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Learning to induce causal structure
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Abstract
The fundamental challenge in causal induction is
to infer the underlying graph structure given obser-
vational and/or interventional data. Most existing
causal induction algorithms operate by generat-
ing candidate graphs and evaluating them using
either score-based methods (including continuous
optimization) or independence tests. In our work,
we instead treat the inference process as a black
box and design a neural network architecture that
learns the mapping from both observational and
interventional data to graph structures via super-
vised training on synthetic graphs. The learned
model generalizes to new synthetic graphs, is ro-
bust to train-test distribution shifts, and achieves
state-of-the-art performance on naturalistic graphs
for low sample complexity.

1. Introduction
The problem of discovering the causal relationships that gov-
ern a system through observing its behavior, either passively
(observational data) or by manipulating some of its vari-
ables (interventional data), lies at the core of many scientific
disciplines, including medicine, biology, and economics. By
using the graphical formalism of causal Bayesian networks
(CBNs) (Koller & Friedman, 2009; Pearl, 2009), this prob-
lem can be framed as inducing the graph structure that best
represents the relationships. Most approaches to causal
structure induction are based on an unsupervised learning
paradigm in which the structure is directly inferred from
the system observations, either by ranking different struc-
tures according to some metrics (score-based approaches)
or by determining the presence of an edge between pairs of
variables using conditional independence tests (constraint-
based approaches) (Drton & Maathuis, 2017; Glymour et al.,
2019; Heinze-Deml et al., 2018a;b) (see Fig. 1(a)). The
unsupervised paradigm poses however some challenges:
score-based approaches are burdened with the high com-
putational cost of having to explicitly consider all possible
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Figure 1. (A). Standard unsupervised approach to causal structure
induction: Algorithms use a predefined scoring metric or statistical
independence tests to select the best candidate structures. (B).
Our supervised approach to causal structure induction (CSIvA): A
model is presented with data and structures as training pairs and
learns a mapping between them.

structures and with the difficulty of devising metrics that can
balance goodness of fit with constraints for differentiating
causal from purely statistical relationships (e.g. sparsity of
the structure or simplicity of the generation mechanism);
constraint-based methods are sensitive to failure of indepen-
dence tests and require faithfulness, a property that does not
hold in many real-world scenarios (Koski & Noble, 2012;
Mabrouk et al., 2014).

In this work, we propose a supervised learning paradigm in
which a model is first trained on synthetic data generated
using different CBNs to learn a mapping from data to graph
structures and then used to induce the structures underlying
datasets of interest (see Fig. 1(b)). The model is a novel
variant of a transformer neural network that receives as in-
put a dataset consisting of observational and interventional
samples corresponding to the same CBN and outputs a pre-
diction of the CBN graph structure. The mapping from the
dataset to the underlying structure is achieved through an
attention mechanism which alternates between attending to
different variables in the graph and to different samples from
a variable. The output is produced by a decoder mechanism
that operates as an autoregressive generative model on the
inferred structure. Our approach can be viewed as a form of
meta-learning, as the model learns about the relationship be-
tween datasets and structures underlying them. Supervised
learning methods based on observational data have been
shown to be feasible by Lopez-Paz et al. (2015a;b) and Li
et al. (2020). By allowing the use of both observational and
interventional data, our method enables greater flexibility.

A requirement of a supervised approach would seem to be
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Figure 2. Our model architecture and the structure of the input
and output at training time. The input is a dataset D = {xs :=
(xs

1, . . . , x
s
N )T}Ss=1 of S samples from a CBN and its adjacency

matrix A. The output is a prediction Â of A. Even though the
model receives a set of observations D at each gradient update, this
is a single-example SGD approach because each update has only
a single target A. The attention in a transformer normally only
operates over different columns. We instead also take attention
over the different rows, in alternating layers.

that the distributions of the training and test data match or
highly overlap. Obtaining real-world training data with a
known causal structure that matches test data from multiple
domains is extremely challenging. We show that meta-
learning enables the model to generalize well to data from
naturalistic CBNs even if trained on synthetic data with
relatively few assumptions. We show that our model can
learn a mapping from datasets to structures and outperforms
unsupervised approaches on classic benchmarks such as the
Sachs (Sachs et al., 2005) and Asia (Lauritzen & Spiegelhal-
ter, 1988) datasets, despite never directly being trained on
such data. Our contributions can be summarized as follows:

• We tackle causal structure induction with a supervised
approach (CSIvA) that maps datasets composed of both
observational and interventional samples to structures.

• We introduce a variant of a transformer architecture
whose attention mechanism is structured to discover
relationships among variables across samples.

• We show that our proposed method generalizes to novel
structures, whether or not training and test distributions
match. Most importantly, training on synthetic data
transfers effectively to naturalistic CBNs.

2. Causal Structure Induction via Attention
(CSIvA)

Our approach is to treat causal structure induction as a
supervised learning problem, by training a neural network
to learn to map observational and interventional data to the

graph structure of the underlying CBN. Obtaining diverse,
real-world, data with known causal relationships in amounts
sufficient for supervised training is not feasible. The key
contribution of this work is to introduce a method that uses
synthetic data generated from CBNs with different graph
structures and CPDs that is robust to shifts between the
training and test data distributions.

2.1. Supervised approach
Our approach is to learn a distribution of graphs conditioned
on observational and interventional data as follows.

Our model defines a distribution t̂(G |D; Θ) over graphs
conditioned on observational and interventional data and
parametrized by Θ. Specifically, t̂(A | D; Θ) has the follow-
ing auto-regressive form: t̂(A | D; Θ) =

∏N2

l=1 σ(Al; Âl =
fΘ(A1,...,(l−1),D)), where σ(·; ρ) is the Bernoulli distri-
bution with parameter ρ, which is a function fΘ built
from an encoder-decoder architecture explained in Sec-
tion 2.2 taking as input previous elements of the adja-
cency matrix A (represented here as an array of N2 ele-
ments) and D. It is trained via maximum likelihood esti-
mation (MLE), i.e Θ∗ = argminΘL(Θ), where L(Θ) =
−E(G,D)∼t[ln t̂(G |D; Θ)], which corresponds to the usual
cross-entropy (CE) loss for the Bernoulli distribution. Train-
ing is achieved using a stochastic gradient descent (SGD)
approach in which each gradient update is performed us-
ing a pair (Di, Ai). The data-sampling distribution t(G,D)
and the MLE objective uniquely determine the target dis-
tribution learned by the model. In the infinite capac-
ity case, t̂(· | D; Θ∗) = t(· | D). To see this, it suffices
to note that the MLE objective L(Θ) can be written as
L(Θ) = ED∼t[KL(t̂(· | D; Θ); t(· | D))] + c, where KL is
the Kullback-Leibler divergence and c is a constant. In the
finite-capacity case, the distribution defined by the model
t̂(· | D; Θ∗) is only an approximation of t(· | D).

2.2. Model architecture
The function fΘ defining the model’s probabilities is built
using two transformer networks. It is formed by an encoder
transformer and by a decoder transformer (which we refer
to as “encoder” and “decoder” for short). At training time,
the encoder receives as input dataset Di and outputs a repre-
sentation that summarizes the relationship between nodes
in Gi. The decoder then recursively outputs predictions of
the elements of the adjacency matrix Ai using as input the
elements previously predicted and the encoder output. This
is shown in Fig. 2 (where with omitted index i, as in the re-
mainder of the section). At test time we obtain deterministic
predictions of the adjacency matrix elements by taking the
argmax of the Bernoulli distribution and use those as inputs
to the decoder.
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2.2.1. ENCODER

Our encoder is structured as an (N+1)×(S+1) lattice. The
N×S part of the lattice formed by the first N rows and first
S columns receives a dataset D = {(xs

1, . . . , x
s
N )T}Ss=1.

This is unlike standard transformers which typically receive
as input a single data sample (e.g., a sequence of words in
neural machine translation applications) rather than a set of
data samples. Row N + 1 of the lattice is used to specify
whether each data sample is observational, through value
−1, or interventional, through integer value in {1, . . . , N}
to indicate the intervened node.

The goal of the encoder is to infer causal relationships be-
tween nodes by examining the set of samples. The trans-
former performs this inference in multiple stages, each repre-
sented by one transformer layer, such that each layer yields
a (N + 1)× (S + 1) lattice of representations. The trans-
former is designed to deposit its summary representation of
the causal structure in column S + 1.

Embedding of the input. Each data-sample element xs
n is

embedded into a vector of dimensionality H . Half of this
vector is allocated to embed the value xs

n itself, while the
other half is allocated to embed the unique identity for the
node Xn. The value embedding is obtained by passing xs

n,
whether discrete or continuous, through an MLP1 encoder
specific to node Xn. We use a node-specific embedding
because the values of each node may have very different
interpretations and meanings. The node identity embedding
is obtained using a standard 1D transformer positional em-
bedding over node indices. For column S + 1 of the input,
the value embedding is a vector of zeros.

Alternating attention. Traditional transformers discover
relationships among the elements of a data sample arranged
in a one-dimensional sequence. With our two-dimensional
lattice, the transformer could operate over the entire lattice
at once to discover relationships among both nodes and
samples. Given an encoding that indicates position n, s
in the lattice, the model can in principle discover stable
relationships among nodes over samples. However, the
inductive bias to encourage the model to leverage the lattice
structure is weak. Additionally, the model is invariant to
sample ordering, which is desirable because the samples are
iid. Therefore, we arrange our transformer in alternating
layers. In the first layer of the pair, attention operates across
all nodes of a single sample (xs

1, . . . , x
s
N )T to encode the

relationships among two or more nodes. In the second
layer of the pair, attention operates across all samples for
a given node (x1

n, . . . , x
S
n) to encode information about

the distribution of node values. Alternating attention in
transformers was also done in Kossen et al. (2021).

1Using an MLP for a discrete variable is a slightly inefficient
implementation of a node value embedding, but it ensures that the
architecture is general.

Encoder summary. The encoder produces a summary vec-
tor esum

n with H elements for each node Xn, which captures
essential information about the node’s behavior and its in-
teractions with other nodes. The summary representation
is formed independently for each node and involves com-
bining information across the S samples (the columns of
the lattice). This is achieved with a method often used with
transformers that involves a weighted average based on how
informative each sample is. The weighting is obtained using
the embeddings in column S + 1 to form queries, and em-
beddings in columns 1, . . . , S to provide keys and values,
and then using standard key-value attention.

2.2.2. DECODER
The decoder uses the summary information from the en-
coder to generate a prediction of the adjacency matrix A of
the underlying G. It operates sequentially, at each step pro-
ducing a binary output indicating the prediction Âk,l of Ak,l,
proceeding row by row. The decoder is an autoregressive
transformer, meaning that each prediction Âkl is obtained
based on all elements of A previously predicted, as well as
the summary produced by the encoder. Our method does
not enforce acyclicity. Although this could in principle yield
cycles in the graph, in practice we observed strong perfor-
mance regardless. Nevertheless, one could likely improve
the results e.g. by using post-processing (Lippe et al., 2021)
or by extending the method with an accept-reject algorithm
(Castelletti & Mascaro, 2022; Li et al., 2022).

Auxiliary loss. We found that autoregressive decoding of
the flattened N ×N adjacency matrix is too difficult for the
decoder to learn alone. To provide additional inductive bias
to facilitate learning of causal graphs, we added the auxiliary
task of predicting the parents An,: and children A:,n of
node Xn from the encoder summary, esum

n . This is achieved
using an MLP to learn a mapping fn, such that fn(esum

n ) =
(Ân,:, Â

T
:,n). While this prediction is redundant with the

operation of the decoder, it short circuits the autoregressive
decoder and provides a strong training signal to support
proper training.

3. Experiments
We report on a series of experiments of increasing challenge
to our supervised approach to causal structure induction.
First, we examined whether CSIvA generalizes well on
synthetic data for which the training and test distributions
are identical (Section 3.1). This experiment tests whether the
model can learn to map from a dataset to a structure. Second,
we examined generalization to an out-of-distribution (OOD)
test distribution, and we determined hyperparameters of
the synthetic data generating process that are most robust
to OOD testing (Section E.2). Third, we trained CSIvA
using the hyperparameters from our second experiment, and
evaluated it on a different type of OOD test distribution from
two naturalistic CBNs (Section 3.2). This last experiment
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Figure 3. Hamming distance H between predicted and ground-
truth adjacency matrices on the continuous (left) and MLP (right)
data, compared to DAG-GNN (Yu et al., 2019) and non-linear ICP
(Heinze-Deml et al., 2018b), averaged over 128 sampled graphs.
CSIvA significantly outperforms all other baselines.

is the most important test of our hypothesis that causal
structure of synthetic datasets can be a useful proxy for
discovering causal structure in realistic settings.

3.1. In-distribution experiments
In this set of experiments, we investigated whether
CSIvA can learn to map from data to structures in the case
in which the training and test distributions are identical. In
this setting, our supervised approach has an advantage over
unsupervised ones, as it can learn about the training dis-
tribution and leverage this knowledge during testing. We
examined the performance on data with increasing order
of difficulty, starting with linear (continuous data), before
moving to non-linear cases (MLP and Dirichlet data).

Continuous data. Results on continuous data are presented
in Figure 3(a). CSIvA achieves Hamming distance H < 7
on all evaluated graphs (up to size 20). Similar to previ-
ous findings (Yu et al., 2019; Ke et al., 2020a), larger and
denser graphs are more challenging to learn. Non-linear
ICP achieves fairly good performance on smaller graphs (
N ≤ 10), however, the performance drops quickly as size of
graphs increases (N > 10). Non-linear ICP also required a
modification2 to the dataset wherein multiple samples were
collected from the same modified graph after a point inter-
vention (20 samples per intervention), while other methods
only sampled once per intervention.

MLP data. Results on MLP data are shown in Figure
3(b). Our model significantly outperforms non-linear ICP
and DAG-GNN. Differences become more apparent with
larger graph sizes (N ≥ 10) and denser graphs (ER-2 vs
ER-1), as these graphs are more challenging to learn.

Dirichlet data. Due to the limitation of space, results of
experiments on the Dirichlet data is discussed in Appendix
section E.1.3.

2Without this modification, the method achieved near chance
performance.

Sachs Asia Child

Number of nodes 11 8 20
All-absent Baseline 17 8 25

GES Chickering (2002) 19 4 33
DAG-notears Zheng et al. (2018) 22 14 23
DAG-GNN Yu et al. (2019) 13 8 20

GES Hauser & Bühlmann (2012) 16 11 31
ICP Peters et al. (2016) 17 8 27∗

Non-linear ICP Heinze-Deml et al. (2018b) 16 8 23∗

DAG-EQ Li et al. (2020) 16 - -
CSIvA (MLP data) 6 3 11
CSIvA (Dirichlet data) 5 3 10

Table 1. Results on Sachs and Asia data: Hamming distance
H between predicted and ground-truth adjacency matrices. *To
maintain computational tractability, the size of parental sets con-
sidered was limited to 3.

3.2. Sim-to-real experiments
In this final set of experiments, we evaluated CSIvA’s ability
to generalize from being trained on MLP and Dirichlet data
to being evaluated on the widely used Sachs (Sachs et al.,
2005) and Asia (Lauritzen & Spiegelhalter, 1988) CBNs
from the BnLearn repository, which have N = 11 and N =
8 nodes respectively. We followed the established protocol
from Ke et al. (2020a); Lippe et al. (2021); Scherrer et al.
(2021) where we sampled observational and interventional
data from the CBNs provided by the repository. These
experiments are the most important test of our hypothesis
that causal structure of synthetic datasets can be a useful
proxy for discovering causal structure in realistic settings.

We emphasize that all hyperparameters for the MLP and
Dirichlet data generation and for the learning procedure
were chosen without using the Sachs and Asia data; only
after the architecture and parameters were finalized was the
model tested on these benchmarks. Furthermore, to keep the
setup simple, we trained on data sampled from a single set
of hyperparameters instead of a broader mixture. Findings
in Section E.2 suggest that ER-2 graphs with α = 0.25 work
well overall and hence were chosen.

We report the results in Table 1. We compare to a range
of baselines from Heinze-Deml et al. (2018b); Yu et al.
(2019); Gamella & Heinze-Deml (2020) and others. Note
that we do not compare to the method in Ke et al. (2020a),
as this method needs at least 500, 000 data samples (which
is more than 300 times the amount required by our method).
CSIvA trained on both the MLP data and on the Dirichlet
data significantly outperforms all other methods on both
the Asia and the Sachs dataset. This serves as strong evi-
dence that our model can learn to induce causal structures
in the more realistic real-world CBNs, while only trained
on synthetic data.
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Hauser, A. and Bühlmann, P. Characterization and greedy
learning of interventional markov equivalence classes of
directed acyclic graphs. The Journal of Machine Learning
Research, 13(1):2409–2464, 2012.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.



275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Submission and Formatting Instructions for the SCIS workshop, ICML 2022

Heckerman, D., Geiger, D., and Chickering, D. M. Learning
bayesian networks: The combination of knowledge and
statistical data. Machine learning, 20(3):197–243, 1995.

Heinze-Deml, C., Maathuis, M. H., and Meinshausen, N.
Causal structure learning. Annual Review of Statistics
and Its Application, 5:371–391, 2018a.

Heinze-Deml, C., Peters, J., and Meinshausen, N. Invariant
causal prediction for nonlinear models. Journal of Causal
Inference, 6(2), 2018b.

Hoyer, P. O., Janzing, D., Mooij, J. M., Peters, J., and
Schölkopf, B. Nonlinear causal discovery with additive
noise models. In Advances in neural information process-
ing systems, pp. 689–696, 2009.

Ivanov, O., Figurnov, M., and Vetrov, D. Variational au-
toencoder with arbitrary conditioning. arXiv preprint
arXiv:1806.02382, 2018.

Jaegle, A., Gimeno, F., Brock, A., Zisserman, A., Vinyals,
O., and Carreira, J. Perceiver: General perception with it-
erative attention. arXiv preprint arXiv:2103.03206, 2021.

Kalainathan, D., Goudet, O., Guyon, I., Lopez-Paz, D., and
Sebag, M. Sam: Structural agnostic model, causal dis-
covery and penalized adversarial learning. arXiv preprint
arXiv:1803.04929, 2018.

Ke, N. R., Bilaniuk, O., Goyal, A., Bauer, S., Schölkopf,
B., Mozer, M. C., Larochelle, H., Pal, C., and Bengio,
Y. Dependency structure discovery from interventions.
2020a.

Ke, N. R., Wang, J., Mitrovic, J., Szummer, M., Rezende,
D. J., et al. Amortized learning of neural causal represen-
tations. arXiv preprint arXiv:2008.09301, 2020b.

Ke, N. R., Didolkar, A. R., Mittal, S., Goyal, A., Lajoie,
G., Bauer, S., Rezende, D. J., Mozer, M. C., Bengio, Y.,
and Pal, C. Systematic evaluation of causal discovery in
visual model based reinforcement learning. 2021.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Koller, D. and Friedman, N. Probabilistic Graphical Mod-
els: Principles and Techniques. MIT Press, 2009.

Koski, T. and Noble, J. A review of Bayesian networks and
structure learning. Mathematica Applicanda, 40, 2012.

Kossen, J., Band, N., Lyle, C., Gomez, A. N., Rainforth,
T., and Gal, Y. Self-attention between datapoints: Going
beyond individual input-output pairs in deep learning.
Advances in Neural Information Processing Systems, 34,
2021.

Lachapelle, S., Brouillard, P., Deleu, T., and Lacoste-Julien,
S. Gradient-based neural dag learning. arXiv preprint
arXiv:1906.02226, 2019.

Lauritzen, S. L. and Spiegelhalter, D. J. Local computa-
tions with probabilities on graphical structures and their
application to expert systems. Journal of the Royal Statis-
tical Society: Series B (Methodological), 50(2):157–194,
1988.

Li, H., Xiao, Q., and Tian, J. Supervised whole dag causal
discovery. arXiv preprint arXiv:2006.04697, 2020.

Li, Y., Akbar, S., and Oliva, J. B. Flow models
for arbitrary conditional likelihoods. arXiv preprint
arXiv=1909.06319, 2019.

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser,
J., Leblond, R., Eccles, T., Keeling, J., Gimeno, F.,
Lago, A. D., Hubert, T., Choy, P., d’Autume, C. d. M.,
Babuschkin, I., Chen, X., Huang, P.-S., Welbl, J., Gowal,
S., Cherepanov, A., Molloy, J., Mankowitz, D. J., Rob-
son, E. S., Kohli, P., de Freitas, N., Kavukcuoglu, K.,
and Vinyals, O. Competition-level code generation with
alphacode. arXiv preprint arXiv:2203.07814, 2022.

Lippe, P., Cohen, T., and Gavves, E. Efficient neural causal
discovery without acyclicity constraints. arXiv preprint
arXiv:2107.10483, 2021.

Lopez-Paz, D., Muandet, K., and Recht, B. The randomized
causation coefficient. J. Mach. Learn. Res., 16:2901–
2907, 2015a.

Lopez-Paz, D., Muandet, K., Schölkopf, B., and Tolstikhin,
I. Towards a learning theory of cause-effect inference.
In International Conference on Machine Learning, pp.
1452–1461, 2015b.

Mabrouk, A., Gonzales, C., Jabet-Chevalier, K., and Choj-
nacki, E. An efficient Bayesian network structure learn-
ing algorithm in the presence of deterministic relations.
Frontiers in Artificial Intelligence and Applications, 263:
567–572, 2014.

Mitrovic, J., Sejdinovic, D., and Teh, Y. W. Causal inference
via kernel deviance measures. In Advances in Neural
Information Processing Systems, pp. 6986–6994, 2018.

Monti, R. P., Zhang, K., and Hyvarinen, A. Causal discovery
with general non-linear relationships using non-linear ica.
arXiv preprint arXiv:1904.09096, 2019.

Mooij, J. M., Magliacane, S., and Claassen, T. Joint
causal inference from multiple contexts. arXiv preprint
arXiv:1611.10351, 2016.



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Submission and Formatting Instructions for the SCIS workshop, ICML 2022

Müller, S., Hollmann, N., Arango, S. P., Grabocka, J., and
Hutter, F. Transformers can do bayesian inference. arXiv
preprint arXiv:2112.10510, 2021.

Pearl, J. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann
Publishers Inc., 1988.

Pearl, J. Causality. Cambridge university press, 2009.

Peters, J., Mooij, J. M., Janzing, D., and Schölkopf, B. Iden-
tifiability of causal graphs using functional models. In
Proceedings of the 27th Annual Conference on Uncer-
tainty in Artificial Intelligence (UAI), pp. 589–598, 2011.
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A. Appendix.
The appendix is organized as follows, Section D describes the transformers architecture, Section E discusses detailed
results for experiments in Section ?? and Section E.2 discusses results for further ablation studies on how the amount of
interventions in the data impacts the performance of our model.

B. Background
In this section we give some background on causal Bayesian networks (CBNs) and on transformer neural networks, which
form the main ingredients of our approach (see Appendix D for more details).

Causal Bayesian networks. A Bayesian network (Cowell et al., 2007; Koller & Friedman, 2009; Pearl, 1988; 2009) is
a pair M = ⟨G, p⟩, where G is a directed acyclic graph (DAG) whose nodes X1, . . . , XN represent random variables
and edges express statistical dependencies among them, and where p is a joint distribution over all nodes that factorizes
into the product of the conditional probability distributions (CPDs) of each node Xn given its parents pa(Xn) (namely
all nodes with an edge onto Xn), i.e. p(X1, . . . , XN ) =

∏N
n=1 p(Xn | pa(Xn)). The structure of G can be represented

by an adjacency matrix A, defined by setting the (k, l) entry, Ak,l, to 1 if there is an edge from Xl to Xk and to 0
otherwise. Therefore, the n-th row of A, denoted by An,:, indicates the parents of Xn while the n-th column, denoted by
A:,n, indicates the children of Xn. A BN M can be given causal semantic by interpreting an edge between two nodes
as expressing causal rather than statistical dependence. For the experiments, we consider datasets whose elements are
observational data samples, namely samples from p(X1, . . . , XN ), and interventional data samples, namely samples from
pdo(Xn′=x)(X1, . . . , XN ) =

∏N
n=1,n̸=n′ p(Xn | pa(Xn))δXn′=x, where δXn′=x is a delta function, corresponding to an

atomic intervention on variable Xn′ that forces the variable to take on value x. Two adjacency matrices Ai and Aj can be
compared using the Hamming distance (H), defined as the norm of the difference between them, H = |Ai −Aj |1.

Transformer neural network. A transformer (Devlin et al., 2018; Vaswani et al., 2017) is a neural network equipped with
layers of self-attention mechanisms that make them suited to modelling structured data. In traditional applications, attention
is used to account for the sequential nature of the data, e.g. a sentence is treated as a stream of words. In our case, each input
of the transformer is a dataset of observational or interventional samples corresponding to the same CBN. Attention is thus
used to account for the structure induced by the CBN graph structure and by having different samples from the same node.
Transformers are permutation invariant with respect to the positions of the input elements, which ensures that the graph
structure prediction does not depend on the node and sample position.

C. Related work
Methods for inferring causal graphs can broadly be categorized into score-based (continuous optimization methods included),
constraint-based, and asymmetry-based methods. Score-based methods search through the space of possible candidate
graphs, usually DAGs, and ranks them based on some scoring function (Chickering, 2002; Cooper & Yoo, 1999; Goudet
et al., 2017; Hauser & Bühlmann, 2012; Heckerman et al., 1995; Tsamardinos et al., 2006; Zhu & Chen, 2019). Recently,
Zheng et al. (2018); Yu et al. (2019); Lachapelle et al. (2019) framed the structure search as a continuous optimization
problem. There also exist score-based methods that use a mix of continuous and discrete optimization (Bengio et al., 2019;
Ke et al., 2020a; Lippe et al., 2021; Scherrer et al., 2021). Constraint-based methods (Monti et al., 2019; Spirtes et al., 2000;
Sun et al., 2007; Zhang et al., 2012; Zhu & Chen, 2019) infer the DAG by analyzing conditional independencies in the
data. Eaton & Murphy (2007) use dynamic programming techniques. Asymmetry-based methods (Shimizu et al., 2006;
Hoyer et al., 2009; Peters et al., 2011; Daniusis et al., 2012; Budhathoki & Vreeken, 2017; Mitrovic et al., 2018) assume
asymmetry between cause and effect in the data and use this to estimate the causal structure. Peters et al. (2016); Ghassami
et al. (2017); Rojas-Carulla et al. (2018); Heinze-Deml et al. (2018a) exploit invariance across environments to infer causal
structure. Mooij et al. (2016) propose a modelling framework that leverages existing methods.

Several learning-based methods have been proposed (Bengio et al., 2019; Goudet et al., 2018; Guyon, 2013; 2014;
Kalainathan et al., 2018; Ke et al., 2020a;b; Lopez-Paz et al., 2015b). These works are mainly concerned with learning only
part of the causal induction pipeline, such as the scoring function. Hence, are significantly different from our work, which
uses an end-to-end supervised learning approach to learn to map from datasets to graphs. Neural network methods equipped
with learned masks exist in the literature (Douglas et al., 2017; Goyal et al., 2021a; Ivanov et al., 2018; Li et al., 2019; Yoon
et al., 2018), but only a few have been adapted to causal inference. Several transformer models (Goyal et al., 2022; Kossen



440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Submission and Formatting Instructions for the SCIS workshop, ICML 2022

et al., 2021; Müller et al., 2021) have been proposed for learning to map from datasets to targets. However, none has been
applied it to causal discovery. Few supervised learning approaches have been proposed, one framing the task as a kernel
mean embedding classification problem (Lopez-Paz et al., 2015a;b) and one operating directly on covariance matrices (Li
et al., 2020). These models accept observational data only, and because causal identifiability requires both observational
and interventional data, our model is in principle more powerful (see Table ??).

D. Transformer Neural Networks
The transformer architecture, introduced in Vaswani et al. (2017), is a multi-layer neural network architecture using stacked
self-attention and point-wise, fully connected, layers. The classic transformer architecture has an encoder and a decoder, but
the encoder and decoder do not necessarily have to be used together.

Scaled dot-product attention. The attention mechanism lies at the core of the transformer architecture. The transformer
architecture uses a special form of attention, called the scaled dot-product attention. The attention mechanism allows the
model to flexibility learn to weigh the inputs depending on the context. The input to the QKV attention consists of a set of
queries, keys and value vectors. The queries and keys have the same dimensionality of dk, and values often have a different
dimensionality of dv. Transformers compute the dot products of the query with all keys, divide each by

√
dk, and apply a

softmax function to obtain the weights on the values. In practice, transformers compute the attention function on a set of
queries simultaneously, packed together into a matrix Q. The keys and values are also packed together into matrices K and
V . The matrix of outputs is computed as: Attention(Q,K, V ) = softmax(QKT

√
dk

)V .

Encoder. The encoder is responsible for processing and summarizing the information in the inputs. The encoder is
composed of a stack of N identical layers, where each layer has two sub-layers. The first sub-layer consists of a multi-head
self-attention mechanism, and the second is a simple, position-wise fully connected feed-forward network. Transformers
employ a residual connection (He et al., 2016) around each of the two sub-layers, followed by layer normalization (Ba
et al., 2016). That is, the output of each sub-layer is LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function
implemented by the sub-layer itself.

Decoder. The decoder is responsible for transforming the information summarized by the encoder into the outputs. The
decoder also composes of a stack of N identical layers, with a small difference in the decoder transformer layer. In addition
to the two sub-layers in each encoder layer, a decoder layer consists of a third sub-layer. The third sub-layer performs a
multi-head attention over the output of the encoder stack. Similar to the encoder, transformers employ residual connections
around each of the sub-layers, followed by layer normalization. Transformers also modify the self-attention sub-layer in the
decoder stack to prevent positions from attending to subsequent positions. This masking, combined with fact that the output
embeddings are offset by one position, ensures that the predictions for position i can depend only on the known outputs at
positions less than i.

E. Detailed results.
Detailed results for experiments in Section 3 are described in the tables below.

Hyperparameters. For all of our experiments (unless otherwise stated) our model was trained on I = 15, 000 pairs
{(Di, Ai)}Ii=1, where each dataset Di contained S = 1500 observational and interventional samples. For experiments on
discrete data, a data-sample element xs could take values in {1, 2, 3}. Details of the data generating process can be found
in Section ??. For evaluation in Sections 3.1 and E.2, our model was tested on I ′ = 128 (different for the training) pairs
{(Di′ , Ai′)}I′

i′=1, where each dataset Di′ contained S = 1500 observational and interventional samples. For the Sachs
and Asia benchmarks, our model was still tested on I ′ = 128 (different for the training) pairs {(Di′ , Ai′)}I′

i′=1, however,
Ai′ = Aj′ since there is only a single adjacency matrix in each one of the benchmarks. For each experimental setting, we
present test results averaging performance over the 128 datasets and 3 random seeds and up to size 20 graphs. The model
was trained for 500, 000 iterations using the Adam optimizer (Kingma & Ba, 2014) with a learning rate of 1e−4.

We parameterized our architecture such that inputs to the encoder were embedded into 128-dimensional vectors. The
encoder transformer had 12 layers and 8 attention-heads per layer. The final attention step for summarization had 8 attention
heads. The decoder was a smaller transformer with only 4 layers and 8 attention heads per layer. Discrete inputs were
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encoded using an embedding layer before passing into our model.

Comparisons to baselines. In Section 3.1, we compare CSIvA to two strong baselines in the literature, namely non-linear
ICP (Heinze-Deml et al., 2018b) and DAG-GNN (Yu et al., 2019). Non-linear ICP can handle both observational and
interventional data, while DAG-GNN can only use observational data. These two baselines are unsupervised methods, i.e.
they are not tuned to a particular training dataset but instead rely on a general-purpose algorithm. We also compared to
an all-absent model corresponding to a zero adjacency matrix, which acts as a sanity check baseline. We also considered
other methods (Chickering, 2002; Hauser & Bühlmann, 2012; Zhang et al., 2012; Gamella & Heinze-Deml, 2020), but only
presented a comparison with non-linear ICP and DAG-GNN as these have shown to be strong performing models in other
works (Ke et al., 2020a; Lippe et al., 2021; Scherrer et al., 2021). For Section 3.2, we also compared to additional baselines
from Chickering (2002); Hauser & Bühlmann (2012); Zheng et al. (2018); Gamella & Heinze-Deml (2020); Li et al. (2020).
Note that methods from Chickering (2002); Zheng et al. (2018); Yu et al. (2019); Li et al. (2020) take observational data
only. DAG-GNN outputs several candidate graphs based on different scores, such as evidence lower bound or negative log
likelihood, we chose the best result to compare to our model. Note that non-linear ICP does not work on discrete data, i.e.
on the MLP and Dirichlet data, therefore a small amount of Gaussian noise N (0, 0.1) was added to this data in order for the
method to run.

E.1. In-distribution experiments

E.1.1. RESULTS ON CONTINUOUS DATA

Results for comparions between our model CSIvA and baselines non-linear ICP (Heinze-Deml et al., 2018b) and DAG-GNN
(Yu et al., 2019) are shown in Table 2. Both non-linear ICP and our model CSIvAperform well on the data. Both are
significantly better compared to DAG-GNN (Yu et al., 2019), which only takes observational data.

ER = 1 ER = 2

Var = 5 Var = 10 Var = 15 Var = 20 Var = 5 Var = 10 Var = 15 Var = 20

Abs∗ 2.50 5.00 7.50 10.00 5.00 10.00 15.00 20.00
(Yu et al., 2019) 2.71 4.76 7.71 11.32 5.20 8.81 17.81 22.21
(Heinze-Deml et al., 2018b) 0.47 1.10 6.3 8.6 0.90 2.41 13.52 17.71
Our Model 0.12 ± 0.03 0.35 ± 0.05 2.10 ± 0.07 3.21 ± 0.07 0.81 ± 0.05 1.73 ± 0.04 5.62 ± 0.19 6.86 ± 0.21

Table 2. Results on Continuous data. Hamming distance H for learned and ground-truth edges on synthetic graphs, compared to other
methods, averaged over 128 sampled graphs. The number of variables varies from 5 to 20, expected degree = 1 or 2, and the value of
variables are drawn from N (0, 0.1). Note that for (Heinze-Deml et al., 2018b), the method required nodes to be causally ordered, and 20
repeated samples taken per intervention, as interventions were continuously valued. ”Abs” baselines are All-Absent baselines, which is an
baseline model that outputs all zero edges for the adjacency matrix.

E.1.2. RESULTS ON MLP DATA

Results for comparisons between our model CSIvA and baselines non-linear ICP (Heinze-Deml et al., 2018b) and DAG-
GNN (Yu et al., 2019) on MLP data are shown in Table 3. MLP data is non-linear and hence more challenging compared to
the continuous linear data. Our model CSIvA significantly outperforms non-linear ICP and DAG-GNN. The difference
becomes more apparent as the graph size grows larger and more dense.

We visualized samples that our model generated on the test data. The samples are shown in Figure 4 and Figure 5. The
samples are randomly chosen, each subplot is a sample from a distinct test data. The edges in the graph are shown in 3
colors, they each represent the following: (a) Green edges indicate that our model has generated the correct edge. (b) A red
edge indicates a missing edge, that is our model did not generate the edge, which exist in the groundtruth graph. (c) A blue
edge indicates a redundant edge, such that our model generated an edge that does not exist in the groundtruth graph. As
shown in Figure 4 and 5, our model is able to generate the correct graph almost all of the times.

E.1.3. RESULTS ON DIRICHLET DATA.

The Dirichlet data requires setting the values of the parameter α. Hence, we run two sets of experiments on this data.
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Figure 4. This figures visualizes samples that our model generated on test data. The model was trained and tested on MLP data of size
5 with ER-2 graphs. The samples are randomly chosen. The green edges indicate that our model has generated the correct edges; red
edges indicate edges that our model had missed; and blue edges are the ones that our model generated, which were not in the groundtruth
graph. As shown above, our model is able to generate the correct graph almost all of the times, while only occasionally generating 1 or 2
incorrect edges in a graph.



605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Submission and Formatting Instructions for the SCIS workshop, ICML 2022

Figure 5. This figures visualizes samples that our model generated on test data. The model was trained and tested on MLP data of size
5 with ER-1 graphs. The samples are randomly chosen. The green edges indicate that our model has generated the correct edges; red
edges indicate edges that our model had missed; and blue edges are the ones that our model generated, which were not in the groundtruth
graph. As shown above, our model is able to generate the correct graph almost all of the times, while only occasionally generating 1 or 2
incorrect edges in a graph.
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ER = 1 ER = 2

Var = 5 Var = 10 Var = 15 Var = 20 Var = 5 Var = 10 Var = 15 Var = 20

Abs∗ 2.50 5.00 7.50 10.00 5.00 10.00 15.00 20.00
(Yu et al., 2019) 2.52 7.30 9.74 12.72 4.33 12.78 16.73 22.33
(Heinze-Deml et al., 2018b) 2.43 4.62 7.42 9.05 4.76 9.12 13.52 19.25
CSIvA 0.98 ± 0.16 2.25 ± 0.17 3.38 ± 0.12 5.92 ± 0.19 1.51± 0.47 5.12 ± 0.26 6.82 ± 0.23 13.50 ± 0.35

Table 3. Results on MLP data. Hamming distance H for learned and ground-truth edges on synthetic graphs, compared to other methods,
averaged over 128 sampled graphs (± standard deviation). The number of variables varies from 5 to 20, expected degree = 1 or 2, and the
dimensionality of the variables are fixed to 3. We compared to the strongest baseline model that uses observational data (Yu et al., 2019)
and also the strongest that uses interventional data (Heinze-Deml et al., 2018b). Note that for (Heinze-Deml et al., 2018b), the method
required nodes to be causally ordered, and Gaussian noise N (0, 0.1) to be added. ”Abs” baselines are All-Absent baselines, which is an
baseline model that outputs all zero edges for the adjacency matrix.

In the first set of experiments, we investigated how different values of α impact learning in CSIvA. As shown in Table 5 in
the appendix, CSIvA performs well on all data with α ≤ 0.5, achieving H < 2.5 in all cases. CSIvA still performs well
when α = 1.0, achieving H < 5 on size 10 graphs. Learning with α > 1 is more challenging. This is not surprising, as
α > 1 tends to generate more uniform distributions, which are not informative of the causal relationship between nodes.

Figure 6. Results on Dirichlet data. Hamming distance
H between predicted and ground-truth adjacency matrices on
Dirichlet data, averaged over 128 sampled graphs.

In the second set of experiments, we compared CSIvA to non-
linear ICP and DAG-GNN. To limit the number of experiments
to run, we set α = 1.0, as this gives the least amount of prior
information to CSIvA. As shown in Figure 6, our model signif-
icantly outperforms non-linear ICP and DAG-GNN. Our model
achieves H < 5 on size 10 graphs, almost half of the error rate
compared to non-linear ICP and DAG-GNN, both achieving a
significantly higher Hamming distance (H = 9.3 and H = 9.5
respectively) on larger and denser graphs. Refer to Table 5 for
complete sets of results.

Results for comparisons between our model CSIvA and base-
lines non-linear ICP (Heinze-Deml et al., 2018b) and DAG-
GNN (Yu et al., 2019) on Dirichlet data are shown in Table 4.
MLP data is non-linear and hence more challenging compared
to the continuous linear data. Our model CSIvA significantly
outperforms non-linear ICP and DAG-GNN. The difference
becomes more apparent as the graph size grows larger and more
dense.

ER = 1 ER = 2

Var = 5 Var = 7 Var = 10 Var = 5 Var = 7 Var = 10

All-absent Model 2.5 3.5 5.0 5.0 7.0 10.0
(Yu et al., 2019) 1.75 4.5 4.0 4.5 7.25 9.50
(Heinze-Deml et al., 2018b) 2.2 3.2 5.3 4.7 6.1 9.3
CSIvA 0.26 ± 0.05 0.83 ± 0.06 2.37 ± 0.07 0.65 ± 0.05 0.97 ± 0.06 4.59 ± 0.08

Table 4. Results on Dirichlet data. Hamming distance H for learned and ground-truth edges on synthetic graphs, compared to other
methods, averaged over 128 sampled graphs (± standard deviation). The number of variables varies from 5 to 10, expected degree = 1 or
2, the dimensionality of the variables are fixed to 3, and the α is fixed to 1.0. We compare to the strongest causal-induction methods that
uses observational data (Yu et al., 2019) and the strongest that uses interventional data (Heinze-Deml et al., 2018b).

We also compare how different α values of Dirichlet data im-
pacts learning for our model. Our model performs well on all
graphs where α ≤ 0.5, and the performance starts to degard as α = 1.0. When α = 5.0, our model is almost performing
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similarly to the All-absent model (outputting all zero edges). This is to be expected, as larger alpha values is less informative
of the causal relationships between variables.

ER = 1 ER = 2

Var = 5 Var = 10 Var = 15 Var = 20 Var = 5 Var = 10 Var = 15 Var = 20

α = 0.1 0.18± 0.03 0.72± 0.04 1.31± 0.04 2.45 ± 0.04 0.39± 0.04 1.27± 0.07 1.98± 0.12 4.09± 0.04

α = 0.25 0.14± 0.03 0.77± 0.05 1.62± 0.05 3.51 ± 0.05 0.29± 0.04 1.27± 0.07 3.04± 0.20 6.41± 0.12

α = 0.5 0.14± 0.04 0.94± 0.05 4.26± 0.07 7.35± 0.04 0.41 ± 0.03 2.11± 0.06 8.25± 0.07 15.54± 0.10

α = 1.0 0.26± 0.05 2.37± 0.07 4.90± 0.05 10.10± 0.07 0.68± 0.03 4.32± 0.07 10.24± 0.07 21.81± 0.07

α = 5.0 1.27± 0.12 4.9± 0.05 14.73± 0.11 19.49± 0.05 3.21± 0.05 9.99 ± 0.03 24.19± 0.05 37.03± 0.24

Abs∗ 2.5 5.0 7.5 10.0 5.0 10.0 15.0 20.0

Table 5. Results on Dirichlet data. Hamming distance H (lower is better) for learned and ground-truth edges on synthetic graphs,
averaged over 128 sampled graphs. Our model accomplished a hamming distance of less than 2.5 for Dirichlet data with α <= 0.5.
”Abs” baselines are All-Absent baselines, which is an baseline model that outputs all zero edges for the adjacency matrix.

E.2. Out-of-distribution experiments

In this set of experiments, we evaluated CSIvA’s ability to generalize to aspects of the data generating distribution that
are often unknown, namely graph density and parameters of the CPDs, such as the α values of the Dirichlet distribution.
Hence, these experiments investigate how well CSIvA generalizes when graph sparsity and alpha values for the Dirichlet
distribution of the training data differ from the test data.

Train α = 0.1 α = 0.25 α = 0.5

α = 0.1 0.31 0.33 0.52
Test α = 0.25 0.72 0.40 0.41

α = 0.5 1.8 0.71 0.35

Table 6. Results on varying α values for Dirichlet data:
Hamming distance H between predicted and ground-truth
adjacency matrices.

Varying graph density. We evaluated how well our model
performs when trained and tested on CBNs with varying graph
density on MLP and α = 1 Dirichlet data. We fixed the number
of nodes to N = 7, with variables able to take on discrete values
in {1, 2, 3}. The graphs in training and test datasets can take ER
degree ∈ {1, 2, 3}. Results are shown in Table 7 for the MLP
data and Table 8 for the Dirichlet data.

For the MLP data, models trained on ER-2 graph generalizes the
best. For Dirichlet data, there isn’t one value of graph density
that consistently generalizes best across graphs with different
densities. Nevertheless, ER-2 graphs give a balanced trade-off
and generalizes well across graphs with different sparsity.

Varying α. We next trained and evaluated on data generated from Dirichlet distributions with α ∈ {0.1, 0.25, 0.5}. Results
for ER-1 graphs with N = 7 are found in Table 6. There isn’t a value of α that performs consistently well across different
values of α for the test data. Nevertheless, α = 0.25 is a balanced trade-off and generalizes well across test data with
0.1 ≤ α ≤ 0.5.

Train ER-1 ER-2 ER-3

ER-1 1.2 0.9 1.3
Test ER-2 3.3 1.8 2.1

ER-3 5.0 2.8 2.8

Table 7. Results on varying graph density for MLP data:
Hamming distance H between predicted and ground-truth
adjacency matrices.

Train ER-1 ER-2 ER-3

ER-1 0.19 0.21 0.28
Test 0.86 0.29 0.25

ER-3 1.61 0.60 0.23

Table 8. Results on graph sparsity for Dirichlet data (α =
1): Hamming distance H between predicted and ground-truth
adjacency matrices.
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Figure 7. Results on varying amount of samples. Hamming dis-
tance H between predicted and ground-truth adjacency matrices for
synthetic data. Results for CSIvA trained on Dirichlet data with
N = 10 and α = 0.5 with different numbers of samples per CBNs.
The model performance increases as the sample size increases.

Amount of samples. We evaluated CSIvA on different
amount of samples (100, 200, 500, 1000, 1500) per CBNs.
Results for Dirichlet data sampled from N = 10 graphs
are shown in Figure 7. We can see that the model per-
formance improves as it observes up to 1000 samples for
ER-1 graphs, whereas having 1500 samples gives slightly
better results compared to 1000 samples for ER-2 graphs.

Amount of interventions Our previous experiments
were all performed using a fixed amount of interventions
(80%) in the training and test sets. To investigate how
changing the proportion of interventional data impacts
the performance of our model, we train the model with
varying amounts of interventions in the training set and
evaluate it using different amount of interventions during
test time.

Figure 8. Results on varying amount of interventions in data.
Hamming distance H for learned and ground-truth edges on synthetic
Dirichlet graphs (V ar = 15 and α = 0.25). Pure observational data
(0% interventions) performs the worst, which is to be expect, since
intervention data is need for causal identifiability. The performance
of our model improves as it observes more interventions, this suggest
that our model is able to extract useful information from interventions
in order to predict the causal structure.

To be specific, during training, the model is trained on
data with varying amount of interventions, which is ran-
domly sampled from the uniform distribution over the
set {0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0}. During test time, we
evaluate the model on different amount of interventions,
and we report the performance in hamming distance. We
trained the model on Dirichlet data with 15 nodes and
α = 0.25. The model is trained and tested on 1000 sam-
ples per dateset. The results are found in Figure 8.

As shown in Figure 8, our model’s performance is worst
if it only receives observational data (0% interventions),
and the performance of our model improves as the amount
of interventional data increases. This is a clear indica-
tion that our model is able to extract information from
interventional data for predicting the graph structure.

F. Discussion
In this paper, we have presented a novel approach towards
causal graph structure inference. Our method is based on
learning from synthetic data in order to obtain a strong
learning signal (in the form of explicit supervision), using
a novel transformer-based architecture which directly an-
alyzes the data and computes a distribution of candidate
graphs. We demonstrated that even though only trained
on synthetic data, our model generalizes to out-of-distribution.

Our method is based on transformers with self-attention, which scales quadratically with the length of the inputs, making it
challenging to scale to larger graphs. However, methods such as Jaegle et al. (2021); Goyal et al. (2021b) enable transformers
to scale linearly with the number of inputs (and outputs), one extension is to incorporate them into our framework. Another
direction of future work would be to use the proposed framework for learning causal structure from raw visual data. This
could be useful, e.g. in an RL setting in which an RL agent interacts with the environment via observing low level pixel data
(Ahmed et al., 2020; Ke et al., 2021; Wang et al., 2021).

As causal inference is applied to important real-world domains, such as social, economical and medical sciences, and
can serve as a basis for decision making, it is crucial to perform a thorough experimental validation of causal models. In
particular, performance on finite amounts of data as well as out-of-distribution data must be carefully assessed.


