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Abstract—Neural Machine Translation (NMT) normally re-
quires a large amount of parallel corpus to obtain good per-
formance, which is often unavailable for minority languages.
Current methods normally pre-train seq2seq models on monolin-
gual data in a denoising manner and then fine-tune the parallel
data to improve the performance of low-resource translation. But
minority languages used in adjacent areas may co-relate with
each other, and jointly modeling them may lead to better per-
formance. In this paper, we propose to improve the performance
of Chinese minority language translation with Multilingual NMT
(MNMT). As the tokens of the minority languages are not covered
by either Chinese BART or mBART and the vocabulary size
of the multilingual data exceeds that of the pre-trained model,
we map the vocabulary of minority languages to that of the
pre-trained BART according to the frequency and enlarge the
BART vocabulary by repeating low-frequency tokens respectively
to address them. Our experiment results on the CCMT 2023
Chinese minority language translation tasks show that joint
modeling can improve the Uyghur-to-Chinese and the Tibetan-
to-Chinese tasks by +2.85 and +1.30 BLEU respectively with
BART base, and lead to BLEU scores of 55.48, 53.52, and 48.26
on the Mongolian-to-Chinese, Tibetan-to-Chinese and Uyghur-
to-Chinese translation tasks respectively with BART large.

Index Terms—Chinese Bart, Multilingual Neural Machine
Translation, Transformer

I. INTRODUCTION

Neural Machine Translation (NMT) models typically rely on
much training data to achieve good performance [1], [2]. But
for the translation of minority languages, it might be hard to
build large scale datasets to well support the training of NMT
models. Previous work on improving low-resource translation
focuses on either data augmentation [3]–[6], or pre-training
[7], [8].

As some minority languages may be frequently used in
adjacent areas and affect each other during their evolution,
enabling knowledge transfer in their translation may benefit
the performance of low-resource languages. In this paper,
we propose to improve the performance of Chinese minority
language translation by jointly modeling them with a single
model in a Multilingual NMT (MNMT) manner [9]–[13].
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The tokens of Chinese minority languages are not well
covered in the vocabulary of the pre-trained model. We sort the
tokens of the Chinese minority languages and the pre-trained
model’s vocabulary by frequency and map them accordingly
when using BART.

We test our approach on the CCMT 2023 Chinese mi-
nority language translation tasks (Mongolian (mn) /Uyghur
(uy)/ Tibetan (ti)→Chinese Han (zh)) with both multilingual
Transformer [14] and Chinese BART [15]. Experiment results
show that our approach can lead to significant improvements
over the strong BART baseline.

Our main contributions are as follows:
• We propose to improve the performance of minority lan-

guage translation by joint modeling in an MNMT manner
and address the vocabulary mismatching by frequency-
based mapping and low-frequency token duplication.

• We test the effectiveness of our method on the CCMT
2023 Chinese minority translation task, and obtain sig-
nificant BLEU improvements (+2.85 and +1.30 for
uy→zh and the ti→zh respectively) over the strong BART
baseline.

II. RELATED WORK

A. Low-resource Translation

[16] fine-tune the model trained on high-resource trans-
lation tasks to improve the translation performance on low-
resource tasks. BART [15] and T5 [17] pre-train on monolin-
gual data, and [18]–[21] utilize BART for machine translation
tasks and obtain significant improvements. [3], [5] use mono-
lingual data through back-translation. [4], [6] obtain pseudo-
bilingual parallel data by adding noise to the training data.

B. Multilingual Neural Machine Translation

[22]–[25] show that the bilingual translation model can
achieve good translation results. Multilingual models can share
language features and representations to improve translation
quality for resource-scarce languages [26]–[32]. Most studies
focus on how to mitigate this representation bottleneck [9],
[33]–[43] with massively MNMT [27]–[32].

[44], [45] show that leveraging the semantic information of
high-resource languages can significantly improve the transla-
tion performance of low-resource languages. [46] show that
leveraging the similarity between related languages provides
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a promising approach to addressing low-resource translation.
Transferring a pre-trained multilingual NMT model can im-
prove the performance of downstream language pairs [12],
[45], [47], especially for low-resource scenarios [48].

III. JOINT TRAINING OF MINORITY LANGUAGE
TRANSLATION TASKS

MNMT trains a single model [26], [27], [49] on the data
of different translation tasks, enabling transfer learning across
languages and help improve performance on low-resource
tasks. As in our case, the CCMT 2023 Chinese minority
language translation tasks all translate into the same language
(Chinese Han), the model indeed does not need specific
language tokens to indicate the target language, and we can
simply concatenate the training of data of different tasks
without modifying the model, as shown in Figure 1. But it is
also not a problem to translate into more than one language,
and we can follow the common practice of replacing the start-
of-sentence token with the specific target language token to
indicate the translation direction in this case [49].

However, when using the pre-trained BART for the MNMT
of minority languages, there are two problems: 1) the vocabu-
lary of the pre-trained model cannot well cover the tokens
in the minority languages, and 2) the joint vocabulary of
minority languages might be larger than that of the pre-trained
model. We address these two issues through frequency-based
vocabulary replacement and low-frequency token duplication
respectively.

In addition, we also attempted to utilize mbart pretraining
models with a wider range of language options in hopes of
achieving better performance. Unfortunately, Mbart did not
address these issues for the following reasons: 1) The tokenizer
used in Mbart does not include vocabulary for these languages.
2) Compared to Chinese BART, mbart needs to allocate its
model capacity and capabilities to other languages, resulting
in limited ability to handle minority languages and lower
performance on Chinese text.

A. Frequency-based Vocabulary Replacement

Most tokens of the minority languages are not in the vocab-
ulary of the pre-trained model. This can be solved by randomly
initializing the embeddings of the minority languages’ tokens,
but using pre-trained embeddings, which are pre-trained with
the other model layers rather than random initialization, may
lead to better performance.

The problem with using pre-trained embeddings is how
to map the embeddings of tokens of the pre-trained model
to those of the minority language. Although the languages
are different, they are used in adjacent areas describing the
same world, and there might be similarities in the word
frequency distribution and word co-occurrence distribution
between these languages. Based on this assumption, we sort
the pre-trained model’s tokens and the minority languages’
tokens by their frequencies and map the pre-trained model’s
token to the minority languages’ token of the same rank,
i.e., high-frequency pre-trained model’s tokens are mapped

to high-frequency minority languages’ tokens and vice versa.
We establish a mapping between the indices in the minority
dictionary and the Chinese BART’s dictionary using word
frequency substitution, as show in Figure 2. This approach
aims to directly align the minority language dictionary with
the Chinese dictionary, thereby leveraging the pre-trained
embedddings.

For addressing the issue of word frequency in Chinese, we
utilized a 1TB-sized Chinese dataset to perform word fre-
quency counting. The resulting word frequency dictionary was
used to indicate the frequency ranking of words in the Chinese
BART dictionary. We handled the word frequencies differently
for single-language models and multilingual models. 1) Single-
language models: We aligned the word frequencies of minority
languages with the corresponding entries in the Chinese BART
dictionary. 2) Multilingual models: We computed and sorted
the weighted word frequencies for various minority languages
based on their respective weighted frequencies using Formula
1, where Freqwei represents the weighted frequency of a
token, Freqminor represents the actual frequency of the token
in the minority language, and SUMminor represents the total
number of tokens in that specific minority language.. The
weighted frequencies were then aligned with the Chinese
BART dictionary.

Freqwei =
Freqminor

SUMminor
(1)

An issue with multilingual modeling is that the amounts of
data are usually different for different translation tasks, and the
task with more training data leads to higher token counts than
the others. To address this, we count the tokens independently
in each dataset, normalize their counts by the total number of
tokens in the dataset, and perform the token replacement based
on the normalized token frequency (i.e., the token probability
in its corresponding dataset). For a few tokens that appear in
more than one dataset, we take the highest token probability
among these datasets as its token probability, and averaging is
another choice.

B. Vocabulary Enlargement via Low-frequency Token Dupli-
cation

To address the issue of larger vocabulary in multilingual
models compared to pre-trained models, we duplicate low-
frequency tokens of the pre-trained model’s vocabulary to
expand the vocabulary size. As illustrated in Figure 3, we
replicate the word embeddings of the least frequent words in
the Chinese dictionary. The number of duplicated tokens is
adjusted based on the differences in vocabulary sizes between
Chinese and the minority languages. This does not affect the
embedding mapping of high-frequency tokens while providing
pre-trained embeddings for low-frequency tokens.

IV. EXPERIMENT

A. Settings

1) Datasets: We tested the effectiveness of our ap-
proach on the CCMT 2023 Chinese minority language
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<sos> ཀྲུང་གོིུ་དུག་་བུདུ་ལ་མེུ་་སོུ་མུ་་ིུྲུ་ྲུ་་ངུགང་ངུ་གོོུསུ་ོུ་མུ་་ུ་ྲ་མ་ <eos>

<sos> زدپىەۇئ اەاەلپەتەققي ئغى تياتيام ىەتغتوىەى زەىىئ  پەقەچ اغلوي  زىىىەىەتەئ . <eos>

<sos> ᠰᠢ ᠶᠢᠨ ᠫᠢ ᠮᠠᠯᠠᠶᠢᠰᠢᠶ᠎ᠠ ᠶᠢᠨ ᠶᠡᠷᠦᠩᠭᠢ ᠰᠠᠶᠢᠳ ᠮᠠᠬᠠᠳᠢᠷ ᠲᠠᠢ ᠤᠳᠠᠰᠤ ᠪᠷ ᠶᠠᠷᠢᠯᠴᠠᠪ <eos>

<sos> 中国经济展现出了强大韧性和抗冲击能力。

<sos> 我们队伍刚刚出发不到两公里，就遇到了一个巨大的困难。

<sos> 习近平同马来西亚总理马哈蒂尔通电话

 中国经济展现出了强大韧性和抗冲击能力。 <eos>

我们队伍刚刚出发不到两公里，就遇到了一个巨大的困难。 <eos>

 习近平同马来西亚总理马哈蒂尔通电话 <eos>

Encoder

Decoder

Mongolian：

Uyghur：

Tibetan：

Fig. 1. Multi-language data concatenation.

 ▁ᠨᠢᠭ    ▁ᠳᠦ    ▁᠂     ▁ᠨᠠᠮ    ▁ᠤᠨ  ▁ᠤᠳᠤᠷᠢᠳᠤᠯᠭ᠎ᠠ   ▁ᠶᠢ   ▁ᠪᠷᠢᠢᠮᠠᠯᠠᠠ  ▁᠃

5959    7723    3566   17213   15134    17204     11009    8153    4896

Frequency-based vocabulary replacement

5959    7723    3566   17213   15134    17204     11009    8153    4896

  到       大         。      经        的        细          是         嫝         一

 一        是       坚        持        党        的          领         导           。

Source(mn)

Reference Chinese

Fig. 2. Frequency-based vocabulary replacement.

TABLE I
STATISTICS OF CCMT 2023 CHINESE MINORITY LANGUAGE

TRANSLATION DATASETS.

Task Training Validation Test

mn→zh 1023081 1000 10000
uy→zh 131535 1000 10000
ti→zh 708266 500 10000

Mongolian→Chinese (mn→zh), Uyghur→Chinese (uy→zh),
and Tibetan→Chinese (ti→zh) translation tasks. To address
the unknown word issue, we applied independent Byte Pair
Encoding (BPE) [50] with the SentencePiece toolkit [51],
we used 16k merge operations for BPE following [52]. For
transformer models, the Chinese Han data were segmented
with the jieba toolkit before BPE. For BART models, the
Chinese Han data were tokenized by the Chinese BART
tokenizer without additional segmentation and BPE.

2) Hyper-parameters: We tested the effectiveness of our
approach on both the Transformer model [2] and the Chi-
nese BART model. For Transformer, we used 6 encoder and
decoder layers, 512 as the embedding dimension, 4 times
of embedding dimension as the number of hidden units of
the feed-forward layer, and a dropout probability of 0.1.
The number of warm-up steps was set to 8k. We used a
batch size of around 25k target tokens achieved by gradient
accumulation. For BART, we fine-tuned the model with a fixed
learning rate of 1e− 5.

TABLE II
MAIN RESULTS.

Methods mn→zh uy→zh ti→zh

Transformer base 53.09 24.75 45.05
+ joint training 53.05 45.19 47.52

+ 24 layers 56.00 46.80 48.47

Chinese BART base 51.41 42.96 47.80
+ joint training 51.28 45.81 49.10

+ BART large 55.48 48.26 53.52

3) Evaluation: We decoded with a beam size of 5 with an
average of the last 5 checkpoints saved in an interval of 1500
training steps. As the reference of the test set is not publicly
available, we evaluated the translation quality on the validation
set by character-level BLEU with the SacreBLEU toolkit [53].

B. Main Results

Our main results are shown in Table II. Table II shows
that: 1) our method can lead to consistent and significant
improvements on the low-resource uy→zh and ti→zh tasks
over both the strong Transformer (+20.44 and +2.47 BLEU
respectively) and the BART (+2.85 and +1.30 BLEU re-
spectively) baselines, and the uy→zh task with the least data
leads to the largest improvements, 2) On the relatively high-
resource mn→zh task, the Transformer outperforms BART
fine-tuning, and joint training slightly hampers the perfor-
mance on the task, while on the low-resource uy→zh and
ti→zh tasks, BART consistently outperforms transformer, and
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id：105 768-dimensional vector

id：106 768-dimensional vector

id：107 768-dimensional vector

id：51271 768-dimensional vector

id：51270 768-dimensional vector

id：51269 768-dimensional vector

id：51268 768-dimensional vector

id：105 768-dimensional vector

id：106 768-dimensional vector

id：107 768-dimensional vector

id：51268 768-dimensional vector

id：51268 768-dimensional vector

id：51269 768-dimensional vector

id：51269 768-dimensional vector

id：51270 768-dimensional vector

id：51270 768-dimensional vector

id：51271 768-dimensional vector

id：51271 768-dimensional vector

...... ............ ......

Embeddings of Chinese BART Embeddings of minority languages

Fig. 3. Vocabulary enlargement.

TABLE III
BLEU RESULTS AFTER DATA REPLACEMENT

Methods uy→zh ti→zh

Chinese BART base 42.96 47.80
+ joint training 45.81 49.10

+ replacing mn→zh with en→zh 43.72 46.83

3) using deeper models or larger BART can further improve
the performance our approach.

C. Analysis of the Impact of Language

Table II shows that the joint training can improve the
performance of low-resource uy→zh and ti→zh tasks using
the training data of the mn→zh task. But it is unclear about
the impact of the language. We replaced the mn→zh with
an equal amount of English→Chinese (en→zh) data extracted
from the News Commentary and UN Parallel Corpus of the
WMT 2022 news translation task [54]. The en→zh dataset is
of a similar domain and high quality. Results are shown in
Table III.

Table III depicts that the choice of language has a huge
impact on performance. Jointly training on the en→zh data
leads to significantly worse performance than on the mn→zh
data and even underperforms the BART fine-tuning baseline
on the ti→zh task by −0.97 BLEU.

V. CONCLUSION

We improve the performance of low-resource minority
language translation by joint training in an MNMT manner
and present frequency-based vocabulary replacement and low-
frequency token duplication approaches to addressing the
vocabulary coverage and insufficient vocabulary size issues
respectively with the pre-trained model for multilingual mi-
nority language translation modeling. Our experiments on
the CCMT 2023 Chinese minority language translation tasks

show that our approach can significantly improve the low-
resource uy→zh and ti→zh tasks by +2.85 and +1.30 BLEU
respectively over the strong BART baseline, and find that the
choice of the language has a huge impact on the performance.
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