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ABSTRACT

Recently, Vision Transformer (ViT) has continuously established new milestones
in the computer vision field, while the high computation and memory cost makes
its propagation in industrial production difficult. Pruning, a traditional model
compression paradigm for hardware efficiency, has been widely applied in var-
ious DNN structures. Nevertheless, it stays ambiguous on how to perform exclu-
sive pruning on the ViT structure. Considering three key points: the structural
characteristics, the internal data pattern of ViT, and the related edge device de-
ployment, we leverage the input token sparsity and propose a hardware-friendly
soft pruning framework (HFSP), which can be set up on vanilla Transformers of
both flatten and CNN-type structures, such as Pooling-based ViT (PiT). More con-
cretely, we design a dynamic attention-based multi-head token selector, which is
a lightweight module for adaptive instance-wise token selection. We further in-
troduce a soft pruning technique to package the pruned tokens, which integrate
the less informative tokens generated by the selector module into a package token,
and participates in subsequent calculations rather than being discarded completely.
From a hardware standpoint, our framework is bound to the tradeoff between ac-
curacy and specific hardware constraints through our proposed hardware-oriented
progressive training, and all the operators embedded in the framework have been
well-supported. Experimental results demonstrate that the proposed framework
significantly reduces the computational costs of ViTs while maintaining compa-
rable performance on image classification. For example, our method reduces the
FLOPs of DeiT-S by over 42.6% while only sacrificing 0.46% top-1 accuracy.
Moreover, our framework can guarantee the identified model to meet resource
specifications of mobile devices and FPGA, and even achieve the real-time execu-
tion of DeiT-T on mobile platforms. Code will be publicly released.

1 INTRODUCTION

Recently, a new trend of leveraging Transformer architecture (Vaswani et al., 2017) into the com-
puter vision domain has emerged (Hudson & Zitnick, 2021; Chen et al., 2021g; Kim et al., 2021;
Deng et al., 2021; Xue et al., 2021; Zhao et al., 2021; Guo et al., 2021; Srinivas et al., 2021). The
Vision Transformer (ViT), which solely exploits the self-attention mechanism that inherits from
the Transformer architecture, has set up many state-of-the-art (SOTA) records in image classifica-
tions (Dosovitskiy et al., 2020; Touvron et al., 2021; Chen et al., 2021b), object detection (Carion
et al., 2020; Dai et al., 2021; Amini et al., 2021; Misra et al., 2021), tracking (Chen et al., 2021i; Yan
et al., 2021; Meinhardt et al., 2021), semantic segmentation (Zheng et al., 2021; Cheng et al., 2021),
depth estimation (Yang et al., 2021b; Li et al., 2020b), image retrieval (El-Nouby et al., 2021a), and
image enhancement (Yang et al., 2020; Chen et al., 2021c; Lu et al., 2021). However, despite the
impressive general results, ViTs have sacrificed lightweight model capacity, portability, and train-
ability in return for high accuracy. The mass number of computation layers (e.g., Conv, MatMul,
Softmax, GeLU, Add) of existing models remains a setback for edge device deployment.

Pruning, as one of the most straightforward and effective methods to reduce network dimensions, is
thoroughly explored in convolution-based neural networks (Han et al., 2015; Liu et al., 2017; Ren
et al., 2018), yet its application in self-attention-based neural networks remain scarce (Guo et al.,
2020; Sanh et al., 2020; Li et al., 2020a; Wang et al., 2021a). Currently, some pioneering works are
exploring ViT pruning. However, there still exists a gap between the actual device deployment and
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Figure 1: Overall workflow. Upper Figure: Our attention-based multi-head token selector to ob-
tain token scores for keep/drop decisions. Lower Figure: Token selector is inserted multiple times
throughout the model, along with the token packaging technique to generate a package token from
the less informative tokens. The package token is concatenated with the informative tokens to be
fed in the following transformer blocks.

acceleration in their frameworks. For instance, attention head pruning (Chen et al., 2021f) performs
weight pruning on the transformation matrix (WQ, WK , WV ) before the multi-head self-attention
(MSA) operation. It is an inefficient way for computation reduction, because only part of the ViT
computations (i.e., MSA) can be alleviated (see Section 3 for justification). In a lightweight model,
head pruning cannot guarantee an ideal pruning rate without significant accuracy degradation. Static
token pruning (Rao et al., 2021) reduces the number of input tokens by a fixed ratio for different
images, which restricts the image pruning rate, ignoring the fact that the high-level information of
each image varies both in the region size and location. It is also difficult for the deployment on
edge devices since newly introduced operations (e.g., Argsort) are currently not well supported by
many frameworks (Prillo & Eisenschlos, 2020). In contrast, dynamic token pruning (Pan et al.,
2021) deletes redundant tokens based on the inherent image characteristics to achieve per-image
adaptive pruning rate. However, this method implies a potentially huge search space, which will
easily cause limited overall pruning rate or undermined accuracy if the token selection mechanism
is not carefully designed.

In this paper, we manage to overcome the above limitations. Specifically, we propose HFSP as
shown in Figure 1, a Hardware-Friendly Soft Pruning framework which simultaneously optimizes
ViT accuracy and maximizes per-image dynamic pruning rate, while maintaining actual deployment
efficiency on edge devices. In ViT, each head encodes the visual receptive field independently (Pan
et al., 2021; Heo et al., 2021; Mao et al., 2021), which implies that each token has a different in-
fluence in different heads (Dosovitskiy et al., 2020; Zhai et al., 2021; Yu et al., 2021; Gao et al.,
2021). We thus propose a token selection module to evaluate the importance score of each token
based on its characteristic statistics in all heads. Then, through the attention-based branch (Hu et al.,
2018) in the selection module, we sum up the final score of a token, which determines whether the
token should be pruned. With the selection module, all tokens generated from the input images
can be precisely ranked and pruned based on their importance scores and thus achieving a high
overall pruning rate. However, the token representations (Wu et al., 2020; Xu et al., 2021a; Chen
et al., 2021e; Chefer et al., 2021) in shallow or middle layers are insufficiently encoded as shown
in Figure 6 (see Appendix), which makes token pruning quite difficult. And this technique soft the
pruning process, because the pruned tokens have not been deleted totally. To mitigate the challenge,
we introduce a package token technique, which compresses the less-informative tokens, picked out
and to be pruned by the selection module, into a package token. Then, we concatenate the package
token to other remaining tokens for subsequent blocks. On one hand, although informative tokens
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may be discarded due to the poor encoding ability in earlier blocks of ViT (Xu et al., 2021b), this
error will be partly corrected by the residual information stored in the package token. On the other
hand, background features can help emphasize foreground features (Yang et al., 2021a). Completely
removing less informative (negative) tokens will weaken self-attention’s ability to capture key infor-
mation. Therefore, the package token can serve as a way to help preserve background features. By
adding minimal computational costs, the token pruning rate will be increased significantly.

Taking the hardware efficiency into consideration, all the operators contained in our framework have
been well-supported on edge devices. In addition, we elaborate a hardware-oriented progressive
training, which consists of two parts: hardware-constraint loss function and layer-to-phase progres-
sive training. The former bridges the token pruning rates with operating constraints of diverse edge
devices. The latter indicates that we progressively insert one selector in each block, and train the
new selector under the resource budget constraints of the target device. Next, we group adjacent
blocks with similar pruning rates into a phase, keep the first selector in this phase and remove oth-
ers. While maintaining high accuracy, it can search for the appropriate pruning rate for each block
and the desirable insertion position of the selector. Our contributions are summarized as follows:

• We provide a detailed analysis on the computational complexity of ViT and different compression
strategies. Based on our analysis, pruning tokens holds a greater computation reduction compared
to compression of other dimensions.

• Considering the vision pattern inside ViT, we propose HFSP, which includes the attention-based
multihead selection module and the token packaging technique to achieve per-image adaptive
pruning. We also design a hardware-oriented progressive training, which efficiently explores the
HFSP design space given the hardware resource budget, and maximize the per-image pruning rate
without accuracy degradation.

• HFSP enables a higher pruning rate than other state-of-the-art with comparable accuracy. By
applying HFSP to PiTs, more efficient and accurate models are generated compared with the
embedding dimension scaling (Touvron et al., 2021) of original models.

• To the best of our knowledge, it is the first time that the ViT models perform inference on the edge
devices, and even beyond real-time1 for a DeiT-T on mobile phones and DeiT-S on a Xilinx FPGA
(e.g., 32 ms on a Samsung Galaxy S20 and 13.2 ms on an Xilinx ZCU102 FPGA).

2 RELATED WORK

Vision Transformers. ViT (Dosovitskiy et al., 2020) is a pioneering work that uses only Trans-
former to solve various vision tasks. Compared to traditional CNN structures, ViT allows all the
positions in an image to interact through transformer blocks whereas CNNs operated on a fixed-
sized window with restricted spatial interactions, which can have trouble capturing relations at the
pixel level in both spatial and time domains (Raghu et al., 2021). Since then, many variants have
been proposed (Graham et al., 2021; Liu et al., 2021b; Yuan et al., 2021a; Wang et al., 2021c; Han
et al., 2021; Wu et al., 2021; Chen et al., 2021d; Steiner et al., 2021; El-Nouby et al., 2021b; Liu
et al., 2021a; Wang et al., 2021b; Bao et al., 2021). For example, DeiT (Touvron et al., 2021),T2T-
ViT (Yuan et al., 2021b) and Mixer (Chen et al., 2021h) tackle the data-inefficiency problem in ViT
by training only with ImageNet. PiT (Heo et al., 2021) replaces the uniform structure of Trans-
former with depth-wise convolution pooling layer to reduce spacial dimension and increase channel
dimension. LV-ViT (Jiang et al., 2021) introduces a token labeling approach to improve training.
PS-ViT (Yue et al., 2021) abandons the fixed length tokens with progressive sampled tokens.

Efficient ViT. The huge memory usage and computation cost of the self-attention mechanism serve
as the roadblock to the efficient deployment of the ViT model on edge devices. Many works
aim at accelerating the inference speed of ViT (Chen et al., 2021a). For instance, S2ViTE (Chen
et al., 2021f) prunes token and attention head in a structured way via sparse training. VTP (Zhu
et al., 2021) reduces the input feature dimension by learning their associated importance scores
with L1 regularization. IA-RED2 (Pan et al., 2021) drops redundant tokens with a multi-head
interpreter. PS-ViT (T2T) (Tang et al., 2021) discards useless patches in a top-down paradigm.
DynamicViT (Rao et al., 2021) removes redundant tokens by estimating their importance score
with a MLP (Vaswani et al., 2017) based prediction module. Evo-ViT (Xu et al., 2021b) develops
a slow-fast token evolution method to preserve more image information during pruning. Token-

1Real-time inference usually means 30 frames per second, which is approximately 33 ms / image.
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Table 1: Computation complexity of ViT. The input N ⇥ Dch goes through three linear transfor-
mation layers with Dch ⇥ Dattn to generate Query (Q), Key (K), and Value (V ) matrices of size
N ⇥Dattn. N is transitive, while Dch is not.

# Method Input Size Operation Layer Size Output Size Computation

¨

MSA

N ⇥Dch Linear Transformation Dch ⇥Dattn N ⇥Dattn NDchDattn ⇥ 3

≠ N ⇥Dattn Q Multiplying KT - N ⇥N N2Dattn

Æ N ⇥N Multiplying V - N ⇥Dattn N2Dattn

Ø N ⇥Dattn Projection Dattn ⇥Dch N ⇥Dch NDattnDch

∞ FNN N ⇥Dch FC Layer Dch ⇥ 4Dfc N ⇥ 4Dfc 4NDchDfc

± N ⇥ 4Dfc FC Layer 4Dfc ⇥Dch N ⇥Dch 4NDfcDch

Total Computation Complexity 4NDchDattn+
2N2Dattn + 8NDchDfc

Learner (Ryoo et al., 2021) uses spatial attention to generate a small set of token vectors adaptive
to the input. However, to the best of our knowledge, our idea of considering actual edge device
deployment and acceleration has not been investigated by any existing ViT pruning approaches.

3 COMPUTATIONAL COMPLEXITY ANALYSIS

Given an input sequence N ⇥ D, where N is the input sequence length or token number and D

is the embedding dimension (Touvron et al., 2021) of each token, some works (Pan et al., 2021;
Zhu et al., 2021) address the computational complexity of ViT as (12ND

2
+ 2N

2
D). However, D

represents different dimensions and should be written as (4NDchDattn+2N
2
Dattn+8NDchDfc).

Neglecting the difference may cause misleading conclusions, especially when analyzing the validity
of pruning methods such as token pruning and dimension pruning.

Table 1 shows an analysis of each operation in a Transformer block. There are three main branches
on ViT pruning. (i) Token channel pruning: The sequence tokens are pruned along Dch dimension.
Dch is non-transmissible, which means reducing input dimension only affects the computation of
the current matrix multiplication. To reduce computation for all layers, a mask layer is added to
multiply with the input before going through the linear layer (Zhu et al., 2021). (ii) Token pruning:
N is transitive, so directly pruning tokens will contribute to the linearly or even quadratically (N2

in ≠ and Æ) reduction of all operations. (iii) Attention head pruning (or attention channel pruning):
The pruning operations are performed on weight tensors of each attention head in the MSA module.
However, only the Dattn in the MSA module can be counted towards computation reduction, which
usually contributes less than 40% of the total computation in most ViT architectures. Therefore,
with the same pruning ratio, pruning tokens (reducing N ) can reduce more overall computation than
pruning channels (reducing Dch or Dattn).

4 THE HARDWARE-FRIENDLY SOFT PRUNING FRAMEWORK

In this section, we first introduce our hardware-friendly soft token pruning (a.k.a HFSP) framework.
Then, we show an elaborate design of the HFSP modules. Finally, we give a detailed discussion of
our hardware-oriented progressive training strategy.

4.1 FRAMEWORK OVERVIEW

Our soft pruning framework includes a token selection module and token packaging technique. We
propose a hierarchical pruning scheme, where these two modules are inserted between multiple
blocks throughout the model. As shown in Figure 1, the input token sequence first goes through a
token selection module (selector), where each token is scored and defined as either informative or
less informative. After that, less informative tokens are separated from the sequence and integrated
into a package token. This package token then concatenates to the informative tokens to involve
into subsequent calculations in the blocks. In the next phase, a newly generated package token will
connect with the existing package token.
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Input Head 1 Head 2 Head 3 Head 4 Head 5 Head 6

Figure 2: Heatmaps showing the informative region detected by each head in DeiT-S. Each attention
head focuses on encoding different image features and visual receptive fields. Tool refers to (Caron
et al., 2021).

For ViT training with HFSP framework, we devise a hardware-constraint sparsity loss for the hard-
ware’s maximum computation bandwidth. We perform a layer-to-phase progressive training sched-
ule to compress the search space, where model accuracy optimization and hardware computation
reduction can be simultaneously achieved. The overall framework is hardware friendly with no
unsupported operations and miniature computation cost.

4.2 ATTENTION-BASED MULTI-HEAD TOKEN SELECTION MODULE

Multi-head Token Selector. We propose a fine-grained approach to evaluate token scores. As
shown in Figure 2, in ViT’s multi-head vision pattern, each head focus on encoding different features
and respective fields of an image. This implies that the importance of each token towards each head
is different. Our multi-head selector generates a list of token scores for each head. Let one head
dimension be S = C/H , where C is the input dimension and H is the number of head. We split the
input X 2 ZN⇥C by attention head [x1, x2, ..., xi], 1 < i < H , and obtain local and global features
through an MLP layer separately:

fi = [f
local

i
, f

global

i
] = MLP(xi) 2 ZN⇥S

, 1 < i < H (1)
The combined feature then passes through a MLP layer to produce token score maps with ti indi-
cating the token score from each attention head:

ti = Softmax(MLP(fi)) 2 ZN⇥2
, T = [t1, t2, ..., ti], 1 < i < H (2)

Head Importance Score. We merge the score maps by the weights of each attention head. As
shown in Figure 1, we add an attention-based branch along the selector backbone to synthesis the
importance of each head:

X̄ = AvgPool(X) =
1

S

SX

m=1

X(m) 2 ZN⇥H
, (3)

A = Sigmoid(FC(GeLU(FC(X̄)))) 2 ZN⇥H
, (4)

where X̄ is a head-wise statistic generated by shrinking X through its channel dimension C with
global average pooling. In Equation (4), the attention head score vector A is obtained by feeding
X̄ into the FC ! GeLU ! FC ! Sigmoid pipeline to fully capture head-wise dependencies. The
overall token score is calculated by adding all the individual scores from each head, multiplying by
their attention head score A = [a1, a2, ..., ai], 1 < i < H:

T̃ =

P
H

i=1 ti ⇤ aiP
H

i=1 ai

2 ZN⇥2
, (5)

where T̃ is the final token score and ai is the individual head importance score. We apply the
Gumbel-Softmax technique to generate the keep decision D for input tokens. Our module is hard-
ware friendly with miniature computation cost (less than 1% of the total model FLOPs).
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4.3 TOKEN PACKAGING TECHNIQUE

As discussed before, ViT is less accurate for evaluating token values in shallow blocks. Poor scoring
may cause important tokens to be removed. Also, completely removing background (negative)
tokens will weaken self-attention’s ability to capture key information (Yang et al., 2021a). Instead
of completely discarding tokens that are considered less informative, we apply a token packaging
technique that integrates them into a package token. Assume there are L less informative tokens X̂ ,
along with their token scores ˆ̃

T :

X̂ = [x̂1, x̂2, ..., x̂l] 2 ZL⇥C
,

ˆ̃
T = [t̂1, t̂2, ..., t̂l] 2 ZL⇥2

, 1 < i < L (6)

these tokens are combined to one token by:

P = Package(X̂) =

P
L

i=1 x̂i ⇤ t̂iP
L

i=1 ti

2 Z1⇥C
, (7)

where P is the package token; xi is an individual token; ti is its corresponding score. Token P will
take part in subsequent calculations along with the informative tokens, giving the model an ability
to correct scoring mistakes. All the operations in our framework (MLP, Softmax, Pooling, Sigmoid)
are well supported on edge platforms.

4.4 HARDWARE-ORIENTED PROGRESSIVE TRAINING

Our framework mainly trains two structures, i.e., one is the training on the token selection module,
which promotes them to produce the token pruning rates that favor the target edge device; The other
is fine-tuning the backbones, which enables them to accommodate the pruning rates and maintain the
inherent accuracy. Our training objectives include the standard cross-entropy loss, soft distillation
loss, and hardware-constraint sparsity loss. The former two are the same as the loss strategy used in
DeiT (Touvron et al., 2021).

Hardware-constraint Sparsity Loss. In order to bridge the efficient inference of ViT model pro-
duced by HFSP framework to the actual hardware deployment, we introduce a novel hardware-
constraint sparsity loss:

Block⇤ = 12NC
2
+ 2N

2
C, Selector⇤ =

5

8
NC

2
+

1

2
NC, (8)

LX

l=1

(Blockl(⇢l, N) + Il · Selectorl(⇢l, N))  �HardwareCost, (9)

where Equation (8) shows the amount of computation of a single ViT block and selector, in which
N is the token number and C is the token dimension; Equation (9) constrains the degree of model
computation reduction, where l is the block index, ⇢l is the pruning rate of token number in Blockl,
Il is a binary variable indicating whether a selector gets inserted in block l, and HardwareCost is
the maximum computation limit of the target hardware, which can be obtained by measuring the
real hardware performance. Through Equations (8) and (9), we derive the final hardware-constraint
sparsity loss:

£ratio =

l=1X

L

(1� ⇢l �
1

B

BX

b=1

NX

i=1

D
l,b

i
)
2
, (10)

where B is the training batch size, and D
l,⇤
i

means token keep rate in the l-th block. In order to
achieve per-image adaptive pruning rates, we set the average token pruning rate of all images in a
batch as the convergence target, as shown in Equation (10). Meanwhile, manually adjustable param-
eters � are set in Equation (9) to provide the loss slack for the images with the largest pruning rate.
Experiments show that the pruning rate difference of images in the same block will not exceed 4.2%.

Layer-to-Phase Progressive Training Schedule. The search space of the optimal model accu-
racy and hardware efficiency for HFSP training is large. Therefore, we design a hardware-oriented
progressive training strategy that leverages the ViT characteristics to efficiently find the optimal
accuracy-pruning ratio trade-offs. In a ViT architecture, the encoding efficiency is higher in later
blocks, hence, we adopt progressive training on the selector from later blocks to earlier blocks. The
process can be divided into three steps:
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Table 2: Results of different ViTs on ImageNet-1K. We compare the proposed HFSP with ex-
isting ViT pruning methods under comparable FLOPs and the number of parameters. Note that
“*” refers to our reproduced results to obtain models with similar FLOPs for comparison. Base-
line/160/192/288/384/512/768 indicates the embedding dimensions.

Model Method Params (M) FLOPs (G) FLOPs # (% ) Top-1 Acc. (%)
Baseline/192 5.60 1.30 0 72.20
Baseline/160* 4.00 0.90 30.77 68.10

DeiT-T S2ViTE 4.20 0.95 26.92 70.12
DynamicViT 5.90 0.91 30.00 71.85
HFSP (Ours) 5.70 0.90 30.77 72.10
Baseline/384 22.10 4.60 0 79.80
Baseline/288* 12.60 2.65 42.39 78.53
IA-RED2 - 3.15 31.52 79.10

DeiT-S S2ViTE 14.60 3.14 31.63 79.22
DynamicViT 22.80 2.91 36.74 79.30
DynamicViT* 22.80 2.71 41.09 79.12
HFSP (Ours) 22.20 2.64 42.61 79.34
Baseline/768 86.50 17.60 0 81.80
IA-RED2 - 11.80 32.96 80.30

DeiT-B S2ViTE 56.80 11.77 33.13 82.22
DynamicViT 89.50 11.02 37.39 80.70
HFSP (Ours) 86.60 10.49 40.40 81.05
Baseline/384 26.20 6.55 0 83.30

LV-ViT-S DynamicViT 26.90 4.57 30.22 83.00
HFSP (Ours) 26.20 4.28 34.65 83.10
Baseline/512 55.80 12.67 0 84.00

LV-ViT-M DynamicViT 57.10 8.45 33.31 83.80
DynamicViT* 57.10 7.35 41.99 83.61
HFSP (Ours) 55.90 7.32 42.23 83.71

• Inserting Token Selection Modules: Each time we insert a token selector, we train the current
selector and finetune the other parts to maximize the pruning ratio without noticeable accuracy
drop. We repeat the insertion until there is one selector for each block.

• Phase Merging: If the generated pruning rates of the adjacent selection modules is similar, we
combine them as one selection phase, and only keep the first selection module of the phase. The
reason is that the first selector of one phase has completed most of the token pruning of its phase,
the operations of subsequent selectors become less necessary.

• Accuracy Refinement: If the final computations are lower than the target upper bound of the
computation limits required by hardware resource budget, we reduce the pruning rate of the first
phase accordingly to further improve the model accuracy.

Note that restoring the tokens of the first phase can enhance the feature expression in every subse-
quent block, so as to maximize the accuracy improvement with the same amount of computation.

5 EXPERIMENTS

5.1 DATASETS AND IMPLEMENTATION DETAILS

Our experiments are conducted on ImageNet-1K (Deng et al., 2009) with different backbones in-
cluding DeiT-T, DeiT-S, DeiT-B (Touvron et al., 2021); LV-ViT-S, LV-ViT-M (Jiang et al., 2021);
PiT-T, PiT-XS, PiT-S (Heo et al., 2021). The image resolution is 224⇥224. We follow most of the
training settings as in DeiT and train all backbone models for 60 epochs. Our batch size is 256 for
DeiT-T, DeiT-S, and LV-ViT-S; and 128 for DeiT-B, LV-ViT-M, PiT-T, PiT-XS, and PiT-S. We set
an initial learning rate to be 5e-4 for the soft pruning module and 5e-6 for the backbone. The final
model has three token selectors. All models are trained on 8 NVIDIA A100-SXM4-40GB GPUs.
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5.2 EXPERIMENTAL RESULTS

Main Results. In Table 2, we compare our method with several representative pruning methods
including DynamicViT (Rao et al., 2021), IA-RED2 (Pan et al., 2021), and S2ViTE (Chen et al.,
2021f). We report the top-1 accuracy and FLOPs for each model. Note that “*” refers to the results
reproduced with similar FLOPs. Overall, Table 2 show that our HFSP reduces the computational
costs by 31%⇠43% for various backbones with negligible 0.1%⇠0.5% accuracy degradation, which
outperforms existing pruning methods on both accuracy and efficiency. On lightweight ViT, DeiT-
T, the proposed HFSP still reduces FLOPS by 31% with a negligible accuracy drop (�0.1%). To
explore model scaling on ViT, we train more DeiT models with the embedding dimension of 160 and
288 as our baselines. Under comparable computational complexity, our token sparsification method
surpasses model scaling method by 4% on DeiT-T(⇠ 0.9 GFLOPs) and 0.8% on DeiT-S(⇠ 2.64

GFLOPs). Additionally, our HFSP reaches a throughput of 6354.3 img/s for DeiT-T and 2418.2
img/s for DeiT-S, outpacing DynamicViT by 9%. Note that although S2ViTE can achieve better
accuracy on DeiT-B by head pruning, the accuracy of a more edge device compatible model with
fewer head has significant degradation and are not comparable with the ones in our method.

Integrated Extension of Pooling-based ViT (PiT Series) and HFSP. Thanks to the pooling-layer
mechanism, PiT filters less informative tokens the same as the downsampling process in CNN, which
improves the encoding efficiency of data features. Integrated with HFSP, PiT-S can further reduce
the amount of computation by 11% without accuracy drop. Figure 3 shows that the attention matrix
before and after HFSP retains great similarity, which enlightens that the encoding redundancy of
the pooling-layer mechanism can be recognized precisely by HFSP. We also compared HFSP with
the embedding dimension scaling on the PiT. When compressing PiT-S to the comparable size of
PiT-XS, the accuracy of the produced model is 0.91% acc higher than the original PiT-XS; When
the target size is PiT-T, the accuracy of the produced model is 0.9% higher than the original PiT-T.
By applying HFSP, more efficient and accurate models can be generated.

Table 3: Detail analysis on Pooling-based ViT
with HFSP.

Model Method Top1 Acc (%) FLOPs (G)
PiT-S Base Model 80.9 2.90
PiT-S HFSP (Ours) 80.9 2.58
PiT-XS Base Model 78.10 1.40
PiT-S HFSP (Ours) 79.01 1.42
PiT-T Base Model 73.00 0.71
PiT-XS HFSP (Ours) 74.06 0.72

Figure 3: Illustration of the first attention ma-
trix at the final block. Upper figure is the
original PiT-S, lower one is with HFSP.

5.3 DEPLOYMENT ON EDGE DEVICES

To evaluate the hardware performance, we implement a framework which runs the ViT model on the
edge devices. The evaluation is conducted on a Samsung Galaxy S20 cell phone that has Snapdragon
865 processor, which consists of an Octa-core Kryo 585 CPU carrying high performance with good
power efficiency. We use all eight cores on mobile CPUs. We report the average latency over 100
inferences. As shown in Table 4, HFSP achieves 32 ms per inference on mobile CPUs which meets
the real-time requirement. As far as we know, this is the first demonstration of ViT inference over
30fps on edge devices.

Additionally, HFSP is evaluated on an embedded FPGA platform, namely, Xilinx ZCU102. To
maintain the model accuracy on hardware, 16-bit fixed-point precision is adopted to represent all
the model parameters and activation data. The comparison results with baseline models are shown
in Table 5. In addition to the total latency, the average latency of the multi-head attention and MLP
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Table 4: Evaluation results on Samsung Galaxy
S20 with Snapdragon 865 processor.

Model Method FLOPs (G) Latency (ms)

DeiT-T Baseline 1.30 44
HFSP (Ours) 0.90 32

DeiT-S Baseline 4.60 122
HFSP (Ours) 2.64 84

Table 5: Evaluation results on Xilinx ZCU102
FPGA board.

Model Method FLOPs (G) Latency (ms)
MSA FFN Total

DeiT-T Baseline 1.30 5.04 3.36 8.81
HFSP (Ours) 0.90 3.12 2.16 5.60

DeiT-S Baseline 4.60 11.04 10.68 22.31
HFSP (Ours) 2.64 6.36 6.48 13.23

DeiT-B Baseline 17.60 33.24 39.36 73.61
HFSP (Ours) 10.49 19.44 23.04 43.24

modules in each model is listed. Compared with the baseline, DeiT-T, DeiT-S, and DeiT-B could
achieve 1.57⇥, 1.69⇥, and 1.70⇥ acceleration in the total latency, respectively.

6 ABLATION ANALYSIS

Sub-method Effectiveness. To evaluate the effectiveness of each sub-method, we use a single head
token selector as our pruning baseline for DeiT-S, then add up each sub-method step by step to
compare their performance improvements. The sub-methods include:

• Apply the multi-head mechanism to get multiple token scores for each attention head individually,
then use average pooling to get the final token score.

• Add the token package module to draw feature information from the less informative tokens into
a package token.

• Add the attention-based branch to derive the head importance score so that the final token score
gets obtained by weighted pooling.

• Add the hardware-oriented progressive training schedule, where each token selector is trained
individually from the deep to shallow.

From Table 6, we can observe that multi-head token selector has a 0.12% accuracy improvement
compared to single head. This demonstrates the importance of evaluating token scores based on the
encoding information of each head. After adding the token packaging technique, the accuracy is
further improved by 0.13%. This proves our argument that ViT’s encoding limitations may cause
informative tokens to get pruned, while adding the package means a remedy opportunity for the
model. By using the attention-based branch, model is further advanced by 0.06%. This indicates that
the selector’s capability can improve by replacing the naive average pooling with weighted pooling.
Progressive training’s accuracy refinement process allows us to further maximize the performance
while not exceeding the edge device computation cap.

Table 6: Sub-method effectiveness evaluation on DeiT-S.

Method Params (M) FLOPs (G) Top-1 Acc. (%) Throughput (img/s)
DeiT-S 22.10 4.60 79.80 1510.7
Pruning Baseline 22.20 2.63 79.03 > 2424.1
+ Multihead 22.20 2.63 79.15 > 2424.1
+ Package Token 22.20 2.64 79.28 > 2419.8
+ Attention-based Branch 22.20 2.64 79.34 > 2418.2
+ Progressive Training 22.20 2.65 79.36 > 2415.3

7 CONCLUSION

In this paper, we propose a dynamic hardware-friendly soft pruning framework called HFSP for
various ViT models. Our attention-based multi-head token selector and token packaging technique,
along with the hardware-oriented progressive training can well balance the tradeoff between accu-
racy and specific hard-ware constraints without introducing operators that are not supported by the
hardware. For instance, our method reduces the FLOPs of DeiT-S by over 42.6% while only sacri-
ficing 0.46% top-1 accuracy. We further deploy our model on mobile device and FPGA, which both
meets the real-time requirement.
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