
Rethinking Probabilistic Circuit Parameter Learning

Abstract

Probabilistic Circuits (PCs) offer a computation-
ally scalable framework for generative modeling,
supporting exact and efficient inference of a wide
range of probabilistic queries. While recent ad-
vances have significantly improved the expressive-
ness and scalability of PCs, effectively training
their parameters remains a challenge. In particu-
lar, a widely used optimization method, full-batch
Expectation-Maximization (EM), requires process-
ing the entire dataset before performing a single up-
date, making it ineffective for large datasets. While
empirical extensions to the mini-batch setting have
been proposed, it remains unclear what objective
these algorithms are optimizing, making it difficult
to assess their theoretical soundness. This paper
bridges the gap by establishing a novel connection
between the general EM objective and the standard
full-batch EM algorithm. Building on this, we de-
rive a theoretically grounded generalization to the
mini-batch setting and demonstrate its effective-
ness through preliminary empirical results.

1 INTRODUCTION

Probabilistic Circuits (PCs) are a class of generative mod-
els that represent probability distributions by recursively
composing simpler distributions through sum (mixture) and
product (factorization) operations [Choi et al., 2020]. The
key idea behind PCs is to examine how tractable probabilis-
tic models, such as Hidden Markov Models [Rabiner and
Juang, 1986], perform inference (e.g., computing marginal
probabilities). PCs distill the structure of these models’ com-
putation graphs into a compact and general framework,
which leads to a unified, computation-oriented perspective
on tractable probabilistic modeling.

While significant progress has been made in improving the

expressiveness of PCs through architectural innovations
[Loconte et al., 2025, Liu and Van den Broeck, 2021]
and system-level advancements [Liu et al., 2024, Peharz
et al., 2020], there is still no clear consensus on how to
effectively learn their parameters. Full-batch Expectation-
Maximization (EM) and its empirical variants remain widely
used approaches [Zhang et al., 2025, Liu et al., 2023]. How-
ever, full-batch EM requires aggregating information across
the entire dataset before each parameter update, making it
hard to scale to large datasets or streaming settings.

Based on Kunstner et al. [2021], which studies the full-batch
EM algorithm for all latent variable models, we discover
that the full-batch EM update of PCs corresponds to opti-
mizing a 1st order Taylor approximation, regularized by a
Kullback–Leibler (KL) divergence that penalizes deviation
from the current distribution. This yields a novel view of
the full-batch EM update for PCs, which has appeared in
various forms across different contexts [Peharz, 2015, Choi
et al., 2021, Poon and Domingos, 2011].

This perspective naturally suggests a theoretically grounded
mini-batch extension: by increasing the weight on the KL
term, we can compensate for the reduced information avail-
able in a mini-batch compared to the full dataset. The result-
ing update rule admits a closed-form expression, making
it efficient and easy to implement. Preliminary empirical
evaluations further demonstrate the empirical superiority
compared to existing EM- and gradient-based algorithms.

2 BACKGROUND

2.1 DISTRIBUTIONS AS CIRCUITS

Probabilistic Circuits (PCs) represent probability distribu-
tions with deep and structured computation graphs that con-
sist of sum and product operations [Choi et al., 2020]. They
are an extension of existing tractable probabilistic models,
which are designed to support efficient and exact probabilis-
tic inference over complex queries, such as Sum Product

Submitted to the 41st Conference on Uncertainty in Artificial Intelligence (UAI 2025). To be used for reviewing only.

Networks [Poon and Domingos, 2011], cutset networks
[Rahman et al., 2014], and Hidden Markov Models [Ra-
biner and Juang, 1986]. PCs inherit the tractability of these
models while introducing a scalable computational frame-
work to encode richer and more complex data distributions.
The syntax and semantics of PCs are as follows:

Definition 1 (Probabilistic Circuit). A PC p over variables
X is a directed acyclic computation graph with one single
root node nr. Every input node (those without incoming
edges) in p defines an univariate distribution over variable
X ∈ X. Every inner node (those with incoming edges) is
either a product or a sum node, where each product node
encodes a factorized distribution over its child distributions
and each sum node represents a weighted mixture of its
child distributions. Formally, the distribution pn encoded by
a node n can be represented recursively as

pn(x) :=


fn(x) n is an input node,∏

c∈ch(n) pc(x) n is a product node,∑
c∈ch(n) θn,c · pc(x) n is a sum node,

(1)

where fn is an univariate primitive distribution defined over
X ∈ X (e.g., Gaussian, Categorical), ch(n) denotes the set
of child nodes of n, and θn,c ≥ 0 is the parameter corre-
sponds to the edge (n, c) in the PC. Define the log-parameter
of (n, c) as ϕn,c := log θn,c, which will be used interchange-
ably with θn,c. We further denote ϕ := {ϕn,c}(n,c) as the
set of all sum node parameters in the PC. Without loss of
generality, we assume that every path from the root node to
an input node alternates between sum and product nodes.

In order to ensure exact and efficient computation of various
probabilistic queries, including marginalization and comput-
ing moments, we need to impose structural constraints on
the circuit. Specifically, smoothness and decomposability
[Peharz et al., 2015] are a set of sufficient conditions that en-
sure tractable computation of marginal and conditional prob-
abilities. Intuitively, this tractability arises because smooth
and decomposable circuits represent multilinear functions,
which are known to support efficient marginalization [Broad-
rick et al., 2024]. We provide further details in Appendix A.

PCs can be viewed as latent variable models with discrete
latent spaces [Peharz et al., 2016]. Each sum node can be
interpreted as introducing a discrete latent variable Z that
selects among its child distributions. Specifically, assigning
Z = i corresponds to choosing the i-th child of the sum
node. By aggregating all such latent variables, the PC can
be seen as defining a hierarchical latent variable model.

2.2 EXPECTATION-MAXIMIZATION

Expectation-Maximization (EM) is a well-known algorithm
to maximize the log-likelihood given data x of a distribu-
tion defined by a latent variable model. Specifically, the

distribution pϕ(X) (ϕ are the parameters) is defined as∑
z pϕ(X, z) over latents Z. Our goal is to maximize

LL(ϕ) := log pϕ(x) = log
(∑

z

pϕ(x, z)
)
. (2)

EM is an effective way to maximize the above objective
when pϕ(X,Z) permits much simpler (or even closed-form)
maximum likelihood estimation. It optimizes Equation (2)
by maximizing the following surrogate objective:

Qϕ(ϕ
′) :=

∑
z

pϕ(z|x) · log pϕ′(x, z). (3)

Given the current set of parameters ϕ, EM updates the
parameters by solving for ϕ′ that maximizes Qϕ(ϕ

′), which
is guaranteed to be a lower bound of LL(ϕ′) since

Qϕ(ϕ
′) = LL(ϕ′)+

∑
z

pϕ(z|x) · log pϕ′(z|x) ≤ LL(ϕ′).

3 EM FOR PROBABILISTIC CIRCUITS

While variants of the EM algorithm have been proposed
for training PCs in various contexts [Poon and Domingos,
2011, Peharz, 2015], their connection to the general EM
objective Qϕ(ϕ

′) (cf. Eq. (3)) remains implicit. The lack of
a unified formulation makes it difficult to fully understand
the existing optimization procedures or to extend them to
new settings, such as training with mini-batches of data,
which is critical for scaling the optimizer to large datasets.

Specifically, there are multiple ways to define mini-batch
EM algorithms that all reduce to the same full-batch EM
algorithm in the limit. However, it is often unclear what ob-
jective these variants are optimizing in the mini-batch case,
which complicates the design of new learning algorithms.

In this section, we bridge this gap by deriving EM for PCs
explicitly from the general objective. In Section 3.1, we
begin with a derivation for the full-batch case, showing how
existing formulations can be recovered and interpreted from
this viewpoint. We then extend the derivation to the mini-
batch setting in Section 3.2, leading to a principled and
theoretically-grounded mini-batch EM algorithm for PCs.

3.1 REVISITING FULL-BATCH EM

Recall from Definition 1 that we define the log-parameter
that corresponds to the edge (n, c) as ϕn,c := log θn,c, and
the set of all parameters of a PC as ϕ := {ϕn,c}n,c.1 Since
ϕ does not necessarily define a normalized PC, we distin-
guish between the unnormalized and normalized forms of

1We assume for simplicity that distributions of input nodes
have no parameters (e.g., indicator distributions). Our analysis can
be easily extended to exponential family input distributions.

2

the model: let p̃ϕ(x) denote the unnormalized output of
the circuit computed via the feedforward pass defined by
Equation (1), and define the normalized distribution as

pϕ(x) := p̃ϕ(x)/Z(ϕ),

where Z(ϕ) is the normalizing constant. We extend the
single-sample EM objective in Equation (3) to the following,
which is defined on a dataset D:

QD
ϕ (ϕ

′) :=
1

|D|
∑
x∈D

∑
z

pϕ(z|x) · log pϕ′(x, z).

Our analysis is rooted in the following result.

Proposition 1. Given a PC pϕ with log-parameters ϕ (cf.
Def. 1) and a dataset D, the objective QD

ϕ (ϕ
′) equals the

following up to a constant term irrelevant to ϕ′:

1

|D|
∑
x∈D

log pϕ(x) +

〈
∂ log pϕ(x)

∂ϕ
,ϕ′ − ϕ

〉
︸ ︷︷ ︸

LinLLxϕ(ϕ′)

−KLϕ(ϕ′),

where KLϕ(ϕ
′) := DKL (pϕ(X,Z) ∥ pϕ′(X,Z)) is the KL

divergence between pϕ and pϕ′ .

The proof follows Kunstner et al. [2021] and is provided
in Appendix B.1. Proposition 1 reveals that the EM update
can be interpreted as maximizing a regularized first-order
approximation of the log-likelihood. Specifically, the term
LinLLxϕ(ϕ

′) corresponds to the linearization of log pϕ′(x)
around the current parameters ϕ, capturing the local sensitiv-
ity of the log-likelihood to parameter changes. The KL term,
KLϕ(ϕ

′), acts as a regularizer that penalizes large deviations
in the joint distribution over X and Z.

According to Proposition 1, solving for the updated pa-
rameters ϕ′ requires computing two key quantities: (i) the
gradient of the log-likelihood ∂ log pϕ(x)/∂ϕ, and the KL
divergence KLϕ(ϕ′). To express these terms in closed form,
we introduce the concept of top-down probabilities, which
is first defined by Dang et al. [2022].

Definition 2 (TD-prob). Given a PC p parameterized by ϕ,
we define the top-down probability (TD-prob) TD(n) of a
node n recursively from the root node to input nodes:

TD(n) :=


1 n is the root node,∑

m∈pa(n) TD(m) n is a sum node,∑
m∈pa(n) θm,n · TD(m) n is a product node,

where θm,n := exp(ϕm,n) and pa(n) is the set of parent
nodes of n. Define the TD-prob of ϕm,n as TD(ϕm,n) :=
θm,n · TD(m), and denote by TD(ϕ) the vector containing
the TD-probs of all edge parameters in the circuit.

Intuitively, the TD-prob of a parameter quantifies how much
influence it has on the overall output of the PC, and in

particular, on the normalizing constant Z(ϕ).2 We continue
to express the two key terms in Proposition 1 in closed form.

Lemma 1. Assume the distributions defined by all nodes in
a PC are normalized. We have the following (∀x):

(i) ∂ log pϕ(x)/∂ϕ = ∂ log p̂ϕ(x)/∂ϕ− TD(ϕ),

(ii) KLϕ(ϕ
′) = −⟨TD(ϕ),ϕ′⟩+ C,

where C is a constant term independent of ϕ′.

The assumption that the PC is normalized is mild and prac-
tical. In Appendix C, we introduce a simple and efficient
algorithm that adjusts the PC parameters to ensure normal-
ization without affecting the structure of the circuit. We can
now substitute the closed-form expressions for the gradi-
ent and the KL divergence into the general EM objective
QD

ϕ (ϕ
′), which converts the problem into3〈
1

|D|
∑
x∈D

∂ log p̃ϕ(x)

∂ϕ
−���TD(ϕ),ϕ′

〉
+�����⟨TD(ϕ),ϕ′⟩.

If we additionally require each node in the PC to de-
fine a normalized distribution, we impose the constraint∑

c∈ch(n) exp(ϕ
′
n,c) = 1 for all sum nodes n. Incorporating

these constraints into the EM objective results in a con-
strained maximization problem that has the following solu-
tion for every edge (n, c) (see Appx. B.2 for the derivation):

ϕ′
n,c = log θ′n,c, θ′n,c = FDϕ (n, c)/Z, (4)

where we define FDϕ (n, c) := 1
|D|

∑
x∈D

∂ log p̃ϕ(x)
∂ϕn,c

4, and
Z =

∑
c′∈ch(n) F

D
ϕ (n, c

′) ensures that n is normalized.

While this full-batch EM algorithm in Equation (4) has been
derived in prior work [Choi et al., 2021, Peharz, 2015], we
recover it here through Proposition 1. This paves the way
for a principled mini-batch EM algorithm by generalizing
the objective QD

ϕ (ϕ
′), as shown in the next section.

3.2 EXTENSION TO THE MINI-BATCH CASE

When the dataset is large, full-batch EM becomes inefficient
and impractical as it requires scanning the entire dataset
before making any parameter updates. In such cases, we
instead wish to update the parameters after processing only
a small subset of data points, which is commonly referred to
as a mini-batch. Given a mini-batch of samples D, Peharz
et al. [2020] proposes to update the parameters according to
a small step size α ∈ (0, 1):

θ′n,c = (1− α) · θn,c + α · FDϕ (n, c)/Z, (5)

2This can be observed from the fact that Z(ϕ) can be computed
via the same feedforward pass (Eq. (1)) except that we set the
output of input nodes to 1.

3We drop all terms that are independent of ϕ′.
4This corresponds to the PC flows defined by Choi et al. [2021].

3

where we borrow notation from Equation (4). However, it
remains unclear whether this update rule is grounded in a
principled EM objective. In the following, we show that
from the full-batch EM derivation in the previous section,
we can derive a mini-batch update rule that closely resem-
bles the above, but with a crucial difference.

Proposition 1 expresses the EM objective as the sum of two
terms: a linear approximation of the log-likelihood and a
regularization term that penalizes deviation from the current
model via KL divergence. When using only a mini-batch of
samples, the log-likelihood may overlook parts of the data
distribution not covered by the sampled subset.

To account for this, we can put a weighting factor γ > 1 on
the KL divergence (i.e., KLϕ(ϕ′) becomes γ · KLϕ(ϕ′)).5

Plugging in Lemma 1 and dropping terms independent to
ϕ′, the adjusted objective (i.e., QD

ϕ (ϕ
′) with the additional

weighting γ) can be expressed as〈
FDϕ ,ϕ

′〉+ (γ − 1) · ⟨TD(ϕ),ϕ′⟩,

where FDϕ collects all entries FDϕ (n, c) into a single vector,
with each FDϕ (n, c) representing the aggregated gradient
w.r.t. ϕn,c. With the constraints that ensure each PC node
defines a normalized distribution, the solution is

θ′n,c =
(
TDϕ(n) · θn,c + α · FD

ϕ (n, c)
)
/Z, (6)

where α := 1/(γ−1) is the learning rate, TDϕ(n) is the TD-
prob of node n (Def. 2), and Z is a normalizing constant.
The derivation is deferred to Appendix B.2. In practice,
compared to the full-batch EM update (Eq. (4)), the only
additional computation required is TDϕ(n), which can be
efficiently computed once in a data-independent top-down
pass over the PC using Definition 2.

To build intuition for the update rule, we consider the case
where D contains only a single sample x. In this setting,
the update direction Fxϕ(n, c) can be decomposed using the
chain rule of derivatives:

Fxϕ(n, c) =
∂ log p̃ϕ(x)

∂ϕn,c
=

∂ log p̃ϕ(x)

∂ log p̃nϕ(x)︸ ︷︷ ︸
Fxϕ(n)

·
∂ log p̃nϕ(x)

∂ϕn,c︸ ︷︷ ︸
F̂xϕ(n,c)

,

where we define log p̃nϕ(x) as the (unnormalized) log-
likelihood of node n. A key observation is that the second
term F̂xϕ(n, c) is normalized w.r.t. all children of sum node
n:

∑
c∈ch(n) F̂

x
ϕ(n, c) = 1 (see Appx. B.3 for the proof). In-

tuitively, we now break down Fxϕ(n, c) into the importance
of node n to the overall output (i.e., Fxϕ(n)) and the rela-
tive contribution of child c to n (i.e., F̂xϕ(n, c)). With this
decomposition, we can simplify Equation (6) as

θ′n,c =
(
θn,c + α · relxϕ(n) · F̂xϕ(n, c)

)
/Z,

5Note that this is equivalent to QD
ϕ (ϕ′)− (γ − 1) · KLϕ(ϕ′)

according to Proposition 1.

X X

0.50.5 0.5

Pr
ob
ab
ili
ty
D
en
sit
y

x

Given

Figure 1: The proposed algorithm implicitly applies an adap-
tive learning rate to each node. For the PC shown on the left,
given a sample x=−1.5, the algorithm uses a large learning
rate to update n1 while keeping n2 almost unchanged.

where relxϕ(n) := Fxϕ(n)/TDϕ(n) can be viewed as the
relative importance of n to the PC output given input x. The
term α · relxϕ(n) then acts as an adaptive learning rate for
updating the child parameters of node n, scaling the update
magnitude according to how influential n is for the input. In
comparison, the mini-batch algorithm in Equation (5) uses
a fixed learning rate for all parameters.

This difference is reflected in the example shown in Fig-
ure 1. Given the PC on the left, which represents a mixture
of two Gaussians (middle). Suppose we draw one sample
x=−1.5. This sample does not reflect the full distribution
and only activates the left mode. Our algorithm accounts
for this by assigning a small effective learning rate to node
n2 (relxϕ(n2)≈ 0.0004) as it is “not responsible” for ex-
plaining this particular input and focuses the update on n1

(relxϕ(n1) ≈ 1.9996). In contrast, Equation (5) applies a
uniform learning rate across all parameters, leading it to
also update n2 unnecessarily to fit the current sample.

4 CONNECTIONS WITH
GRADIENT-BASED OPTIMIZERS

Gradient-based optimization methods, such as stochastic
gradient descent (SGD), can be interpreted through a lens
similar to the EM formulation. Recall from Proposition 1
that the EM objective comprises a linear approximation of
the log-likelihood, along with a KL divergence regularizer
that penalizes deviations from the current model. In contrast,
standard gradient-based updates can be viewed as maximiz-
ing the same linear approximation of the log-likelihood,
but with an L2 regularization penalty on parameter updates
instead of a KL divergence:

1

|D|
∑
x∈D

log pϕ(x)+

〈
∂ log pϕ(x)

∂ϕ
,ϕ′− ϕ

〉
−γ∥ϕ′− ϕ∥22.

Solving for ϕ′ gives ϕ′ = ϕ+ α · ∂ log pϕ(x)/∂ϕ, a stan-
dard gradient ascent step with α = 1/(2γ).

We empirically compare our mini-batch EM algorithm
against existing EM- and gradient-based optimizers on train-
ing a PC to fit the ImageNet32 dataset [Deng et al., 2009],
where the proposed algorithm converges faster and also
achieves higher likelihoods after convergence (Appx. D).

4

References

Oliver Broadrick, Honghua Zhang, and Guy Van den Broeck.
Polynomial semantics of tractable probabilistic circuits.
In Proceedings of the Fortieth Conference on Uncertainty
in Artificial Intelligence, pages 418–429, 2024.

YooJung Choi, Antonio Vergari, and Guy Van den Broeck.
Probabilistic circuits: A unifying framework for tractable
probabilistic models. UCLA. URL: http://starai. cs. ucla.
edu/papers/ProbCirc20. pdf, page 6, 2020.

YooJung Choi, Meihua Dang, and Guy Van den Broeck.
Group fairness by probabilistic modeling with latent fair
decisions. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pages 12051–12059,
2021.

Meihua Dang, Anji Liu, and Guy Van den Broeck. Sparse
probabilistic circuits via pruning and growing. Advances
in Neural Information Processing Systems, 35:28374–
28385, 2022.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and
Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248–255. Ieee, 2009.

Diederik P Kingma. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014.

Frederik Kunstner, Raunak Kumar, and Mark Schmidt.
Homeomorphic-invariance of em: Non-asymptotic con-
vergence in kl divergence for exponential families via
mirror descent. In International Conference on Artifi-
cial Intelligence and Statistics, pages 3295–3303. PMLR,
2021.

Anji Liu and Guy Van den Broeck. Tractable regularization
of probabilistic circuits. Advances in Neural Information
Processing Systems, 34:3558–3570, 2021.

Anji Liu, Mathias Niepert, and Guy Van den Broeck. Im-
age inpainting via tractable steering of diffusion models.
arXiv preprint arXiv:2401.03349, 2023.

Anji Liu, Kareem Ahmed, and Guy Van Den Broeck. Scal-
ing tractable probabilistic circuits: A systems perspective.
In International Conference on Machine Learning, pages
30630–30646. PMLR, 2024.

Lorenzo Loconte, Antonio Mari, Gennaro Gala, Robert Pe-
harz, Cassio de Campos, Erik Quaeghebeur, Gennaro
Vessio, and Antonio Vergari. What is the relationship
between tensor factorizations and circuits (and how can
we exploit it)? arXiv preprint arXiv:2409.07953, 2024.

Lorenzo Loconte, Stefan Mengel, and Antonio Vergari. Sum
of squares circuits. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 39, pages 19077–
19085, 2025.

Henrique Malvar and Gary Sullivan. Ycocg-r: A color space
with rgb reversibility and low dynamic range. ISO/IEC
JTC1/SC29/WG11 and ITU-T SG16 Q, 6, 2003.

James Martens and Venkatesh Medabalimi. On the expres-
sive efficiency of sum product networks. arXiv preprint
arXiv:1411.7717, 2014.

Robert Peharz. Foundations of sum-product networks for
probabilistic modeling. PhD thesis, PhD thesis, Medical
University of Graz, 2015.

Robert Peharz, Sebastian Tschiatschek, Franz Pernkopf,
and Pedro Domingos. On theoretical properties of sum-
product networks. In Artificial Intelligence and Statistics,
pages 744–752. PMLR, 2015.

Robert Peharz, Robert Gens, Franz Pernkopf, and Pedro
Domingos. On the latent variable interpretation in sum-
product networks. IEEE transactions on pattern analysis
and machine intelligence, 39(10):2030–2044, 2016.

Robert Peharz, Steven Lang, Antonio Vergari, Karl Stelzner,
Alejandro Molina, Martin Trapp, Guy Van den Broeck,
Kristian Kersting, and Zoubin Ghahramani. Einsum net-
works: Fast and scalable learning of tractable probabilistic
circuits. In International Conference on Machine Learn-
ing, pages 7563–7574. PMLR, 2020.

Hoifung Poon and Pedro Domingos. Sum-product networks:
A new deep architecture. In 2011 IEEE International
Conference on Computer Vision Workshops (ICCV Work-
shops), pages 689–690. IEEE, 2011.

Lawrence Rabiner and Biinghwang Juang. An introduction
to hidden markov models. ieee assp magazine, 3(1):4–16,
1986.

Tahrima Rahman, Prasanna Kothalkar, and Vibhav Gogate.
Cutset networks: A simple, tractable, and scalable ap-
proach for improving the accuracy of chow-liu trees.
In Machine Learning and Knowledge Discovery in
Databases: European Conference, ECML PKDD 2014,
Nancy, France, September 15-19, 2014. Proceedings, Part
II 14, pages 630–645. Springer, 2014.

Antonio Vergari, YooJung Choi, Anji Liu, Stefano Teso, and
Guy Van den Broeck. A compositional atlas of tractable
circuit operations for probabilistic inference. Advances
in Neural Information Processing Systems, 34:13189–
13201, 2021.

Honghua Zhang, Benjie Wang, Meihua Dang, Nanyun Peng,
Stefano Ermon, and Guy Van den Broeck. Scaling up
probabilistic circuits via monarch matrices. In AAAI’25
workshop on CoLoRAI - Connecting Low-Rank Repre-
sentations in AI, feb 2025.

5

Rethinking Probabilistic Circuit Parameter Learning
(Supplementary Material)

A STRUCTURAL PROPERTIES OF PCS

We provide formal definitions of smoothness and decomposability. Please refer to Choi et al. [2020] for a comprehensive
overview.

Definition 3 (Smoothness and Decomposability). Define the scope Var(n) of a PC node n as the set of all variables defined
by its descendant input nodes. A PC p is smooth if for every sum node n, its children share the same scope: ∀c1, c2 ∈ ch(n),
Var(c1) = Var(c2). p is decomposable if for every product node n, its children have disjoint scopes: ∀c1, c2 ∈ ch(n)
(c1 ̸= c2), Var(c1) ∩ Var(c2) = ∅.

B PROOFS

This section provides proof of the theoretical results stated in the main paper.

B.1 INTERPRETING THE EM ALGORITHM OF PCS

This section provides the proof of Proposition 1, which interprets the full-batch EM algorithm of PCs in a new context.

Proof of Proposition 1. We begin by formalizing the latent-variable-model view of PCs. Given a PC pϕ(X) parameterized
by ϕ, we define a set of latent variables Z such that pϕ(X) =

∑
z pϕ(X,Z = z). Specifically, we associate a latent variable

Zn with each sum node n in the PC. We use Zn = i (i ∈ {1, . . . , |ch(n)|}) to denote that we “select” the i-th child node by
zeroing out all the probabilities coming from all other child nodes:

pn(x,Zn = i, z\n) =
∑

c∈ch(n)

exp(ϕn,c) · pc(x,Zn = i, z\n) · 1[c = ci],

where we define ci as the i-th child node of n, and Z\n := Z\Zn.

We further show that pϕ(X,Z) is an exponential family distribution. To see this, it suffices to construct a set of |ϕ| sufficient
statistics S(x, z) such that for every x and z, the likelihood can be expressed as:

pϕ(x, z) = exp (⟨S(x, z),ϕ⟩ −A(ϕ)) ,

where A(ϕ) = log
∑

x,z⟨S(x, z),ϕ⟩ is the log partition function that normalizes the distribution. Note that A(ϕ) is convex
by definition.

To construct S(x, z), we first define the support supp(n) of every node recursively as follows:

supp(n) :=


{(x, z) : pn(x) > 0} n is an input node,⋂

c∈ch(n) supp(c) n is a product node,⋃
c∈ch(n) ({(x, z) : zn = c} ∩ supp(c)) n is a sum node,

Submitted to the 41st Conference on Uncertainty in Artificial Intelligence (UAI 2025). To be used for reviewing only.

where zn = c means zn = i if c is the i-th child of n.

The sufficient statistics S(x, z) can be defined using the support. Specifically, the sufficient statistics corresponding to the
parameter ϕn,c, denoted Sϕn,c(x, z), can be represented as:

Sϕn,c
(x, z) = 1

[
(x, z) ∈ supp(c) and zn = c

]
,

where 1[·] is the indicator function.

Before proceeding, we define the Bregman divergence induced by a convex function h as:

Dh(y,x) := h(y)− h(x)−
〈
∂h(x)

∂x
,y − x

〉
.

The following part partially follows Kunstner et al. [2021]. We plug in the exponential family distribution form of the PC
into the definition of Qϕ(ϕ

′):

Qϕ(ϕ
′) =

1

|D|
∑
x∈D

∑
z

pϕ(z|x) log pϕ′(x, z),

=
1

|D|
∑
x∈D

∑
z

pϕ(z|x)
[〈
S(x, z),ϕ′〉−A(ϕ′)

]
, ▷ Definition of pϕ′(x, z)

=
1

|D|
∑
x∈D

〈
Epϕ(z|x) [S(x, z)] ,ϕ

′〉−A(ϕ′). ▷ Linearity of expectation

We then subtract both sides by Qϕ(ϕ), which is irrelevant to ϕ′:

Qϕ(ϕ
′)−Qϕ(ϕ) =

1

|D|
∑
x∈D

〈
Ez∼pϕ(·|x) [S(x, z)] ,ϕ

′ − ϕ
〉
−A(ϕ′) +A(ϕ),

=
1

|D|
∑
x∈D

〈
Ez∼pϕ(·|x) [S(x, z)]−

∂A(ϕ)

∂ϕ
,ϕ′ − ϕ

〉
−
(
A(ϕ′)−A(ϕ)−

〈
∂A(ϕ)

∂ϕ
,ϕ′ − ϕ

〉)
︸ ︷︷ ︸

DA(ϕ′,ϕ)

,

=
1

|D|
∑
x∈D

〈
Ez∼pϕ(·|x) [S(x, z)]−

∂A(ϕ)

∂ϕ
,ϕ′ − ϕ

〉
−DA(ϕ

′,ϕ). (7)

We continue by simplifying the first term in the above expression. To do this, consider the gradient of LL(ϕ) w.r.t. ϕ:

∂LL(ϕ)

∂ϕ
=

1

|D|
∑
x∈D

∂ log pϕ(x)

∂ϕ
,

=
1

|D|
∑
x∈D

∂ log
(∑

z exp
(
⟨S(x, z),ϕ⟩

))
∂ϕ

− ∂A(ϕ)

∂ϕ
,

=
1

|D|
∑
x∈D

∑
z

exp
(
⟨S(x, z),ϕ⟩

)
· S(x, z)∑

z′ exp (⟨S(x, z′),ϕ⟩)
− ∂A(ϕ)

∂ϕ
,

= Ex∼D,z∼pϕ(·|x)[S(x, z)]−
∂A(ϕ)

∂ϕ
.

Plug in Equation (7), we have

Qϕ(ϕ
′)−Qϕ(ϕ) =

〈
∂LL(ϕ)

∂ϕ
,ϕ′ − ϕ

〉
−DA(ϕ

′,ϕ). (8)

We proceed to demonstrate that DA(ϕ
′,ϕ) = DKL(pϕ(X,Z) || pϕ′(X,Z)), where DKL(p || q) is the KL divergence

between distributions p and q:

DKL(pϕ(X,Z) || pϕ′(x, z)) = Ex,z∼pϕ

[
log

pϕ(x, z)

pϕ′(x, z)

]
,

7

= Ex,z∼pϕ

[〈
S(x, z),ϕ− ϕ′〉]+A(ϕ′)−A(ϕ),

=
〈
Ex,z∼pϕ

[S(x, z)] ,ϕ− ϕ′〉+A(ϕ′)−A(ϕ),

=

〈
∂A(ϕ)

∂ϕ
,ϕ− ϕ′

〉
+A(ϕ′)−A(ϕ), ▷ Since

∂A(ϕ)

∂ϕ
= Ex,z∼pϕ

[S(x, z)]

= DA(ϕ
′,ϕ).

Plug the result back to Equation (8), we conclude that Qϕ(ϕ
′) and the following are equivalent up to a constant independent

of ϕ′:

1

|D|
∑
x∈D

log pϕ(x) +

〈
∂ log pϕ(x)

∂ϕ
,ϕ′ − ϕ

〉
− KLϕ(ϕ

′). (9)

We proceed to prove Lemma 1, which offers a practical way to compute the two key quantities in Equation (9).

Proof of Lemma 1. Recall from our definition that pϕ(x) := p̃ϕ(x)/Z(ϕ). We start by proving a key result: for each
parameter ϕn,c, the partition function

Z(ϕ) = TD(n) · exp(ϕn,c) + C, (10)

where C is independent of ϕn,c. Note that by definition Z(ϕ) is computed by the same feedforward pass shown in
Equation (1), with the only difference that the partition function is set to 1 for input nodes. Specifically, denote Zn(ϕ) as the
partition function of node n, we have

Zn(ϕ) =


1 n is an input node,∏

c∈ch(n) Zc(ϕ) n is a product node,∑
c∈ch(n) exp(ϕn,c) · Zc(ϕ) n is a sum node.

Define TDm(n) as the TD-prob of node n for the PC rooted at m (assume n is a descendant node of m). We prove
Equation (10) by induction over m in Zm(ϕ).

In the base case where m = n, we have that

Zm(ϕ) = Zn(ϕ) =
∑

c′∈ch(n)

exp(ϕn,c′) · Zc′(ϕ),

=
∑

c′∈ch(n)

exp(ϕn,c′), ▷ Since we assume ∀c, Zc(ϕ) = 1

= exp(ϕn,c) +
∑

c′∈ch(n),c′ ̸=c

exp(ϕn,c′),

= TDm(n) · exp(ϕn,c) +
∑

c′∈ch(n),c′ ̸=c

exp(ϕn,c′), ▷ Since ∀c, TDc(c) = 1

= TDm(n) · exp(ϕn,c) + C.

Next, assume m is a sum node and Equation (10) holds for all its children. That is,

∀b ∈ ch(m), Zb(ϕ) = TDb(n) · exp(ϕn,c) + C.

We proceed by plugging in the definition of Zm(ϕ):

Zm(ϕ) =
∑

b∈ch(m)

exp(ϕm,b) · Zb(ϕ),

=
∑

b∈ch(m)

exp(ϕm,b) · TDb(n) · exp(ϕn,c) + C. (11)

8

Denote A ⊆ ch(m) as the set of child nodes that are ancestors of n, and B = ch(m)\A is its complement. From the
definition of TD-probs, we have

TDm(n) =
∑
b∈A

TDm(b) · TDb(n),

=
∑
b∈A

exp(ϕm,b) · TDb(n). ▷ Since TDm(b) = exp(ϕm,b)

Plug in Equation (11), we conclude that

Zm(ϕ) =
∑
b∈A

exp(ϕm,b) · TDb(n) · exp(ϕn,c) +
∑
b∈B

exp(ϕm,b) · TDb(n) · exp(ϕn,c) + C,

= TDm(n) · exp(ϕn,c) +
∑
b∈B

exp(ϕm,b) · TDb(n) · exp(ϕn,c) + C,

= TDm(n) · exp(ϕn,c) + C ′.

Finally, if m is a product node such that Equation (10) holds for all its children, we have that

Zm(ϕ) =
∏

b∈ch(m)

Zb(ϕ).

Since m is decomposable (cf. Def. 3), there is at most one b ∈ ch(m) that is an ancestor of n (otherwise multiple child
nodes contain the variable scope of n). Denote that child node as b̂, we further simplify the above equation to

Zm(ϕ) = Zb̂(ϕ) = TDb̂(n) · exp(ϕn,c) + C (12)

since all other terms are independent of ϕn,c and are assumed to be 1. According to the definition of TD-probs, we have

∀b ∈ ch(m), TDb(n) = TDm(n). (13)

Plug this into Equation (12) gives the desired result:

Zm(ϕ) = TDm(n) · exp(ϕn,c) + C.

This completes the proof of Equation (7).

We continue on proving the first equality in Lemma 1:

∂ log pϕ(x)

∂ϕ
=

∂ log p̂ϕ(x)

∂ϕ
− ∂ logZ(ϕ)

∂ϕ
,

=
∂ log p̂ϕ(x)

∂ϕ
− 1

Z(ϕ)
· ∂Z(ϕ)

∂ϕ
,

=
∂ log p̂ϕ(x)

∂ϕ
− ∂Z(ϕ)

∂ϕ
.

According to Equation (10), we can simplify the derivative of Z(ϕ) with respect to ϕn,c as TD(n) · exp(ϕn,c) = TD(ϕn,c),
where the last equality follows from Definition 2. Therefore, we conclude that

∂ log pϕ(x)

∂ϕ
=

∂ log p̂ϕ(x)

∂ϕ
− TD(ϕ).

We move on to the second equality in Lemma 1. According to Vergari et al. [2021], KLϕ(ϕ′) can be computed recursively as
follows (define KLnϕ(ϕ

′) as the KLD w.r.t. n):

KLnϕ(ϕ
′) =


0 n is an input node,∑

c∈ch(n) KL
c
ϕ(ϕ

′) n is a product node,∑
c∈ch(n) exp(ϕn,c)

(
ϕn,c − ϕ′

n,c

)
+ exp(ϕn,c) · KLcϕ(ϕ

′) n is a sum node.
(14)

9

We want to show that for each m that is an ancestor of n, the following holds:

KLmϕ (ϕ′) = −TDm(n) · exp(ϕn,c) · ϕ′
n,c + C, (15)

where C is independent of ϕ′
n,c. We can use the exact same induction procedure that is used to prove Equation (10). For all

ancestor sum nodes m of n, the first term in Equation (14) (the last row among the three cases) is always independent of
ϕ′
n,c, and hence the recursive definition resembles that of Zm(ϕ). Specifically, for all ancestor nodes of n, Equation (15)

simplifies to

KLnϕ(ϕ
′) =


0 n is an input node,∑

c∈ch(n) KL
c
ϕ(ϕ

′) n is a product node,∑
c∈ch(n) exp(ϕn,c) · KLcϕ(ϕ

′) n is a sum node.

The key difference with Zn(ϕ) is the definition of product nodes. Therefore, following the same induction proof of
Equation (10), we only need to re-derive the case where m is a product node such that Equation (15) holds for all its children.

Since the PC is decomposable, there is only one child node b ∈ ch(m) that is an ancestor of n. Therefore, ∀c ∈ ch(m), c ̸= b,
KLcϕ(ϕ

′) is independent of ϕ′(n, c). Hence, we have

KLmϕ (ϕ′) = −TDb(n) · exp(ϕn,c) · ϕ′
n,c + C,

= −TDm(n) · exp(ϕn,c) · ϕ′
n,c + C. ▷ According to Eq. (13)

Writing Equation (15) in a vectorized form for every ϕ′
n,c leads to our final result:

KLϕ(ϕ
′) = −⟨TD(ϕ),ϕ′⟩+ C.

B.2 DERIVATION OF THE FULL-BATCH AND MINI-BATCH EM

Full-Batch EM. Define S as the set of all sum nodes in the PC, the constrained optimization problem is

maximize
ϕ′

〈
1

|D|
∑
x∈D

∂ log p̃ϕ(x)

∂ϕ
,ϕ′

〉
,

s.t. ∀n ∈ S,
∑

c∈ch(n)

exp(ϕ′
n,c) = 1.

To incorporate the constraints, we use the method of Lagrange multipliers. The Lagrangian for this problem is

L(ϕ′, {λn}n∈S) =

〈
1

|D|
∑
x∈D

∂ log p̃ϕ(x)

∂ϕ
,ϕ′

〉
+

∑
n∈S

λn ·

1−
∑

c∈ch(n)

exp(ϕ′
n,c)

 ,

where the Lagrange multipliers {λn}n∈S enforce the constraints.

To minimize the Lagrangian w.r.t. ϕ′, we take the partial derivative of L(ϕ′, {λn}n∈S) w.r.t. each ϕ′
n,c and set it to 0:

∂L(ϕ′, {λn}n∈S)

∂ϕ′
n,c

= FDϕ (n, c)− λn exp(ϕ
′
n,c) = 0,

where FDϕ (n, c) is defined in Section 3.1. Simplifying this equation gives:

ϕ′
n,c = log FDϕ (n, c)− logZ,

where Z =
∑

c′∈ch(n) F
D
ϕ (n, c

′).

10

Mini-Batch EM. Similar to the full-batch case, according to Section 3.2, the constrained optimization problem is

maximize
ϕ′

〈
1

|D|
∑
x∈D

∂ log p̃ϕ(x)

∂ϕ
+ (γ − 1) · TD(ϕ),ϕ′

〉
,

s.t. ∀n ∈ S,
∑

c∈ch(n)

exp(ϕ′
n,c) = 1.

Following the full-batch case, the Lagrangian is given by

L(ϕ′, {λn}n∈S) =

〈
1

|D|
∑
x∈D

∂ log p̃ϕ(x)

∂ϕ
+ (γ − 1) · TD(ϕ),ϕ′

〉
+

∑
n∈S

λn ·

1−
∑

c∈ch(n)

exp(ϕ′
n,c)

 .

To minimize the Lagrangian with respect to ϕ′, we compute the partial derivative of L(ϕ′, {λn}n∈S) w.r.t. each ϕ′
n,c and

set it equal to zero:

∂L(ϕ′, {λn}n∈S)

∂ϕ′
n,c

= FDϕ (n, c) + (γ − 1) · TD(ϕ′
n,c)− λn exp(ϕ

′
n,c) = 0.

Using the definition TD(ϕ′
n,c) = TDϕ(n) · exp(ϕn,c), the solution is given by

ϕ′
n,c = log

(
TDϕ(n) · exp(ϕn,c) + α · FDϕ (n, c)

)
− logZ,

where α := 1/(γ − 1) and Z =
∑

c∈ch(n) TDϕ(n) · exp(ϕn,c) + α · FDϕ (n, c).

B.3 DECOMPOSITION OF PARAMETER FLOWS

In this section, we show that
∑

c∈ch(n) F̂
x
ϕ(n, c) = 1, where n is a sum node. We start from the definition of F̂xϕ(n, c):

F̂xϕ(n, c) =
∂ log p̃nϕ(x)

∂ϕn,c
=

1

p̃nϕ(x)
·
∂p̃nϕ(x)

∂ϕn,c
,

=
θn,c
p̃nϕ(x)

·
∂p̃nϕ(x)

∂θn,c
, ▷ By definition θn,c = exp(ϕn,c)

=
θn,c · p̃cϕ(x)

p̃nϕ(x)
.

Now we have

∑
c∈ch(n)

F̂xϕ(n, c) =
∑

c∈ch(n)

θn,c · p̃cϕ(x)
p̃nϕ(x)

= 1.

C GLOBAL PARAMETER RENORMALIZATION OF PCS

In this section, we propose a simple renormalization algorithm that takes an unnormalized PC pϕ(X) (i.e., its partition
function does not equal 1) with parameters ϕ and returns a new set of parameters ϕ′ such that for each node n in the PC

∀x, pnϕ′(x) =
1

Zn(ϕ)
· pnϕ(x),

where Z(ϕ) :=
∑

x pnϕ(x) is the partition function of pnϕ.

11

The Algorithm. First, we perform a feedforward evaluation of the PC to compute the partition function Zn(ϕ) of every
node n:

Zn(ϕ) =


1 n is an input node,∏

c∈ch(n) Zc(ϕ) n is a product node,∑
c∈ch(n) exp(ϕn,c) · Zc(ϕ) n is a sum node.

Next, for every sum edge (n, c) (i.e., n is a sum node and c is one of its children), we update the parameter as

ϕ′
n,c = log

(
θn,c · Zϕ(c)

Zϕ(n)

)
, (16)

where θn,c := exp(ϕn,c). The existence of this normalization algorithm has been previously shown by Martens and
Medabalimi [2014], although they did not provide an easy-to-implement algorithm.

Analysis. We begin by proving the correctness of the algorithm. Specifically, we show by induction that pnϕ′(x) =
pnϕ(x)/Zϕ(n) for every n and x. In the base case, all input nodes satisfy the equation since they are assumed to be
normalized. Next, given a product node n, assume the distributions encoded by all its children c satisfy

∀c ∈ ch(n), pcϕ′(x) = pcϕ(x)/Zϕ(c). (17)

Then by definition, pnϕ′(x) can be written as:

pnϕ′(x) =
∏

c∈ch(n)

pcϕ′(x) =
∏

c∈ch(n)

pcϕ(x)/Zϕ(c),

=

∏
c∈ch(n) p

c
ϕ(x)∏

c∈ch(n) Zϕ(c)
,

=
pnϕ(x)

Zϕ(n)
.

Finally, consider a sum node n whose children satisfy Equation (17). We simplify pnϕ′(x) in the following:

pnϕ′(x) =
∑

c∈ch(n)

θ′n,c · pcϕ′(x),

=
∑

c∈ch(n)

θn,c · Zϕ(c)

Zϕ(n)
· pcϕ′(x), ▷ According to Eq. (16)

=
∑

c∈ch(n)

θn,c ·���Zϕ(c)

Zϕ(n)
·
pcϕ(x)

�
��Zϕ(c)

, ▷ By induction

=

∑
c∈ch(n) θn,c · pcϕ(x)

Zϕ(n)
,

= pnϕ(x)/Zϕ(n).

We proceed to show an interesting property of the proposed global renormalization.

Lemma 2. Given a PC pϕ(X). Denote ϕ′ as the parameters returned by the global renormalization algorithm. Then, for
every sum edge (n, c), we have

∀x,
∂ log pϕ′(x)

∂ϕ′
n,c

=
∂ log pϕ(x)

∂ϕn,c
.

Proof. We begin by showing that for each node n is one of its children, the following holds:

∀x,
∂ log pnϕ′(x)

∂ log pcϕ′(x)
=

∂ log pnϕ(x)

∂ log pcϕ(x)
.

12

If n is a product node, both the left-hand side and the right-hand side equal 1. For example, consider the left-hand side.
According to the definition, we have

log pnϕ′(x) =
∑

c∈ch(n)

log pcϕ′(x).

Hence, its derivative w.r.t. log pcϕ′(x) is 1.

If n is a sum node, then for each x, we have

∂ log pnϕ′(x)

∂ log pcϕ′(x)
=

pcϕ′(x)

pnϕ′(x)
·
∂pnϕ′(x)

∂pcϕ′(x)
,

=
pcϕ′(x)

pnϕ′(x)
· θ′n,c,

=
pcϕ(x)/Zϕ(c)

pnϕ(x)/Zϕ(n)
· θ′n,c,

=
pcϕ(x)/���Zϕ(c)

pnϕ(x)/���Zϕ(n)
· θn,c ·�

��Zϕ(c)

���Zϕ(n)
,

=
pcϕ(x)

pnϕ(x)
· θn,c,

=
pcϕ(x)

pnϕ(x)
·
∂pnϕ(x)

∂pcϕ(x)
,

=
∂ log pcϕ(x)

∂ log pnϕ(x)
.

D EMPIRICAL EVALUATIONS

We train an HCLT [Liu and Van den Broeck, 2021] with hidden size 512 on 16× 16 aligned patches from the ImageNet32
dataset [Deng et al., 2009]. That is, we partition every 32 × 32 image (there are three color channels) into four 16 × 16
patches and treat these as data samples. There are in total 16× 16× 3 = 768 categorical variables in the PC.

We apply a lossy YCC transformation proposed by Malvar and Sullivan [2003]. Specifically, given a pixel with RGB values
(R,G,B), we first normalize them to the range [0, 1] by

r = R/255, g = G/255, b = B/255.

We then apply the following linear transformation:

co = r − b, tmp = b+ co/2, cg = g − tmp, y = tmp ∗ 2 + cg + 1,

where y, co, and cg are all in the range [−1, 1]. Finally, we quantize the interval [−1, 1] into 256 bins uniformly and convert
y, co, and cg to their quantized version Y , Co, and Cg, respectively. Note that Y , Co, and Cg are all categorical variables
with 256 categories.

Full-Batch EM. The full-batch EM implementation follows prior work (e.g., Choi et al. [2021], Peharz et al. [2020]).

Mini-Batch EM. For notation simplicity, we rewrite Equation (6) as

θ′n,c =
(
(1− α) · TDϕ(n) · θn,c + α · FDϕ (n, c)

)
/Z, (18)

which makes it more consistent with the baseline mini-batch EM algorithm. For both our algorithm and the baseline
algorithm in Equation (5), we choose a base learning rate of α = 0.4 and a cosine learning rate decay schedule to decrease it

13

Figure 2: Validation log-likelihood of an HCLT PC [Liu and Van den Broeck, 2021] on 16× 16 patches from ImageNet32.
Our proposed mini-batch EM algorithms outperform all other optimizers by a large margin.

to α = 0.08. For both algorithms, we use a batch size of 32768. We also use momentum to update the flows FDϕ . Specifically,
we initialize the momentum flows FmDϕ = 0, then before every EM step, we update FmDϕ following:

FmDϕ ← η · FmDϕ + (1− η) · FDϕ .

Finally, we replace the FDϕ (n, c) in Equation (18) with FmDϕ (n, c)/(1− ηT+1), where T is the number of updates performed.

Gradient-Based. Following Loconte et al. [2025, 2024], we adopt the Adam optimizer [Kingma, 2014]. We tested with
learning rates 1e− 2, 3e− 3, and 1e− 3, and observed that 1e− 2 performed the best. This matches the observation in
Loconte et al. [2024]. We also tested different batch sizes, and 1024 performs the best given a fixed number of epochs.

Empirical Insights. To have a fair comparison between full-batch and mini-batch algorithms, we plot the validation
log-likelihood vs. the total number of consumed samples. Results are shown in Figure 2. First, we observe that EM-based
algorithms perform better than the gradient-based method Adam, suggesting that EM is a better parameter learning algorithm
for PCs. Next, the proposed mini-batch EM algorithm outperforms both the full-batch EM algorithm and the mini-batch EM
algorithm proposed by Peharz et al. [2020], indicating the empirical superiority of the proposed algorithm.

14

	Introduction
	Background
	Distributions as Circuits
	Expectation-Maximization

	EM for Probabilistic Circuits
	Revisiting Full-Batch EM
	Extension to the Mini-Batch Case

	Connections with Gradient-Based Optimizers
	Structural Properties of PCs
	Proofs
	Interpreting the EM Algorithm of PCs
	Derivation of the Full-Batch and Mini-Batch EM
	Decomposition of Parameter Flows

	Global Parameter Renormalization of PCs
	Empirical Evaluations

