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Abstract

Post-training quantization of Large Language
Models (LLMs) is challenging. In this work,
we introduce Low-rank Quantization Error
Reduction (LQER), which combines quantiza-
tion and low-rank approximation to recover the
model capbility. LQER leverages an activation-
induced scale matrix to drive the singular value
distribution of quantization error towards a de-
sirable distribution, which enables near-lossless
W4AS8 quantization on various LLMs and down-
stream tasks without the need for knowledge
distillation, grid search, or gradient-based iter-
ative optimization. Unlike existing methods,
the computation pattern of LQER eliminates
the need for specialized Scatter and Gather pro-
cesses to collect high-precision weights from ir-
regular memory locations. Our W4A8 LLMs
achieve near-lossless performance on six popu-
lar downstream tasks, while using 1.36x fewer
hardware resources than the leading state-of-the-
art method. We open-sourced our framework at
github.com/ChengZhang-98/lger.

1. Introduction

Large Language Models (LLMs) have exhibited impressive
capability on various natural language processing (NLP)
tasks (Brown et al., 2020). However, the substantial model
size and its associated computation costs demand consider-
able energy and hardware resources. For instance, deploying
BLOOM-176B (Workshop et al., 2022) requires 16 NVIDIA
A100 GPUs and consumes more than 2000 Watts of total
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power (Luccioni et al., 2023). Meanwhile, empirical ev-
idence suggests that only models with a sufficiently large
parameter count begin to show emergent capabilities (Hoft-
mann et al., 2022), thereby motivates the construction of
even larger models. Quantization then emerges as a promis-
ing technique to enhance the accessibility of LLMs by reduc-
ing the model size and simplifying inference computation.

Low-precision Post-Training Quantization (PTQ) of LLMs
has recently become an attractive solution for reducing com-
putational and memory cost (Nagel et al., 2021). However, it
remains challenging due to the fact that 1) no further weight
training is allowed and 2) the presence of magnitude outliers
in model weights and activations. PTQ is a technique that
quantizes a pre-trained LLM directly, without additional
training, as fine-tuning LLMs usually requires substantial
resources. Many researchers have observed that the main
building block of LLMs, the transformer layer, produces
magnitude outliers in weights and activations (Wei et al.,
2022; Bondarenko et al., 2021; Tang et al., 2023). A simple
fixed-point quantization then either suffers from consider-
able clipping or overflow error or from considerable round-
ing error, depending on the choice of scaling. In both cases,
the quantization error propagates and accumulates through
the LLMs, leading to substantial task accuracy degradation.
To overcome this challenge, recent LLM PTQ methods in-
vestigate the statistical properties of LLMs and propose var-
ious fine-grained solutions to accommodate (Dettmers et al.,
2022; Frantar et al., 2022), mitigate (Xiao et al., 2023; Lee
et al., 2023a), or eliminate (Wei et al., 2023; Bondarenko
et al., 2023) these numerical outliers.

However, fine-grained treatments to numerical outliers usu-
ally come with a high optimization and/or hardware cost.
The optimization cost mainly stems from iterative optimiza-
tion. For example, OmniQuant (Shao et al., 2023) takes 7.3
hours to quantize a LLaMA-30B model with 20 iterations
on a single NVIDIA A100 GPU (Lin, 2024). The popu-
lar weight-only quantization setup, such as GPTQ (Frantar
et al., 2022) and AWQ (Lin et al., 2023), dequantizes 4-
bit weights to FP16 at runtime, which actually impedes
inference on models larger than 7B (Hansen, 2024). Con-
currently, many existing quantization frameworks select
values from irregular positions for high-precision compu-
tation, while maintaining other values in low-precision for-
mats (Dettmers et al., 2023b; Lee et al., 2023b). For in-
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(a) Singular value distributions of quantization error
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Figure 1: Motivation and computation pattern of LQER. (a) We apply SVD to the quantization error &, = W — W, for a
3-bit fixed-point quantized weight in OPT-1.3B, and plot their singular values distributions. Distributions are normalized to
have the same Frobenius norm for a fair comparison'. Curves with a more asymptotic trend suggest better suitability for
low-rank approximation. L2QER displays a much steeper distribution with a smaller number of dominating singular values.
(b) LQER approximates a trained weight W with two high-precision yet low-rank matrics Ay and By, and a low-precision
yet high-rank matrix W,. Both components are inexpensive to compute. This estbalishes a regular computation pattern that
eliminates the need for irregular memory access like the Scatter and Gather operations in LLM. int8 ().

stance, LLM. int8 () (Dettmers et al., 2022) selects acti-
vation outliers to compute in half-precision floating-point,
while casting the rest to integers. In this work, we propose
a simple and efficient LLM PTQ framework that avoids
iterative optimization and irregular computation patterns.

Optimizing weight quantization can be considered as a pro-
cess of minimizing the quantization error £, = W — W,
where W, is the quantized weights. We are firstly inter-
ested in a novel inference framework formulation termed
LQER. LQER approximates the real value of W through
two components (W =~ E,; + W,): a high-precision
yet low-rank matrix Eq that approximates £, but with

rank(f?q) < rank(W); and a low-precision yet high-rank
matrix W, as shown in Figure 1b. Both components are
inexpensive to compute and thus work together to reduce
the overall computational complexity. Crucially, the high-
precision, low-rank component F, establishes a regular
computation pattern that eliminates need of having the Scat-
ter and Gather operations to fetch and store values from
irregular memory locations like LLM. int 8 () (Figure 1b).

In this study, we explore optimizations for W, using both
the integer format and the recently proposed MX number for-
mats (Rouhani et al., 2023b). Additionally, our work empha-
sizes the design of E,;. Theoretically, assuming the trained
weights to be independent and identically distributed (i.i.d.),
and given a sufficiently high chosen precision, E, can be
approximated as a random matrix formed by the round-
off error. The Marchenko—Pastur distribution suggests that
there exihibits an asymptotic behavior for the distribution
of singular values of large random matrices (Marchenko

& Pastur, 1967). We then show the actual singular value
distributions of F, in Figure 1a from a linear layer in OPT-
1.3B (Zhang et al., 2022a) (labeled as LQER), showcasing a
similar phenomenon to what the Marchenko—Pastur law has
suggested. Further motivated by the fact that matrices with
only a few large singular values like F, can be effectively
approximated by low-rank matrices. We propose to left-
multiply E, by a diagonal matrix .S, derived from activation
magnitudes, that pushes the singular values of E, toward
an even more desirable distribution (labeled as L2QER in
Figure 1a). The singular values of SE, decay more rapidly
than E,, with the large singular values of SE, concentrates
in the first few components, as illustrated in Figure la!. This
observation then further motivates our LLM Post-Training
Quantization (PTQ) method, Left-multiply LOER (L? QER),
designed to recover the performance loss caused by quanti-
zation. We make the following contributions in this work:

* We introduce a novel quantized LLM inference framework
termed Low-rank Quantization Error Reduction (LQER)
which combines quantization and low-rank approximation.
Unlike existing methods that require gathering values
from irregular memory locations, LQER boasts a blocked
and regular computation pattern and employs a unified
number format for both memory and computation.

» We then propose L2QER, a straightforward but efficient
quantization method on top of LQER. L2QER does

!"To make a fair comparison, we normalize F, before SVD by
multiplying E, with a scalar « such that the scaled aE; has the
same Frobenius norm as S E,.
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Table 1: A summary of recent LLM PTQ methods. Weight-only (w-only) and weight-activation (wé&a) quantizations are
two popular setups. w-only quantization generally dequantize values ((dq(-))) back to FP16 before the weight-activation
matrix mutiplication at inference time. wé&a quantization performs low-precision mutiplication (X W) at inference-time
but requires finding an invertible matrix S to decrease the magnitude range of activations (detail explained in Section 2.1).
We shortlist the recent works that belong to the two setups in the last column. * indicates the common precision of W, and
X, that achieves almost lossless performance on downstream tasks.

Qsetup  WxAy*™  Quantization function Inference-time

Methods

w-only W4 (Wq.8) = q(W) Y = Xdq(Wy,s)

GPTQ (Frantar et al., 2022), AWQ (Lin et al., 2023),
Z-fold (Jeon et al., 2023), QuiP (Chee et al., 2023),
FlexRound (Lee et al., 2023b), LRQ (Luo et al., 2023)

(Xq,8¢) = q(X5)

w&a WS8AS W, s0) (571W)

Yij = st,i8c,j (X, - Xopij)
(Yq,i,uS;,i) = q([yi,lvyviﬂa cee

SmoothQuant (Xiao et al., 2023), OS+(Wei et al., 2023),
D AQAS (Lee et al., 2023a), OmniQuant (Shao et al., 2023)

not need any expensive knowledge distillation, hyper-
parameter search, or other forms of iterative optimization.
We showcase L2QER’s competitiveness with current state-
of-the-art methods. L2QER quantizes both weights and
activations, it pushes the limit to W4A6, matching the per-
plexity of OmniQuant (W6A6) on WikiText. Compared to
weight-only (w-only) quantization methods, our approach
outperforms AWQ (W4A16) and maintains quantization
activations staying at 8-bit (W4AS).

2. Related Work
2.1. Post-Training Quantization of LLMs

Post training quantization of LLMs is a challenging task due
to presence of numerical outliers. Existing methods can be
broadly categorized into two setups: weight-only (w-only)
and weight-activation (w&a) quantizations. Recent works
within these two setups are summarized in Table 1.

Weight-only quantization Weight-only quantization usu-
ally partitions the trained weight matrix W into groups, with
the i-th group being quantized using a scale factor s;:

(Wy,8) = a(W) M

where W, is the quantized weight matrix, s is a vector of
scale factors, and ¢(-) denotes quantization function. During
inference, the low-precision weights W, is dequantized back
to FP16 before the weight-activation matrix multiply:

Y = Xdq(W,,s) )

Here X is the FP16 input, and dq(-) is the dequantization
function, and Y is the output. The runtime dequantization
cost is negligible in memory-bound scenarios, e.g., small
models at small batch sizes. This cost escalates with model
sizes, and eventually impedes inference in compute-bound
scenarios (Hansen, 2024).

GPTQ (Frantar et al., 2022) and AWQ (Lin et al., 2023) are
two representative w-only quantization methods. GPTQ em-
ploys second-order information to iteratively round grouped
weights and correct the quantization error in the remaining
groups. AWQ protects salient weights induced by activa-
tions using per-channel scaling. Recent advancements in w-
only setup include Z-Fold (Jeon et al., 2023) and QuiP (Chee
et al., 2023), following GPTQ to correct quantization error.
FlexRound (Lee et al., 2023b), and LRQ (Luo et al., 2023)
follow AWQ to study finer-grained weight scaling.

Weight-activation quantization w&a quantization uti-
lizes an invertible matrix S to reduce the magnitude range
of activations before quantization:

(Xg;8) = q(X9) ©)

where s; is a vector a per-token scalars. S~! is fused into
the weight matrix W, and S is fused into the weight matrix
of the preceding layer before quantization:

(Wy,se) = a(S™'W) “

where s, is a vector of per-channel scalars. At inference
time, the inner product in the activation weight matrix mul-
tiplication consists of an inner product of two fixed-point
vectors and an FP16 multiplication between the token scalar
and channel scalar (“Inference-time” entry in Table 1). Then
each row of output activation matrix is quantized back to
the input format. This style of quantization avoids the extra
dequantization cost in w-only setup, but achieving a preci-
sion lower than W8AS8 while maintaining nearly-lossless
model capability proves challenging. Existing w&a quan-
tization methods lower than 8-bit precision usually suffer
from an average downstream task accuracy drop larger than
1% (Shao et al., 2023; Liu et al., 2023a).

SmoothQuant (Xiao et al., 2023) pioneered fusion of an
invertible scale matrix into its preceding layer. Outlier Sup-
pression+ (Wei et al., 2023) further introduces a bias matrix
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to Equation (4) to shift the mean of activations towards zero
and update the layer bias accordingly. Recent works follow-
ing this line of research include AQAS (Lee et al., 2023a),
and OmniQuant (Shao et al., 2023).

Another unique w&a quantization method, LLM. int 8 ()
decomposes the FP16 matrix multiplication into a 8-bit
fixed-point and an FP16 sub-matrix multiplication using
activation thresholds. Despite achieving the closest model
capability to FP16, the thresholding, Scatter and Gather
operations of LLM. int 8 () are expensive in large models.
Similar to LLM. int 8 (), SpQR (Dettmers et al., 2023b)
and EasyQuant (Tang et al., 2023) are recent works that
retains salient weights in FP16 at finer granularity while
quantizing the rest to low-precision.

In this work, we propose a fundamentally different PTQ
framework that approximates the real value of weight
through two components (W = qu -+ W), and demonstrate
how this formuation helps us to achieve almost lossless PTQ
in the w&a quantization setup with a W4 A8 configuration.

2.2. The MXINT Arithmetic

Block floating point is a family of number formats that
represents a vector of numbers using a shared exponent or
exponent bias. Various block floating point formats have
been explored for efficient training or inference in the past
few years (Darvish Rouhani et al., 2020; Fox et al., 2020;
Zhang et al., 2022b; Drumond et al., 2018). One notable rep-
resentative is MX INT, introduced for hardware-efficient post
training quantization (Darvish Rouhani et al., 2020; Rouhani
et al., 2023a), this number format has recently been standard-
ized by AMD, Arm, Intel, Meta, Microsoft, NVIDIA, and
Qualcomm, for next-generation Al facilities (Micikevicius
et al., 2023).

Figure 2 illustrates an example of an MXINT vector sharing
a 4-bit exponent across four 4-bit mantissas. MXINT excels
in hardware efficiency compared to floating point, as the
inner product of two MXINT vectors can be computed as a
inner product of two fixed-point numbers plus an exponent
addition. Meanwhile, the shared exponent provides a larger
dynamic range than fixed point numbers. Recent works
indicate that this extended dynamic range fits the activa-
tion outliers well in LLM PTQ tasks (Zhang et al., 2023;
Rouhani et al., 2023b). In this work, We adopt MXINT as
the default number format while the idea can be applied to
other formats.

2.3. Low-Rank Adapters for Fine-Tuning

Low-rank adapter (LoRA) (Hu et al., 2021) is a parameter
efficient fine-tuning method for saving GPU memory. LoRA
freezes the pretrained weight W, and only updates two
low-rank weight matrices L; and Lo during fine-tuning.

MXINT (4e3m)
4-bit shared exponent across 4 elements, 1-bit sign, 3-bit mantissa

()

Figure 2: MXINT number format (Rouhani et al., 2023b).
MXINT places a shared exponent across a group of fixed-
point numbers. MXINT is more hardware efficient than
floating point for its simplified vector inner product, and
provides a large dynamic range compared to fixed-point
numbers. MXINT has been standardized recently for next
generation Al hardware systems (Micikevicius et al., 2023).

Based on LoRA, QLoRA (Dettmers et al., 2023a) keeps the
quantized pretrained weights in memory and only double-
dequantizes? it in the forward pass to further reduce fine-
tuning memory footprints:

YBFI6 — XBFI6qq (P32, dobit ppNFay
-+ X BF16 [ BFI6 [ BF16 ®)
The advantage of LoRA-based methods is that the fine-tuned
model can be deployed without extra cost as the low-rank
matrices are fused into the pretrained weights after fine-
tuning . For QLoRA, the fusion can be expressed as:
WBFIS — qdq(cFP32, dobit pyNF4) 4 BRIGEBFIS (g
LoftQ (Li et al., 2023b) initializes I.; and L, with the Sin-
gular Value Decompostion (SVD) of quantization errors to
achieves a faster fine-tuning convergence than QLoRA.

To our knowledge, LoftQ is the closest work to ours. How-
ever, our LQER framework is fundamentally different from
the above as it is a PTQ method that does not target fine-
tuning. The core idea of LQER is that shaping the singular
value distribution of quantization error approximator (qu)
enables a nearly-lossless inference pass quantization. LoftQ
fuses the low-rank matrices back to original FP32 weights
when deployed, however, the low-rank matrices in LQER
remains separate from the quantized weight matrix W,: this
allows the matrix multiplications for the low-precision high-
rank weight matrix (W) and the low-rank high-precision
matrices to happen in parallel at inference time.

’Double-dequantize means the dequantization scales the 4-bit

weight matrix twice using ¢*>? and 5"
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Figure 3: Perplexity (J) vs rank. We apply W3A8 LQER
and L2QER to OPT-1.3B and plot the resultant perplexity.
Considering the embedding dimension is 2048, LQER re-
quires a fairly large k¥ ~ 600 to reach a perplexity close
to FP16 . In comparison, a small ¥ ~ 64 is enough for
L2QER Comparison of perplexity (]) and quantization error
reconstruction between LQER and L2QER.

3. Method

We aim to approximate the multiplication by a large dense
weight matrix W in a low-cost way. This low cost can
be achieved through low-precison quantization or low-rank
approximation. Quantization simplifies the multiplication
arithmetic, while low-rank approximation reduces the over-
all number of computations. We judiciously combine the
two: approximate W as a dense low-precision matrix W,
and then correct the error induced using a high-precision
low-rank correction term as illustrated in Figure 1b.

3.1. LQER: Approximate £, using SVD

Our idea is to reconstruct the quantization error matrix [,
through SVD-based low rank approximation. When a quan-
tization is applied to a trained FP32/FP16 weight matrix
W e R™*™, the resulting quantization error matrix E is:

E, =W -W, ™

where W, = q(W) is the quantized weight matrix, and
q(-) represents the quantization function. A straightforward
way to reconstruct the error is to use SVD-based low-rank
approximation:

E,=UsVT = U2 Vi 8)

where U € R™*"™ and V' € R™*" are orthogonal matrices,
3 € R"™*" is a diagonal matrix of singular values. Uy, €
R™*k 1, € R"*F and &), € R*** are the sub-matrices of
U,V and ¥ corresponding to the largest k singular values.

If two high-precision matrices Ay, = Uy and By, = S, V,1
are assigned to approximate Ey, i.e., A B, = E, the linear

layer can be approximated as:
Y = XW, 4 (XAy)By
= X(W, + ArBy)
= X(W, + E,) ©)
~ X (W + Ey)
=XW

where X € R™*™ and Y € R'™" are the layer input and the
approximated output, and ¢ is the sequence length. We use b;
and by, to denote the bitwidth of low-precision matrix (W)
and high-precision matrices (X, Ay and Bj) respectively.
A pair of b; and by, e.g., (b;,bp) = (3,8), means that we
compensate the quantization error of 3-bit weight using
two 8-bit low-rank matrices. We refer to this design of the
inference flow as LQER.

At inference-time, LQER runs one low-precision but large
matrix multiplication (XW,) and two high-precision but
small matrix multiplications (X Ay, and (X Aj)By,) in par-
allel to save memory and achieve a speedup. Given a low-
precision quantization q(-), adjusting the rank k allows tun-
ing the trade-off between the computational cost and the
model accuracy. Specifically:

* In LLMs, W € R™*" is usually a large matrix. For
example, (m,n) is (12288,12288) , (12288,49152), or
(49152,12288) in OPT-175B. A low-precision W, signif-
icantly reduces the memory footprint and X W, is faster
than XW.

» Two high-precision but small matrices A; € R™** and
By € RF*" estimate the quantization error at the cost
of minimal computation. For a token x € R™, the two
matrix multiplies (xAy) and ((xAx)By) only introduce
(m 4+ n) x k high-precision multiplies in total while the
unquantized xW has m x n high-precision multiplies.
For the FNN layers in OPT-175B, the newly introduced

T . . (m4n)xk __
multiplications is around ~= === =~ 0.01 x k%.

The ideal case is that a small k¥ < min(m,n), e.g., k = 32,
would successfully recover the model’s accuracy/perplexity.
However, our experiments reveal that the singular values
of I, decay slowly for most linear layers, requiring a suffi-
ciently large k to recover the accuracy/perplexity. Figure 3
illustrates the perplexity of quantized W3A8 OPT-1.3B ver-
sus rank k. For LQER, a small k ~ 64 still falls short
compared to the FP16 baseline. The following section then
discusses how we can achieve a low k value by analytically
scaling the error term.

3.2. L2QER: Shape Singular Value Distribution of
Quantization Errors using Activation Statistics

Recent works have shown that partially preserving the
weight precision according to activation magnitude recovers
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the model’s accuracy/perplexity. LLM.int8 () decom-
poses an FP16 matrix multiply into one FP16 sub-matrix
multiply for large activation magnitudes and one 8-bit fixed-
point sub-matrix multiply for the rest at runtime. AWQ also
presents an experiment that effectively recovers accuracy
by preserving the 1% salient weights corresponding to large
activation magnitudes in FP16, and quantizing other weights
to 4-bit grouped fixed-point.

Motivated by this phenomenon, we propose a novel
quantization error reconstruction method, named L2QER,
that scales the quantization error matrix E, before ap-
plying SVD and undo the scaling in low-rank matrices.
We first left-multiply E, with a diagonal matrix S =
diag(s1, s2, - .., Sm) to scale i-th row of E, by a distinct
scalar s;, then apply SVD to the scaled matrix SE,:

SE,=U'SV'T =~ US,V'} (10)

where S is calibrated from the pre-training data. To calculate
s, we first average the i-th channel magnitudes across all the
tokens in each calibration sample, then find the maximum
average value among all samples. A detailed calculation of
S'is in Appendix A. The calibration requires no training.

The intuition behind the scaling is that the quantization error
corresponding to large activation magnitudes, i.e., the salient
weights identified by corresponding activation magnitudes,
should be more precisely approximated. Hence, we scale
up these quantization errors before SVD.

High precision A}, and By, are employed to cancel out S
and reconstruct Ej:

I S—IU/

’ 1y T

Bk - EkV k

where S~! is the inverse of the diagonal matrix S. S~}
always exists in practice since no diagonal elements in S

is zero (no channels in LLM activations are always zero).
Now we approximate the linear layer similarly to LQER:

Y = XW, + (XA})B,
= XW, + (XST'UL(ZLV'E)
=X (W, + 571 (SE,),)
~ XW

12)

where Y and (S Ey), = Uz, vV’ ;‘: are the approximated ¥’
and the approximated (SE,) of rank k. Note that the term

E,:= S (SE,) ., is the approximated quantization error.
As shown in Figure 1a, S drives the singular value distribu-

tion to decay faster than LQER with large singular values
concentrating in the first few components, and the scaling

Table 2: Perplexity (}) of plain MXINT, LQER, and L2QER
on OPT-1.3B and LLaMA-7B. We apply plain MXINT quan-
tization, LQER, and L>QER to OPT-1.3B and LLaMA-7B
in the same W4AS setup. The decreasing perplexity proves
the effectiveness of the quantization error reconstruction in
LQER, and activation-induced scale matrix S in L2QER.

MXINT LQER L2QER FPI6
OPT-1.3B 1642 1528 1502  14.63
A PPL (}) +1.78  +0.65  +0.39 -
LLaMA-7B  6.17 6.06 5.89 5.67
A PPL (}) +0.50 4039  +0.22 -

is counteracted by S~ in A} ; therefore, L’QER tends to
recover more model capability than LQER. In Figure 3,
L2QER recovers the perplexity close to FP16 baseline at
a very small £ ~ 64. In Section 4.3, we will show that
L2QER achieves nearly lossless W4A6 LLM PTQ results
comparable to state-of-the-art W6A6/W4A16 methods but
with higher hardware efficiency.

4. Experiments
4.1. Experimental Setup

Quantization We use MXINT as the number format of
LQER if not specified. In Section 4.3, we use W4A8 L2QER
with k£ = 32 to compare with both 4-bit w-only and 4-/6-
/8-bit w&a quantization methods. In Section 4.4, we use
W2A8 L2QER with k = 256 to compare with 2-bit w-only
quantization methods. In both subsections, MXINT activa-
tion matrices have 8-bit shared exponents to accomodate
activation outliers, while weight matrices and low-rank ma-
trices have 4-bit shared exponents. The block size of MXINT
is the default [1, 16] in the original paper (Darvish Rouhani
et al., 2020) for X, ([16, 1] for W, Ay, and By,).

Models and Baselines We benchmarked our methods on
the OPT family (Zhang et al., 2022a), the LLaMA family
(including LLaMA (Touvron et al., 2023a), LLaMA-2 (Tou-
vron et al., 2023b), Vicuna-v1.5 (Zheng et al., 2023)), and
Mistral (Jiang et al., 2023). These are the representative
or state-of-the-art model open-sourced for research across
various model sizes and architectures. We compare our
methods with FP16 model, LIM. int4 ()3, GPTQ, AWQ,
AQAS, OmniQuant*, and QuiP. The later two have variants
optimized for extremely low-precision quantization. We
take the reported WikiText2 perplexity or downstream task

PLLM.int4 () denotes the 4-bit verision of LLM.int8 ()
open-sourced in bitsandbytes.

*We take W6A6 OmniQuant as an weight-activation quanti-
zation baseline, and W2A16 as a 2-bit weight-only quantization
baseline.
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Table 3: A comparison of perplexity(]) on WikiText-2. Best results are marked in bold, and second best results are
underlined in w&a setup. In a w-only setup, L2QER-INT outperforms GPTQ and is on par with AWQ, while offering
substantially lower hardware costs. In a wé&a setup, L2QER-MXINT outperforms all other competitors both in terms of
perplexity and hardware efficiency. * means LLM.int4 () casts the weight sub-matrices corresponding to activation
outliers to 4-bit fixed-point before computation and cast them back to FP16 after, thus the weight formats in memory is
FP16. ¥ means OmniQuant and AQAS use per-channel and per-token scaled quantization. ¥ means LLaMA-2 results were
not available in (Lee et al., 2023a) and the author has not open-sourced AQAS code.

QSetup  Method Q Config OPT LLaMA LLaMA-2 A 1?1‘;5@) u‘?‘t’)%[g C1rct(1it) area
67B 13B 30B 7B I13B 33B 7B 13B 70B ;

FP16 1086  10.13 956 567 510 410 548 490 3.32 16 1x
GPTQ INT4, g128 1139 1031 963 6.2 521 424 569 498 351 0.22 4.1 13.99x

w-only  AWQ INT4, g128 1093 1021 959 578 520 422 561 498 342 0.09 4.1 13.99x
L2QER-INT INT4, g128 1099 1024 957 589 520 424 558 496 3.42 0.11 43 1.34x
LIM.int4 () 7=6.0 1123 1039 1001 605 531 433 577 506 3.51 0.29 16* 21.23x
OmniQuant W6AG6, per-c/t 1096 1021 9.62 596 528 438 587 514 3.72 0.20 6.0 0.39x

wia AQAS t W4AS8, per-c/t 1342 12.19 11.08 6.69 581 514 - A A 1.45 4.0 0.45x
L2QER-INT W4A8, 128 11.10 1038 972 609 531 435 585 510 3.51 0.25 4.1 0.33x
L2QER-MXINT WA4A6 11.03 1032 972 592 524 428 573 505 3.46 0.18 43 0.23%
L2QER-MXINT W4AS$ 11.00 1027 9.69 589 521 425 569 502 3.44 0.15 43 0.33x

accuracy from the original papers if available.

Evaluation We report the perplexity on WikiText-2 (Mer-
ity et al., 2016) and the accuracy on ARC (easy) (Clark
et al., 2018), ARC (challenge) (Clark et al., 2018), LAM-
BADA (Paperno et al., 2016), PIQA (Bisk et al., 2020),
OpenBookQA (Mihaylov et al., 2018), and BoolQ (Clark
et al., 2019) using the 1lm-eval-harness evaluation
flow (Gao et al., 2023). Ideally a calibration dataset should
be sampled from the pretraining dataset to calculate the
activation-induced scale matrix S. However, none of the
LLMs mentioned above open-sourced their pretraining
datasets. We create a subset of SlimPajama (Soboleva
et al., 2023) with Wikipedia texts excluded as the calibration
dataset. This calibration dataset contains only 32 samples of
2048 tokens. As mentioned previously in Section 3.2, this
calibration simply profiles values without having any SGD-
based training. We also report the weight average bitwidth
for memory efficiency and estimate the circuit area for the
hardware cost. Circuit area is estimated with the number of
Look Up Tables (LUTs) of the processing engines (PEs) if
implemented on FPGAs, which is also approximately pro-
portional to the number of gates if implemented as ASICs.
We have faithfully implemented these arithmetic cores and
inputted them into FPGA synthesis flows, obtaining results
for circuit area. This is because MXINT is a newly release
arithmetic standard (Micikevicius et al., 2023). Appendix D
provides the detailed circuit area estimation.

4.2. LQER and L2QER

We first focus on comparing variants of LQER in Table 2.
We evaluate the variants in a W4A8 wé&a quantization setup
on both OPT-1.3B and LLaMA-7B. We show the results

of plain MXINT, LQER, and L?QER, where plain MXINT
means the whole network is simply MXINT quantized with-
out any special treatments.

Table 2 indicates that a plain W4A8 MXINT quantization
leads to substantial performance degradation (APPL =
+1.78 on OPT-1.3B). LQER verifies that reconstructing the
quantization error of weight helps to recover the model per-
formance. Activation-induced S in L2QER further pushes
the performance of LQER to be even closer to the FP16
baseline. In the following sections, we then mainly focus
on presenting L2QER results.

4.3. Comparing with Existing Quantization Methods

We present the perplexity ({), the average increased per-
plexity over models (A PPL (])), average weight bitwidth,
and circuit area (]) of L?QER and existing w-only/w&a
methods in Table 3. Then we exclude the methods with
obvious performance degradation and evaluate the average
downstream task performance in Table 4. We additionally
include a fixed-point version of L2QER as a baseline. Best
results in each setup are marked in bold and second best
results are underlined.

WikiText-2 In the w-only quantization setup, L>?QER-
INT achieves a significantly better perplexity when com-
pared to GPTQ and is on par with AWQ (both only around
0.1 higher than FP16), while has a substantially smaller
hardware cost (circuit area). In the w&a setup, L2QER-
MXINT has a perplexity around 0.15 higher than FP16 when
it is W4A8. L2QER-MXINT outperforms state-of-the-art
sub-8-bit methods by a significant margin. The perplexity of
L2QER is around 0.05 higher than OmniQuant on the OPT
family, but consistently outperforms OmniQuant on LLaMA
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Table 4: A comparison of downstream task accuracy (1), averaged across six downstream tasks. Bold text indicates the best
results, while underscore denotes the second-best. L2QER achieves the best accuracy among all LLaMA models, and nearly
lossless (around 0.3% drop) compared to the FP16 baseline. * means the results are not available in the original GPTQ
paper, and we did not find open-source implementations and/or model checkpoints to run evaluation. T means the results of
OPT and LLaMA-2 are not reported in the original OmniQuant paper. For LLaMA-1, LAMBADA and OpenbookQA are
not included in OmniQuant either, thus we replace the results of these two tasks with FP16 results as an estimated upper
limit of OmniQuant. OmniQuant-r is the results we replicated using the official implementation® and checkpoints®.

Method Q Config OPT LLaMA LLaMA-2 Avg. é)Accu.
6.7B 13B 30B 7B 13B 33B 7B 13B 70B

FP16 - 55.6%  562%  59.1%  632%  65.0% 684%  63.5%  66.5% 69.9% -
GPTQ INT4, g128 554%  56.4% - 60.8%  647%  66.7%  622%  659%  69.8% -0.9%
AWQ INT4, g128 553%  564% 589% 62.5% 64.8%  68.0% 629%  659%  69.9% -0.4%
LLM.int4 () T=6.0 55.4% 559%  58.0%  622% 64.6% 61.7%  62.6%  658%  69.9% -0.7%
OmniQuant? W6AG6, per-c/t - - - 584%  592%  61.0% - - - -6.0%
OmniQuant-r’ WO6AG6, per-c/t  554%  56.1%  58.6% 47.0% 482% 499% 472%  49.4% 58.6 -11.0%
L?>QER-INT W4AS, g128 541%  562%  571.7% 61.7% 644% 674%  622%  659% 69.7% -1.0%
L2QER-MXINT W4A6 547%  562%  58.5%  62.7% 649% 67.8%  63.0% 658% 69.9% -0.5%
L?QER-MXINT W4AS$ 551% 56.5%  58.4% 63.0% 648% 68.0% 63.1% 66.1%  69.9% -0.3%

family. Note that OmniQuant was trained on WikiText2 for
20 epochs (Shao et al., 2023), but L2QER only proifles the
activation magnitudes using 32 samples from a calibration
dataset with Wikipedia texts excluded.

Downstream task accuracy We reuse the quantization
setup in Table 3 and conduct a thorough evaluation on
downstream tasks, including ARC (easy), ARC (challenge),
LAMBADA, PIQA, OpenBookQA and BoolQ and report
the results in Table 4. The average accuracy of L?QER
on the six downstream tasks is better than other quanti-
zation methods on LLaMA models, and nearly lossless
(around 0.3% drop) compared to the FP16 baseline. We re-
produced the WikiText2 perplexity reported in OmniQuant
paper (Shao et al., 2023) using the official implementation’
and checkpointse‘, but failed to reproduce their downstream
accuracy performance on LLaMA models. We refer to these
mismatched OmniQuant results as OmniQuant-r in Table 4.
We attribute the inconsistant behaviour of OmniQuant to
its iterative quantization parameter training on WikiText2,
which is further discussed in Appendix C. Nevertheless, our
method has demonstrated substantially better downstream
task capabiliteis, with a much lower hardware cost (circuit
area in Table 3). A detailed discussion about hardware cost
is in Appendix D. A complete table including the accuracy
of each individual task is in Appendix E.

AlpacaEval We also evaluate the performance of L2QER
on AlpacaEval (Li et al., 2023a), an evaluator for instruction-
following language models. We use AlpacaEval to mea-
sure the fraction of times GPT-4 Turbo prefers the outputs

>https://github.com/OpenGVLab/OmniQuant
Shttps://huggingface.co/ChenMnZ/OmniQuant/tree/main

from the quantized model over outputs from a reference
model. Here we use AWQ as the reference model and report
the results of LLaMA-2-7B-Chat and LLaMA-2-13B-Chat.
We observe that L2QER is competitive with AWQ in both
length-controlled win rate and normal win rate.

Table 5: AlpacaEval results. We use GPT-4 Turbo as the
evaluator and AWQ as the reference model. The results are
collected after evaluating LLaMA-2-7B-Chat/-13B-Chat on
all samples. We find that L2QER is competitive with AWQ
in both length-controlled win rate and normal win rate.

Length-controlled

Model Gen. vs Ref. . Win rate
win rate

7B 9 56.06 % 55.32 %

138 LQERVSAWQ 52.90 % 52.51 %

Hardware efficiency L2QER is more hardware friendly
than the baselines. We highlight the last two columns of
average weight bits and circuit area in Table 3. L2QER
requires less circuit area to implement a MACs when the
model performance (perplexity and downstream task ac-
curacy) and the MAC throughput are roughly matched
with the baseline. We offer circuit area breakdowns of
LLM.int4 (), AWQ, and L?QER in the Table 7, Table 8,
and Table 9 in Appendix D.

Optimization cost The optimization of LQER is also ef-
ficient. The calibration and quantiation of LLaMA-33B
takes around 1.2 hours in total on a single NVIDIA A100
GPU. In contrast, OmniQuant takes 7.3 hours to optimize
the quantization parameters for LLaMA-33B. Furthermore,
the optimization of LQER can be fully parallelized to be


https://github.com/OpenGVLab/OmniQuant
https://huggingface.co/ChenMnZ/OmniQuant/tree/main
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faster, since there is no dependency between the quantiza-
tion of each linear layer such as fusing the scale matrices to
preceding layers in SmoothQuant or knowledge distillation
in LLM-QAT (Liu et al., 2023b).

Other model families To fully evaluate the adaptiveness
of L2QER across model families, we have also conducted
experiments to evaluate its effectiveness on Vicuna and Mis-
tral. Vicuna is an instruction-tuned LLaMA. Mistral uses
Grouped-Query Attention (GQA) (Ainslie et al., 2023) and
windowed attention (Beltagy et al., 2020). The results of
Vicuna-v1.5-7B/13B and Mistral-7B are included in Ap-
pendix E. These results reveal a pattern consistent with
other models, indicating that L2QER is agnostic to various
LLM families.

4.4. 2-bit Quantization

To explore the limit of L2QER, we evaluate L>QER in the 2-
bit quantization setup. Table 6 compares L2QER with Om-
niQuant and QuiP#’, which are both recent works optimized
for extremely low-precision LLM quantization. We observe
that 2-bit quantization is challenging for existing methods
including L2QER. These methods perform inconsistently
with model sizes and families (Table 10 in Appendix E). Un-
like a simple rank k& = 32 for W4A8 quantization, L2QER
requires a larger k for 2-bit quantization.

Table 6: 2-bit quantization perplexity (}) on WikiText2.
OmniQuant and QuiP#’ are two state-of-the-art methods for
extremely low-precision LLM quantization. We found 2-bit
quantization is still challenging for existing methods.

Q Setup  Method Q Config 7B 13B

- FP16 - 567 510
AWQ INT2 g128 2.6e5 2.8e5
w-only  QuiP# INT2 g128 1097 8.43
OmniQuant INT2 g128 12.97 10.36
w&a L2QER k= 256 1030 8.42

5. Conclusion

In this work, we propose a novel LLM post-training quanti-
zation framework, LQER, which judiciously combine quan-
tization and low-rank approximation to recover model cap-
bility. We then further propose L2QER, which leverages
an activation-induced scale matrix to shape the singular val-
ues of quantization error towards a desirable distribution
that can be accurate approximated. L2QER achieves nearly-
losses perplexity (around 0.15 higher than FP16) and an

"QuiP# is an improved version of QuiP released by the same
research group: https://github.com/Cornell-RelaxML/quip-sharp

average accuracy drop of only around 0.3% on six differ-
ent downstream tasks. The regular computation pattern of
LQER ensures a higher hardware efficiency than existing
methods and takes 67% smaller circuit area than FP16.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Data Calibration

Given a calibration dataset containing N samples, {X; |
i=1,2,...,N}, we first profile the activation magnitude
for each channel,

a; = mean(|X;|, axis = 0),

a (13)

= max( ,axis = 0),

an
where | - | calculates the element-wise absolute value and
a = [a1,as,...,an]is arow vector of maximum channel

magnitudes across samples. We normalize a to get the
diagonal matrix S:

ai

. (14)

S; =

\/ mln

Equation (13) and Equation (14) are empirical implementa-
tion based on (Lin et al., 2023). We leave the exploration of
an analytical derivation of S as future work.

) x max(a)

B. Comparison between LQER and L>QER

Here we visualzie the approximation error of LQER and
LQER versus layer index in Figure 4. The approximation
error is measured as:

1 m n
*%ZZ|E E|1]

i=1 j=1

15)

where |- | calculate the element-wise absolute value. L?QER
reconstructs the quantization error more accurate than
LQER on most layers, while LQER better reconstruct the
K, Q, and V projection layers at the 1st, 3rd, and 4th trans-
former layers.

C. Inconsistant performance of OmniQuant
on WikiText2 and downstream tasks

OmniQuant is one of the state-of-the-art LLM post-training-
quantization methods we compared in this work. Thanks for
the official open-sourced implementation and quantization
parameter checkpoints, we performed extensive experiments
to compare OmniQuant to LQER. We sucessfully reproduce
the perplexity and downstream task accuracy of OPT-family.
However, the LLaMA models quantized by OmniQuant
have obvious performance degradation on downstream tasks,
around 18.9% lower than FP16 baselines on average.

We attribute this performance degradation to the iterative
gradient-base training on WikiText2 in OmniQuant. As
stated in (Shao et al., 2023), OmniQuant optimizes the
quantization parameter (shifts and scales) by training on
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Figure 4: Approximation error of LQER and L2QER
across decoder layers in LLaMA-7B. L2QER produces
smaller approximation errors on most of the linear layers
in transformer-based LLMs. However, there are a few lay-
ers better reconstructed by LQER, such as the key, value,
output project layers in 1st, 3rd, and 4th decoder layer. The
derivation of .S worths further exploration.

WikiText2 samples for 20 epochs (40 epochs for W2A16).
This training requires tuning the hyper-parameters such as
number of training samples, learning rates and total num-
ber of epochs, which may cause overfitting or underfitting
if not tuned properly. Both cases can be the reason for
performance degradation.

D. Estimate Hardware Cost

We estimate the memory efficiency with average bitwidth.
The average bitwidth of per-channel scaled quantization
is considered as the average bits of an FP16 scalor and m
fixed-point numbers, where m is the input hidden size. The
average bitwidth of MXINT is averaged across one shared
exponent and B mantissas, where B is the block size. For
LQER/L2QER, this is averaged across the low-precision
W, and the high-precision A, and Bj,. The average weight
bitwidth of L?QER in memory is 0.2 higher than GPTQ
and AWQ, which is mainly contributed by the two low-
rank matrices Ay and Bj. L?QER outperforms existing
nearly lossless methods in terms of circuit area, because it
is free from expensive element-wise dequantization (GPTQ
and AWQ), or scatter/gather operations (LLM. int4 () ) at
runtime.

We estimate the hardware cost with circuit area. We mapped
the algorithms of these approaches onto custom hardware
accelerators on FPGAs. To ensure fairness, these hard-
ware accelerators have the same throughput of 16 multiply-
accumulate (MAC) operations per clock cycle when com-
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puting a linear operation of the same matrix sizes. We then
measure the circuit area in terms of LUTs and Digital Sig-
nal Processing blocks (DSPs) on the FPGA, where a DSP
is treated as 100 LUTs. The area results were measured
from the Place & Route report in Xilinx Vivado 2023.1.
The FPGA family that we used for all the experiments is
Xilinx Alveo U250. We summarize the area breakdown
of LLM. int4 (), AWQ, and L?QER in Table 7, Table 8,
and Table 9, respectively.

Table 7: Area breakdown of LLM. int4 (), where GEMM;
and GEMMj, are low-precision and high-precision GEMM
operations respectively.

LLM.1int4 () Gg:gfgl * ngé: GEMM,,  Other
LUTs 106959 11579 404 13604
Percentage 80.7 % 8.8% 3.0% 10.3%

Table 8: Area breakdown of AWQ

AWQ Dequantize Matmul  Other
LUTs 62907 11476 11131
Percentage 73.6% 134%  13.0%

Table 9: Area breakdown of L2QER, where Matmull, Mat-
mul2, and Matmul3 are X W, X Ay, and (X Ay ) By, respec-
tively.

L2QER Matmul2 Matmull Matmul3
LUTs 1782 1028 992
Percentage 34.5% 19.9% 19.2%

E. More evaluation results

We present the complete results of each specific downstream
tasks in Tables 11 to 18. We also tested L2QER on Vicuna-
7b/13b and Mistral-7b-v0.1 in Tables 19 to 21.
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Table 10: More 2-bit w-only results. These methods per-
form inconsistently with model sizes and families. Unlike a
simple rank k& = 32 for W4A8 quantization, L2QERrequires
a larger rank k for 2-bit quantization.

Method OPT LLaMA
125M  1.3B 2.7B 7B 13B
FP16 27.65 14.63 12.47 5.67 5.10
OmniQuant 7543  23.95 18.13 1297  10.36
Quip 347.40 41.64 2998.00 1097 843
L?QER 45.29 29.82 23.76 10.30  8.42
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Table 11: OPT-6.7B

Method WikiText2 ARC (easy) ARC (challenge) LAMBADA PIQA BOOLQ OpenbookQA  Avg. Accuracy
FP16 10.86 65.6% 30.5% 67.7% 76.3% 66.1% 27.6% 55.6%
GPTQ 10.95 65.6% 31.1% 68.5% 76.2% 65.2% 26.2% 55.4%
AWQ 10.93 65.3% 30.5% 67.4% 76.6% 65.2% 26.6% 55.3%
LLM.int4() 11.23 65.3% 30.5% 67.4% 76.6% 65.2% 26.6% 55.3%
OmniQuant (W6A6) 10.96 65.4% 30.9% 66.9% 76.0% 66.2% 26.8% 55.4%
LQER-INT (W4A8) 11.10 63.8% 29.6% 65.7% 75.6% 63.1% 26.8% 54.1%
LQER-MXINT (W4A6) 11.03 65.4% 30.5% 65.6% 75.4% 64.0% 27.6% 54.7%
LQER-MXINT (W4AS) 11.00 65.2% 30.4% 66.3% 75.5% 65.3% 27.6% 55.0%

Table 12: OPT-13B

Method WikiText2 ARC (easy) ARC (challenge) LAMBADA PIQA BOOLQ OpenbookQA  Avg. Accuracy
FP16 10.13 67.1% 32.9% 68.6% 76.0%  65.8% 27.0% 56.2%
GPTQ 10.31 67.5% 32.8% 68.8% 76.1%  65.9% 27.2% 56.4%
AWQ 10.21 66.8% 33.3% 68.2% 75.6%  66.5% 28.0% 56.4%
LLM.int4() 10.39 66.2% 33.6% 67.8% 76.2%  67.3% 24.2% 55.9%
OmniQuant (W6A6) 10.96 67.1% 33.1% 68.4% 76.2%  65.3% 26.4% 56.1%
LQER-INT (W4A8) 10.38 66.5% 33.2% 67.5% 75.5%  67.9% 26.4% 56.2%
LQER-MXINT (W4A6) 10.32 67.2% 32.2% 67.9% 757%  68.3% 25.8% 56.2%
LQER-MXINT (W4A38) 10.27 67.4% 32.6% 68.4% 76.1%  68.3% 26.2% 56.5%

Table 13: OPT-6.7B

Method WikiText2 ARC (easy) ARC (challenge) LAMBADA PIQA BOOLQ OpenbookQA  Avg. Accuracy
FP16 9.56 70.0% 34.6% 71.5% 77.6% 70.5% 30.2% 59.1%
GPTQ 9.63 62.2% 29.4% 74.9% 67.6% 69.1% 23.8% 54.5%
AWQ 9.59 69.7% 34.6% 71.6% 77.3% 70.4% 30.0% 58.9%
LLM.int4() 10.01 69.0% 32.8% 71.3% 76.9% 70.2% 27.8% 58.0%
OmniQuant (W6A6) 9.62 70.1% 34.2% 70.4% 77.3% 70.2% 29.6% 58.6%
LQER-INT (W4A8) 9.72

LQER-MXINT (W4A6) 9.72 0.6990740741 0.3421501706 0.7050261983  0.7725788901  0.6923547401 0.298 58.5%
LQER-MXINT (W4AS8) 9.67 69.4% 34.4% 70.4% 77.3% 69.5% 29.6% 58.4%

Table 14: llama-7B

Method WikiText2 ARC (easy) ARC (challenge) LAMBADA PIQA BOOLQ OpenbookQA  Avg. Accuracy
FP16 5.10 77.4% 46.4% 76.2% 79.1% 78.0% 33.2% 65.0%
GPTQ 5.21 76.9% 46.8% 75.0% 79.3% 76.4% 34.0% 64.7%
AWQ 5.20 77.2% 46.4% 75.6% 79.0% 77.8% 32.8% 64.8%
LLM.int4() 5.31 77.2% 46.0% 75.4% 78.9% 77.1% 32.8% 64.6%
OmniQuant (W6A6) 5.28 72.5% 42.9% 0.0% 78.2% 66.4% 29.0% 48.2%
LQER-INT (W4A8) 5.31 76.9% 45.9% 74.0% 78.7% 77.2% 33.6% 64.4%
LQER-MXINT (W4A6) 5.24 77.1% 46.2% 75.6% 79.2% 77.6% 33.6% 64.9%
LQER-MXINT (W4A8) 5.21 77.0% 46.3% 75.6% 79.6% 77.3% 33.2% 64.8%

15



LQER: Low-Rank Quantization Error Reconstruction for LLMs

Table 15: LLaMA-13B

Method WikiText2 ARC (easy) ARC (challenge) LAMBADA PIQA BOOLQ OpenbookQA  Avg. Accuracy
FP16 5.67 75.4% 41.9% 73.5% 78.7% 75.1% 34.4% 63.2%
GPTQ 9.63 73.6% 40.4% 70.0% 77.7% 73.0% 30.0% 60.8%
AWQ 9.59 75.5% 41.1% 72.5% 78.6% 74.9% 32.2% 62.5%
LLM.int4() 10.01 74.6% 42.1% 70.3% 78.6% 74.8% 32.8% 62.2%
OmniQuant (W6A6) 9.62 66.4% 38.8% 0.0% 76.7% 72.8% 27.2% 47.0%
LQER-INT (W4A8) 6.09 73.9% 40.6% 73.4% 77.7% 74.0% 30.6% 61.7%
LQER-MXINT (W4A6) 5.92 74.8% 41.5% 73.4% 78.2% 75.2% 33.0% 62.7%
LQER-MXINT (W4A8) 5.89 74.9% 41.6% 73.3% 78.6% 76.1% 33.6% 63.0%

Table 16: LLaMA-30B

Method WikiText2  ARC (easy) ARC (challenge) LAMBADA PIQA BOOLQ OpenbookQA  Avg. Accuracy
FP16 4.10 80.4% 52.8% 77.6% 81.1% 82.7% 36.0% 68.4%
GPTQ 4.24 80.7% 50.2% 77.6% 80.5% 83.1% 35.8% 68.0%
AWQ 4.22 74.1% 46.0% 0.0% 79.5% 68.3% 31.4% 49.9%
LLM.int4() 4.33 79.0% 48.9% 75.8% 80.2% 82.4% 33.6% 66.7%
OmniQuant (W6A6) 4.38 74.1% 46.0% 0.0% 79.5% 68.3% 31.4% 49.9%
LQER-INT (W4A8) 4.35 80.1% 49.7% 77.0% 80.7% 81.5% 35.2% 67.4%
LQER-MXINT (W4A6) 4.28 80.1% 50.9% 77.4% 80.6% 82.4% 35.4% 67.8%
LQER-MXINT (W4AS8) 4.25 80.0% 50.8% 77.6% 80.7% 82.5% 36.2% 68.0%

Table 17: LLaMA-2-7B

Method WikiText2 ARC (easy) ARC (challenge) LAMBADA PIQA BOOLQ OpenbookQA  Avg. Accuracy
FP16 5.48 76.3% 43.6% 73.9% 78.1% 77.7% 31.4% 63.5%
GPTQ 5.69 75.0% 42.2% 72.3% 77.4% 76.4% 30.0% 62.2%
AWQ 5.61 75.2% 43.3% 72.7% 77.6% 77.3% 31.4% 62.9%
LLM.int4() 5.77 75.1% 42.7% 71.9% 77.6% 76.2% 32.2% 62.6%
OmniQuant (W6A6) 5.87 67.3% 39.0% 0.0% 77.6% 69.9% 29.2% 47.2%
LQER-INT (W4A8) 5.85 74.7% 42.4% 71.6% 76.7% 76.1% 32.0% 62.2%
LQER-MXINT (W4A6) 5.73 75.1% 43.1% 73.6% 77.6% 76.2% 32.6% 63.0%
LQER-MXINT (W4AS8) 5.69 75.3% 42.5% 73.7% 77.9% 76.3% 32.8% 63.1%

Table 18: LLaMA-2-13B

Method WikiText2 ARC (easy) ARC (challenge) LAMBADA PIQA BOOLQ OpenbookQA  Avg. Accuracy
FP16 4.90 79.4% 48.3% 76.7% 791%  80.6% 35.0% 66.5%
GPTQ 5.06 78.6% 47.4% 76.4% 782%  80.8% 34.2% 65.9%
AWQ 4.98 78.9% 46.9% 76.2% 788%  80.1% 34.4% 65.9%
LLM.int4() 4.98 77.6% 47.0% 76.1% 789%  80.5% 34.8% 65.8%
OmniQuant (W6A6) 5.14 71.3% 43.8% 0.0% 78.6%  69.8% 33.0% 49.4%
LQER-INT (W4A8) 5.10 78.5% 47.1% 75.8% 78.6%  81.0% 34.4% 65.9%
LQER-MXINT (W4A6) 5.05 78.2% 46.4% 76.4% 783%  80.6% 34.8% 65.8%
LQER-MXINT (W4A38) 5.02 78.3% 47.0% 76.4% 788%  81.3% 34.6% 66.1%
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Table 19: Vicuna-7B-v1.5

Method WikiText2 ARC (easy) ARC (challenge) LAMBADA PIQA BOOLQ OpenbookQA  Avg. Accuracy
FP16 6.78 75.6% 43.3% 71.1% 77.3% 80.9% 33.0% 63.5%
GPTQ 7.07 75.4% 41.5% 69.4% 76.0% 81.3% 33.2% 62.8%
AWQ 7.00 75.0% 41.8% 70.0% 77.1% 81.5% 32.2% 62.9%
LLM.int4() 7.14 75.0% 42.6% 69.3% 76.3% 81.3% 34.2% 63.1%
LQER-MXINT (W4AS) 7.01 75.4% 42.2% 68.9% 77.1% 81.6% 33.0% 63.0%

Table 20: Vicuna-13B-v1.5

Method WikiText2 ARC (easy) ARC (challenge) LAMBADA PIQA BOOLQ OpenbookQA  Avg. Accuracy
FP16 5.92 78.7% 47.8% 73.4% 78.9% 85.2% 36.8% 66.8%
GPTQ 6.00 77.9% 46.4% 72.9% 78.1% 85.0% 36.8% 66.2%
AWQ 6.03 78.3% 48.4% 72.9% 78.3% 84.8% 36.8% 66.6%
LLM.int4() 6.09 77.5% 47.3% 73.0% 78.3% 85.2% 36.8% 66.4%
LQER-MXINT (W4A8) 6.04 78.5% 46.7% 72.7% 77.7% 85.0% 36.4% 66.2%

Table 21: Mistral-7B

Method WikiText2 ARC (easy) ARC (challenge) LAMBADA PIQA BOOLQ OpenbookQA  Avg. Accuracy
FP16 6.47 82.7% 53.5% 70.7% 80.4% 86.2% 32.8% 67.7%
GPTQ 8.13 81.1% 55.8% 72.2% 80.9% 86.7% 36.0% 68.8%
AWQ 6.64 81.9% 53.8% 71.8% 80.7% 86.2% 37.4% 68.6%
LLM.int4() 6.66 81.2% 53.2% 70.6% 81.2% 86.4% 34.6% 67.9%
LQER-MXINT (W4A8) 6.71 81.7% 53.8% 71.2% 81.0% 86.5% 34.8% 68.2%
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