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ABSTRACT

In this paper we present a fully self-supervised framework for visual anomaly seg-
mentation and apply it to pathology segmentation in 3D medical CT images. The
core idea behind our framework is to learn conditional distribution of local image
patterns given their global context. Thus, image patterns that have low conditional
probability are assigned high anomaly scores. To this end, we propose SCREENER
comprised of descriptor, condition, and density models. The descriptor model en-
codes local image patterns into dense self-supervised representations. We enforce
these descriptors to discriminate different image positions and remain invariant
w.r.t. image augmentations that preserve local content. The condition model pro-
duces auxiliary dense image representations, dubbed conditions. We ensure that
conditions encode the global contexts of individual image positions, by enforc-
ing them to be invariant w.r.t. image masking. The density model learns the
conditional density of descriptors for each given condition and produces anomaly
segmentation scores. We use this framework to train a fully self-supervised model
for pathology segmentation on more than 30,000 3D CT images. Empirical study
shows that SCREENER outperforms the existing unsupervised anomaly segmen-
tation methods on four large-scale test CT datasets containing a total of 1820 3D
images with four chest and abdominal pathologies. The code an the pre-trained
models are available at link1

Figure 1: Examples of 2D slices of 3D medical CT images (the first row), the ground truth masks of
their pathological regions (the second row) and the anomaly maps predicted by fully self-supervised
SCREENER for pathology segmentation (the third row). Note that, the second image from the left
contains pneumothorax, missed by ground truth annotation mask, but detected by SCREENER.

1Link will be available after the reviewing process.
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1 INTRODUCTION

Medical computed tomography (CT) images allow radiologists to look inside the patient’s body and
detect pathologies based on certain image patterns. Figure 1 shows 2D slices of 3D CT images
(first row) and their pathological regions (second row). The last image is an example of a healthy
slice. Labeled datasets of CT images are scarce and contain annotations of only few classes of find-
ings, while many other pathologies remain unlabeled. That is why supervised models for pathology
detection usually have limited functionality.

Unlabeled CT images are much more available: there are large-scale public datasets (Team, 2011;
Ji et al., 2022; Qu et al., 2024) that do not contain any labels or text annotations and usually re-
main totally unused for training. This work is an attempt to use these datasets for training a fully-
unsupervised semantic segmentation model that discriminates any pathological image regions from
normal ones. Our core assumption is that individual pathological patterns are much more rare than
individual healthy patterns in random CT images. Based on this assumption, we treat pathology
semantic segmentation as unsupervised visual anomaly segmentation (UVAS) problem.

The existing UVAS methods are well explored on natural images, in the setup when all training
images are guaranteed to be normal. However, their applicability to unsupervised pathology seg-
mentation in CT images remains unclear. One of the obstacles may be that the available training CT
datasets contain a lot of images with unannotated pathologies and there is no way to automatically
filter them out. This may negatively affect the quality of synthetic-based (Zavrtanik et al., 2021;
Marimont & Tarroni, 2023) and reconstruction-based (Baur et al., 2021; Schlegl et al., 2019) UVAS
methods. Density-based methods (Gudovskiy et al., 2022; Zhou et al., 2024) are more suitable for
this scenario because they only assume that anomalies are rare in the training dataset. However, the
existing density-based methods rely on image encoders pre-trained on ImageNet, and their quality
may drop when applying them to medical images due to a large domain shift.

In this work, we introduce a modification of the density-based UVAS framework. To obtain infor-
mative representations, instead of using a supervised image encoder, we employ recent advances in
self-supervised representation learning (Chen et al., 2020; Bardes et al., 2021) to pre-train domain-
specific dense features that distinguish different CT image patterns and do not contain irrelevant
low-level information, e.g. about image noise. For anomaly detection, we train a density model on
top of the encoder representations that learns the distribution of these pre-trained dense features and
later assigns high anomaly scores to image positions containing out-of-distribution features. More-
over, we propose a novel self-supervised strategy of learning the auxiliary dense image features that
can be used for conditioning in our density-based framework. Conditioning on these features drasti-
cally simplifies the target conditional distribution and allows to learn it with a very simple gaussian
model. We call our proposed framework SCREENER.

We use SCREENER to train a fully self-supervised model for pathology segmentation on more than
30000 CT volumes covering both chest and abdomen anatomical regions. Surprisingly, despite huge
variation in patterns across these anatomical regions, our model generalizes well to both. We show
that our model is able to distinguish a wide range of pathologies in different organs from healthy
image regions, as shown in the third row of Figure 1. We summarize our contributions below:

• We show that dense self-supervised representations are favourable alternative to supervised
feature extractors in density-based framework for visual anomaly segmentation. The pro-
posed self-supervised framework is beneficial in the domains with scarce labeled data.

• We further extend density-based UVAS framework by showing that instead of hand-crafted
conditioning in density model, e.g. on positional encodings, one can learn data-driven
condition variables in a self-supervised manner. To this end, we learn dense representations
that are invariant to image masking, rendering them ignorant about local visual anomalies.
Conditioning on these representations simplifies true conditional distribution and allows
to achieve remarkable anomaly segmentation results with very simple gaussian model of
conditional density.

• Finally, this paper presents the first large-scale study of UVAS methods in 3D medical
CT images. We show that the proposed density-based framework outperforms other UVAS
methods on unsupervised semantic segmentation of a wide range of pathologies in different
anatomical regions, including lung cancer, pneumonia, liver tumors and kidney tumors.
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2 METHOD

2.1 OVERVIEW & INTUITION

Our method assumes that a certain pathological pattern appears in CT images more rarely than any
healthy pattern. To formalize this assumption we introduce two models, which we call descriptor
model and density model. Descriptor model encodes image patterns and density model learns their
distribution.

For a given 3D image x ∈ RH×W×S , descriptor model fθdesc (we use a fully-convolutional net) pro-
duces feature maps y ∈ Rh×w×s×ddesc

containing h ·w ·s descriptors {y[p]}p∈P ⊂ Rddesc
of individ-

ual image positions P = {p | p ∈ [1, . . . , h]× [1, . . . , w]× [1, . . . , s]}. Descriptor model should be
trained to produce informative descriptors that capture similarities and differences between different
image patterns. We describe how we train it in Section 2.2.

Density model qθdens(y) estimates the true marginal density qY (y) of individual descriptors produced
by the pre-trained descriptor model (random vector Y denotes a descriptor of a random position in
a random image). In Section 2.4 we describe different parametrizations of qθdens(y).

If a certain image contains some abnormal pattern at position p we expect that a proper descriptor
model would produce a descriptor y[p] in a low density region and an accurate density model would
yield a low value of qθdens(y[p]). Conversely, if an image is normal we expect high density model
predictions {qθdens(y[p])}p∈P at every position of the image. Therefore, at the inference stage, we
use negative log-density values {− log qθdens(y[p])}p∈P as anomaly segmentation scores.

Our framework also involves an important generalization of the above approach which is based on
the idea of conditioning. Instead of modeling the complex marginal distribution of all patterns that
appear in CT images, we may learn their conditional distribution given a certain condition. For
example, one can imagine a distribution of radiological patterns appearing at a certain anatomical
region, or at a certain patients’ age. To implement this idea we introduce a third model, which we
refer to as condition model.

Condition model provides auxiliary information about the image or individual image positions. For-
mally, similar to the descriptor model, condition model gθcond produces a map c ∈ Rh×w×s×dcond

containing feature vectors {c[p]}p∈P ⊂ Rdcond
of individual image positions, which we call condi-

tions. We describe different options for condition model in Section 2.3.

If condition model is given, density model qθdens(y | c) becomes conditional. It learns the true con-
ditional density qY |C(y | c) (random vectors Y , C denote the descriptor and condition taken at a
random position in a random image). In this conditional framework, we use negative log-density
value − log qθdens(y[p] | c[p]) as anomaly score of position p at a particular image. Section 2.4 de-
scribes conditional density models qθdens(y | c) used in our method.

In conditional framework, density model qθdens(y | c) can also be viewed as a predictive model which
tries to predict descriptors based on conditions. In this interpretation, negative log-density scores
{− log qθdens(y[p] | c[p])}p∈P play the role of prediction errors. If descriptor y[p] lies in low con-
ditional density region, it means that the actual pattern at position p differs from the patterns which
we would expect at this position given the condition c[p].

2.2 DESCRIPTOR MODELS

Descriptor model plays a crucial role in our method. First, it must discriminate pathological patterns
from normal ones, otherwise they do not get different anomaly scores in our framework. At the
same time, descriptors should contain as little irrelevant information as possible. For example, if
descriptors capture noise which is present in CT images, density model assigns high anomaly scores
to healthy image regions containing extreme noise values, potentially causing false positive errors.

Density-based UVAS methods for natural images Gudovskiy et al. (2022); Zhou et al. (2024) obtain
dense image descriptors from hidden layers of a fully-convolutional neural network pre-trained on
ImageNet in a supervised manner. However, in specific image domains, supervised representation
learning may be suboptimal due to the scarcity and insufficient diversity of labeled data. On the
contrary, self-supervised approach used in our UVAS framework lacks these limitations.
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To pre-train dense image descriptors, we employ discriminative joint embedding SSL methods be-
cause they enable to explicitly control the information content of the representations. Namely, we
penalize individual dense descriptors to discriminate patterns that appear at different positions in the
same image or in different images. At the same time, we wash out the irrelevant low-level informa-
tion from the descriptors by enforcing them to be equivariant w.r.t. to various image augmentations,
e.g. random crop and color jitter transformations.

Figure 2: Illustration of our model’s training. First, we train self-supervised descriptor model to
produce informative feature maps which are equivariant w.r.t. image crops and invariant w.r.t. color
jitter. Second, we train self-supervised condition model in the same way as the descriptor model,
but also enforcing invariance w.r.t. masking of random image blocks. Thus, condition model feature
maps are not sensitive to anomalies and contain only the information that can be always inferred
from the unmasked context. Third, density model learns the conditional distribution pY |C(y | c)
of feature vectors Y = y[p] and C = c[p] produced by descriptor and condition models at random
image position p. To obtain a map of anomaly scores we apply density model in a pixel-wise manner,
which can be efficiently implemented using 1× 1× 1 convolutions.
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Below we describe the descriptor models’ training pipeline, illustrated in the upper part of Figure 2.
From a random image x we select two random overlapping 3D crops of random size, resize them
to H ×W × S resolution and apply random color augmentations to them. We denote the obtained
augmented crops as x(1) and x(2). After feeding each of them to the descriptor model we obtain
two maps y(1), y(2) of their dense descriptors. Next, we select n random positions from the crops’
overlap region in the seed image. For each selected position p, we calculate its coordinates p(1)

and p(2) w.r.t. the both augmented crops and obtain two descriptors y(1) = y(1)[p(1)] and y(2) =
y(2)[p(2)]. We call descriptors (y(1), y(2)) a positive pair since they are predicted based on different
augmented crops but correspond to the same position in the seed image.

After repeating the described procedure for m seed images, we obtain a batch of N = n ·m posi-
tive pairs which we denote as {(y(1)i , y

(2)
i )}Ni=1. The similar strategy of sampling a batch of dense

positive pairs was used in Goncharov et al. (2023). Given the batch of positive pairs, the descriptor
model training admits different SSL objectives optimization. In this work, we consider two promi-
nent methods: contrastive learning SimCLR Chen et al. (2020) and VICReg Bardes et al. (2021).

SimCLR In contrastive model, we feed the descriptors {(y(1)i , y
(2)
i )}Ni=1 to the trainable MLP-

projector gθproj and l2-normalize them to obtain embeddings z(k)i = gθproj(y
(k)
i )/∥gθproj(y

(k)
i )∥ ∈ Rd,

where k = 1, 2 and i = 1, . . . N . Finally, we minimize the InfoNCE loss Chen et al. (2020):

min
θdesc,θproj

N∑
i=1

∑
k∈{1,2}

− log
exp(⟨z(1)i , z

(2)
i ⟩/τ)

exp(⟨z(1)i , z
(2)
i ⟩/τ) +

∑
j ̸=i

∑
l∈{1,2} exp(⟨z

(k)
i , z

(l)
j ⟩/τ)

. (1)

VICReg In VICReg model, we map the descriptors to high-dimensional embeddings via a train-
able MLP-expander: z(k)i = hθexpand(y

(k)
i ) ∈ RD, where k = 1, 2 and i = 1, . . . N . Then we compute

two unbiased estimates of the mean vector and the covariance matrix of random descriptor’s embed-
ding: z(k) = 1

n

∑N
i=1 z

(k)
i , C(k) = 1

N−1

∑N
i=1(z

(k)
i − z(k))(z

(k)
i − z(k))⊤. At last, we minimize

the VICReg objective Bardes et al. (2021), comprised of invariance, variance and covariance terms:

min
θdesc,θproj

α · Linv + β · Lvar + γ · Lcov. (2)

The first term Linv = 1
N ·D

∑N
i=1 ∥z

(1)
i − z

(2)
i ∥2 penalizes embeddings to be invariant to augmen-

tations. The second term Lvar =
∑

k∈{1,2}

1
D

D∑
i=1

max

(
0, 1−

√
C

(k)
i,i + ε

)
enforces individual em-

beddings’ dimensions to have unit variance. The third term Lcov =
∑

k∈{1,2}
1
D

∑
i ̸=j

(
C

(k)
i,j

)2

encourages different embedding’s dimensions to be uncorrelated, increasing the total information
content of the embeddings.

2.3 CONDITION MODELS

In this work we compare three condition models: sin-cos positional encodings , anatomical posi-
tional embeddings (APE) Goncharov et al. (2024) and our novel self-supervised condition model
producing dense embeddings which are equivariant w.r.t. image masking.

Sin-cos positional encodings The existing density-based UVAS methods Gudovskiy et al. (2022);
Zhou et al. (2024) for natural images use standard sin-cos positional encodings for conditioning. We
also employ them as an option for condition model in our framework. However, let us clarify what
we mean by sin-cos positional embeddings in CT images. Note that we never apply descriptor,
condition or density models to the whole CT images due to memory constraints. Instead, at all the
training stages and at the inference stage of our framework we always apply them to image crops of
size H ×W × S, as described in Sections 2.2, 2.4. When we say that we apply sin-cos positional
embeddings condition model to an image crop, we mean that compute sin-cos encodings of absolute
positions of its pixels w.r.t. to the whole CT image.
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Anatomical positional embeddings To implement the idea of learning the conditional distribu-
tion of image patterns at each certain anatomical region, we need a condition model producing
conditions c[p] that encode which anatomical region is present in the image at every position p.
Supervised model for organs’ semantic segmentation would be an ideal condition model for this
purpose. However, to our best knowledge, there is no supervised models that are able to segment
all organs in CT images. That is why, we decided to try the self-supervised APE Goncharov et al.
(2024) model which produces continuous embeddings of anatomical position of CT image pixels.

Masking-equivariant model Our last condition model implements the following idea. Suppose
that a certain region of CT image is masked out and we try to guess the missing content based on the
context. In most cases, we have no reason to expect that a pathology is hidden under the mask and
would better bet than the masked region is healthy. Following this intuition, condition c[p] should
play a role of a global context of the position p which contains a lot of information, but gives no
reason to expect a pathology at this position. We propose to learn such conditions as dense self-
supervised representations which are equivariant w.r.t. to image masking. The training of such a
condition model completely coincides with the VICReg descriptor model’s training, described in
Section 2.2, with the only difference that we add image masking in the augmentations. See middle
part of Figure 2) for illustration.

2.4 DENSITY MODELS

As described in Section 2.1 we use two types of density models: marginal and conditional. When
training a marginal density model qθdense(y) we sample a batch of m random crops {xi}mi=1 of size
H × W × S from different CT images. We feed each crop to the pre-trained descriptor model to
obtain their descriptor maps {yi}mi=1 of size h×w×s and optimize the negative log-likelihood loss:

min
θdens

1

m · |P |

m∑
i=1

∑
p∈P

− log qθdense(yi[p]). (3)

When training a conditional density model qθdense(y | c), we also apply the condition model to obtain
crops’ condition maps {ci}mi=1 and optimize the conditional negative log-likelihood loss:

min
θdens

1

m · |P |

m∑
i=1

∑
p∈P

− log qθdense(yi[p] | ci[p]). (4)

At the inference stage, we split an input CT image into M patches {xi}Mi=1 of size H × W × S
(patches may overlap). To each patch we first apply the descriptor model. Then, in un-
conditional framework we apply the trained marginal density model to obtain anomaly map
{− log qθdense(yi[p])}p∈P of size h × w × s. In conditional framework, we apply the condition
model and the conditional density model to obtain anomaly map {− log qθdense(yi[p] | ci[p])}p∈P .
Then we upsample these patch-wise anomaly maps to the H × W × S size and aggregate them
into a single anomaly map of the whole input CT image (we average the predictions in the patches’
overlap regions).

Below we describe two parametrizations of marginal and conditional density models: gaussian as
a simple baseline, and normalizing flow as an expressive generative model with allows tractable
density estimation.

Gaussian Gaussian marginal density model is written as

− log qθdens(y) =
1

2
(y − µ)⊤Σ−1(y − µ) +

1

2
log detΣ + const, (5)

where the trainable parameters θdens are mean vector µ and diagonal covariance matrix Σ.

Conditional gaussian density model is written as

− log qθdens(y | c) = 1

2
(y−µθdens(c))⊤ (Σθdens(c))

−1
(y−µθdens(c))+

1

2
log detΣθdens(c)+const, (6)
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Table 1: Summary information on the datasets that we use for training and testing of all models.

Dataset # 3D images Annotated
pathology

# 3D images w/ non-zero
pathology mask

NLST (Team, 2011) 25,652 – –
AMOS (Ji et al., 2022) 2,123 – –
AbdomenAtlas (Qu et al., 2024) 4,607 – –

LIDC (Armato III et al., 2011) 1017 lung cancer 603
MIDRC (Tsai et al., 2020) 115 pneumonia 115
KiTS (Heller et al., 2020) 298 kidney tumors 298
LiTS (Bilic et al., 2023) 117 liver tumors 107

where µθdens and Σθdens are MLP nets which take condition c ∈ Rdcond
as input and predict a condi-

tional mean vector µθdens(c) ∈ Rddesc
and a vector of conditional variances which is used to construct

the diagonal covariance matrix Σθdens(c) ∈ Rddesc×ddesc
.

As described earlier, at both training and inference stages, we need to obtain dense negative log-
density maps. Dense prediction by MLP nets µθdens(c) and Σθdens(c) can be implemented using
convolutional layers with kernel size 1× 1× 1. In practice, we increase this kernel size to 3× 3× 3,
which can be equivalently formulated as conditioning on locally aggregated conditions.

Normalizing flow Normalizing flow model of descriptors’ marginal distribution is written as:

− log pθdens(y) =
1

2
∥fθdens(y)∥2 − log

∣∣∣∣det ∂fθdens(y)

∂y

∣∣∣∣+ const, (7)

where neural net fθ must be invertible and has a tractable jacobian determinant.

Conditional normalizing flow model of descriptors’ conditional distribution is given by:

− log pθdens(y | c) = 1

2
∥fθdens(y, c)∥2 − log

∣∣∣∣det ∂fθdens(y, c)

∂y

∣∣∣∣+ const, (8)

where neural net fθ : Rddesc × Rdcond → Rddesc
must be invertible w.r.t. the first argument, and the

second term should be tractable.

We construct fθ by stacking Glow layers Kingma & Dhariwal (2018): act-norms, invertible linear
transforms and affine coupling layers. Note that at both training and inference stages we apply fθ
to descriptor maps y ∈ Rh×w×s×ddesc

in a pixel-wise manner to obtain dense negative log-density
maps. In conditional model, we apply conditioning in affine coupling layers similar to Gudovskiy
et al. (2022) and also in each act-norm layer by predicting maps of rescaling parameters based on
condition maps.

3 EXPERIMENTS

3.1 DATASETS

We train all models on three CT datasets: NLST (Team, 2011), AMOS (Ji et al., 2022) and Abdom-
enAtlas (Qu et al., 2024). Note that we do not use any image annotations during training. Some of
the datasets employed additional criteria for patients to be included in the study, i.e. age, smoking
history, etc. Note that such large scale training datasets include diverse set of patients, implying
presence of various pathologies.

We test all models on four datasets: LIDC (Armato III et al., 2011), MIDRC-RICORD-1a (Tsai
et al., 2020), KiTS (Heller et al., 2020) and LiTS (Bilic et al., 2023). Annotations of these datasets
include segmentation masks of certain pathologies. Any other pathologies that can be present in
these datasets are not labeled. We summarize dataset statistics and pathology information in Table 1.

7
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3.2 EVALUATION METRICS

We use standard quality metrics of visual anomaly segmentation which are employed in MVTecAD
benchmark (Bergmann et al., 2021): pixel-level AUROC and AUPRO calculated up to 0.3 FPR.
We also compute area under the whole pixel-level ROC-curve. Note that only specific types of
tumors are annotated in the test datasets, while other pathologies may be present in the images but
not included in the ground truth masks. However, the used metrics are not sensitive to this issue,
since they are based on sensitivity and specificity. We estimate sensitivity on pixels belonging to
the annotated pathologies. To estimate specificity we use random pixels that do not belong to the
annotated tumors which are mostly normal, thus yielding a practical estimate.

3.3 MAIN RESULTS

Figure 3: Qualitative comparison of baseline UVAS methods and SCREENER anomaly maps on
chest and abdomen regions. First column contains CT slices, columns 2 to 6 are baseline methods,
column 7 is SCREENER. Last column depicts ground trught annotation mask.

We compare our best model (VICreg descriptor model, sin-cos positional encodings condition model
and conditional normalizing flow density model) with baselines that represent different approaches
to visual anomaly segmentation. Specifically, we implement 3D versions of autoencoder (Baur
et al., 2021), f-anoGAN (Schlegl et al., 2019) (reconstruction-based methods), DRAEM (Zavrtanik
et al., 2021), MOOD-Top1 (Marimont & Tarroni, 2023) (methods based on synthetic anomalies) and
MSFlow (density-based method on top of ImageNet features). Quantitative comparison is presented
in table 2. Qualitative comparison is shown in Figure 3.

The analysis of the poor performance of the reconstruction-based methods is given in Appendix A.
Synthetic-based models yield many false negatives because during training they were penalized to
predict zero scores in the unlabeled real pathological regions which may appear in training images.
Meanwhile, MSFlow heavily relies on an ImageNet-pre-trained encoder which produces irrelevant
features of 3D medical CT images. Our density-based model with domain-specific self-supervised
features outperforms baselines by a large margin.

Table 2: Quantitative comparison of our best model and the existing unsupervised visual anomaly
segmentation methods on pathology segmentation in 3D medical CT images.

Model AUROC AUROC up to FPR0.3 AUPRO up to FPR0.3

LIDC MIDRC KiTS LiTS LIDC MIDRC KiTS LiTS LIDC MIDRC KiTS LiTS

Autoencoder 0.71 0.65 0.66 0.68 0.31 0.21 0.24 0.25 0.59 0.24 0.26 0.37
f-AnoGAN 0.82 0.66 0.67 0.67 0.52 0.21 0.24 0.22 0.46 0.18 0.24 0.22
DRAEM 0.63 0.72 0.82 0.83 0.21 0.31 0.50 0.51 0.17 0.20 0.50 0.57
MOOD-Top1 0.79 0.79 0.77 0.80 0.43 0.43 0.40 0.46 0.32 0.29 0.40 0.32
MSFlow 0.70 0.66 0.64 0.64 0.26 0.20 0.18 0.17 0.21 0.14 0.19 0.17
Screener (ours) 0.96 0.89 0.90 0.94 0.89 0.68 0.69 0.80 0.66 0.46 0.68 0.66
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Table 3: Ablation study of the effect of conditional model for the fixed descriptor model (VICReg)
and different conditional density models (gaussian and normalizing flow). None in Condtion model
column means that results are given for a marginal density model.

Descriptor model Condition model Density model AUROC AUROC up to FPR0.3 AUPRO up to FPR0.3

LIDC MIDRC KiTS LiTS LIDC MIDRC KiTS LiTS LIDC MIDRC KiTS LiTS

VICReg, ddesc = 32 None Gaussian 0.81 0.81 0.61 0.71 0.41 0.47 0.12 0.22 0.46 0.62 0.13 0.28
Sin-cos pos. Gaussian 0.82 0.80 0.74 0.77 0.45 0.42 0.26 0.34 0.40 0.50 0.27 0.32

VICReg, ddesc = 32 APE Gaussian 0.88 0.80 0.78 0.86 0.67 0.46 0.34 0.56 0.43 0.38 0.35 0.55
VICReg, ddesc = 32 Masking-equiv. Gaussian 0.96 0.84 0.87 0.90 0.90 0.58 0.58 0.71 0.64 0.41 0.57 0.48

VICReg, ddesc = 32 None Norm. flow 0.96 0.89 0.88 0.93 0.89 0.68 0.62 0.78 0.67 0.46 0.62 0.65
VICReg, ddesc = 32 Sin-cos pos. Norm. flow 0.96 0.89 0.90 0.94 0.89 0.68 0.69 0.80 0.66 0.46 0.68 0.66
VICReg, ddesc = 32 APE Norm. flow 0.96 0.88 0.89 0.94 0.87 0.65 0.67 0.80 0.64 0.43 0.66 0.66
VICReg, ddesc = 32 Masking-equiv. Norm. flow 0.96 0.87 0.90 0.93 0.88 0.64 0.68 0.80 0.65 0.40 0.67 0.63

Table 4: Ablation study of the effect of descriptor model. In these experiments we do not use condi-
tioning and use normalizing flow as a marginal density model. We include MSFlow to demonstrate
that descriptor model pre-trained on ImageNet is inappropriate for 3D medical CT images.

Descriptor model Condition model Density model AUROC AUROC up to FPR0.3 AUPRO up to FPR0.3

LIDC MIDRC KiTS LiTS LIDC MIDRC KiTS LiTS LIDC MIDRC KiTS LiTS

ImageNet Sin-cos pos. MSFlow 0.70 0.66 0.64 0.64 0.26 0.20 0.18 0.17 0.21 0.14 0.19 0.17
SimCLR, ddesc = 32 None Norm. flow 0.96 0.87 0.87 0.91 0.90 0.65 0.58 0.71 0.68 0.43 0.58 0.60
VICReg, ddesc = 32 None Norm. flow 0.96 0.89 0.88 0.93 0.89 0.68 0.62 0.78 0.67 0.46 0.62 0.65

VICReg, ddesc = 128 None Norm. flow 0.96 0.90 0.87 0.93 0.90 0.72 0.60 0.77 0.70 0.52 0.60 0.65

3.4 CONDITION AND DENSITY MODELS’ ABLATION

Table 3 demonstrates ablation study results. We test different options for condition and density
models described in Sections 2.3 and 2.4, correspondingly. We use the VICReg descriptor with
ddesc = 32 as it shows slightly better results than contrastive objective as reported in Section 3.5.

All conditioning strategies yield results similar to the unconditional model when using expressive
normalizing flow density model. However, in experiments with simple gaussian density models,
we see that the results significantly improve as the condition model becomes more informative.
Noticeably, our proposed masking-equivariant condition model allows gaussian model to compete
with complex flow-based models and achieve very strong anomaly segmentation results.

3.5 DESCRIPTOR MODELS’ ABLATION

We also ablate descriptor models in Table 4. We compare contrastive and VICReg models with
ddesc = 32. To ablate the effect of the descriptors’ dimensionality, we also include VICReg model
with ddesc = 128. To demonstrate that our domain-specific self-supervised descriptors are better
than descriptors pre-trained on general-domain we compare with MSFlow (Zhou et al., 2024).

4 RELATED WORK

4.1 VISUAL UNSUPERVISED ANOMALY LOCALIZATION

In this section, we review several key approaches, each represented among the top five methods
on the localization track of the MVTec AD benchmark (Bergmann et al., 2021), developed to stir
progress in visual unsupervised anomaly detection and localization.

Synthetic anomalies In unsupervised settings, real anomalies are typically absent or unlabeled
in training images. To simulate anomalies, researchers synthetically corrupt random regions by
replacing them with noise, random patterns from a special set (Yang et al., 2023), or parts of other
training images (Marimont & Tarroni, 2023). A segmentation model is trained to predict binary
masks of corrupted regions, providing well-calibrated anomaly scores for individual pixels. While
straightforward to train, these models may overfit to synthetic anomalies and struggle with real ones.
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Reconstruction-based Trained solely on normal images, reconstruction-based approaches (Baur
et al., 2021; Kingma & Welling, 2013; Schlegl et al., 2019), poorly reconstruct anomalous regions,
allowing pixel-wise or feature-wise discrepances to serve as anomaly scores. Later generative ap-
proaches (Zavrtanik et al., 2021; Zhang et al., 2023; Wang et al.) integrate synthetic anomalies. The
limitation stemming from anomaly-free train set assumption still persists—if anomalous images are
present, the model may learn to reconstruct anomalies as well as normal regions, undermining the
ability to detect anomalies through differences between x and x̂.

Features pre-trained on ImageNet + density estimation Density-based methods for anomaly
detection model the distribution of the training data. Density estimation can be done in a non-
parametric way by the collection of a memory bank of objects (Roth et al., 2022; Bae et al., 2023).
As modeling of the distribution of raw pixel values is infeasible, these methods usually model the
distribution of their deep features.

Unsupervised anomaly detection has seen the rise of flow-based methods (Serrà et al., 2019; Yu
et al., 2021), which leverage normalizing flows to assign low likelihoods to anomalies. However,
these methods struggle with high-dimensional raw RGB images, often assigning higher likelihoods
to anomalies than normal data (Kirichenko et al., 2020). To address this, flow-based methods have
been adapted to operate on high-dimensional features extracted from images. Multiscale feature
processing, as seen in DifferNet (Rudolph et al., 2021) and CFlow-AD (Gudovskiy et al., 2022),
enhances defect detection by handling variations in defect size. However, CFlow-AD’s independent
estimation of each feature vector lacks contextual awareness, resulting in fragmented and inaccurate
localization. MSFlow (Zhou et al., 2024) addresses this limitation by concurrently estimating fea-
tures at all positions, incorporating contextual information through 3x3 convolutions and employing
a fusion flow block for information exchange across scales.

Our method is related to FastFlow (Yu et al., 2021), CFlow (Gudovskiy et al., 2022) and MS-
Flow (Zhou et al., 2024) methods for anomaly segmentation. Besides some technical differences
(e.g. working with 2D natural images), there are several substantial differences: 1) these methods
are based on a supervised encoder, pre-trained on ImageNet; 2) we show that density-based anomaly
segmentation in medical images can be improved using data-driven condition variables.

From this family, we selected MSFlow as a representative baseline, because it is simpler than PNI,
and yields similar top-5 results on the MVTec AD.

4.2 MEDICAL UNSUPERVISED ANOMALY LOCALIZATION

While there’s no standard benchmark for pathology localization on CT images, MOOD (Zimmerer
et al., 2021) offers a relevant benchmark with generated anomalies. Unfortunately, this benchmark
is currently closed for submissions, preventing us from evaluating our method. We include the
top-performing method from MOOD (Marimont & Tarroni, 2023) in our comparison, that relies on
synthetic anomalies.

Other recognized methods for anomaly localization in medical images are reconstruction-based:
variants of AE/VAE (Baur et al., 2021; Shvetsova et al., 2021), f-AnoGAN Schlegl et al. (2019), and
diffusion-based (Pinaya et al., 2022). These approaches highly rely on the fact that the the training
set consists of normal images only. However, it is challenging and costly to collect a large dataset of
CT images of normal patients. While these methods work acceptable in the domain of 2D medical
images and MRI, the capabilities of the methods have not been fully explored in a more complex
CT data domain. We have adapted these methods to 3D.

5 CONCLUSION

This work explores fully self-supervised approach to anomaly detection and localization in medical
3D images. Previously, methods relied on supervised approaches and anomaly-free training datasets
assumption, which hardly holds in typical medical scenarios. We propose SCREENER as a three
component model, comprised of (i) self-supervised representation learning descriptor for image
features, (ii) density-based anomaly detection model that learns distribution of the features, and (iii)
conditioning model containing auxiliary information which boosts simpler density models.
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Domain-specific and self-supervised SCREENER is no longer inhibited by limitations of the earlier
methods and outperforms them by a large margin, which can be seen from empirical results obtained
on the large-scale collection of computed tomography datasets. As our framework is modular, we
learned and tested several model choices for each of the component, resulting in a comprehensive
ablation study.

Limitations We note that this work is largely a proof of concept for SSL in 3D medical imaging
as there are still limitations to the proposed approach. Density based anomaly detection poses a
limitation in that rare patterns can be flagged as pathological. Since rareness is highly predictive of
anomaly, applying to pathology segmentation SCREENER may yield false positive errors on healthy
but rare patterns. Another limitation concerns representativeness of the training sample. Our training
dataset contains chest and abdominal CTs with much more chest samples. This causes more false
positive errors in abdominal region. To work in other anatomical regions, our model needs to be
trained on the corresponding images.

Future work While the performance gains compared to baselines are already significant, we note
that further improvements might be achieved from increasing descriptors and conditions dimension-
ality and experiments with multi-scale representations (e.g. by building feature pyramids). Another
possible avenue for future work is to study scaling laws, i.e. self-supervised models typically scale
well with increasing pretraining dataset sizes. Distillation of SCREENER into UNet at a pre-training
stage is also possible and might prove effective for pathology segmentation tasks.
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A ANALYSIS OF RECONSTRUCTION-BASED MODELS

Figure 4: The figure shows 2D slices of CT images (first column) alongside reconstructions and
anomaly maps generated by two methods: an Autoencoder (Baur et al., 2021) (second and third
columns) and f-AnoGAN (Schlegl et al., 2019) (last two columns). Autoencoder overfits for pixel
reconstruction, so it generates pathologies and fails to segment them. Also Autoencoder produces
blurry generations, leading to inaccurate reconstructions of fine details and high anomaly scores on
these details (e.g., vessels in the lungs). f-AnoGAN, on the other hand, avoids generating patholo-
gies, but the generation quality still is insufficient for precise segmentation of only pathological
voxels. GANs are known to be unstable and sensitive to hyperparameters, necessitating careful
tuning and experimentation to achieve optimal results.
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