlDWoEkq3Q2KY4JI1gINg7UQzEoeCtcLhTZ63Hpk2XMl7GCUsiElf8ohTAtbymw8dLoFpSkS3VHYr7lR4Gbw5lK8/n3NN6t3SV6enaBozCVQQY3zPTSDIiAZOBRsXO6lhCaFD0me+RUliZoJsOvIYn1qnhyOl7ZOAp+7vjozExozi0FbGBAZmMcvN/zI/hegqyLhMUmCSzj6KUoFB4Xx/3OOaURAjC4RqbmfFdEA0ofYKpmiP4C2uvAzN84pXrVTvvHLtAs1UQMfoBJ0hD12iGrpFddRAFCn0hF7QqwPOxHlz3melK8685wj9kfPxA3w0ldM=</latexit>

V |<latexit sha1_base64="hnfzLeUw92WJ9yYUkRkk/DJmo2g=">AAAB8nicbZDLSgMxFIYzXmu9VV26CRbBVZkRqe4suHFZwV5gOpZMmmlDM8mQnBHK0MdwYReKuPUFfA13vo2Ztgtt/SHw8f/nkHNOmAhuwHW/nZXVtfWNzcJWcXtnd2+/dHDYNCrVlDWoEkq3Q2KY4JI1gINg7UQzEoeCtcLhTZ63Hpk2XMl7GCUsiElf8ohTAtbymw8dLoFpSkS3VHYr7lR4Gbw5lK8/n3NN6t3SV6enaBozCVQQY3zPTSDIiAZOBRsXO6lhCaFD0me+RUliZoJsOvIYn1qnhyOl7ZOAp+7vjozExozi0FbGBAZmMcvN/zI/hegqyLhMUmCSzj6KUoFB4Xx/3OOaURAjC4RqbmfFdEA0ofYKpmiP4C2uvAzN84pXrVTvvHLtAs1UQMfoBJ0hD12iGrpFddRAFCn0hF7QqwPOxHlz3melK8685wj9kfPxA3w0ldM=</latexit>

V |
<latexit sha1_base64="8jULmK0JRDiG/w9c6wlV1jj7guI=">AAAB7XicbZC7SgNBFIbPxluMt6ilIINBSBV2LaKdARvLBM0FkhBmJ7PJmNmZZWZWCEtKexsLRWztrPMcdj6DL+HkUmjiDwMf/38Oc87xI860cd0vJ7Wyura+kd7MbG3v7O5l9w9qWsaK0CqRXKqGjzXlTNCqYYbTRqQoDn1O6/7gapLX76nSTIpbM4xoO8Q9wQJGsLFWrXXDeiHuZHNuwZ0KLYM3h9zlx7jy/XA8Lneyn62uJHFIhSEca9303Mi0E6wMI5yOMq1Y0wiTAe7RpkWBQ6rbyXTaETq1ThcFUtknDJq6vzsSHGo9DH1bGWLT14vZxPwva8YmuGgnTESxoYLMPgpijoxEk9VRlylKDB9awEQxOysifawwMfZAGXsEb3HlZaidFbxioVjxcqU8zJSGIziBPHhwDiW4hjJUgcAdPMIzvDjSeXJenbdZacqZ9xzCHznvPxkHky0=</latexit>

⌃
<latexit sha1_base64="8jULmK0JRDiG/w9c6wlV1jj7guI=">AAAB7XicbZC7SgNBFIbPxluMt6ilIINBSBV2LaKdARvLBM0FkhBmJ7PJmNmZZWZWCEtKexsLRWztrPMcdj6DL+HkUmjiDwMf/38Oc87xI860cd0vJ7Wyura+kd7MbG3v7O5l9w9qWsaK0CqRXKqGjzXlTNCqYYbTRqQoDn1O6/7gapLX76nSTIpbM4xoO8Q9wQJGsLFWrXXDeiHuZHNuwZ0KLYM3h9zlx7jy/XA8Lneyn62uJHFIhSEca9303Mi0E6wMI5yOMq1Y0wiTAe7RpkWBQ6rbyXTaETq1ThcFUtknDJq6vzsSHGo9DH1bGWLT14vZxPwva8YmuGgnTESxoYLMPgpijoxEk9VRlylKDB9awEQxOysifawwMfZAGXsEb3HlZaidFbxioVjxcqU8zJSGIziBPHhwDiW4hjJUgcAdPMIzvDjSeXJenbdZacqZ9xzCHznvPxkHky0=</latexit>

⌃<latexit sha1_base64="ka/WwxC9Nk0i99aMsQm1DvJgrg0=">AAAB6HicbZDPTsJAEMan+A/xH+rRSyMx8URaY9CbJF48QmKBBBqyXaawst02u1sTQngCLx40Bo++ha/hzbdxCxwU/JJNfvm+mezMBAlnSjvOt5VbW9/Y3MpvF3Z29/YPiodHDRWnkqJHYx7LVkAUcibQ00xzbCUSSRRwbAbD2yxvPqJULBb3epSgH5G+YCGjRBur7nWLJafszGSvgruA0s3nNNN7rVv86vRimkYoNOVEqbbrJNofE6kZ5TgpdFKFCaFD0se2QUEiVP54NujEPjNOzw5jaZ7Q9sz93TEmkVKjKDCVEdEDtZxl5n9ZO9XhtT9mIkk1Cjr/KEy5rWM729ruMYlU85EBQiUzs9p0QCSh2tymYI7gLq+8Co2LslspV+puqXoJc+XhBE7hHFy4gircQQ08oIDwBC/waj1Yz9abNZ2X5qxFzzH8kfXxA9F0kWI=</latexit>

U
<latexit sha1_base64="ka/WwxC9Nk0i99aMsQm1DvJgrg0=">AAAB6HicbZDPTsJAEMan+A/xH+rRSyMx8URaY9CbJF48QmKBBBqyXaawst02u1sTQngCLx40Bo++ha/hzbdxCxwU/JJNfvm+mezMBAlnSjvOt5VbW9/Y3MpvF3Z29/YPiodHDRWnkqJHYx7LVkAUcibQ00xzbCUSSRRwbAbD2yxvPqJULBb3epSgH5G+YCGjRBur7nWLJafszGSvgruA0s3nNNN7rVv86vRimkYoNOVEqbbrJNofE6kZ5TgpdFKFCaFD0se2QUEiVP54NujEPjNOzw5jaZ7Q9sz93TEmkVKjKDCVEdEDtZxl5n9ZO9XhtT9mIkk1Cjr/KEy5rWM729ruMYlU85EBQiUzs9p0QCSh2tymYI7gLq+8Co2LslspV+puqXoJc+XhBE7hHFy4gircQQ08oIDwBC/waj1Yz9abNZ2X5qxFzzH8kfXxA9F0kWI=</latexit>

U
<latexit sha1_base64="yC9X/vIczvf0cNc9NaHz45Lo31s=">AAAB6HicbZC7SgNBFIbPxluMt6ilIItBSBV2LaKdARvLBMwFkxBmJ2eTMbOzy8ysEJaUVjYWitj6ANZ5DjufwZdwcik08YeBj/8/hznneBFnSjvOl5VaWV1b30hvZra2d3b3svsHNRXGkmKVhjyUDY8o5ExgVTPNsRFJJIHHse4NriZ5/R6lYqG40cMI2wHpCeYzSrSxKredbM4pOFPZy+DOIXf5Ma58PxyPy53sZ6sb0jhAoSknSjVdJ9LthEjNKMdRphUrjAgdkB42DQoSoGon00FH9qlxurYfSvOEtqfu746EBEoNA89UBkT31WI2Mf/LmrH2L9oJE1GsUdDZR37MbR3ak63tLpNINR8aIFQyM6tN+0QSqs1tMuYI7uLKy1A7K7jFQrHi5kp5mCkNR3ACeXDhHEpwDWWoAgWER3iGF+vOerJerbdZacqa9xzCH1nvP2ZpkQg=</latexit>

Z
<latexit sha1_base64="yC9X/vIczvf0cNc9NaHz45Lo31s=">AAAB6HicbZC7SgNBFIbPxluMt6ilIItBSBV2LaKdARvLBMwFkxBmJ2eTMbOzy8ysEJaUVjYWitj6ANZ5DjufwZdwcik08YeBj/8/hznneBFnSjvOl5VaWV1b30hvZra2d3b3svsHNRXGkmKVhjyUDY8o5ExgVTPNsRFJJIHHse4NriZ5/R6lYqG40cMI2wHpCeYzSrSxKredbM4pOFPZy+DOIXf5Ma58PxyPy53sZ6sb0jhAoSknSjVdJ9LthEjNKMdRphUrjAgdkB42DQoSoGon00FH9qlxurYfSvOEtqfu746EBEoNA89UBkT31WI2Mf/LmrH2L9oJE1GsUdDZR37MbR3ak63tLpNINR8aIFQyM6tN+0QSqs1tMuYI7uLKy1A7K7jFQrHi5kp5mCkNR3ACeXDhHEpwDWWoAgWER3iGF+vOerJerbdZacqa9xzCH1nvP2ZpkQg=</latexit>

Z

…

A) Prompt-based adaptation, or
B) Job classifier-based adaptation

Replaced with one
learned vector

C) Mixture-based adaptation

… <latexit sha1_base64="ZoBKuE7P69Fe4FstEBqOVIcwRL0=">AAAB+HicbVDLSsNAFJ20Pmp9NCqu3AwWQRBK4qK6LLhxWcE+oClhMp20QyeTMHMj1NAvceNCEbf+gb/gQnDlp+j0sdDWAxcO59zLvfcEieAaHOfTyuVXVtfWCxvFza3tnZK9u9fUcaooa9BYxKodEM0El6wBHARrJ4qRKBCsFQwvJ37rlinNY3kDo4R1I9KXPOSUgJF8u3TqEZEMiD/0gEdM+3bZqThT4GXizkm5lv/4fjv4YnXffvd6MU0jJoEKonXHdRLoZkQBp4KNi16qWULokPRZx1BJzJJuNj18jI+N0sNhrExJwFP190RGIq1HUWA6IwIDvehNxP+8TgrhRTfjMkmBSTpbFKYCQ4wnKeAeV4yCGBlCqOLmVkwHRBEKJquiCcFdfHmZNM8qbrVSvXbLNQfNUECH6AidIBedoxq6QnXUQBSl6B49oifrznqwnq2XWWvOms/soz+wXn8ATKCXPg==</latexit>

+↵k⇥
<latexit sha1_base64="ZoBKuE7P69Fe4FstEBqOVIcwRL0=">AAAB+HicbVDLSsNAFJ20Pmp9NCqu3AwWQRBK4qK6LLhxWcE+oClhMp20QyeTMHMj1NAvceNCEbf+gb/gQnDlp+j0sdDWAxcO59zLvfcEieAaHOfTyuVXVtfWCxvFza3tnZK9u9fUcaooa9BYxKodEM0El6wBHARrJ4qRKBCsFQwvJ37rlinNY3kDo4R1I9KXPOSUgJF8u3TqEZEMiD/0gEdM+3bZqThT4GXizkm5lv/4fjv4YnXffvd6MU0jJoEKonXHdRLoZkQBp4KNi16qWULokPRZx1BJzJJuNj18jI+N0sNhrExJwFP190RGIq1HUWA6IwIDvehNxP+8TgrhRTfjMkmBSTpbFKYCQ4wnKeAeV4yCGBlCqOLmVkwHRBEKJquiCcFdfHmZNM8qbrVSvXbLNQfNUECH6AidIBedoxq6QnXUQBSl6B49oifrznqwnq2XWWvOms/soz+wXn8ATKCXPg==</latexit>

+↵k⇥
<latexit sha1_base64="rvY7URDetHJ3uMUQZv0k44XFelM=">AAAB+HicbVDLSsNAFJ1YH7U+GhVXbgaLIAgl6aK6LLhxWcE+oCnhZjpph04mYWYi1NAvceNCEbf+gb/gQnDlp+j0sdDWAxcO59zLvfcECWdKO86ntZJbXVvfyG8WtrZ3dov23n5TxakktEFiHst2AIpyJmhDM81pO5EUooDTVjC8nPitWyoVi8WNHiW0G0FfsJAR0Eby7eKZBzwZgF/xNIuo8u2SU3amwMvEnZNSLffx/Xb4Reu+/e71YpJGVGjCQamO6yS6m4HUjHA6LnipogmQIfRpx1ABZkk3mx4+xidG6eEwlqaExlP190QGkVKjKDCdEeiBWvQm4n9eJ9XhRTdjIkk1FWS2KEw51jGepIB7TFKi+cgQIJKZWzEZgASiTVYFE4K7+PIyaVbKbrVcvXZLNQfNkEdH6BidIhedoxq6QnXUQASl6B49oifrznqwnq2XWeuKNZ85QH9gvf4A9NeXBQ==</latexit>

+↵2⇥<latexit sha1_base64="rvY7URDetHJ3uMUQZv0k44XFelM=">AAAB+HicbVDLSsNAFJ1YH7U+GhVXbgaLIAgl6aK6LLhxWcE+oCnhZjpph04mYWYi1NAvceNCEbf+gb/gQnDlp+j0sdDWAxcO59zLvfcECWdKO86ntZJbXVvfyG8WtrZ3dov23n5TxakktEFiHst2AIpyJmhDM81pO5EUooDTVjC8nPitWyoVi8WNHiW0G0FfsJAR0Eby7eKZBzwZgF/xNIuo8u2SU3amwMvEnZNSLffx/Xb4Reu+/e71YpJGVGjCQamO6yS6m4HUjHA6LnipogmQIfRpx1ABZkk3mx4+xidG6eEwlqaExlP190QGkVKjKDCdEeiBWvQm4n9eJ9XhRTdjIkk1FWS2KEw51jGepIB7TFKi+cgQIJKZWzEZgASiTVYFE4K7+PIyaVbKbrVcvXZLNQfNkEdH6BidIhedoxq6QnXUQASl6B49oifrznqwnq2XWeuKNZ85QH9gvf4A9NeXBQ==</latexit>

+↵2⇥<latexit sha1_base64="/hIatESGxW7y6US6Az4TZbyHk9M=">AAAB9XicbVDJSgNBEK1JXGLcouLJS2MQPIUZD9FjwIvHCGaBzBhqOj1Jk56F7h4lDPkPLx4U8eo3+AseBE9+inaWg0YfFDzeq6Kqnp8IrrRtf1i5/NLyymphrbi+sbm1XdrZbao4lZQ1aCxi2fZRMcEj1tBcC9ZOJMPQF6zlD88nfuuGScXj6EqPEuaF2I94wClqI127KJIBdh1X85CpbqlsV+wpyF/izEm5ln//et3/ZPVu6c3txTQNWaSpQKU6jp1oL0OpORVsXHRTxRKkQ+yzjqERmiVeNr16TI6M0iNBLE1FmkzVnxMZhkqNQt90hqgHatGbiP95nVQHZ17GoyTVLKKzRUEqiI7JJALS45JRLUaGIJXc3EroACVSbYIqmhCcxZf/kuZJxalWqpdOuWbDDAU4gEM4BgdOoQYXUIcGUJBwBw/waN1a99aT9TxrzVnzmT34BevlGxMUlp4=</latexit>

↵1⇥<latexit sha1_base64="/hIatESGxW7y6US6Az4TZbyHk9M=">AAAB9XicbVDJSgNBEK1JXGLcouLJS2MQPIUZD9FjwIvHCGaBzBhqOj1Jk56F7h4lDPkPLx4U8eo3+AseBE9+inaWg0YfFDzeq6Kqnp8IrrRtf1i5/NLyymphrbi+sbm1XdrZbao4lZQ1aCxi2fZRMcEj1tBcC9ZOJMPQF6zlD88nfuuGScXj6EqPEuaF2I94wClqI127KJIBdh1X85CpbqlsV+wpyF/izEm5ln//et3/ZPVu6c3txTQNWaSpQKU6jp1oL0OpORVsXHRTxRKkQ+yzjqERmiVeNr16TI6M0iNBLE1FmkzVnxMZhkqNQt90hqgHatGbiP95nVQHZ17GoyTVLKKzRUEqiI7JJALS45JRLUaGIJXc3EroACVSbYIqmhCcxZf/kuZJxalWqpdOuWbDDAU4gEM4BgdOoQYXUIcGUJBwBw/waN1a99aT9TxrzVnzmT34BevlGxMUlp4=</latexit>

↵1⇥

Replaced with a
mixture of the

learned vectors

Figure 2: Method overview. Left) At training time, we employ SVF and RL to learn the “expert”
vectors z’s that scale the singular values of the weight matrices. Right) At inference time, we propose
three distinct methods to adaptively select/combine the learned expert vectors.

Singular value fine-tuning is a key building block in Transformer2. It offers an extremely efficient
parameterization for fine-tuning and provides inherent compositionality for adaptation. Conven-

4

Published as a conference paper at ICLR 2025

tional fine-tuning techniques often aim to augment pre-trained models with new capabilities by mod-
ifying their weight matrices. However, in large-scale transformers, these weights are already rich
repositories of abstracted knowledge, thanks to the breadth of the pre-training data and expansive
architectural design. In fact, as evidenced in much of the prior literature, the requisite capabilities
for solving many downstream tasks appear to already exist within these pre-trained models (Sharma
et al., 2023). Therefore, instead of seeking to add new features, an efficient fine-tuning approach
should focus on making these latent capabilities more expressible. Motivated by these considera-
tions, for any weight matrix W , SVF learns a simple vector z ∈ Rr that provides targeted modifica-
tions to each singular component of W independently, yielding a new weight matrix W ′ = UΣ′V ⊺,
where Σ′ = Σ⊗ diag(z). This essential parameterization enjoys several benefits:

Negligible parameters: Learning only a vector z for each weight matrix allows for very efficient
fine-tuning with orders of magnitudes fewer optimized parameters even when compared to prior
approaches specifically designed for efficiency. For example, the widely popular LoRA approach
requires (m+n)×r′ learnable parameters per weight matrix, where r′ is a hyper-parameter that gen-
erally needs to be set large enough for expressivity. While recent extensions, such LoRA-XS (Bałazy
et al., 2024), try to push efficiency even further, they often introduce limiting assumptions that curb
applicability in several practical scenarios (see examples in Appendix C). In contrast, while SVF
only needs r = min(m,n) parameters, we show it empirically does not display the same shortcom-
ings thanks to working on a highly-meaning space provided by the latent expressiveness compressed
in the weights of modern LLMs. SVF’s scaling only the singular values may seem to lead to limited
expressiveness, we wish to point out that the ability to affect the weight matrix in a full-rank manner
technically provides more information than low-rank approaches.

High compositionality: Decomposing the weights in independent singular components makes the
learned z vectors highly composable and interpretable, opening numerous possibilities for adapta-
tion via algebraic manipulations. Instead, LoRA-based methods inherently lack these properties. For
instance, even if two LoRAs learned on the same task were to learn exactly the same adjustments for
each W , directly interpolating between their compressed A and B matrices is unlikely to preserve
any of their original behavior, given the countless number of equivalent parameter permutations they
might have converged to.

Principled regularization: Exclusively modifying the magnitude of pre-existing singular compo-
nents provides a principled and effective form of regularization. In practice, this property enables
us to fine-tune for arbitrary downstream tasks with only hundreds of data points without the risk of
severe collapse or overfitting.

End-to-end optimization with RL. We train a set of SVF vectors θz = {z1, · · · , zN×M} to fine-
tune an arbitrary language model πθW parameterized by θW with RL, optimizing directly for task
performance. Here, θW = {W1, · · · ,WN×M} is the set of weight matrices, where N is the number
of layers and M is the number of weight matrices to fine-tune per layer. We use the seminal RE-
INFORCE algorithm (Williams, 1992) and label each generated answer yi (for the prompt xi ∈ D)
with a unitary reward based on its correctness r ∈ {−1, 1}. Inspired by related applications of RL
for optimizing LLMs (Ouyang et al., 2022), we regularize the REINFORCE objective by adding
a KL penalty for deviating from the original model’s behavior, weighted by a small coefficient
λ ∈ R+. Thus, our final objective function can be written as:

J(θz) = E
[
log

(
πθW ′ (ŷi | xi)

)
r(ŷi, yi)

]
− λDKL(πθW ′∥πθW), (1)

where we use πθW ′ to denote the resulting language model after substituting the original weight
matrices W with W ′. While RL is generally considered less stable than next-token prediction ob-
jectives, we find the regularization properties of SVF avoid many of the failure modes of prior less-
constrained parameterizations (see Section 4.3). Thus, combining these complementary components
effectively enables us to avoid relying on expensive fine-tuning procedures with large hand-designed
datasets as proxies, and directly maximize task performance end-to-end.

In general, SVF with RL puts lower requirement on the dataset it trains on. For example, LoRA
fine-tuning requires “explaining texts” to perform next token predictions, which puts a higher re-
quirement on the dataset (e.g., imagine LoRA fine-tuning on a GSM8K dataset where no reasoning
text but only the final number is provided). This benefit allows SVF to be more general and effective.
One possible caveat SVF can face is the sparse rewards caused by a weak base model, which we
discuss this further in Section 5.

5

Published as a conference paper at ICLR 2025

Self-adaptation is a critical mechanism in nature that has established itself as a core guiding princi-
ple in modern system design (Klös et al., 2015). Our initial efforts toward self-adaptive foundation
models focus on the inference stage of LLMs, where we devise a simple two-pass adaptation strat-
egy that combines K sets of base “expert” vectors z1:K trained with SVF to provide different kinds
of capabilities (e.g., coding, math, etc). The mapping between a capability and the dataset we train
on can be acquired in the dataset’s meta data. In the first inference pass, given a task or an individ-
ual input prompt, Transformer2 executes the model and observes its test-time behavior to derive a
new z′ vector tailored to its test-time conditions. This adapted z′ is then used in the second infer-
ence pass to provide an actual response with the newly adapted weights. The interaction between
SVF-trained expert vectors and the adaptation strategies ensures seamless integration, where ex-
pert vectors provide modular capabilities, and the adaptation strategies dynamically determine and
compose the most suitable combination to address the input task. In this first work, we propose
three simple approaches to produce the vector z′ during the first inference pass, implementing self-
adaption with distinct methods and requirements. Below, we provide an outline of each method and
refer to Appendix A for additional implementation details.

A) Prompt engineering: Our most basic approach involves constructing a new “adaptation” prompt
which we use to directly ask the LLM to categorize the input prompt. Based on its response, we
then extract one category out of the set of domain topics used to pre-train each SVF expert and,
thus, we select the corresponding z′ directly from z1:K . In our adaptation prompt, we also explicitly
provide the option for a generic “others” category, allowing the model to use its base weights in case
no expert provides appropriate capabilities. We show the format used to construct the adaptation
prompt in Figure 3.

Analyze the given question and classify it into one of four categories:
'code', 'math', 'reasoning', or ‘others’. Follow these guidelines:

1. Code: Questions asking for programming solutions...

2. Math: Questions involving mathematical calculations...

3. Reasoning: Questions requiring logical thinking....

4. Others: Questions not clearly fit into above categories...

Instructions:

- Consider the primary focus, skills, and knowledge required to answer
the question.

- If a question spans multiple categories, choose the most dominant one.

- Provide your final classification within \\boxed{} notation. Example: \
\boxed{reasoning}

Format your response as follows:

Classification: \\boxed{category}

Figure 3: Prompt based adaptation. Self-
adaptation prompt used by Transformer2 to
classify the task prompt into pre-defined cat-
egories.

B) Classification expert: A direct extension of the
prompt engineering approach comes from using a
specialized system to handle task identification. Fol-
lowing the principles of self-adaptation, we ap-
ply SVF to fine-tune the base LLM itself to han-
dle this task. In particular, we collect a dataset
D = {(x1,1, 1), · · · , (xi,k, k), · · · } from the K SVF
training tasks, where xi,k is the i-th example from
the k-th expert task. Each tuple (xi,k, k) then forms
an example to pre-train an additional job classifica-
tion expert zc learned in the same fashion as the oth-
ers. During the first inference pass, we simply load
zc, intending to improve the inherent task classifica-
tion capabilities of the base model to select a more
appropriate z′ to handle the input prompt.

C) Few-shot adaptation: Our third approach leverages additional task information by assuming
extended access to its test-time conditions beyond individual prompts. Our approach is inspired by
popular few-shot prompting techniques, which have been shown to provide consistent performance
improvements and even allow LLMs to “in-context” learn tasks that were entirely unseen prior to
inference (Brown, 2020). For each optimized W , our approach entails producing an entirely new
z′ =

∑K
k=1 αkzk by linearly interpolating between the K learned SVF vectors, each weighted by

the coefficients αk. We employ CEM to search over the possible values of each αk based on the
performance on a set of “few-shot prompts”, which are specifically held out from the rest of the
test prompts and used to evaluate CEM’s population samples. In the case of multiple population
samples obtaining the same score on these held-out prompts, we break ties by favoring the one with
the highest average log-likelihood across its own generated correct answers. Crucially, we only need
to perform this process once for each target task, avoiding the need to increase the length of each
question prompt, a relevant downside of traditional few-shot prompting. We refer to Section A.4,
for additional details and an extended discussion of this final approach.

4 EXPERIMENTS

We extensively evaluate Transformer2 on multiple tasks and models with the purpose of: (1) as-
sessing the efficiency and effectiveness of SVF; (2) demonstrating self-adaptiveness through the

6

Published as a conference paper at ICLR 2025

0 100 200 300 400
Epoch

0.70

0.75

0.80

0.85

0.90

Sc
or

e

Math

0 20 40 60 80
0.60

0.65

0.70

0.75

0.80

0.85
Coding

0 50 100 150

0.89

0.90

0.91

0.92

0.93

0.94
Reasoning

0 50 100 150

0.40

0.45

0.50

0.55

0.60

0.65
Vision Language

Train
Test

Figure 4: SVF learning curves. The dashed lines indicate the performance of LLAMA3-8B-
INSTRUCT on the test split of each task. SVF effectively fine-tunes to surpass the base performance.
While we use the best validation score to select our checkpoint for evaluation (marked by red dots),
we present the entire training curve without early stopping to demonstrate SVF’s learning capabili-
ties. Tasks with only hundreds of training samples like Coding and Reasoning were stopped early.
In our experiments, we update the parameters at the end of each epoch.

three proposed adaptation strategies; (3) conducting in-depth analysis and ablation studies aimed at
understanding and interpreting the properties of our new framework.

4.1 EXPERIMENTAL SETUPS

To validate the generality of Transformer2 we consider three pre-trained LLMs ranging across dif-
ferent model families and architecture sizes: LLAMA3-8B-INSTRUCT, MISTRAL-7B-INSTRUCT-
V0.3, and LLAMA3-70B-INSTRUCT. For each model, we obtain three sets of SVF-trained z vec-
tors to maximize performance for GSM8K (Cobbe et al., 2021), MBPP-pro (Austin et al., 2021),
and ARC-Easy (Clark et al., 2018), respectively. Additionally, we also train a set of z vectors
for LLAMA3-8B-INSTRUCT, when applied as the language backbone for TextVQA (Singh et al.,
2019), in order to assess SVF’s applicability to the vision-language modeling (VLM) domain. We
provide SVF’s main learning curves on each of these tasks in Figure 4. Finally, we evaluate the
full Transformer2 adaptation framework on four unseen tasks: MATH (Hendrycks et al., 2021),
Humaneval (Chen et al., 2021), ARC-Challenge (Clark et al., 2018), and OKVQA (Marino et al.,
2019). In all our adaptation experiments, we only consider experts obtained in the pure-language set-
tings, assessing its test-time applicability even for the distinctive vision domain. Please refer to the
Appendix A for additional details and a summary of the hyper-parameters used in the experiments.

4.2 EXPERIMENTAL RESULTS

SVF performance We provide results after training on each considered task with the LLAMA3-
8B-INSTRUCT, MISTRAL-7B-INSTRUCT-V0.3, and LLAMA3-70B-INSTRUCT base models in Ta-
ble 1. Remarkably, we find that SVF provides considerable and consistent performance gains across
nearly all tasks and base models. Instead, LoRA experts yield smaller gains and even sporadic per-
formance degradation. (These LoRA experts are trained with next token prediction. While we also
have LoRA experts trained with RL in Table 4, RL seems work less well with LoRA than with
SVF.) This observed trend extends also to the vision-language domain, as fine-tuning LLAMA3-
LLAVA-NEXT-8B with SVF bolsters the base model’s performance by over 39% (see Figure 5). To
ensure a fair comparison, we provide extensive ablations to both our model and the LoRA baseline
considering different architecture and optimization objectives in Appendix 4.3). Due to its essential

Table 1: Fine-tuning results. LLM performance on the test splits of math,
coding and reasoning. Normalized scores are in the parentheses.

Method GSM8K MBPP-Pro ARC-Easy

LLAMA3-8B-INSTRUCT 75.89 (1.00) 64.65 (1.00) 88.59 (1.00)
+ LoRA 77.18 (1.02) 67.68 (1.05) 88.97 (1.00)
+ SVF (Ours) 79.15 (1.04) 66.67 (1.03) 89.56 (1.01)

MISTRAL-7B-INSTRUCT-V0.3 42.83 (1.00) 49.50 (1.00) 81.65 (1.00)
+ LoRA 44.66 (1.04) 51.52 (1.04) 81.19 (0.98)
+ SVF (Ours) 49.74 (1.16) 51.52 (1.04) 85.14 (1.04)

LLAMA3-70B-INSTRUCT 85.29 (1.00) 80.81 (1.00) 89.10 (1.00)
+ LoRA 77.26 (0.91) 68.69 (0.85) 88.55 (0.99)
+ SVF (Ours) 88.32 (1.04) 80.81 (1.00) 88.47 (0.99)

TextVQA OKVQA
30

35

40

45

50

Llama3-8B
LoRA
SVF/Transformer2

Figure 5: Results for
the VLM domain.

7

Published as a conference paper at ICLR 2025

Table 2: Self-adaptation on unseen tasks. Normalized scores are in the parentheses.
Method MATH Humaneval ARC-Challenge

LLAMA3-8B-INSTRUCT 3 24.54 (1.00) 60.98 (1.00) 80.63 (1.00)
+ LoRA 24.12 (0.98) 52.44 (0.86) 81.06 (1.01)
+ Transformer2 (Prompt) 25.22 (1.03) 61.59 (1.01) 81.74 (1.01)
+ Transformer2 (Cls-expert) 25.18 (1.03) 62.80 (1.03) 81.37 (1.01)
+ Transformer2 (Few-shot) 25.47 (1.04) 62.99 (1.03) 82.61 (1.02)

MISTRAL-7B-INSTRUCT-V0.3 13.02 (1.00) 43.29 (1.00) 71.76 (1.00)
+ LoRA 13.16 (1.01) 37.80 (0.87) 75.77 (1.06)
+ Transformer2 (Prompt) 11.86 (0.91) 43.90 (1.01) 72.35 (1.01)
+ Transformer2 (Cls-expert) 11.60 (0.89) 43.90 (1.01) 74.83 (1.04)
+ Transformer2 (Few-shot) 13.39 (1.03) 47.40 (1.09) 75.47 (1.05)

LLAMA3-70B-INSTRUCT 40.64 (1.00) 78.66 (1.00) 87.63 (1.00)
+ LoRA 25.40 (0.62) 73.78 (0.94) 83.70 (0.96)
+ Transformer2 (Prompt) 40.44 (1.00) 79.88 (1.02) 88.48 (1.01)

parameterization, we would like to note that training SVF requires considerably fewer resources,
with less than 10% of the training parameters of our LoRA implementation.

Adaptation performance With the SVF trained z vectors, we assess the self-adaptation capability
of Transformer2 on unseen tasks. For a fair comparison with LoRA, we record the performance of
this baseline using all checkpoints from the considered training tasks and report only its highest per-
formance for each of the test tasks. As shown in Table 2, all of our Transformer2 adaptation strategies
demonstrate improvements across all tasks for LLAMA3-8B-INSTRUCT base models, and in at least
two out of three tasks for both MISTRAL-7B-INSTRUCT-V0.3 and LLAMA3-70B-INSTRUCT. In
contrast, even the best training LoRAs only provide marginal improvements on the ARC-Challenge
task and still significantly deteriorate performance on both MATH and Humaneval. This discrepancy
suggests that LoRA’s parameterization and optimization might be particularly sensitive to overfit-
ting. In Figure 5, we find a similar dichotomy in the OKVQA task, with the performance of the base
LLAMA3-LLAVA-NEXT-8B VLM only improving after applying Transformer2.

Comparing the three proposed adaptation strategies, we highlight a clear monotonic trend – with
more involved strategies and information about the test-time condition, self-adaptation appears to
be increasingly effective. In particular, Transformer2 with few-shot self-adaptation is almost always
the highest-scoring method, providing notable improvements across all settings except for LLAMA3-
70B-INSTRUCT @MATH, where we have only SVF-tuned half of the layers due to limited GPU
resources. This trend shows that providing additional or different kinds of information seems highly
benefit our framework, suggesting that Transformer2 could provide foundation models with new
means to continually improve performance when deployed in lifelong settings.

Table 3: Time cost of 2-pass
inference in prompt adaptation
strategy of Transformer2 for the
entire problem set. 1st to 2nd pass
inference time ratios are shown in
parentheses.

Task 1st (s) 2nd (s)

MATH 42.64 (13%) 321.19
Humaneval 2.76 (19%) 14.28
ARC-Challenge 13.40 (47%) 28.51

Table 3 reports the inference time required by the prompt adap-
tation strategy of Transformer2, with the time spent on solving
the entire problem set presented separately for the 1st and 2nd
passes. Notice that the 2nd pass inference time is the time
spent on solving the problems, and the 1st pass inference time
is the time for self-adaptation, 1st to 2nd pass inference time
ratios are in parentheses. While the additional inference pass
appears to double the overall runtime, it is important to note
that inference time primarily depends on the number of tokens
generated. In our settings, it is O(n) where n is the length of
the input. ARC-challenge have larger cost ratio because they
are single choice problems and the cost of the 2nd pass is also O(n). In general settings, we think
it is reasonable to assume this ratio to be closer to those of MATH and Humaneval. For a detailed
discussion on improving the efficiency of CEM adaptation methods, please see Appendix D

4.3 ANALYSIS

Lastly, we analyze and discuss the properties of our adaptation strategies for which we provide
extensions and further discussion Appendix B.

8

Published as a conference paper at ICLR 2025

Math Code Reasoning

M
AT

H
HU

M
AN

EV
AL

AC
R-

Ch
al

le
ng

e

1.00 0.00 0.00

0.04 0.96 0.00

0.17 0.00 0.77

Llama3-8B
Prompt Engineering

Math Code Reasoning

0.95 0.00 0.05

0.02 0.98 0.00

0.03 0.00 0.97

Llama3-8B
Classification Expert

Math Code Reasoning

0.96 0.00 0.00

0.00 0.99 0.00

0.06 0.00 0.95

Mistral-7B
Prompt Engineering

Math Code Reasoning

0.99 0.00 0.01

0.00 1.00 0.00

0.04 0.00 0.95

Mistral-7B
Classification Expert

Math Code Reasoning

1.00 0.00 0.00

0.01 0.99 0.00

0.05 0.00 0.95

Llama3-70B
Prompt Engineering

Figure 6: Confusion matrices. These matrices display the classification percentages, where rows
represent the task classes (ground truth) and columns indicate the predicted categories. Some sam-
ples are misclassified as “Others,” which is reflected in rows where the totals do not sum to one.

Analysis 1: Job dispatching accuracy In Figure 6 we provide the confusion matrices of
classification-based adaptation strategies. Results validate the effectiveness of both our strategies
to match each prompt with experts trained in similar domains, as evidenced by the high values
along the diagonals. Furthermore, the results from LLAMA3-8B-INSTRUCT and MISTRAL-7B-
INSTRUCT-V0.3 also show that using the classification expert consistently provides higher classi-
fication accuracy than vanilla prompt engineering. While this difference could explain the higher
performance of the relative self-adaptation strategy, we also note that domain similarity might not
be the only metric relevant to identifying the best expert for each prompt or task. To this end, we be-
lieve many further extensions could be explored in future work, using heuristics such as past expert
performance or token-level analysis to further push our framework’s scalability.

Analysis 2: Training tasks adaptation contribution In Figure 7, we show the normalized adaptive
coefficients ak interpolating between SVF vectors learned via CEM for LLAMA3-8B-INSTRUCT
and MISTRAL-7B-INSTRUCT-V0.3 across the unseen tasks. Intuitively, we find that the expert vec-
tors from the training tasks sharing similar topics to the unseen ones are often the highest contribu-
tors. However, we observe that the MATH task appears as an exception, as the ak for the GSM8K
expert is actually the lowest in both models. We hypothesize this reflects the different nature of
the mathematics competition problems from MATH as compared to the grade-school problems in
GSM8K. In fact, not only is the difficulty of the MATH questions far beyond GSM8K, but a large
portion of its problems also hinges mainly on logical reasoning, for which a task like ARC might be
more aligned. Furthermore, we note that the different z vectors appear to contribute more uniformly
to adaptation in the Llama model. This difference indicates that, due to its higher base performance,
the Llama model does not need to rely on any particular set of skills as much as Mistral, and can har-
ness more holistic benefits from self-adaptation. Note that applying ak uniformly is not a universal
solution for leveraging expert vectors. This becomes evident when we look at different model and
task combinations (e.g. applying ak uniformly on LLAMA3-8B-INSTRUCT for MATH tasks only
achieves 24.47, while Transformer2 (Few-shot) achieves 25.47).

Analysis 3: Ablation studies

Module sensitivity: We compare the performance of SVF on different modules (see trials 1-3).
Both individual MLP and attention updates improve performance, with MLP resulting in more pro-
nounced gains. Updates to both module types yield even more significant enhancements.

Objective function: We are interested in the performance impact from different objective functions,
and we compare the RL objective with next-token prediction (see trials 2, 4). For the latter, we use
instruction fine-tuning with official GSM8K solutions as target tokens. Results show clear perfor-
mance gains with RL. Conversely, next-token prediction even hinders performance. This highlights
RL’s ability to handle cases lacking detailed solutions, suggesting its superiority in this context.

SVF vs LoRA: We also evaluate LoRA using the RL objective (see trials 2, 5). A significant per-
formance disparity is observed, primarily attributed to the severe instability of the LoRA training
process. Despite exploring a wide range of learning rates, LoRA’s performance consistently lagged
behind. For further illustrations, see Figure 9 in the appendix.

Analysis 4: Cross-model compatibility Finally, we explore the potential for our framework to
be applied across different LLMs. In particular, we evaluate whether the SVF vectors trained on
LLAMA3-8B-INSTRUCT can benefit MISTRAL-7B-INSTRUCT-V0.3, and whether we can perform
adaptation across the vectors of these two models. We present our main findings in Table 5 and
refer to Appendix B for additional results. Surprisingly, we find that positive transfer occurs with

9

Published as a conference paper at ICLR 2025

Table 4: Ablation studies. We fine-tune LLAMA3-8B-INSTRUCT on the GSM8K training split with
different settings and the results on the test split along with zero-shot transfer results on MATH.

Method Objective Function Module #Params (↓) GSM8K (↑) MATH (↑)

0 LLAMA-3-8B-INSTRUCT 75.89 (1.00) 24.54 (1.00)

1 SVF Policy gradient MLP 0.39M 78.62 (1.04) 24.20 (0.99)
2 SVF Policy gradient attention 0.16M 76.19 (1.00) 24.20 (0.99)
3 SVF Policy gradient MLP + attention 0.58M 79.23 (1.04) 25.04 (1.04)
4 SVF Next token pred attention 0.16M 60.50 (0.80) 18.52 (0.75)
5 LoRA Policy gradient attention 6.82M 57.92 (0.76) 15.72 (0.64)
6 LoRA Next token pred attention 6.82M 77.18 (0.98) 24.12 (0.96)
7 LoRA Next token pred MLP + attention 35.13M 75.66 (0.96) 22.12 (0.91)

Table 5: Cross-model z vector transfer. Results from transferring the expert vectors trained on
LLAMA3-8B-INSTRUCT to MISTRAL-7B-INSTRUCT-V0.3 with cross model few-shot adaptation.

Method MATH Humaneval ARC-Challenge
SVF training task GSM8K MBPP-pro ARC-Easy

MISTRAL-7B-INSTRUCT-V0.3 13.02 (1.00) 43.29 (1.00) 71.76 (1.00)

+ Llama SVF (ordered σi) 11.96 (0.92) 45.12 (1.04) 72.01 (1.00)
+ Llama SVF (shuffled σi) 10.52 (0.81) 40.24 (0.93) 70.82 (0.99)
+ Few-shot adaptation (cross-model) 12.65 (0.97) 46.75 (1.08) 75.64 (1.05)

visible benefits in 2 out of 3 tasks. We note these improvements are due to the inherent ordering of
the SVF parameterization, as randomly shuffling each SVF vector before applying it to the Mistral
model consistently degrades performance.

GSM8K

25.8%

MBPP

26.2%

Arc Easy48.0%MATH

Llama3-8B

GSM8K
31.1%

MBPP

36.2%

Arc Easy
32.8%

MATH

Mistral-7B

GSM8K 31.2%

MBPP

35.1%

Arc Easy

33.7%

HumanEval

GSM8K
33.3%

MBPP
64.1%

Arc Easy

2.6%

HumanEval

GSM8K

19.3%

MBPP
30.0%

Arc Easy50.7%Arc
Challenge

GSM8K

5.4%
MBPP

7.1%

Arc Easy

87.5%

Arc
Challenge

Figure 7: αk learned weights.

This operation leads to notable performance degradation across
tasks. By performing few-shot adaptation using the SVF vectors
from both models, the performance of MISTRAL-7B-INSTRUCT-
V0.3 further improves across the board. We observe that these
gains even surpass the best score from adapting MISTRAL-7B-
INSTRUCT-V0.3 with all the SVF vectors in the ARC-Challenge
task reported in Table 2. While these results appear promising,
we note that the surprising compatibility discovered through our
naive transfer approach is potentially tied to the similarity be-
tween the architectures of the two considered LLMs. To this end,
whether similar transfer can be replicated with models of differ-
ent scales remains an open question that could open the doors
to recycling task-specific skills for larger models, with important
implications for democratization and sustainability.

5 CONCLUSION

In this paper, we introduced Transformer2, providing a novel blueprint toward realizing self-adaptive
LLMs. Within this framework, we first proposed SVF, offering superior performance than prior fine-
tuning recipes, together with reduced costs, high compositionality, and overfitting regularization – all
crucial properties to achieve scalable adaptation. Leveraging a set of SVF experts as building blocks,
we developed three effective strategies for self-adaptation, each offering unique advantages, with
performance and monotonic performance benefits with increasing access to the test-time conditions.

While Transformer2 demonstrates promising results, there remain exciting opportunities for future
work. One limitation is that the capabilities of SVF experts are tied to the latent components of the
base model. To address this, model merging offers a promising direction (Yu et al., 2024; Goddard
et al., 2024; Akiba et al., 2024). Additionally, while CEM-based adaptation balances performance
and efficiency, scaling to a large number of specialized domains may increase the initial one-time
computational costs. Advances in model merging and efficient adaptation techniques have pro-
duced models dominating open leaderboards, making them strong candidates as base models for
Transformer2 and opening new possibilities for adaptive LLMs.

10

Published as a conference paper at ICLR 2025

REFERENCES

Takuya Akiba, Makoto Shing, Yujin Tang, Qi Sun, and David Ha. Evolutionary optimization of
model merging recipes. arXiv preprint arXiv:2403.13187, 2024.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Klaudia Bałazy, Mohammadreza Banaei, Karl Aberer, and Jacek Tabor. Lora-xs: Low-rank adapta-
tion with extremely small number of parameters. arXiv preprint arXiv:2405.17604, 2024.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Alberto Cetoli. Fine-tuning llms with singular value decomposition. Hugging Face Blog, June
2024. URL https://huggingface.co/blog/fractalego/svd-training. Ac-
cessed: 2024-07-01.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Elizabeth N Davison, Kimberly J Schlesinger, Danielle S Bassett, Mary-Ellen Lynall, Michael B
Miller, Scott T Grafton, and Jean M Carlson. Brain network adaptability across task states. PLoS
computational biology, 11(1):e1004029, 2015.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improv-
ing factuality and reasoning in language models through multiagent debate. arXiv preprint
arXiv:2305.14325, 2023.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

Charles Goddard, Shamane Siriwardhana, Malikeh Ehghaghi, Luke Meyers, Vlad Karpukhin, Brian
Benedict, Mark McQuade, and Jacob Solawetz. Arcee’s mergekit: A toolkit for merging large
language models. arXiv preprint arXiv:2403.13257, 2024.

Faustino Gomez and Jürgen Schmidhuber. Evolving modular fast-weight networks for control. In
International Conference on Artificial Neural Networks, pp. 383–389. Springer, 2005.

David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. In International Conference on Learn-
ing Representations, 2017. URL https://openreview.net/forum?id=rkpACe1lx.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Kazuki Irie, Imanol Schlag, Róbert Csordás, and Jürgen Schmidhuber. A modern self-referential
weight matrix that learns to modify itself. In International Conference on Machine Learning, pp.
9660–9677. PMLR, 2022.

11

https://huggingface.co/blog/fractalego/svd-training
https://openreview.net/forum?id=rkpACe1lx

Published as a conference paper at ICLR 2025

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Junmo Kang, Leonid Karlinsky, Hongyin Luo, Zhen Wang, Jacob Hansen, James Glass, David
Cox, Rameswar Panda, Rogerio Feris, and Alan Ritter. Self-moe: Towards compositional large
language models with self-specialized experts. arXiv preprint arXiv:2406.12034, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Prakhar Kaushik, Ankit Vaidya, Shravan Chaudhari, and Alan Yuille. Eigenlorax: Recycling
adapters to find principal subspaces for resource-efficient adaptation and inference, 2025. URL
https://arxiv.org/abs/2502.04700.

Verena Klös, Thomas Göthel, and Sabine Glesner. Adaptive knowledge bases in self-adaptive sys-
tem design. In 2015 41st Euromicro Conference on Software Engineering and Advanced Appli-
cations, pp. 472–478, 2015. doi: 10.1109/SEAA.2015.48.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki Markus Asano. Vera: Vector-based random
matrix adaptation. arXiv preprint arXiv:2310.11454, 2023.

Jan Koutnik, Faustino Gomez, and Jürgen Schmidhuber. Evolving neural networks in compressed
weight space. In Proceedings of the 12th annual conference on Genetic and evolutionary compu-
tation, pp. 619–626, 2010.

Vijay Lingam, Atula Tejaswi, Aditya Vavre, Aneesh Shetty, Gautham Krishna Gudur, Joy-
deep Ghosh, Alex Dimakis, Eunsol Choi, Aleksandar Bojchevski, and Sujay Sanghavi. Svft:
Parameter-efficient fine-tuning with singular vectors. arXiv preprint arXiv:2405.19597, 2024.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
Colin A Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
learning. Advances in Neural Information Processing Systems, 35:1950–1965, 2022.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. arXiv
preprint arXiv:2402.09353, 2024.

Lasse S Loose, David Wisniewski, Marco Rusconi, Thomas Goschke, and John-Dylan Haynes.
Switch-independent task representations in frontal and parietal cortex. Journal of Neuroscience,
37(33):8033–8042, 2017.

Kenneth Marino, Mohammad Rastegari, Ali Farhadi, and Roozbeh Mottaghi. Ok-vqa: A visual
question answering benchmark requiring external knowledge. In Proceedings of the IEEE/cvf
conference on computer vision and pattern recognition, pp. 3195–3204, 2019.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Abhishek Panigrahi, Sadhika Malladi, Mengzhou Xia, and Sanjeev Arora. Trainable transformer in
transformer. arXiv preprint arXiv:2307.01189, 2023.

Qwen Team. Qwen1.5-moe: Matching 7b model performance with 1/3 activated parameters, March
2024. URL https://qwenlm.github.io/blog/qwen-moe/. Blog post.

Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Aminabadi, Am-
mar Ahmad Awan, Jeff Rasley, and Yuxiong He. Deepspeed-moe: Advancing mixture-of-experts
inference and training to power next-generation ai scale. In International conference on machine
learning, pp. 18332–18346. PMLR, 2022.

12

https://arxiv.org/abs/2502.04700
https://qwenlm.github.io/blog/qwen-moe/

Published as a conference paper at ICLR 2025

Reuven Y Rubinstein and Dirk P Kroese. The cross-entropy method: a unified approach to com-
binatorial optimization, Monte-Carlo simulation, and machine learning, volume 133. Springer,
2004.

Jürgen Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic recurrent
networks. Neural Computation, 4(1):131–139, 1992.

Jürgen Schmidhuber. A ‘self-referential’weight matrix. In ICANN’93: Proceedings of the Interna-
tional Conference on Artificial Neural Networks Amsterdam, The Netherlands 13–16 September
1993 3, pp. 446–450. Springer, 1993.

Jürgen Schmidhuber. On learning to think: Algorithmic information theory for novel combina-
tions of reinforcement learning controllers and recurrent neural world models. arXiv preprint
arXiv:1511.09249, 2015.

Pratyusha Sharma, Jordan T Ash, and Dipendra Misra. The truth is in there: Improving reasoning
in language models with layer-selective rank reduction. arXiv preprint arXiv:2312.13558, 2023.

Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
and Marcus Rohrbach. Towards vqa models that can read. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 8317–8326, 2019.

Kenneth O Stanley, David B D’Ambrosio, and Jason Gauci. A hypercube-based encoding for evolv-
ing large-scale neural networks. Artificial life, 15(2):185–212, 2009.

Chen Tianlong, Cheng Yu, Chen Beidi, Zhang Minjia, and Bansal Mohit. Mixture-of-experts in the
era of llms: A new odyssey. ICML 2024 presentation slides, 2024. International Conference on
Machine Learning (ICML).

Hanqing Wang, Zeguan Xiao, Yixia Li, Shuo Wang, Guanhua Chen, and Yun Chen. Milora:
Harnessing minor singular components for parameter-efficient llm finetuning. arXiv preprint
arXiv:2406.09044, 2024.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario: Ab-
sorbing abilities from homologous models as a free lunch. In Forty-first International Conference
on Machine Learning, 2024.

Ceyao Zhang, Kaijie Yang, Siyi Hu, Zihao Wang, Guanghe Li, Yihang Sun, Cheng Zhang, Zhaowei
Zhang, Anji Liu, Song-Chun Zhu, et al. Proagent: building proactive cooperative agents with large
language models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38,
pp. 17591–17599, 2024.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He,
Yu Cheng, Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-
efficient fine-tuning. arXiv preprint arXiv:2303.10512, 2023.

Tong Zhu, Xiaoye Qu, Daize Dong, Jiacheng Ruan, Jingqi Tong, Conghui He, and Yu Cheng.
Llama-moe: Building mixture-of-experts from llama with continual pre-training. arXiv preprint
arXiv:2406.16554, 2024.

Mingchen Zhuge, Haozhe Liu, Francesco Faccio, Dylan R Ashley, Róbert Csordás, Anand
Gopalakrishnan, Abdullah Hamdi, Hasan Abed Al Kader Hammoud, Vincent Herrmann,
Kazuki Irie, et al. Mindstorms in natural language-based societies of mind. arXiv preprint
arXiv:2305.17066, 2023.

13

Published as a conference paper at ICLR 2025

A IMPLEMENTATION DETAILS AND HYPER-PARAMETERS

A.1 SVF TRAINING

We obtain the expert vectors z as the base components in Transformer2 by training the SVF fine-
tunes with a consistent recipe across the considered training tasks and language models. We divide
each dataset to produce equal-sized training and validation splits. We then apply our RL-based
approach, optimizing θz with AdamW using a learning rate of 2× 10−3 with cosine decay, a batch
size of 256, and gradient clipping. We employ early stopping and select the best λ (the coefficient
of the KL divergence term) based on validation performance. For the LLAMA3-70B-INSTRUCT
and Vision tasks experiments, we apply the SVF on half of the layers to reduce memory usage
while maintaining considerable performance improvement. During the training of LLAMA3-8B-
INSTRUCT on the vision language tasks, we apply a small negative reward (-0.1) for training stability.

A.2 LORA TRAINING

Below is an instruction that describes a task. Write a response that
appropriately completes the request.

Natalia sold clips to 48 of her friends in April, and then she sold half
as many clips in May. How many clips did Natalia sell altogether in
April and May?

Natalia sold 48/2 = <<48/2=24>>24 clips in May. Natalia sold 48+24
= <<48+24=72>>72 clips altogether in April and May. #### 72

Figure 8: Sample problem and answer. Math data
sample used for LoRA instruction fine-tuning, text in
blue is the unmasked solution.

We follow community best practices for
LoRA fine-tuning, applying it to query and
value projection layers with learning rates
around 5 × 10−5. We set 200 total itera-
tions with a 256 global batch size for suffi-
cient training. For feasible LoRA instruc-
tion training, we collect solutions for all
training tasks (GSM8K, MBPP, Arc-Easy,
TextVQA) from official sources and ap-
pend them to question prompts. Table 8
shows a sample math problem used for
LoRA fine-tuning. Despite extensive hy-
perparameter tuning, we often observe test
performance decay as discussed, which
can be attributed to the small number of training samples and potential model requirements for
instruction fine-tuning data (specifically, the highly detailed thinking process).

A.3 HYPER PARAMETERS

We present a summary of the hyperparameters used in our experiments in Table 6. To optimize
performance, we conducted sweeps across several hyperparameters and selected the most effective
combination based on validation results. For SVF, our primary focus was on adjusting the KL
coefficient to enhance training stability. In the case of LoRA, we concentrated on sweeping the
learning rate and maximum gradient clip norm to identify optimal settings.

A.4 FEW-SHOT ADAPTATION

As described in the main text, our few-shot adaptation approach entails producing an entirely new
z′ =

∑K
k=1 αkzk for each W by linearly interpolating between the K learned SVF vectors, each

weighted by the coefficients α ∈ RK . We employ CEM to search for αk’s based on the performance
on the few-shot prompts, which are specifically held out from the rest of the test prompts and used
to obtain the elite set at each iteration. In the case of multiple sample solutions obtaining the same
score on these held-out samples, we break ties by choosing the sample solution with the highest
average log-likelihood across the tokens of its generated correct answers.

In all of our main experiments, we reserve only 10 samples of data for self-adaptation and perform up
to 100 CEM iterations. For each setting, we consider both per-layer and per-vector adaptation, where
the latter strategy has the advantage of greatly simplifying search (as we only have 3 α coefficients).
Moreover, we experiment with both normalizing across the α of different tasks (such that their sum
would be fixed to 1) or keeping them unconstrained. Due to the lack of a validation set, we simply
report the performance attained by our best sample from these test configurations at the end of
optimization, on the remaining unseen samples for each task.

14

Published as a conference paper at ICLR 2025

Table 6: Hyper-parameters used for SVF and LoRA training. We perform a sweep on certain
sensitive hyper-parameters across methods for fair comparison.

SVF Hyperparameters
Initial mean value of z 0.1
Initial variance value of z 1× 10−3

Global batch size 256
Learning rate 2× 10−3

Clip max norm 1× 10−3

KL coefficient λ 0.0, 0.1, 0.2, 0.3

LoRA Hyperparameters
Rank 16
LoRA alpha 32
LoRA dropout 0.05
Global batch size 256
Learning rate 2× 10−4, 5× 10−4, 2× 10−5, 5× 10−5, 2× 10−6. 5× 10−6,
Clip max norm 1× 10−3, 1.0

Table 7: Additional Comparison Experiment. Normalized scores are in the parentheses.

Method GSM8K MBPP-Pro ARC-Easy

LLAMA3-8B-INSTRUCT 75.89 (1.00) 64.65 (1.00) 88.59 (1.00)
+ IA3 78.01 (1.03) 67.68 (1.05) 89.10 (1.01)
+ DORA 78.09 (1.03) 64.65 (1.00) 89.14 (1.01)
+ SVF(Ours) 79.15 (1.04) 66.67 (1.03) 89.56 (1.01)

Method MATH Humaneval ARC-Challenge

LLAMA3-8B-INSTRUCT 24.54 (1.00) 60.98 (1.00) 80.63 (1.00)
+ IA3 23.64 (0.96) 59.76 (0.98) 81.57 (1.01)
+ DORA 24.44 (0.99) 52.44 (0.86) 81.14 (1.01)
+ Transformer2 (Prompt) 25.22 (1.03) 61.59 (1.01) 81.74 (1.01)
+ Transformer2 (Cls-expert) 25.18 (1.03) 62.80 (1.03) 81.37 (1.01)
+ Transformer2 (Few-shot) 25.47 (1.04) 62.99 (1.03) 82.61 (1.02)

B ADDITIONAL RESULTS

B.1 BASELINE COMPARISON TO MORE PEFT METHODS

We conduct additional comparison studies against more parameter-efficient fine-tuning methods,
including IA3Liu et al. (2022), DORA. Liu et al. (2024).

As Table 7 shows, SVF still outperforms other methods and shows promising generalized perfor-
mance.

B.2 IMPACT FROM NUMBER OF FEW-SHOTS

Table 8: Few-shot adaptation scaling on the Arc-
Challenge task. Performance varies with number of
examples.

Method Transformer2 IA3 100 steps IA3 1000 steps
LLAMA3-8B-INSTRUCT 80.63 (1.00) 80.63 (1.00) 80.63 (1.00)

+ 3-shot adaptation 82.18 (1.02) 81.83 (1.01) 79.01 (0.98)
+ 5-shot adaptation 82.38 (1.02) 80.89 (1.00) 79.41 (0.98)
+ 10-shot adaptation 82.61 (1.02) 82.00 (1.02) 79.78 (0.99)
+ 20-shot adaptation 82.61 (1.02) 81.40 (1.01) 79.61 (0.99)

We investigate the relationship between
the number of samples available for few-
shot adaptation and downstream perfor-
mance. Our analysis focused on the
test task where LLAMA3-8B-INSTRUCT
demonstrates the highest baseline perfor-
mance, to prevent the potential for a null
signal in our CEM-based search.

As Table 8 shows, substantial benefits of
our few-shot strategy are evident with as few as 3 to 5 test samples. Moreover, performance appears
to plateau beyond 10 samples, underscoring how our essential and inherently regularized SVF pa-

15

Published as a conference paper at ICLR 2025

rameterization effectively complements self-adaptation. This efficiency enables optimal use of data
to enhance understanding of the test task.

For completeness, we have also conducted experiments with identical settings on IA3 (Liu et al.,
2022), another method that leverages few-shot examples. All experiments were conducted with full
batch size, a learning rate of 5× 10−5, with 100 and 1000 training steps.

Our results indicate that the performance of IA3 on the unseen test tasks is inferior to CEM-based
adaptation for all numbers of few shots considered. We note that in our experiment, we have to
considerably limit the number of optimization steps to avoid overfitting the 500,000 parameters of
IA3 on the few-shot samples. However, we believe overfitting might still be occurring to some
degree even after only 100 steps, as also validated by the model’s perfect training accuracy on
this extremely small dataset. This limitation of fine-tuning-based adaptation highlights the superior
generalization capability of our CEM-based adaptation approach in Transformer2.

B.3 CROSS-MODEL SVF TRANSFER ON THE TRAINING TASKS

We provide complementary results to Table 5 in the main text, where we analyze the SVF cross-
model transfer performance from training on GSM8K, MBPP-pro, and ARC-Easy to our consid-
ered test tasks. In Table 9, we show the results in the same transfer setting this time evaluating
MISTRAL-7B-INSTRUCT-V0.3 on the same training tasks where the LLAMA3-8B-INSTRUCT SVF
vectors were obtained from. Overall, we recognize a similar trend, albeit with less consistent im-
provement from the original model (only in 1 out of 3 tasks), but still much higher performance than
the randomly shuffled baseline. These results further confirm that the canonical ordering of the SVF
parameterization is key for cross-model transfer, highlighting once more its inherent suitability to
empower self-adaptation.

Table 9: Cross-model z Vector Transfer. Results from transfering the SVF expert vectors trained
on LLAMA3-8B-INSTRUCT to MISTRAL-7B-INSTRUCT-V0.3 in the respective training tasks.

Method GSM8K MBPP-pro ARC-Easy
MISTRAL-7B-INSTRUCT-V0.3 42.83 (1.00) 49.50 (1.00) 81.65 (1.00)

+ Llama SVF (ordered σi) 42.61 (0.99) 48.48 (0.98) 81.78 (1.00)
+ Llama SVF (shuffled σi) 41.93 (0.98) 46.34 (0.94) 80.81 (0.99)

B.4 TRAINING CURVE OF LORA AND POLICY GRADIENT

Figure 9 gives the learning curves for LoRA training on the GSM8K task.

0 50 100 150 200 250 300
Iterations

0.55

0.60

0.65

0.70

0.75

0.80

Sc
or

e

Learning Curve on GSM8K with Lora and Policy gradient

Train Accuracy
Test Accuracy
Base Model Performance

Figure 9: Training LoRA with policy gradient. The dashed line shows the performance of
LLAMA3-8B-INSTRUCT on the test split. LoRA collapses at the beginning of the training stage
and fails to recover, leading to negative effects on test performance. We swept a wide range of learn-
ing rates (2× 10−4, 5× 10−4, . . . , 2× 10−2, 5× 10−2), and all learning curves were similar to the
one presented.

16

Published as a conference paper at ICLR 2025

C PCA ON LLAMA3 AND MISTRAL

To investigate if the singular components that have the highest singular values are able to capture
most of the information of a weight matrix, we conducted Principle Component Analysis (PCA)
on the weight matrices in LLAMA3-8B-INSTRUCT and MISTRAL-7B-INSTRUCT-V0.3 (see Fig-
ures 10 and 11). In each figure, we plot the variance that is captured by the top r components across
all the layers in each type of modules for a weight matrix W ∈ Rm×n:

ratio =

∑r
i=1 σi∑min(m,n)

j=1 σj

Here, σ’s are the ordered (from largest to smallest) singular values on the weight matrix W . It is
easy to see from the figures that when r = 256, less than 50% of the variance is captured by these
top components on average. For the MLP layers, this fraction is even lower than 20%. On the
other hand, the ranks adopted by LoRA-XS or similar methods are much less than 256, resulting
in even more information loss and restrictions in their modeling power that relies mostly on these r
components.

0.0

0.2

0.4

0.6

q_proj
r=16
r=64
r=256

k_proj

0.0

0.2

0.4

0.6

v_proj o_proj

0.0

0.2

0.4

0.6

up_proj gate_proj

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0.0

0.2

0.4

0.6

down_proj

Figure 10: PCA of LLAMA3-8B-INSTRUCT. We show the ratio of the variance captured by the
top r singular components on the y-axis, and the layer indices on the x-axis. Except for the Query,
Key and Value projection matrices, small r values only capture a tiny fraction of variance in singular
values in the parameter matrices.

D EFFICIENCY CONSIDERATIONS AND IMPROVEMENTS

Table 10: 3-shot and light variants Performance
with different inference-time adaptation budgets.

Method ARC-Challenge
LLAMA3-8B-INSTRUCT 80.63 (1.00)

+ CEM 10-shot adaptation 82.61 (1.02)
+ CEM 3-shot (30% of prompts) 82.18 (1.02)
+ CEM light (3% of prompts) 82.08 (1.02)

Our CEM-based adaptation method involves
running inference on a small number of sam-
ples for each target task (up to 10 in our ex-
periments). In a typical configuration, this pro-
cess is relatively efficient: for example, our
CEM-light approach (3-shot with 10 genera-
tions) completes the ARC-Challenge task in ap-
proximately 11 minutes. As shown in Table 10,
this lighter setup reduces the total number of samples to just 3% of the original setting while still
delivering substantial performance improvements over the base model.

17

Published as a conference paper at ICLR 2025

0.0

0.2

0.4

0.6

0.8

q_proj
r=16
r=64
r=256

k_proj

0.0

0.2

0.4

0.6

0.8

v_proj o_proj

0.0

0.2

0.4

0.6

0.8

up_proj gate_proj

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0.0

0.2

0.4

0.6

0.8

down_proj

Figure 11: PCA of MISTRAL-7B-INSTRUCT-V0.3. We show the ratio of the variance captured
by the top r singular components on the y-axis, and the layer indices on the x-axis. Except for the
Query, Key and Value projection matrices, small r values only capture a tiny fraction of variance in
singular values in the parameter matrices.

We acknowledge that CEM-based adaptation entails a trade-off between one-time overhead it spends
on searching the optimal combination weights for the SVF-tune vectors and performance. Increasing
the number of few-shot samples or the number of generations can yield higher performance, but this
comes at the cost of additional computational overhead. However, it is important to note that this
adaptation cost is a one-time overhead per task. The cost-per-prompt diminishes significantly when
applied to tasks with a large number of prompts.

Moreover, in practical scenarios, CEM-based adaptation offers better scalability than few-shot
prompting methods, which require increasing the length of every prompt, leading to much worse
scaling as task sizes grow. In contrast, our method focuses on determining optimal expert vector
combinations efficiently and avoids repetitive inference-time costs. However, we note that the over-
head might be significant for tasks with very few prompts. Thus, the other adaptations methods
might be more appropriate for these particular settings.

We also highlight two immediate directions for improving efficiency:

1. Reducing the number of few-shot samples: As shown in our ablation study in Ap-
pendix B.2, substantial benefits can be seen even in the 3-shot setting, which requires only
evaluation of only 30% of the number of prompts per generation.

2. Reducing the number of maximum generations: In the explored settings, the CEM param-
eters tend to converge early on, being very close to the final values after a much lower
number of generations than 100.

Finally, in this work we only considered CEM due to its simplicity, there exist several different
evolution algorithms empirically showing better efficiency and convergence properties that we hope
will be explored in future research.

18

	Introduction
	Related works
	Methods
	Preliminaries
	Transformer2

	Experiments
	Experimental setups
	Experimental results
	Analysis

	Conclusion
	Implementation details and hyper-parameters
	SVF training
	LoRA training
	Hyper parameters
	Few-shot adaptation

	Additional results
	Baseline Comparison to More PEFT Methods
	Impact from number of few-shots
	Cross-model svf transfer on the training tasks
	Training curve of LoRA and policy gradient

	PCA on llama3 and mistral
	Efficiency considerations and improvements

