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Abstract

Human languages are full of metaphorical ex-
pressions. Metaphors help people understand
the world by connecting new concepts and
domains to more familiar ones. Large pre-
trained language models (PLMs) are therefore
assumed to encode metaphorical knowledge
useful for NLP systems when processing lan-
guage. In this paper, we investigate this hy-
pothesis for PLMs by probing the metaphoric-
ity knowledge in their encodings, by measur-
ing the cross-lingual and cross-dataset gener-
alization of this knowledge, and by analyzing
the application of this knowledge when gen-
erating metaphorical expressions. We present
studies in multiple metaphoricity detection
datasets and four languages (i.e., English,
Spanish, Russian, and Farsi). Our extensive
experiments suggest that contextual represen-
tations in PLMs do encode metaphoricity in-
formation, and mostly in their middle layers,
and the knowledge is transferrable between
languages and datasets in most cases. Finally,
we show that PLMs face more challenges in
generating metaphors, especially as their nov-
elty increases. Our findings give helpful in-
sights for both cognitive and NLP scientists.

1 Introduction

Pre-trained language models (PLMs) (Peters et al.,
2018; Devlin et al., 2019), are now used in almost
all NLP applications, e.g., machine translation (Li
et al., 2021), question answering (Zhang et al.,
2020), dialogue systems (Ni et al., 2021) and senti-
ment analysis (Minaee et al., 2020). They are the
foundation models of NLP systems (Bommasani
et al., 2021), causing huge impact in research and
industry.

Metaphors are important aspects of human lan-
guages. In conceptual metaphor (CM) theory
(Lakoff and Johnson, 2008), metaphor is mapping
a concept in one domain (target) to a concept in

another domain (source). Modeling metaphors is
essential in building human-like computational sys-
tems that can relate new concepts to the old and
familiar ones. The creativity and problem solving
(i.e., generalization to new problems) also depend
on the analogies and metaphors a cognitive system
relies on.

We intuitively guess that PLMs must encode
some information about metaphors due to their
great performance in language processing tasks.
Confirming that experimentally is a question that
we try to focus on in this paper. So far, there has
been no comprehensive analysis of how PLMs rep-
resent metaphorical information. The recent works
in metaphor detection using PLMs, e.g., Choi et al.
(2021), are related, but those are focused on achiev-
ing the best final performance.

We follow three paths in our study of metaphors
in PLMs. First, we apply probing methods to un-
derstand the distribution of encoded metaphorical
knowledge in different layers of PLMs. We employ
edge probing (Tenney et al., 2019b) and minimum
description length (Voita and Titov, 2020) tech-
niques.

Second, to evaluate the metaphorical knowledge
in their transferability and generalization, we de-
sign zero-shot cross-lingual and cross-dataset ex-
periments. Four languages and four datasets are
considered in this evaluation.

Finally, we explore how PLMs apply their
metaphorical knowledge to generate or score a
metaphorical expression. We take the novelty of
metaphors and observe the differences in the fill-in-
the-blank generation with that respect.

The LCC dataset (Mohler et al., 2016) is our
main resource, containing annotations in four lan-
guages: English, Russian, Spanish and Farsi. We
also experiment with three other English metaphor
datasets, TroFi (Birke and Sarkar, 2006), VUA pos,
and VUA verbs (Steen, 2010).
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Figure 1: An illustration of our probing, generalization and application scenarios.

To summarize, we aim to answer questions such
as (i) How do different layers of Transformers con-
tribute to distinguishing literal from metaphorical
usages of words? (ii) Do different PLMs encode
metaphorical knowledge differently? (iii) Is the
encoded information about metaphoricity trans-
ferrable across languages and datasets? (iv) How
PLMs generation of a word in a context depends
on its metaphoricity?

Our findings and contributions could be summa-
rized as: (i) we show that metaphors are encoded
differently across the layers of PLMs, but the trend
is similar in three popular PLMs: BERT, RoBERTa,
and ELECTRA. This is the first probing study of
metaphors in PLMs. (ii) We run generalization
analysis for PLMs in their out-of-distribution trans-
ferability of metaphorical knowledge. Our exper-
iments confirm this generalization in most cases
of cross-lingual and cross-dataset setups. (iii) We
show that generating metaphors, especially more
novel ones, is challenging for PLMs, confirming
that PLMs behave similarly to humans in this re-
spect.

2 Related Work

Metaphor detection using PLMs. The
metaphoricity detection task (Mason, 2004; Birke
and Sarkar, 2007; Shutova et al., 2013) is a good
fit for most of our studies, even though we focus
on analyzing the metaphorical knowledge and
not on achieving the best detection results. Using
PLMs for metaphoricity detection is normal in
recent years, resulting in state-of-the-art results,
indicating implicitly that PLMs do represent
metaphoricity information. Choi et al. (2021)
introduces a new architecture that integrates

metaphor theories with BERT. Similarly, Song
et al. (2021) presents a new perspective on
metaphor detection task by framing it as relation
classification, focusing on the verbs. These
approaches beat other earlier works of using PLMs
(Su et al., 2020; Chen et al., 2020; Gong et al.,
2020), RNN-based (Wu et al., 2018; Mao et al.,
2019) and feature-based approaches (Turney et al.,
2011; Shutova et al., 2016).

Tsvetkov et al. (2014) present cross-lingual
metaphor detection models using linguistic fea-
tures and word embeddings. They make use of
bilingual dictionaries to map between languages.
The datasets they employ are quite small (1̃000
training and 2̃00 testing examples), making them
unsuitable for a statistically robust evaluation.

Probing methods in NLP. Probing is an analyt-
ical tool used for assessing word representations
linguistic knowledge. In probing, the information
richness of the representations is determined by the
quality of a supervised model in predicting linguis-
tic properties solely based on the representations
(Köhn, 2015; Gupta et al., 2015; Yaghoobzadeh
and Schütze, 2016; Conneau et al., 2018; Tenney
et al., 2019b,a; Hewitt and Manning, 2019).

A popular probing method introduced by Tenney
et al. (2019b) is edge probing (Figure 2). They
propose a suite of span-level tasks, including Part-
of-speech tagging and coreference resolution. They
demonstrate that BERT understands core NLP lin-
guistic knowledge better than its uncontextualized
counterparts and indicate the approximate posi-
tion where each linguistic knowledge is encoded in
BERT layers (Tenney et al., 2019a).

Despite the widespread use of edge probing and
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VUA Verbs
He [finds]1 it hard to communicate with people , not least his separated parents .→ 1
He finds it hard to [communicate]1 with people , not least his separated parents . → 0

VUA POS
They picked up power from a [spider]1 ’s web of unsightly overhead wires . → 1
They picked up power from a spider ’s web of unsightly overhead [wires]1 . → 0

TroFi
“ Locals [absorbed]1 a lot of losses , ” said Mr. Sandor of Drexel→ nonliteral
Vitamins could be passed right out of the body without being [absorbed]1→ literal

LCC

Lawful [gun ownership]2 is not a [disease]1 . → 3.0
But the Supreme Court says it’s not a way to [hurt]1 the [Second Amendment]2→ 2.0
Is he angry that [gun rights]2 [progress]1 has been done without him? → 1.0
I mean the [2nd amendment]2 [suggests]1 a level playing field for all of us. → 0.0

Table 1: Examples of sentences, spans, and target labels for each probing dataset.

other conventional probes, the question of whether
the probing classifier is learning the task itself or it
is actually identifying the linguistic knowledge in
the representations raises concerns, see Belinkov
(2021) for more discussions. An Information the-
oretic view can solve this issue (Voita and Titov,
2020) by reformulating probing as a data transmis-
sion problem. They consider the effort needed to
extract linguistic knowledge as well as the final
quality of the probe, showing that this approach is
more informative and robust than normal probing
methods. We employ both edge probing and MDL
probing in this work.

Probing multi-lingual PLMs. The application
of probing methods in NLP is extended to multi-
lingual PLMs as well (Pires et al., 2019; Eichler
et al., 2019; Ravishankar et al., 2019a; ?; Choenni
and Shutova, 2020). Choenni and Shutova (2020)
introduce probing tasks for typological features of
multiple languages in multi-lingual PLMs. Rav-
ishankar et al. (2019a,b) extend the probing tasks
of Conneau et al. (2018), to few other languages.
Pires et al. (2019) study the generalization of
multilingual-BERT across languages when per-
forming cross-lingual downstream tasks. Here,
as part of our study, we evaluate the generaliza-
tion of multi-lingual PLMs in the representation of
metaphoricity. We employ this setting as one of
the main ways to understand the quality of encoded
metaphoricity information in PLMs.

Out-of-distribution generalization. There has
been no earlier work on studying or evaluating the
out-of-distribution generalization in metaphor de-
tection systems. Out-of-distribution generalization
refers to scenarios where testing data comes from a
different distribution from training data (Duchi and
Namkoong, 2018; Hendrycks et al., 2020a,b). Here,

Figure 2: Probing architecture for metaphors em-
ployed in edge probing and MDL probing.

we have scenarios where testing data is in different
languages or in different domain / dataset. These
are challenging evaluation scenarios for the gener-
alization of encoded information (metaphoricity in
our case).

3 Metaphorical knowledge in PLMs

3.1 Probing

Based on conceptual metaphor theory, one domain
(e.g., ARGUMENT) is explained using another
domain (e.g., WAR). For example, in “We won
the argument”, ARGUMENT is linked to WAR,
and the word “won” is used as its “non-literal” or
“metaphorical” meaning. The same word “won” in
a sentence like “China won the war” refers to its
“literal” meaning. Here, our goal is to distinguish
the metaphorical and literal words in given contexts.
In other words, we want to detect if, given a context
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and a token span, the span refers to a metaphor or
not.

As these examples show, metaphoricity is a
highly contextualized phenomenon. The clues in
the context might give us some hints. Here, our
datasets take a sentence as the context. This might
not be enough for many cases where larger contex-
tual information is needed, but it is a reasonable
simplification of the task to obtain large datasets.

Contextualized representations obtained by
PLMs are shown to encode the contextual mean-
ings of words relatively well (Devlin et al., 2019;
Zhao et al., 2020). One word might have one or
more metaphorical meanings and, likewise, one or
more literal meanings. Our task is to distinguish
between only two classes: metaphorical and literal.

We aim to answer a general question about
metaphors in PLMs: do PLMs understand
metaphors. We do not attempt to achieve the best
metaphoricity detection results but to analyze and
study how PLMs represent the necessary informa-
tion to perform this task. In trying to answer this
question, we apply probing methods, discussed as
follows, to focus on the representation itself and
not the fine-tuning task learning.

Methods We employ edge probing (Tenney et al.,
2019b) and MDL (Voita and Titov, 2020). Edge
probing consists of a classifier in which word rep-
resentations obtained from PLMs are fed to it as
inputs1. The quality of the classifier illustrates how
well the representations encode a specific linguistic
knowledge. This method is designed for span-level
tasks, i.e., the classifier can only access the repre-
sentations of a limited part of the input sentence
specified in the dataset. The Edge Probing has
two pooler sections for making fixed-sized vectors;
one pools representations across the words in the
span and the other pools representations across the
layers.

The MDL probe is based on information the-
ory and combines the quality of the classifier and
the amount of effort needed to achieve this quality.
Voita and Titov (2020) propose two methods for
computing MDL: ”variational coding” and ”online
coding.” The former computes the complexity of
the classifier with a Bayesian model. In the latter,
the classifier is trained gradually on different por-
tions of the dataset and the code length will be the
sum of the cross-entropies, each for a data portion.

1The representations are first projected to 256-dimensional
vectors.

Voita and Titov (2020) show that the two methods’
results are consistent with each other. Accordingly,
we opted for the ”online coding” method since it is
more straightforward in implementation. Since the
code length is related to the size of the dataset, we
report the compression, which is equal to 1 for a
random classifier and more than 1 for better models.
See extra details in (Voita and Titov, 2020)

3.2 Generalization

To see if PLM representations encode metaphoric-
ity well, we evaluate them in settings where test-
ing data comes from a different distribution from
training. We explore transferability analysis across
both languages and datasets. From the perspec-
tive of generality, these explorations also show how
well PLMs generalize metaphorical information
and how well a classifier can detect them across
distributions. These important and helpful experi-
ments are understudied in metaphor detection re-
search. We adopt the term “domain” to refer to
both “languages” and “datasets”.

3.2.1 Cross-lingual
Multi-lingual encoders project the representations
in multiple languages into a shared space so that se-
mantically similar words and sentences across lan-
guages end up close to each other. To answer ques-
tions about the transferability of metaphor infor-
mation across languages, if we use a multi-lingual
PLM model for representations, and our classifier
shows that representations in language S are infor-
mative about metaphoricity, what happens if we
apply this classifier to the representations in lan-
guage T ? If the representations are rich in both lan-
guages, information is accessible similarly across
them, and metaphoricity can be transferred, then
the classifier would be able to predict metaphoricity
in language T from what it leans in S.

3.2.2 Cross-dataset
The great performance of PLMs is repeatedly re-
lated to their success in learning the existing heuris-
tics in the training datasets, rather than the actual
tasks (McCoy et al., 2019). By testing on a test
set drawn from a different dataset compared to the
training set, we can better measure the generaliza-
tion of the knowledge encoded in PLMs. Therefore,
another generalization dimension we consider is
cross-dataset transfer, i.e., when training on dataset
S and testing on dataset T . S and T are annotated
in different groups with possibly different goals
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Baseline BERT RoBERTa ELECTRA
Dataset F1 Comp. F1 Comp. F1 Comp. F1 Comp.

LCC (en) 75.78 1.088 88.24 1.936 88.03 2.026 89.49 2.116
TroFi 65.79 1.059 67.21 1.123 67.87 1.163 65.92 1.143
VUA POS 48.11 1.796 67.58 2.405 68.14 2.394 68.79 2.465
VUA Verbs 52.33 1.245 70.54 1.504 69.29 1.576 72.14 1.555

Table 2: Edge probing f1 results for various metaphoricity datasets in BERT, RoBERTa, and ELECTRA.
The edge probing results are the average of three runs. The compression result is the best across layers,
and the subscript denotes the best layer.

in mind and their raw sentences could come from
different domains, both.

In our case, our datasets differ in their distribu-
tion of labeled examples of metaphors and literals
(c.f., Table 3, as well as the distribution of the can-
didate spans (e.g., TroFi is only verbs, but LCC is
not). Further, the annotation process is different as
each follows their own guidelines. However, the
basic task of metaphoricity detection, i.e., distin-
guishing metaphor and literal usages, is the same
for all.

3.3 Application

Amanzio et al. (2008) find that novel metaphors in-
troduce challenges in language comprehension for
people with Alzheimer’s. Here, we study if PLMs
also struggle with more novel metaphors. We do
so by inspecting their generation of metaphorical
words given context. We relate this generation to
the usage of metaphorical knowledge. We lever-
age the LCC dataset metaphoricity score associated
with each example which indicates various levels
of metaphoricity, including none, conventional, or
clear metaphors for comparing the models’ genera-
tive ability.

By using the fill-in-the-blank methodology, af-
ter acquiring the ranked list of the predicted to-
kens from MLM probabilities, we calculate the
recall@k for multiple values of k. The source
span of the LCC dataset is masked for the model
to predict, and only the entries which span a single
token are considered in this experiment. An exam-
ple is shown in Figure 1, where the real output is
“fight” and MLM predicted that as its fifth ranked
token.

Dataset %M Size

LCC (en) 45.2 / 46.8 39,769 / 4,465
LCC (fa) 43.7 / 44.8 18,496 / 2,070
LCC (es) 34.6 / 34.4 29,002 / 3,339
LCC (ru) 45.1 / 34.4 17,492 / 1,932
TroFi 42.6 / 42.3 5,770 / 666
VUA Verbs 27.8 / 30.0 17,240 / 5,873
VUA POS 15.2 / 17.9 72,611 / 2,2196

Table 3: Statistics of the datasets. Percentage of
metaphors (%M) and number of instances for train
/ test sets are given for each dataset.

4 Experimental setup and results

4.1 Datasets and setup

Datasets We use three metaphoricity detection
datasets in our study. One of these datasets, i.e.,
LCC, contains annotations in four languages: En-
glish, Russian, Spanish, and Farsi. The other two,
TroFi and VUA, are in English only. The statistics
of the datasets are shown in Table 3. Some example
sentences with the metaphoricity annotation can be
seen in Table 1.

The annotations of LCC (Mohler et al., 2016)
are done according to Conceptual Metaphor the-
ory, with source and target domains, in four lan-
guages. TroFi (Birke and Sarkar, 2006) TroFi
dataset consists of metaphoric and literal usages
of 51 English verbs from the Wall Street Journal.
VU Amsterdam (Steen, 2010) corpus consists of
words in the academic, fiction, and news subdo-
mains of the British National Corpus (BNC), anno-
tated with five annotators as figurative (specifying
metaphor/personification/other) or literal.

Setup In implementing the edge probe, follow-
ing Tenney et al. (2019b), we use 32 as the batch
size, learning rate of 5e-5, and 256 projection di-
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mensions.
For the MDL probe, the same structure of edge

probing is employed. We apply a logarithm to the
base in cross-entropy loss to have all the obtained
code lengths in bits. See extra details in Voita and
Titov (2020)

4.2 Probing
We use BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), and ELECTRA (Clark et al., 2020) to
represent our PLMs. Due to resource limitations,
we conduct our experiments formed on the base
version of the models (12 layers, 768 hidden size,
110M parameters) implemented in HuggingFace’s
Transfomers library (Wolf et al., 2020). We employ
edge probing for evaluating overall metaphorical
knowledge in our selected PLMs. However, as
discussed by Belinkov (2021) and Fayyaz et al.
(2021), edge probing is not reliable for layer-wise
cross-model experiments, and so we leverage the
MDL probe to this end.

Table 2 shows the edge probing F1 and MDL
probing compression results for our three PLMs.
Accordingly, RoBERTa and ELECTRA are shown
to encode metaphorical knowledge better than
BERT on both metrics. This can be attributed to the
two models’ better performance on various tasks,
acquired by having better pre-training objectives
and enjoying more extensive pre-training data.

MDL probing compression across layers is
demonstrated in Figure 3. Except for RoBERTa
results in TroFi and VUA Verbs, we see the num-
bers increase at the first 3 to 6 layers, depending
on the dataset, but it decreases afterwards. In other
words, metaphorical information is more concen-
trated in the middle layers. The representations in
the middle layers are relatively contextualized but
not as much as higher layers. This indicates that
detecting metaphoricity of a span is a contextual-
ized task but it usually needs only a few layers of
contextualization.

4.3 Generalization
As our PLMs, we use XLM-RoBERTa (Conneau
et al., 2020) for cross-lingual and BERT for cross-
dataset experiments. We apply the edge probing
architecture as in the probing experiments. As we
mentioned in Section 3.2, we sometimes refer to
both language and dataset as domain for simplicity.

For each case of a source domain S and a tar-
get domain T , we run two experiments: one with
the PLM and one with a randomized version of
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Figure 3: Metaphoricity detection MDL probing
compression across layers.

the PLM where weights are set to random values.
Randomly initialized PLM that did not experience
the pre-training process is a commonly used base-
line in the community. So, the difference between
the two gives evidence about the helpfulness of
the encoded knowledge in PLMs for metaphoricity
detection. When S = T , this effect is measured
for in-domain generalization and when S 6= T , for
out-of-domain generalization. Comparing results
of in-domain (e.g., training and testing on English
data) and out-of-domain (e.g., training on Span-
ish and testing on English) setups demonstrates
how generalizable the metaphoricity knowledge is
across domains.

4.3.1 Cross-lingual

The LCC datasets in four languages are used here.
We train on one source (e.g., English) and test on a
target (e.g., Spanish) language. We subsample from
the datasets to have the same number of examples
in each dataset (17,492 which is the size of Russian
dataset).

The results of our cross-lingual experiments are
shown in Table 4. The random baseline is acquired
using a randomly initialized XLM-RoBERTa. We
observe that in all cases, the pre-trained PLM
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Train Language
en es fa ru

Te
st

L
an

g. en 85.4 (72.3) 76.6 (41.5) 78.1 (63.7) 80.9 (63.7)
es 75.8 (46.4) 82.4 (64.8) 75.5 (51.2) 75.8 (47.3)
fa 71.4 (61.9) 65.2 (44.7) 81.4 (72.0) 76.8 (55.3)
ru 81.9 (61.2) 77.19 (51.3) 79.9 (59.2) 88.9 (71.7)

Table 4: Cross-lingual metaphoricity detection F1 results. The multi-lingual PLM, i.e., XLM-RoBERTa,
is better than random by large margins in most cases. For each test language, we bold its in-domain (e.g.,
en→ en), and underline the best out-of-domain (e.g., ru→ en) numbers.

Train Dataset
LCC(en) TroFi VUA POS VUA Verbs

Te
st

D
at

as
et LCC(en) 83.7 (62.7) 63.2 (63.4) 64.2 (63.1) 61.2 (42.3)

TroFi 58.6 (39.1) 66.2 (63.6) 58.3 (24.5) 58.3 (59.3)
VUA POS 39.9 (26.3) 31.6 (29.0) 53.18 (28.8) 49.9 (29.6)
VUA Verbs 38.5 (34.5) 47.0 (46.0) 59.8 (29.8) 66.4 (48.0)

Table 5: Cross dataset edge probing F1 results on BERT shown in pairs: pre-trained model and, in the
parenthesis, the randomly initialized model. We set the training size to the minimum among datasets,
i.e., TroFi. For each test dataset, we bold its in-domain (e.g., TroFi→ TroFi), and underline the best
out-of-domain (e.g., LCC(en)→ TroFi) numbers.

outperforms the random. This shows that some
metaphorical knowledge, learned during the pre-
training phase, is transferable across languages.

Further, some language pairs (English & Russian
and Russian & Farsi) seem to have higher trans-
ferrability than others. In some cases, interestingly,
one way is much better than the other (e.g., Farsi
→ English is 78.1 but English→ Farsi is 71.4).

Finally, we can also compare the in-domain ran-
dom PLM with the out-of-domain pre-trained PLM
results. For English as test, the best out-of-domain
result, i.e., 80.9 for Russian→ English, is better
than the in-domain random result of 72.3.

4.3.2 Cross-dataset
Similar to the cross-lingual evaluations, here we
have four datasets as sources and targets. We set
the size of all datasets to the minimum, i.e., 5770.
For each pair, we run two experiments: one with
random and one with XLM-RoBERTa as our PLM.
In total, here we run 4 · 4 · 2 (random and pre-
trained PLM) = 32 experiments. Results are shown
in Table 5.

As expected, VUA Verbs and VUA POS achieve
the best results when mutually tested since they
are from fairly the same distribution. Similar dis-
tributions seem to be impactful when testing on

the VUA Verbs dataset as well, where we can see
that training on the TroFi dataset outperforms LCC.
This can be attributed to the fact that TroFi only has
verbs as metaphorical spans, just like VUA Verbs,
whereas LCC has both verbs and nouns. This obser-
vation can be validated where we test on the VUA
POS dataset. In this setting, the opposite happens,
and the LCC dataset outperforms TroFi, which can
be related to having both nouns and verbs like VUA
POS rather than just verbs.

4.4 Application
LCC dataset provides metaphoricity scores includ-
ing 0 as no metaphoricity, 2 likely/conventional
metaphor, and 3 clear metaphor.2 We leverage
these scores to study PLM’s understanding of the
commonality of the metaphors and their resem-
blance to human annotators as the novelty changes.

Table 6 shows the average predicted probabil-
ity for the masked spans in different metaphoricity
classes across four languages. Our results demon-
strate that, as the metaphoricity score increases, the
model’s prediction probability for the desired word
decreases consistently over languages.

21 is possible/weak metaphor and as Mohler et al. (2016)
describes metaphors with 0.5 ≤ score < 1.5 as unclear we
ignore this score.
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Figure 4: XLM-RoBERTa MLM prediction recall in LCC dataset over four languages. Recall is the
proportion of the entries predicted within the ranking limit to all the entries. Scores are from the LCC
dataset including no metaphoricity, likely/conventional metaphor, and clear metaphor.

Metaphoricity Score
Language 0 2 3

English .20 .17 .08
Spanish .27 .19 .12
Farsi .28 .15 .13
Russian .37 .27 .15

Table 6: XLM-RoBERTa MLM average probability
of the source concept in the LCC datasets over four
languages. Metaphoricity scores are from the LCC
dataset, and 0: no metaphoricity, 1: possible/weak
metaphor, 2: likely/conventional metaphor, and 3:
clear metaphor. The probabilities are acquired after
applying softmax.

We also validate these findings by calculating
recall@k for different values of k. Figure 4 demon-
strates the MLM predictions recall for different
metaphoricity levels. We consider different ranking
limits k to show what fraction of the examples were
correctly predicted by the language model in the
top k predictions. The results imply that metaphor-
ical sentences in general, and clear metaphors in
particular, result in less recall than normal use of
language. This means that the model can predict
the masked token in typical sentences with higher
probabilities. In contrast, a figurative use of lan-
guage causes difficulties for the model to predict
the desired word.

We show that the trend and conclusion are con-

sistent in Farsi, Spanish, and Russian as well.

5 Conclusion

In this paper, we shed light on how metaphorical
knowledge is encoded in PLMs, through probing,
cross-dataset and cross-language analysis and gen-
eration. We ran novel scenarios on metaphor detec-
tion and generation and presented findings helpful
for both NLP and cognitive sciences.

We showed that metaphorical knowledge in
PLMs is somewhat generalizable across languages.
This could be an interesting direction to follow
for further investigations within both linguistics
and NLP. Our evaluation also demonstrated that
PLMs generate metaphors and even novel ones but
with more hardship than literal expressions. This
is an indication that they might face issues under-
standing them as well, and more work is needed to
equip them with better metaphorical information.
Metaphors are important in human cognition, and
if we seek to build cognitively inspired or plausi-
ble language understand systems, we need to work
more in their integration in the future.
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Language Sentence Annotations

fa
با آغاز، همان از افغانستان، در امریکا اما

. است آمده 2[ دموکراسی ] 1[ س®ح ]

Score: 3.0
Src Concept: WAR(3.0)
Target Concept: DEMOCRACY
Polarity: NEUTRAL
Intensity: 1.0

es
[atorado]1 en la [deuda]2 pública
y sin avances en Estado de Derecho

Score: 3.0
Src Concept: BARRIER(3.0)
Target Concept: DEBT
Polarity: NEGATIVE
Intensity: 2.0

ru
Мировые [деньги]2 [мечутся]1 ,
не зная , куда вложиться .

Score: 3.0
Src Concept: MOVEMENT(3.0)
Target Concept: MONEY
Polarity: NEGATIVE
Intensity: 2.0

Table 7: Examples of sentences, spans, and annotations for LCC dataset in Farsi, Spanish, and Russian.

English Spanish
R\Score 0 1 2 3 0 1 2 3

10 1.77 1.93 1.95 2.32 1.59 1.77 1.87 2.21
100 11.01 10.13 12.43 18.07 8.57 9.49 11.43 18.70
1000 44.62 37.08 51.63 113.01 26.13 24.63 42.35 92.81
5000 96.43 78.53 97.54 264.92 47.09 39.34 80.70 168.75

Farsi Russian
R\Score 0 1 2 3 0 1 2 3

10 1.57 1.89 2.09 2.15 1.20 1.50 1.55 1.95
100 9.56 11.91 14.26 18.96 5.95 7.66 9.50 14.46
1000 40.86 51.98 70.23 115.45 23.28 24.90 40.71 88.97
5000 65.31 79.55 123.31 227.19 40.41 33.77 77.72 297.92

Table 8: XLM-RoBERTa MLM ranking average of the source concept in LCC dataset over four lan-
guages. Scores are from the LCC dataset, 0 indicating no metaphoricity, 1 possible/weak metaphor, 2
likely/conventional metaphor, and 3 clear metaphor.


