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ABSTRACT

Federated learning has rapidly gained attention in the industrial sec-
tor due to its significant advantages in protecting privacy. However,
ensuring the fairness of federated learning models post-deployment
presents a challenge in practical applications. Given that clients
typically rely on limited private datasets to assess model fairness,
this constrains their ability to make accurate judgments about the
fairness of the model. To address this issue, we propose an innova-
tive evaluation framework, FedEvalFair, which integrates private
data from multiple clients to comprehensively assess the fairness of
models in actual deployment without compromising data privacy.
Firstly, FedEvalFair draws on the concept of federated learning to
achieve a comprehensive assessment while protecting privacy. Sec-
ondly, based on the statistical concept of ’estimating the population
from the sample’, FedEvalFair is capable of estimating the fairness
performance of the model in real-world settings from a limited data
sample. Thirdly, we have designed a flexible two-stage evaluation
strategy based on statistical hypothesis testing. We verified the
theoretical performance and sensitivity to fairness variations of
FedEvalFair using Monte Carlo simulations, demonstrating the
superior performance of its two-stage evaluation strategy. Addi-
tionally, we validated the effectiveness of the FedEvalFair method
on real-world datasets, including UCI Adult and eICU, and demon-
strated its stability in dealing with real-world data distribution
changes compared to traditional evaluation methods.

KEYWORDS

Federated Learning, Model Fairness, Privacy, Federated Evaluation
Framework, Statistical Inference, Hypothesis Testing

1 INTRODUCTION

Due to its significant advantages in protecting privacy, federated
learning has quickly attracted the attention of the industrial sector.
As the deployment of federated learning models in critical areas
such as criminal sentencing, employee recruitment, and loan ap-
proval continues to expand, the issue of fairness in federated learn-
ing models has garnered widespread concern[1, 10]. Especially in
recent years, many studies have introduced various concepts of
fairness, such as group fairness. This concept aims to reduce biases
against protected groups defined by sensitive attributes such as
gender and race, and has become a focus of research[6, 23]. Group
fairness is particularly concerned with mitigating the unfairness
that may be exhibited by models during the training process, es-
pecially when models are trained on biased data. Although many
studies have been devoted to measuring and mitigating this al-
gorithmic bias, formal guarantees for fairness attributes are still
lacking in practice[5, 8, 38, 40].

Ignoring the fairness evaluation of models during their actual
deployment can lead to serious consequences[12, 19, 22, 36]. For

instance, in models predicting patients’ reactions to specific medi-
cations, if the differences in patients’ genetic backgrounds, lifestyle
habits, and environmental factors are not adequately considered,
the model may produce misleading predictions for certain groups.
Such biases, if not identified and corrected through reliable fairness
evaluations, could lead to serious errors in treatment decisions for
these patients, causing irreversible impacts on their health. How-
ever, there are problems with the methods of evaluating model
fairness at the time of actual deployment. For example, existing
methods for assessing model fairness are often based on existing
datasets, but these datasets may not fully reflect the situation when
the model is deployed in the real world, leading to these assessment
methods failing to accurately reflect the model’s fairness during
actual deployment. Secondly, model developers often only have
access to limited real-world data, and conducting more detailed
fairness evaluations would require more data. However, considera-
tions of data privacy limit the acquisition of additional data, further
exacerbating the difficulty of accurately assessing model fairness.

As awareness of data privacy protection strengthens, obtaining
private data to assess the fairness of machine learning models has
become increasingly difficult and costly[11]. Many data providers,
especially organizations dealing with sensitive information such as
medical institutions and financial companies, are becoming more
reluctant to share their data, fearing that this may violate privacy
protection regulations or compromise the privacy and security of
their client[31]. This situation poses a significant challenge for
developers who aim to enhance model fairness and ensure that
their decision-making processes do not adversely affect specific
groups. They are faced with the problem of how to effectively assess
model fairness in the absence of sufficient data support. Therefore,
there is an urgent need to develop a new type of model fairness
assessment method that can utilize multi-source private data for
evaluation without infringing on data privacy.

Existing common methods for assessing model fairness primar-
ily rely on evaluations conducted on test datasets, reflecting the
model’s fairness through metrics such as demographic parity or
equality of opportunity[9, 26, 27]. However, a key limitation of
this approach is its assumption that the test dataset can accurately
represent the real-world data distribution when the model is de-
ployed, an assumption that does not hold true in many practical
scenarios. Therefore, model fairness assessments based solely on
test datasets may not be reliable, especially when evaluating the
fairness of models in real-world environments[5]. Given this, there
is an urgent need to develop a new assessment method that can
more accurately and reliably infer a model’s fairness performance
in actual deployment environments based on limited real-world
datasets. Such a method would help more authentically capture and
address potential fairness issues in models as they are applied in
practice.

Under the premise of data privacy protection, especially when
data does not leave the local environment, how to utilize the private
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data of multiple participants to more reliably assess the fairness of
models in actual deployment environments has become an impor-
tant research question. To address this, we propose a model fairness
federated evaluation framework named FedEvalFair, inspired by
the concept of federated learning, aimed at enabling more reliable
assessments of model fairness without direct access to the data.
Specifically, the FedEvalFair framework first utilizes the bootstrap
method at each participant’s local site to generate multiple test sets
through resampling. Then, based on the statistical principle of esti-
mating population parameters from samples, it reliably estimates
the model’s fairness performance across different data providers.
Moreover, we have developed an innovative two-stage fairness
testing method, which can comprehensively assess the fairness
of models on multi-source private data, thereby more accurately
evaluating the model’s fairness performance in actual deployment
environments.

The FedEvalFair framework holds significant practical value.
Relying solely on limited private data from a single source for
model evaluation can lead to uncertainty and bias. FedEvalFair
addresses this by enabling participation of multi-clients’ datasets
through privacy-preserving measures, substantially expanding the
scope and depth of evaluation. Grounded in statistical principles
like estimating population parameters from samples and hypothesis
testing, it ensures reliable and accurate fairness assessment in real-
world scenarios. Applicable not only for pre-deployment global
fairness analysis of federated models to identify biases against
disadvantaged groups, FedEvalFair can also periodically monitor
fairness changes in dynamic data settings, facilitating timely model
adjustments or retraining.

The main contributions of this study can be summarized as
follows:

• We developed the first multi-source evaluation system dedicated
to assessing model fairness, the FedEvalFair framework. Its
core objective is to accurately evaluate the fairness of models
when deployed in real environments, ensuring that the decision-
making process is fair to all user groups.

• We proposed an innovative privacy-preserving framework that
utilizes multi-party private datasets to comprehensively assess
the fairness of models while fully protecting the data privacy
of all participants. FedEvalFair ensures data security while
allowing for in-depth analysis of model fairness.

• Drawing on the principles of estimating population parameters
from samples and statistical hypothesis testing methods in sta-
tistics, we constructed a novel method for evaluating model fair-
ness. This method enhances the reliability of evaluation results
and provides a solid theoretical foundation for the quantitative
analysis of model fairness.

• Compared to traditional methods confined to test datasets, FedE-
valFair can more comprehensively assess model fairness in
actual deployment environments. Experimental results demon-
strate higher stability and reliability of our method when evalu-
ating model fairness in real-world settings.

This paper is structured as follows: Section 2 reviews related
work, setting the theoretical background for the FedEvalFair
framework. Section 3 explains the framework’s background, includ-
ing assumptions and definitions. Section 4 details FedEvalFair’s

core, the two-stage algorithm, covering theoretical underpinnings
and implementation. Section 5 presents experimental setup and
results, showcasing the framework’s effectiveness. Finally, Section
6 summarizes the findings and conclusions of this study.

2 RELATEDWORK

2.1 Model Fairness Optimization

In the field of machine learning, the core concept of fairness is to
ensure that models do not engage in discriminatory behavior when
processing individuals or groups with different protected attributes,
such as race, gender, age, and religion. These protected attributes, as
part of the input features, should not alone determine the decision-
making process of the model. As the understanding of model fair-
ness in the machine learning field deepens, numerous studies have
been dedicated to exploring methods to enhance fairness. Zafar et
al. developed an innovative mechanism by introducing a fairness
metric for decision boundaries, designing algorithm classifiers that
can maintain both high accuracy and fairness, successfully applied
to logistic regression and support vector machines[36]. Zhang et al.
introduced a framework that reduces bias by training a predictor
and an adversary model, with the goal of maintaining accuracy
from input to prediction while preventing the adversary model
from accurately predicting protected variables[38]. Additionally,
with the increasing demand for privacy protection, researchers
have also explored how to improve model fairness while protecting
privacy. Ezzeldin et al.’s FairFed, an innovative server-side algo-
rithm for fairness-aware aggregation in federated learning, aims
to enhance group fairness without needing centralized access to
sensitive data, showing the potential to build fairer models[18]. Yue
et al.’s GIFAIR-FL framework, by adding regularization terms in fed-
erated learning to achieve both group and individual fairness, has
proven to maintain or enhance predictive accuracy while improv-
ing fairness in image classification and text prediction tasks[35].
Zeng et al. introduced the FEDFB algorithm, which significantly
improves model fairness by modifying the FEDAVG protocol to
simulate centralized fair learning, achieving the performance of
centrally trained models in some cases[37]. Du et al.’s AgnosticFair
framework, aimed at achieving model fairness under unknown
testing data distributions, achieves high accuracy and fairness on
unknown testing data by kernel reweighting of training samples in
the loss function and fairness constraints[16]. Mohri et al. proposed
a concept of weak fairness for machine learning models, reducing
bias during the training process by minimizing the maximum train-
ing loss for protected categories, but this approach is limited to the
training stage and cannot ensure comprehensive fairness of the
model[28].

2.2 Model Fairness Evaluation

Researchers have developed a variety of model fairness assess-
ment strategies to identify unfair phenomena in machine learning
models[1, 20, 40]. Biswas et al. proposed a causal fairness approach
aimed at assessing the impact of data preprocessing stages on
fairness in the machine learning process, demonstrating through
case studies how to mitigate bias by selecting appropriate data
transformers[6]. Joymallya Chakraborty et al. introduced the Fair-
way method, which reduces bias in models by adjusting strategies
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during the preprocessing and training stages[10]. This method
emphasizes the impact of real-world biases on the fairness of AI
systems and demonstrates its effectiveness in discovering and re-
ducing model biases while minimizing the impact on predictive
performance, recommending the integration of bias testing and
mitigation into standard practices of machine learning software de-
velopment. Hort et al. introduced Fairea, a technique for evaluating
the variability in model behavior as a result of machine learning
bias mitigation methods, and tested the effectiveness of 12 bias
mitigation methods through a large-scale empirical study[23]. Ag-
garwal et al. developed a novel method for automatically generating
test inputs to detect individual discrimination in machine learning
models, combining symbolic execution with local interpretability
to efficiently create test cases, showing higher efficacy in detect-
ing individual discrimination compared to existing benchmarks[1].
Zhang et al.introduced an innovative and scalable approach for
identifying instances of individual discrimination in deep neural
networks (DNNs) by employing lightweight processes like gradi-
ent computation and clustering, significantly enhancing scalability
over current state-of-the-art techniques[40].

Despite these advancements, there remains a lack of empirical
research to measure and compare the fairness of ML models in
practical applications and to analyze the specific impact of miti-
gation algorithms on model performance[5]. As the protection of
privacy increases, there is a particular focus in trustworthy feder-
ated learning onwhether federated learningmodels can be deployed
in real-world scenarios, and evaluating whether models comply
with fairness principles during actual deployment is an important
evaluation goal.

3 PRELIMINARIES

In this section, we will present the foundational setup related to
the FedEvalFair framework and provide definitions pertinent to
model fairness.

3.1 Definition of Model Fairness

In the domain of model fairness metrics, fairness is often divided
into two core categories: individual fairness and group fairness.
Individual fairness focuses on evaluating whether the model’s pre-
dictions for similar pairs of samples are fair[17, 25]. On the other
hand, group fairness concentrates on assessing the balance of the
model’s predictions for specific protected groups (e.g., "women" vs.
"men")[7, 8, 15, 19, 22]. This study will focus on the measurement
methods of group fairness.

In existing research, to measure fairness, numerous metrics have
been proposed[3, 4, 14]. These metrics typically involve calculating
the classification ratios for specific groups, such as the true positive
rate and false positive rate (e.g., true positives, false positives),
and assess fairness by comparing the differences in these rates
across different groups. Consider a dataset 𝐷 containing 𝑛 samples,
with true classification labels 𝑌 , the model’s predicted classification
labels 𝑌 , and a sensitive attribute 𝐴. In this setting, 𝐴 = 1 can
represent a privileged group (such as males), while𝐴 = 0 represents
a non-privileged group (such as females). For binary model outputs
𝑌 (and their corresponding labels 𝑌 ), we assume 𝑌 = 1 indicates a
positive outcome. We adopts typical group fairness metrics[5, 20],

with a particular focus on Demographic Parity (DP) and Equal
Opportunity Disparity (EOD).

Δ𝐷𝑃 =
��𝑃 (𝑌 = 1|𝐴 = 0) − 𝑃 (𝑌 = 1|𝐴 = 1)

�� , (1)

Δ𝐸𝑂 =
��𝑃 (𝑌 = 1|𝐴 = 0, 𝑌 = 1) − 𝑃 (𝑌 = 1|𝐴 = 1, 𝑌 = 1)

�� . (2)

We denote the total disparity between Δ𝐷𝑃 (Demographic Parity
disparity) or Δ𝐸𝑂 (Equal Opportunity disparity) as Δ𝐷𝑖𝑠 . A model
can be considered to have achieved fairness when it completes
training and satisfies the following condition:

Δ𝐷𝑖𝑠 − 𝜀 ≤ 0,

where 𝜀 represents a small perturbation value, introduced to en-
sure that the fairness assessment accounts for a certain degree of
flexibility.

For fairness across multiple data sources, a trained model ℎ is
considered to have achieved fairness on multiple data sources if it
satisfies the following condition for each data source:

Δ𝐷𝑖𝑠ℎ (𝑘) − 𝜀𝑘 ≤ 0,∀𝑘 ∈ {1, . . . , 𝑁 }.

When evaluating model fairness across multi-source private data,
we measure the composite fairness performance using Δ𝐷𝑖𝑠 (𝑘) for
fairness disparity on each of the 𝐾 clients (represent a data source).
We derive multiple Bootstrap test datasets (𝑛𝑖 ) from each client to
compute Bootstrap disparity value, represented as 𝑌𝑖1, 𝑌𝑖2, . . . , 𝑌𝑖𝑛𝑖 .
These datasets, created via non-parametric Bootstrap from limited
original data, lead to varying statistical distributions. It is reasonable
to assume that these Bootstrap disparity value follow a normal
distribution 𝑁 (𝜇𝑖 , 𝜎2

𝑖 ), an assumption that becomes increasingly
reliable after a sufficient number of Bootstrap iterations. Thus, we
can collect a comprehensive set of fairness disparity data for each
client. According to the law of large numbers, the validity of this
assumption strengthens with the increase in dataset size, which is
also supported by our empirical evidence.

Remark 1. FedEvalFair is based on locally obtained bootstrap
fairness disparity distributions from each client, rather than on the
raw data, so there is no assumptions about the clients’ raw data.

For the fairness disparity data on the 𝑖-th client, we can calculate
the sample mean and sample variance as follows:

𝑌 𝑖 =
1
𝑛𝑖

𝑛𝑖∑︁
𝑗=1

𝑌𝑖 𝑗 , 𝑆
2
𝑖 =

1
𝑛𝑖 − 1

𝑛𝑖∑︁
𝑗=1

(𝑌𝑖 𝑗 − 𝑌 𝑖 )2 .

From this, we can estimate the population mean and variance of
fairness disparitys for each client as follows:

𝜇𝑖 = 𝐸
©« 1
𝑛𝑖

𝑛𝑖∑︁
𝑗=1

𝑌𝑖 𝑗
ª®¬ =

1
𝑛𝑖

𝑛𝑖∑︁
𝑗=1

𝐸 (𝑌𝑖 𝑗 ) = 𝑌 𝑖 ;

𝐷 (𝜇𝑖 ) =
(

1
𝑛𝑖

)2
𝐷

©«
𝑛𝑖∑︁
𝑗=1

𝑌𝑖 𝑗
ª®¬ =

𝜎2
𝑖

𝑛𝑖
,

where 𝐸 (𝑋 ) denotes the mathematical expectation, and 𝐷 (𝑋 ) de-
notes the variance of variable 𝑋 .

We set 𝜇𝑖 = 𝜇 +Δ𝜇𝑖 , where 𝜇𝑖 represents the population mean of
fairness disparity for themodel on the 𝑖-th client, andΔ𝜇𝑖 represents

3
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the difference from the common mean 𝜇 across all clients. The
hypothesis testing problem of interest is as follows:

𝐻0 : 𝜇1 = 𝜇2 = 𝜇3 = . . . = 𝜇𝑘 = 0 vs 𝐻1 : ∃𝑖, 𝜇𝑖 ≠ 0. (3)

We can divide this hypothesis testing problem into two stages:
The hypothesis testing problem for the first stage is:

𝐻0 : 𝜇1 = 𝜇2 = 𝜇3 = . . . = 𝜇𝑘 vs 𝐻1 : ∃𝑖, 𝑗, 𝜇𝑖 ≠ 𝜇 𝑗 . (4)

The second stage of our analysis involves a critical hypothesis
testing problem, formulated as:

𝐻0 : 𝜇𝑖 = 0 vs 𝐻1 : 𝜇𝑖 ≠ 0, for 𝑖 = 1, 2, . . . , 𝑘 . (5)

This test is versatile; for instance, it can be independently ap-
plied when a company seeks to evaluate the fairness of its model
on a specific dataset. More significantly, in scenarios aiming for
a comprehensive fairness assessment through the integration of
multi-source private data, the application of this two-stage hypothe-
sis test proves to be especially crucial. Addressing these hypothesis
testing challenges is central to our study.

3.2 Bootstrap Method

Bootstrap is a powerful statistical method, whose core idea involves
simulating the process of sampling from the original sample by
repeated resampling, used to estimate statistical characteristics of
sample data[29, 32, 39]. The Bootstrap method is divided into two
main forms: parametric Bootstrap and non-parametric Bootstrap
methods. The lies in that the parametric Bootstrap generates new
sample sets based on the known statistical distribution of the sam-
ple, whereas the non-parametric Bootstrap does not assume any
specific data distribution and directly performs replacement resam-
pling from the original dataset to construct new sample sets. The
application of non-parametric Bootstrap is particularly important
for those data types whose statistical distributions are difficult to
precisely define, such as images or audio.[2, 33, 34]

In practice, suppose the original dataset is 𝑋 = {𝑋1, 𝑋2, ..., 𝑋𝑛},
where 𝑋𝑖 represents the 𝑖th observation, and 𝑛 is the total number
of observations in the dataset. For each resampling, we construct
a new sample set 𝑋 ∗

𝑏
= {𝑋 ∗

𝑏1, 𝑋
∗
𝑏2, ..., 𝑋

∗
𝑏𝑛

}, where 𝑏 indicates the
current resampling index, 𝑏 = 1, 2, ..., 𝐵, and 𝐵 is the total number
of resampling times. Each 𝑋 ∗

𝑏𝑖
is randomly and with replacement

chosen from the original dataset 𝑋 . This means that for each 𝑏, ev-
ery 𝑋 ∗

𝑏𝑖
is independently drawn from {𝑋1, 𝑋2, ..., 𝑋𝑛}. This process

is repeated 𝐵 times, generating 𝐵 different bootstrap sample sets
𝑋 ∗

1 , 𝑋
∗
2 , ..., 𝑋

∗
𝐵 .

In model evaluation, the non-parametric bootstrap provides an
approach that can be used to more accurately evaluate models and
quantify their uncertainty, especially in complex environments
where the data distribution is unknown.

4 METHODOLOGY

4.1 Overview of FedEvalFair

As illustrated in Figure 1, the FedEvalFair framework integrates
the core concept of federated learning and places a special emphasis
on enhancing data privacy. Unlike traditional evaluation methods,
FedEvalFair avoids the direct access requirement to real datasets.
Within this framework, instead of sharing their original data and

model parameters, clients only need to share intermediate param-
eters related to the central aggregation for evaluation purposes.
Additionally, we apply homomorphic encryption algorithms to en-
crypt the shared parameters. These measures render it impossible
for semi-honest yet curious servers to infer any relevant informa-
tion about the private data of clients, thereby safeguarding client
data privacy.

Moreover, another innovative aspect of the FedEvalFair frame-
work is its reliance on statistical theory—specifically, the ideas of
estimating populations from samples and statistical hypothesis
testing—to conduct more trustworthy assessments of model fair-
ness. Data holders independently utilize a non-parametric bootstrap
method to create multiple bootstrap test datasets, to as compre-
hensively as possible evaluate the model’s fairness performance
on their respective datasets. This method effectively uses limited
sample data to infer the model’s fairness performance in a broader
population data space. Based on statistical hypothesis testing the-
ory, model fairness undergoes a two-stage rigorous hypothesis
testing. Another significant advantage of the FedEvalFair is that
evaluating model fairness on multi-clients’ private data sources
requires at most three rounds of communication. This not only
demonstrates the practicality of the FedEvalFair method but also
proves its effectiveness.

In the following sections, we will elaborate on the two-stage
fairness evaluation process using the FedEvalFair framework,
focusing on the theoretical underpinnings of Algorithm 1 and 2.

4.2 Two Stage Fairness Evaluation Method

In this subsection, based on the principles of statistical hypothesis
testing, we provide a rigorous theoretical derivation for the two-
stage fairness evaluation method, along with a detailed description
of their algorithmic implementation processes.

Next, we begin with the theoretical underpinnings of Algorithm
1. When the null hypothesis 𝐻0 in (4) is true and 𝜎𝑖 is known,
drawing upon the concept of Graybill-Deal estimation[21], the
estimator for the common mean 𝜇 is derived as

𝜇 =

∑𝑘
𝑖=1

1
𝐷 (𝜇𝑖 |𝜎𝑖 )

𝜇𝑖 |𝜎𝑖∑𝑘
𝑖=1

1
𝐷 (𝜇𝑖 |𝜎𝑖 )

=

∑𝑘
𝑖=1

𝑛𝑖
𝜎2
𝑖

𝜇𝑖 |𝜎𝑖∑𝑘
𝑖=1

𝑛𝑖
𝜎2
𝑖

=

𝑘∑︁
𝑖=1

𝜔𝑖𝜇𝑖 |𝜎𝑖 , (6)

where 𝜔𝑖 =

𝑛𝑖
𝜎2
𝑖∑𝑘

𝑖=1
𝑛𝑖
𝜎2
𝑖

, 𝑖 = 1, 2, · · · , 𝑘 . Then, a natural statistic is

given by

𝑍𝑖 =
𝜇𝑖 − 𝜇
𝐷 (𝜇𝑖 )

=
𝑛𝑖

𝜎2
𝑖

(
𝜇𝑖 −

𝑘∑︁
𝑖=1

𝜔𝑖𝜇𝑖

)
. (7)

Under the null hypothesis 𝐻0 in (3), the mathematical expectation
and variance of 𝑍𝑖 are given by

𝐸 (𝑍𝑖 ) =
𝑛𝑖

𝜎2
𝑖

(
𝐸 (𝜇𝑖 ) −

𝑘∑︁
𝑖=1

𝜔𝑖𝐸 (𝜇𝑖 )
)
= 0,

𝐷 (𝑍𝑖 ) = 𝐷
(
𝑛𝑖

𝜎2
𝑖

(𝜇𝑖 −
𝑘∑︁
𝑖=1

𝜔𝑖𝜇𝑖

)
=

(
𝑛𝑖

𝜎2
𝑖

)2 ©«
𝜎2
𝑖

𝑛𝑖
− 1

𝑘∑
𝑖=1

𝑛𝑖
𝜎2
𝑖

ª®®®®¬
.

(8)
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Figure 1: Overview of the FedEvalFair Framework. This figure visually differentiates the architecture of the FedEvalFair

framework from the traditional federated learning model, delineates the FedEvalFair framework, outlining its unique

components and communication processes.

By Central Limit Theorem, it readily follows that

𝑍𝑖 − 𝐸 (𝑍𝑖 )√︁
𝐷 (𝑍𝑖 )

=
𝑌𝑖 −

∑𝑘
𝑖=1 𝜔𝑖𝑌𝑖√︂

𝜎2
𝑖

𝑛𝑖
(1 − 𝜔𝑖 )

, 𝑖 = 1, 2, · · · , 𝑘 . (9)

As 𝑛𝑖 → ∞, 𝑍𝑖 − 𝐸 (𝑍𝑖 )√︁
𝐷 (𝑍𝑖 )

follows a standard normal distribution,

denoted by 𝑁 (0, 1), 𝑖 = 1, 2, · · · , 𝑘 . Then, a natural statistic for
testing (3) is given by

𝑇 =
∑︁𝑘

𝑖=1

©«
𝑌𝑖 −

∑𝑘
𝑖=1 𝜔𝑖𝑌𝑖√︂

𝜎2
𝑖

𝑛𝑖
(1 − 𝜔𝑖 )

ª®®®®¬
2

=
∑︁𝑘

𝑖=1
𝑛𝑖

𝜎2
𝑖

(
𝑌𝑖 −

∑𝑘
𝑖=1 𝜔𝑖𝑌𝑖

)2

1 − 𝜔𝑖
.

Before delving into the detailed discussion of the test statistic
𝑇 , we first introduce Lemma 1, which provides a theoretical under-
pinning for our analysis. Here, 𝑎𝑠𝑦∼ is used to denote approximate
adherence to a certain statistical distribution.

Lemma 1. Suppose𝑋 𝑗
𝑎𝑠𝑦∼ 𝑁 (0, 1) , 𝑗 = 1, 2, . . . , 𝑘 , and𝑋1, 𝑋2, · · · , 𝑋𝑘

are mutually independent of each other, then
∑︁𝑘

𝑗=1
𝑋 2
𝑗

𝑎𝑠𝑦∼ 𝜒2 (𝑘).

Proof. We provide a detailed proof of Lemma 1 in the Appendix.
□

According to Lemma 1, we can infer𝑇𝑎𝑠𝑦∼ 𝜒2 (𝑘 − 1) . In practice,
𝜎2
𝑖 is often unknown. Therefore, we replace 𝜎2

𝑖 with the sample
variance 𝑠2

𝑖 , 𝑖 = 1, 2, · · · , 𝑘, which enables us to obtain a new test
statistic, i.e.,

𝑇1 =

𝑘∑︁
𝑖=1

𝑛𝑖

𝑠2
𝑖

(
𝑌𝑖 −

𝑘∑
𝑖=1

�̂�𝑖𝑌𝑖

)2

1 − �̂�𝑖
=

𝑘∑︁
𝑖=1

𝑛𝑖

𝑠2
𝑖

(
𝑌𝑖 −

𝑘∑
𝑖=1

1∑𝑘
𝑖=1

𝑛𝑖

𝑠2
𝑖

𝑛𝑖
𝑠2
𝑖

𝑌𝑖

)2

1 − 1∑𝑘
𝑖=1

𝑛𝑖

𝑠2
𝑖

𝑛𝑖
𝑠2
𝑖

.

(10)

As a result, we can set up the test rule, as given by

𝑝 = 𝑃

(
𝑇1 > 𝜒2

𝑘−1,𝛼

)
,

where 𝜒2
𝑘−1,𝛼 denotes the upper 𝛼-th quantile of a chi-square dis-

tribution with degrees of freedom 𝑑 𝑓 = 𝑘 − 1. The null hypothesis
𝐻0 in (3) is rejected whenever the above 𝑝-value is less than the
nominal significance level of 𝛼 , which indicates that at least two
means are unequal. In the context of this study, 𝐻0 is rejected if the
model exhibits differing fairness disparities across at least two data
sources.

We now present Algorithm 1 that operationalizes the concepts
discussed above.
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Algorithm 1 The First Stage of FedEvalFair
1: Input:Data of 𝑘 clients
2: for each client (in parallel) do

3: Clients compute 𝑌 𝑖 , 𝑆2
𝑖 , 𝑆

2
𝑖 /𝑛𝑖

4: Clients encrypt 𝑌 𝑖 , 𝑆2
𝑖 , 𝑆

2
𝑖 /𝑛𝑖 and upload to the server

5: end for

6: Server computes 𝜇,
∑︁𝑘

𝑖=1
𝑛𝑖/𝑆2

𝑖 on the EncryptedData and
distributes to all clients

7: for each client (in parallel) do

8: Clients decrypt 𝜇,
∑︁𝑘

𝑖=1
𝑛𝑖/𝑆2

𝑖 , and compute 𝜔𝑖 , 𝑍𝑖 , and

(𝑍𝑖 − 𝐸 (𝑍𝑖 )) /
√︁
𝐷 (𝑍𝑖 )

9: Clients encrypt 𝜔𝑖 , 𝑍𝑖 ,(𝑍𝑖 − 𝐸 (𝑍𝑖 )) /
√︁
𝐷 (𝑍𝑖 ) and upload to

the server
10: end for

11: Server computes 𝑇1 on the EncryptedData
12: Server computes the 𝑝-value
13: Output: 𝑝-value

Next, we present the theoretical foundation for the second phase
of fairness evaluation, which entails devising a solution to the
hypothesis testing problem (5). Subsequently, we will design a test
statistic specifically for this hypothesis testing. Based on the Central
Limit Theorem, we can deduce the following:

𝑊 =

√√√
𝑘∑︁
𝑖=1

𝑛𝑖

𝜎2
𝑖

(𝜇 − 𝜇) =

√√√
𝑘∑︁
𝑖=1

𝑛𝑖

𝜎2
𝑖

©«
𝑘∑
𝑖=1

𝑛𝑖
𝜎2
𝑖

𝜇𝑖

𝑘∑
𝑖=1

𝑛𝑖
𝜎2
𝑖

− 𝜇
ª®®®®¬
.

In the context of hypothesis testing problem (5), when the null
hypothesis holds true, we obtain the test statistic as follows:

𝑊 ∗ =

√√√
𝑘∑︁
𝑖=1

𝑛𝑖

𝜎2
𝑖

©«
𝑘∑
𝑖=1

𝑛𝑖
𝜎2
𝑖

𝜇𝑖

𝑘∑
𝑖=1

𝑛𝑖
𝜎2
𝑖

− 𝜇0

ª®®®®¬
.

If 𝜎2
𝑖 is known, then𝑊 ∗ serves as the test statistic for hypothesis

testing problem (10). However, in practical scenarios, 𝜎2
𝑖 is often

unknown. Therefore, we can substitute the maximum likelihood
estimate of 𝜎2

𝑖 into𝑊 ∗, yielding the following result:

𝑊 ∗ =

√√√
𝑘∑︁
𝑖=1

𝑛𝑖

𝑠2
𝑖

©«
𝑘∑
𝑖=1

𝑛𝑖
𝑠2
𝑖

𝑌𝑖

𝑘∑
𝑖=1

𝑛𝑖
𝑠2
𝑖

− 𝜇0

ª®®®®¬
.

It is evident that as 𝑛𝑖 → ∞ for 𝑖 = 1, 2, ..., 𝑘 , it follows that
𝑊 ∗ ∼ 𝑁 (0, 1). Subsequently, we can establish the testing rule as
follows:

𝑝 = 2 × min
{
𝑃

(
𝑈 > 𝑤∗) , 𝑃 (

𝑈 < 𝑤∗)} .
where𝑤∗ is the observed value of𝑊 , and𝑈 represents a random
variable following the standard normal distribution 𝑁 (0, 1). The
null hypothesis 𝐻0 in (10) is rejected if the p-value is less than the
nominal significance level of 𝛼 . This rejection indicates that: the
model evaluation results on these distributed private data sources

are unfair, implying that the model, when deployed in practice,
exhibits bias towards certain groups with sensitive attributes.

Building upon the theoretical framework, Algorithm 2 translates
these ideas into actionable steps for implementation.

Algorithm 2 The Second Stage of FedEvalFair
1: Input:Data of 𝑘 clients
2: for each client (in parallel) do

3: Clients compute 𝑌 𝑖 , 𝑆2
𝑖 , 𝑆

2
𝑖 /𝑛𝑖

4: Clients encrypt 𝑌 𝑖 , 𝑆2
𝑖 , 𝑆

2
𝑖 /𝑛𝑖 and upload to the server

5: end for

6: Server computes
∑︁𝑘

𝑖=1
𝑛𝑖/𝑆2

𝑖 on the EncryptedData and dis-
tributes to all clients

7: for each client (in parallel) do

8: Clients decrypt 𝜇,
∑︁𝑘

𝑖=1
𝑛𝑖/𝑆2

𝑖 and compute 𝜔𝑖 , 𝜔𝑖𝑌𝑖
9: Clients encrypt 𝜔𝑖 , 𝜔𝑖𝑌𝑖 , and upload to the server
10: end for

11: Server computes𝑤∗ on the EncryptedData
12: Server computes the 𝑝-value
13: Output: 𝑝-value

5 EXPERIMENTS

In this section, we first analyze the theoretical performance of
FedEvalFair and its sensitivity to fairness perception through
Monte Carlo simulation experiments. Subsequently, we validate the
effectiveness of FedEvalFair on real datasets. Finally, we design
a comparative experiment to test the stability of FedEvalFair in
real-world scenarios dealing with non-independent and identically
distributed (non-IID) data, and compare its reliability with that of
traditional evaluation methods.

5.1 Experiment Setup

5.1.1 Datasets and Models. We utilized the Adult[28] and eICU
datasets[30] for federated learning training with the Logistic Re-
gression model. For the Adult dataset, which includes over 40,000
records of adults, we employed the settings within the [13], segre-
gated the data into two clients: one encompassing individuals with
a doctoral degree, and the other consisting of those without. During
this process, we identified race (with a focus on White individuals)
as a sensitive attribute, with the objective of predicting whether an
individual’s annual income surpasses $50,000. The training spanned
1800 rounds, with learning rates adjusted between 0.02 and 0.10.
For the eICU dataset, this dataset contains over 200,000 samples,
covering 17 different features. our attention was directed towards
the patient data table, which detailed ICU admissions across vari-
ous hospitals. This dataset was divided into multiple groups, with
each group representing a consolidation of data from six hospitals,
amounting to a total of 11 clients[24]. In this context, African Amer-
ican was designated as the sensitive attribute, aiming to forecast
whether a patient’s hospital stay exceeded one week. This training
comprised 2300 rounds, with a consistent learning rate of 0.50.

In the Monte Carlo simulations, we set a nominal significance
level of 5% and carried out 5000 iterations. Similarly, we configured a
wide range of parameter combinations to simulate the performance
of the fairness assessment methods in different real-world scenarios.
For details on parameter settings, please see Appendix and our
GitHub: https://github.com/anonymous5929/FedEvalFair.
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All experiments are conducted on Ubuntu 22.04.3 server with 48
cores of 2.20GHz CPU, 256GB RAM, and NVIDIA V100 GPUs with
32 GB memory.

5.2 Experiment Results

5.2.1 Monte Carlo Simulation. In the Monte Carlo simulation ex-
periments, we focused on evaluating the effectiveness and sensi-
tivity of the FedEvalFair method in detecting unfairness. Since
FedEvalFair is built upon the theoretical foundation of statistical
hypothesis testing, its effectiveness is typically assessed by the Type
I error rate. If the Type I error rate is close to the set significance
level, it indicates that the likelihood of FedEvalFair mistakenly
categorizing a fair model as unfair is extremely low. Regarding
sensitivity to detecting unfairness, we measure this through the
power of the FedEvalFairmethod. The higher the power, the more
effectively the FedEvalFair method can identify unfair situations.
Therefore, the experiments aim to validate that FedEvalFair main-
tains a low Type I error rate while demonstrating high sensitivity
and detection capability for unfairness.

Figure 2: Probability of Type I error for Algorithms 1-2

through Monte Carlo simulations. When the value is around

0.05, it indicates that at a significance level setting of 5%, Al-

gorithms 1-2 are almost unlikely to make errors.

As shown in Figure 2, in the vast majority of scenarios, both
Algorithm 1 and 2 effectively maintain the Type I error probability
under the 5% nominal significance level. Notably, when the sample
size is small, the probability of a Type I error may sometimes be
slightly higher than 0.05. However, as the sample size increases,
this error probability rapidly decreases towards 5%. This phenome-
non indicates that while the performance of these algorithms may
fluctuate under small sample conditions, they can stably control
the Type I error at an ideal level with larger sample sizes.

Figure 3 demonstrates the effectiveness of the FedEvalFair
method in identifying unfairness, where an increase in efficacy
indicates a stronger ability to recognize unfairness. As the fairness
deviation increases, both Algorithm 1 and 2 show a significant
improvement in efficacy, proving that FedEvalFair can quickly
and accurately detect fairness disparity among clients and within
the model. Notably, this detection capability significantly enhances
with an increase in sample size, highlighting FedEvalFair’s poten-
tial in monitoring model fairness and preventing fairness drift.

Figure 3: Power performance of Algorithm 1-2 in detecting

varying degrees of unfairness through Monte Carlo simu-

lations. As the degree of unfairness increases, the power of

both Algorithm 1 and 2 increases rapidly, indicating the ef-

fectiveness and sensitivity in detecting unfairness.

5.2.2 Experiments on Real-Datasets. Next, we turn our attention
to experiments conducted on real datasets. Our main goal is to
verify the effectiveness of the FedEvalFair method in real datasets.
Specifically, we will explore key questions: First, when a model
actually maintains fairness across multiple distributed data sources,
can the FedEvalFair method accurately recognize and confirm
this? Second, when a model is actually unfair, can the FedEval-
Fair method effectively give a rejection conclusion and accurately
identify unfair situations? To carry out our experiments, we refer-
enced the FCFL algorithm proposed by Cui et al.[13]. This algorithm
employs a multi-objective optimization strategy to train a fair feder-
ated learning model and notes that models trained without fairness
constraints tend to be unfair. Based on this theory, we used the
FCFL algorithm to simulate fair and unfair models on the Adult
and eICU datasets.

Firstly, consider the simulated unfair model. On the Adult and
eICU datasets, the evaluation results based on Algorithm 2 showed
that the p-value is far less than 0.0001. This indicates that the dis-
parity value of the model is significantly different from 0. Similarly,
we performed non-parametric bootstrap on the test set to mimic
the data distribution in real-world scenarios as closely as possible.
As illustrated in Figure 4, the bootstrap disparity value of the model
is also significantly different from 0, which corroborates the con-
clusion of the FedEvalFair. This suggests that if such a model is
deployed in a real production environment by the data provider, it
may exhibit bias against groups with sensitive attributes.
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Figure 4: The Bootstrap disparity distribution plot of the

simulated unfair model on real datasets shows significant

statistical differences in fairness performance across differ-

ent clients. Additionally, the values of DP and EO are sig-

nificantly different from 0. This indicates that the model is

unfair overall.

Figure 5: The Bootstrap disparity value of the simulated fair

model based on FCFL. As indicated by the Bootstrap disparity

values in the graph, the fairness disparities of this model are

nearly close to 0 on every client.

Next, for the simulated fair models, Figure 5 displays the model’s
bootstrap disparity value across multiple private data sources. The
results suggest these disparity values are essentially zero, allowing
us to infer the model is fair. Based on the FedEvalFair method’s
comprehensive fairness evaluation of this model on these private
data sources, the p-values are 0.1523 (Algorithm 1) and 0.2256

(Algorithm 2), above the 0.05 significance level. This indicates the
model is statistically considered fair, meeting the fairness require-
ments for deployment in real production environments.

We designed a new comparative experiment aimed at evaluating
the reliability of the FedEvalFair method compared to existing
evaluation methods (EEM) when assessing model fairness in real
deployment environments. By summarizing existing research on
fairness in federated learning([28],[37],[13],etc), existing evaluation
methods typically calculate the model’s fairness disparity values
based solely on test datasets, assuming that the test dataset can
represent the data distribution encountered in actual deployments.
However, limited test datasets often fail to fully reflect the data
distribution in real environments. While existing methods can com-
pare the strengths and weaknesses of different algorithms, they
may lack accuracy when evaluating model fairness in actual deploy-
ments. In contrast, the FedEvalFair method adopts the concept of
"estimating the population from the sample," aiming to infer the

model’s performance on real data as accurately as possible from
limited datasets, thus better reflecting the model’s fairness perfor-
mance in production environments. For experimental details and
the experimental framework, please refer to the appendix.

Specifically, we designed a comparative experimental framework
mainly to evaluate the stability of the EEM and the FedEvalFair
method on partitioned test datasets and simulated real datasets. We
considered various comparison scenarios: 1. When the distribution
of the test dataset is completely consistent with the real production
dataset; 2. When there is a varying degree of shift between the test
dataset and the real production dataset; 3. When the test dataset and
the real production dataset are completely different distributions. We
used Cohen’s d value to calculate the difference in results between
the two evaluation methods under the test dataset and the real pro-
duction dataset, reflecting whether there is a significant difference
between the two sets of values. The larger the Cohen’s d value, the
more significant the difference, and a Cohen’s d value greater than
0.8 indicates a very significant difference.

Figure 6: Evaluation Stability Comparison Between EEM and

FedEvalFair

Table 1: Cohen’s d values for different methods

cohen (50, 50) (30, 70) (20, 80) (10, 90)

EEM 0.1503 0.5558 0.9650 1.0880
FedEvalFair 0.0546 0.1814 0.2447 0.3895

As shown in Figure 6 and Table 1, EEM already exhibits a Cohen’s
d value exceeding 0.8 when the distribution shift between the test
dataset and the real production dataset is greater than a certain
threshold, indicating a very significant difference. In contrast, while
the FedEvalFair method also shows some difference, its stability
remains superior to that of EEM. This finding suggests that the
FedEvalFair framework has excellent reliability in assessing the
fairness of models when deployed in real production environments.

6 CONCLUSION

In this paper, we introduce FedEvalFair, a new framework that
leverages statistical sampling and hypothesis testing principles
along with multi-source private data to assess fairness in real-world
model deployments, ensuring data privacy. By employing bootstrap-
ping, FedEvalFair accurately evaluates fairness, utilizing a flexible
two-stage strategy. This framework not only provides theoretical
backing for federated learning applications but also promotes the
advancement of trustworthy federated learning.
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