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ABSTRACT

Detecting out-of-distribution (OOD) inputs is critical for safely deploying deep
learning models in an open-world setting. However, existing OOD detection
solutions can be brittle in the open world, facing various types of adversarial
OOD inputs. While methods leveraging auxiliary OOD data have emerged, our
analysis reveals a key insight that the majority of auxiliary OOD examples may not
meaningfully improve the decision boundary of the OOD detector. In this paper, we
provide a theoretically motivated method, Adversarial Training with informative
Outlier Mining (ATOM), which improves the robustness of OOD detection. We
show that, by mining informative auxiliary OOD data, one can significantly improve
OOD detection performance, and somewhat surprisingly, generalize to unseen
adversarial attacks. ATOM achieves state-of-the-art performance under a broad
family of classic and adversarial OOD evaluation tasks. For example, on the
CIFAR-10 in-distribution dataset, ATOM reduces the FPR95 by up to 57.99%
under adversarial OOD inputs, surpassing the previous best baseline by a large
margin.

1 INTRODUCTION

Out-of-distribution (OOD) detection has become an indispensable part of building reliable open-world
machine learning models (Amodei et al., 2016). An OOD detector determines whether an input is
from the same distribution as the training data, or a different distribution (i.e., out-of-distribution).
The performance of the OOD detector is central for safety-critical applications such as autonomous
driving (Eykholt et al., 2018) or rare disease identification (Blauwkamp et al., 2019).

Despite exciting progress made in OOD detection, previous methods mostly focused on clean OOD
data (Hendrycks & Gimpel, 2016; Liang et al., 2018; Lee et al., 2018; Lakshminarayanan et al.,
2017; Hendrycks et al., 2018; Mohseni et al., 2020). Scant attention has been paid to the robustness
aspect of OOD detection. Recent works (Hein et al., 2019; Sehwag et al., 2019; Bitterwolf et al.,
2020) considered worst-case OOD detection under adversarial perturbations (Papernot et al., 2016;
Goodfellow et al., 2014; Biggio et al., 2013; Szegedy et al., 2013). For example, an OOD image (e.g.,
mailbox) can be perturbed to be misclassified by the OOD detector as in-distribution (traffic sign
data). Such an adversarial OOD example is then passed to the image classifier and trigger undesirable
prediction and action (e.g., speed limit 70). Therefore, it remains an important question to make
out-of-distribution detection algorithms robust in the presence of small perturbations to OOD inputs.

In this paper, we begin with formally formulating the task of robust OOD detection and providing the-
oretical analysis in a simple Gaussian data model. While recent OOD detection methods (Hendrycks
et al., 2018; Hein et al., 2019; Meinke & Hein, 2019; Mohseni et al., 2020) have leveraged auxiliary
OOD data, they often sample randomly uniformly from the auxiliary dataset. Contrary to the common
practice, our analysis reveals a key insight that the majority of auxiliary OOD examples may not
provide useful information to improve the decision boundary of OOD detector. Under a Gaussian
model of the data, we theoretically show that using outlier mining significantly improves the error
bound of OOD detector in the presence of non-informative auxiliary OOD data.

Motivated by this insight, we propose Adversarial Training with informative Outlier Mining (ATOM),
which justifies the theoretical intuitions above and achieves state-of-the-art performance on a broad
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Figure 1: When deploying an image classification system (OOD detector G(x) + image classifier f(x)) in an
open world, there can be multiple types of out-of-distribution examples. We consider a broad family of OOD
inputs, including (a) Natural OOD, (b) L∞ OOD, (c) corruption OOD, and (d) Compositional OOD. A detailed
description of these OOD inputs can be found in Section 5.1. In (b-d), a perturbed OOD input (e.g., a perturbed
mailbox image) can mislead the OOD detector to classify it as an in-distribution sample. This can trigger the
downstream image classifier f(x) to predict it as one of the in-distribution classes (e.g., speed limit 70). Through
adversarial training with informative outlier mining (ATOM), our method can robustify the decision boundary
of OOD detector G(x), which leads to improved performance across all types of OOD inputs. Solid lines are
actual computation flow.

family of classic and adversarial OOD evaluation tasks for modern neural networks. We show that,
by carefully choosing which OOD data to train on, one can significantly improve the robustness
of an OOD detector, and somewhat surprisingly, generalize to unseen adversarial attacks. We note
that while hard negative mining has been extensively used in various learning tasks such as object
recognition (Felzenszwalb et al., 2009; Gidaris & Komodakis, 2015; Shrivastava et al., 2016), to
the best of our knowledge, we are the first to exploit the novel connection between hard example
mining and OOD detection. We show both empirically and theoretically that hard example mining
significantly improves the generalization and robustness of OOD detection.

To evaluate our method, we provide a unified framework that allows examining the robustness of
OOD detection algorithms under a broad family of OOD inputs, as illustrated in Figure 1. Our
evaluation includes existing classic OOD evaluation task – Natural OOD, and adversarial OOD
evaluation task – L∞ OOD. Besides, we also introduce new adversarial OOD evaluation tasks –
Corruption OOD and Compositional OOD. Under these evaluation tasks, ATOM achieves state-of-
the-art performance compared to eight competitive OOD detection methods (refer to Appendix B.3
for a detailed description of these methods). On the Natural OOD evaluation task, ATOM achieves
comparable and often better performance than current state-of-the-art methods. On L∞ OOD
evaluation task, ATOM outperforms current state-of-the-art method ACET by a large margin (e.g.
on CIFAR-10, outperforms it by 53.9%). Under the new Corruption OOD evaluation task, where
the attack is unknown during training time, ATOM also achieves much better results than previous
methods (e.g. on CIFAR-10, outperform previous best method by 30.99%). While almost every
method fails under the hardest Compositional OOD evaluation task, ATOM still achieves impressive
results (e.g. on CIFAR-10, reduce the FPR by 57.99%). The performance is noteworthy since ATOM
is not trained explicitly on corrupted OOD inputs.

In summary, our contributions are:

• Firstly, we contribute theoretical analysis formalizing the intuition of mining hard outliers
for improving the robustness of OOD detection.
• Secondly, we contribute a theoretically motivated method, ATOM, which leads to state-of-

the-art performance on both classic and adversarial OOD evaluation tasks. We conduct
extensive evaluations and ablation analysis to demonstrate the effectiveness of informative
outlier mining.
• Lastly, we provide a unified evaluation framework that allows future research examining the

robustness of OOD detection algorithms under a broad family of OOD inputs.
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2 PRELIMINARIES

In this section, we formulate the problem of robust out-of-distribution detection, and provide back-
ground knowledge on the use of auxiliary data for OOD detection.
Problem Statement. We consider a training dataset Dtrain

in drawn i.i.d. from a data distribution PX,Y ,
where X is the sample space and Y = {1, 2, · · · ,K} is the set of labels. A classifier f(x) is trained
on the in-distribution, PX , the marginal distribution of PX,Y . The OOD examples are revealed
during test time, which are from a different distribution QX , potentially with perturbations added.
The task of robust out-of-distribution detection is to learn a detector G : x→ {−1, 1}, which outputs
1 for x from PX and output −1 for a clean or perturbed OOD example x from QX .

Formally, let Ω(x) be a set of small perturbations on an OOD example x. The detector is evaluated
on x from PX and on the worst-case input inside Ω(x) for an OOD example from QX. The false
negative rate (FNR) and false positive rate (FPR) are defined as:

FNR(G) = Ex∼PX
I[G(x) = −1], FPR(G;QX,Ω) = Ex∼QX

max
δ∈Ω(x)

I[G(x + δ) = 1]. (1)

Note that no data from the test OOD distribution QX are available for training.

Use of Auxiliary Data for OOD Detection While it is impossible to anticipate the test OOD data
distributions QX for training, recent works (Hendrycks et al., 2018; Hein et al., 2019; Meinke & Hein,
2019; Mohseni et al., 2020; Liu et al., 2020) have shown the promise using auxiliary data as a proxy
for estimating the decision boundary between in- vs. OOD data. The idea is illustrated in Figure 1,
where outlier data is randomly sampled to regularize the model outputs (e.g., low confidence for OOD
data and high confidence for in-distribution data). Formally, we assume the auxiliary OOD dataset
Dauxiliary

out is sampled from a different distribution UX. The difference between the auxiliary data UX

and test OOD data PX raises the fundamental question of how to effectively leverage Dauxiliary
out for

improving learning the decision boundary between in- vs. OOD data.

3 THEORETICAL ANALYSIS: INFORMATIVE OUTLIERS MATTER

In this section, we present a theoretical analysis1 that motivates the use of informative outlier mining
for OOD detection. To establish formal guarantees, we use a Gaussian data model to model data
PX, QX, and UX. Different from previous work by Schmidt et al. (2018) and Carmon et al. (2019),
our analysis gives rise to a separation result with or without informative outlier mining for OOD
detection. To this end, we note that while hard negative mining has been explored in different domains
of learning (e.g. object detection, deep metric learning, please refer to Section 6 for details), the vast
literature of out-of-distribution detection has not explored this idea. Moreover, most uses of hard
negative mining are on a heuristic basis, but in our case, the simplicity of the definition of OOD
(see Section 2) allows us to derive precise formal guarantees, which further differs us from previous
studies of hard negative mining. As a remark, our analysis also establishes formal evidence of the
importance of using auxiliary outlier data for OOD detection, which is lacking in the current OOD
detection studies. We refer readers to Section A for these results.

At a high level, our analysis provides two important insights: (1) First, we show that a detection
algorithm can work very well if all data is informative; yet it can fail completely in a natural setting
where we mix informative auxiliary data with non-informative auxiliary data. (2) Second, we show
that, tweaking the algorithm with simple thresholding to choose mildly hard auxiliary data (in our
setting they are exactly the informative ones), can lead to good detection performance. Combining
both thus provides direct evidence about the importance of hard negative mining for OOD.

Gaussian Data Model. We now describe the Gaussian data model, inspired by the model in (Schmidt
et al., 2018; Carmon et al., 2019), but with important adjustment to the OOD detection setting.
In particular, our setting has a family Q of possible test OOD distributions and have only in-
distribution data for training, modeling that the test OOD distribution is unknown for training. Given
µ ∈ Rd, σ > 0, ν > 0, we consider the following model:

• PX (in-distribution data): N (µ, σ2I); The in-distribution data {xi}ni=1 is drawn from PX.
• QX (out-of-distribution data) can be any distribution from the family Q = {N (−µ +
v, σ2I) : v ∈ Rd, ‖v‖2 ≤ ν}.

1Due to lack of space, proofs are deferred to Appendix A.
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• Hypothesis class of OOD detector: G = {Gθ(x) = sign(θ>x) : θ ∈ Rd}.
A concrete instance of the model is defined by a set of parameter values for d, µ, σ, and ν; see
Appendix A.2 for the family of instances we analyze. While the Gaussian model may be much
simpler than the practical data, its simplicity is desirable for our analytical purpose for demonstrating
the insights. Furthermore, the analysis in this simple model has implications for more complicated
and practical methods, which we present in Section 4. Finally, the analysis can be generalized to
mixtures of Gaussians which models practical data much better. Below, we consider the FNR and the
FPR under `∞ perturbations of magnitude ε. Since QX is not accessible at training time, our goal is
to bound supQX∈Q FPR(G;QX,Ω∞,ε(x)).

Failing a good detector by mixing non-informative auxiliary data. We start by considering the
case where all auxiliary data are informative: That is, all auxiliary {x′i}n

′

i=1 come from uniform
mixture of the possible test OOD distributions in Q. In this case, it is straightforward to show that a
simple averaging-based detector,

θ̂n,n′ =
1

n+ n′

 n∑
i=1

xi −
n′∑
i=1

x̃i

 , (2)

performs very well (See Proposition 4 in the appendix).

Unfortunately, this detector can be easily failed by considering the following simple auxiliary data
distribution Umix, which mixes the ideal auxiliary data with non-informative data

• Umix (Non-ideal mixture): Umix is a uniform mixture of N (−µ, σ2I) and N (µo, σ
2I)

with µo = 10µ.

Importantly, the distribution Umix models the case where the auxiliary OOD data has some non-
informative outliers, and also with a small probability mass of samples (e.g., tail of N (−µ, σ2I)) in
the support of in-distribution. In this case, the simple average method leads to E[θ̂n,n′ ] = −7µ/4

with a large error, since θ̂n,n′ is misled by auxiliary data from N (µo, σ
2I) or tail of N (−µ, σ2I) in

the support of in-distribution.

Fixing the detector with informative outlier mining. We now show an important modification
to the detection algorithm by using informative outlier mining, which leads to good detection
performance. Specifically, we first use in-distribution data to get an intermediate solution: θ̂int =
1
n

∑n
i=1 xi. Then, we use a simple thresholding mechanism to only pick points with mild confidence

scores, which removes non-informative outliers. Specifically, we only select outliers x̃ whose
confidence scores f(x̃) = 1/(1 + e−x̃

>θ̂int/d) fall in an interval [a, b]. The final solution θ̂om is −1
times the average of the selected outliers. We can prove the following:
Proposition 1. (Error bound with outlier mining.) For any ε ∈ (0, 1/2) and any integer n0 > 0,
there exist a family of instances of the Gaussian data model such that the following is true. n′ auxiliary
OOD data from Umix specified above. There exist thresholds a and b for θ̂om and a universal constant
c > 0 such that if the number of in-distribution data n ≥ c(n0 log d +

√
dn0) and the number of

auxiliary data n′ ≥ (d+ n0 · 4ε2)
√
d/n0, then θ̂om has small errors:2

Eθ̂omFNR(Gθ̂om) ≤ 10−3, Eθ̂om sup
QX∈Q

FPR(Gθ̂om ;QX,Ω∞,ε(x)) ≤ 10−3. (3)

Intuitively, the mining method removes the misleading points (most points in N (µo, σ
2I) and tail of

N (−µ, σ2I) in the support of in-distribution). Outliers selected in this way are mostly informative and
thus give an accurate final detector, which justifies outlier mining in the presence of non-informative
data. If we compare this bound with that for the case without auxiliary data (Proposition 3), we
can see that for sufficiently high dimension d, with the same amount of in-distribution data, any
algorithm without outliers must fail but our outlier mining method can learn a good detector. We
also note that our analysis and the result also hold for many other auxiliary data distributions Umix,
and the particular Umix used here is for the simplicity of demonstration; see the appendix for more
discussions. In the following section, we design a practical algorithm based on this insight and
present empirical evidence of its effectiveness.

2The error bound in the proposition can be made arbitrarily small and with high probability. The current
bound is presented for simplicity.

4



Under review as a conference paper at ICLR 2021

0.0 0.2 0.4 0.6 0.8 1.0
OOD Score

0

20000

40000

60000

80000

100000

120000

140000

N
um

be
r 

of
 D

at
a 

Po
in

ts

Histogram of OOD Score (Epoch 30)

(a) OOD score distribution (b) highest OOD scores (c) lowest OOD scores

Figure 2: On CIFAR-10, we train a DenseNet with objective (4) for 100 epochs without informative outlier
mining. At epoch 30, we randomly sample 400,000 data points fromDauxiliary

out , and plot the OOD score frequency
distribution (a). We observe that the model quickly converges to solution where OOD score distribution becomes
dominated by easy examples with score closer to 1, as shown in (b). Therefore, training on these easy OOD
data points can no longer help improve the decision boundary of OOD detector. (c) shows the hardest examples
mined from TinyImages w.r.t CIFAR-10.

4 ATOM: ADVERSARIAL TRAINING WITH INFORMATIVE OUTLIER MINING

In this section, we introduce Adversarial Training with informative Outlier Mining (ATOM), which
justifies our theoretical analysis and effectiveness in the context of modern neural networks. We first
present the adversarial training objective and then describe how we use informative outlier mining to
robustify OOD detection.

Training Objective. We consider a (K + 1)-way classifier network f̂ , where the (K + 1)-th class
label indicates out-of-distribution class. Denote by F̂θ(x) the softmax output of f̂ on x. The robust
training objective is given by

minimize
θ

E(x,y)∼Dtrain
in

[`(x, y; F̂θ)] + λ · Ex∼Dtrain
out

max
x′∈Ω∞,ε(x)

[`(x′,K + 1; F̂θ)], (4)

where ` is the cross entropy loss, and Dtrain
out is the OOD training dataset. We use Projected Gradient

Descent (PGD) (Madry et al., 2017) to solve the inner max of the objective, and apply it to half of a
minibatch while keeping the other half clean to ensure performance on both clean and perturbed data.
Once trained , the OOD detector G(x) can be constructed by:

G(x) =

{
−1 if F̂ (x)K+1 ≥ γ,
1 if F̂ (x)K+1 < γ,

(5)

where γ is the threshold, and in practice can be chosen on the in-distribution data so that a high
fraction of the test examples are correctly classified by G. We call F̂ (x)K+1 the OOD score of x.
For an input that is labeled as in-distribution by G, one can obtain its semantic label using F (x):

F (x) = arg max
y∈{1,2,··· ,K}

F̂ (x)y (6)

Informative Outlier Mining. Motivated by our theoretical analysis in Section 3 and our empirical
observation shown in Figure 2, we propose to adaptively choose OOD training examples where
the detector is uncertain about. We provide the complete training algorithm using informative
outlier mining in Algorithm 1. Our method is different from random sampling as used in previous
works (Hendrycks et al., 2018; Hein et al., 2019; Meinke & Hein, 2019; Mohseni et al., 2020).
Specifically, during each training epoch, we randomly sample N data points from the auxiliary OOD
dataset Dauxiliary

out , and use the current model to infer the OOD scores3. Next, we sort the data points
according to the OOD scores and select a subset of n < N data points, starting with the qN th data in
the sorted list. We then use the selected samples as OOD training data Dtrain

out for the next epoch of
training. Intuitively, q determines the informativeness of the sampled points w.r.t the OOD detector.
The larger q is, the less informative those sampled examples become. Note that informative outlier

3Since the inference stage can be fully parallel, outlier mining can be applied with relatively low overhead.
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Algorithm 1 ATOM: Adversarial Training with informative Outlier Mining

input Dtrain
in , Dauxiliary

out , F̂θ, m, N , n, q
output F , G

for t = 1, 2, · · · ,m do
Randomly sample N data points from Dauxiliary

out to get a candidate set S.
Compute OOD scores on S using current model F̂θ to get set V = {F̂ (x)K+1 | x ∈ S}.
Sort scores in V from the lowest to the highest.
Dtrain

out ← V [qN : qN + n] . {q ∈ [0, 1− n/N ]}
Train F̂θ for one epoch using the training objective of (4).

end for
Build G and F using (5) and (6) respectively.

mining is performed on (non-adversarial) auxiliary OOD data. Selected examples are then used in
the robust training objective (4).

To see how informative outlier mining alone improves the OOD detection, we also consider the
following objective without adversarial training:

minimize
θ

E(x,y)∼Dtrain
in

[`(x, y; F̂θ)] + λ · Ex∼Dtrain
out

[`(x,K + 1; F̂θ)], (7)

which we name Natural Training with informative Outlier Mining (NTOM).

5 EXPERIMENTS

In this section, we describe our experimental setup (Section 5.1) and show that ATOM can substan-
tially improve OOD detection performance on both clean OOD data and adversarially perturbed OOD
inputs. We also conducted extensive ablation analysis to explore different aspects of our algorithm.
Our experiments are mainly on image data, which is common in previous work, but we believe that
our insights and method can be applied to other types of data, which is left for future work.

5.1 SETUP

In-distribution Datasets. We use SVHN (Netzer et al., 2011), CIFAR-10, and CIFAR-
100 (Krizhevsky et al., 2009) datasets as in-distribution datasets.
Auxiliary OOD Datasets. By default, we use 80 Million Tiny Images (TinyImages) (Torralba et al.,
2008) as Dauxiliary

out , which is a common setting in prior works. We also use ImageNet-RC, a variant of
ImageNet (Chrabaszcz et al., 2017) as an alternative auxiliary OOD dataset.
Out-of-distribution Datasets. For OOD test dataset, we follow the procedure in (Liang et al., 2018;
Hendrycks et al., 2018) and use six different natural image datasets. For CIFAR-10 and CIFAR-100,
we use SVHN, Textures (Cimpoi et al., 2014), Places365 (Zhou et al., 2017), LSUN (crop),
LSUN (resize) (Yu et al., 2015), and iSUN (Xu et al., 2015). For SVHN, we use CIFAR-10,
Textures, Places365, LSUN (crop), LSUN (resize), and iSUN. Besides natural image
datasets, we also consider Gaussian Noise and Uniform Noise as OOD test data.
Hyperparameters. The hyperparameter q is chosen on a separate validation set from TinyImages,
which does not depend on test-time OOD data (see Appendix B.7). Based on the validation results in
Table 5, we set q = 0 for SVHN, q = 0.125 for CIFAR-10 and q = 0.5 for CIFAR-100. To ensure fair
comparison, in each epoch, ATOM uses the same amount of outlier data as OE, where n is twice larger
than the in-distribution data size (i.e., 50,000). For all experiments, we set λ = 1. For CIFAR-10
and CIFAR-100, we set N = 400, 000, and n = 100, 000; For SVHN, we set N = 586, 056, and
n = 146, 514. More details about experimental set up are in Appendix B.1.
Robust OOD Evaluation Tasks. We consider the following family of OOD inputs, for which we
provide visualizations in Appendix B.5:

• Natural OOD: This is equivalent to the classic OOD evaluation with clean OOD input x,
and Ω = Ø.
• L∞ attacked OOD (white-box): We consider small L∞-norm bounded perturbations on

OOD input x (Madry et al., 2017; Athalye et al., 2018), which induce the model to produce
high confidence scores (or low OOD scores) for OOD inputs. We denote the adversarial
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Dtest
in Method

FPR AUROC FPR AUROC FPR AUROC FPR AUROC
(5% FNR) (5% FNR) (5% FNR) (5% FNR)
↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

Natural OOD Corruption OOD L∞ OOD Comp. OOD

SVHN

MSP 38.84 93.57 99.68 68.48 99.89 1.39 100.00 0.19
ODIN 31.45 93.52 97.11 63.21 99.86 0.61 100.00 0.05
Mahalanobis 22.80 95.57 93.14 60.78 97.33 8.89 99.89 0.23
SOFL 0.06 99.98 3.78 99.07 75.31 46.78 99.81 2.75
OE 0.60 99.88 23.44 96.23 69.36 52.19 99.65 1.27
ACET 0.49 99.91 17.03 97.23 29.33 86.75 99.85 5.13
CCU 0.50 99.90 24.17 96.11 52.17 62.24 99.42 1.60
ROWL 2.04 98.87 55.03 72.37 77.24 61.27 99.79 50.00
NTOM (ours) 0.04 99.98 2.87 99.16 60.28 64.06 99.78 1.50
ATOM (ours) 0.07 99.97 5.47 98.52 7.02 98.00 96.33 49.52

CIFAR-
10

MSP 50.54 91.79 100.00 58.35 100.00 13.82 100.00 13.67
ODIN 21.65 94.66 99.37 51.44 99.99 0.18 100.00 0.01
Mahalanobis 26.95 90.30 91.92 43.94 95.07 12.47 99.88 1.58
SOFL 2.78 99.04 62.07 88.65 99.98 1.01 100.00 0.76
OE 3.66 98.82 56.25 90.66 99.94 0.34 99.99 0.16
ACET 12.28 97.67 66.93 88.43 74.45 78.05 96.88 53.71
CCU 3.39 98.92 56.76 89.38 99.91 0.35 99.97 0.21
ROWL 25.03 86.96 94.34 52.31 99.98 49.49 100.00 49.48
NTOM (ours) 1.87 99.28 30.58 94.67 99.90 1.22 99.99 0.45
ATOM (ours) 1.69 99.20 25.26 95.29 20.55 88.94 38.89 86.71

CIFAR-
100

MSP 78.05 76.11 100.00 30.04 100.00 2.25 100.00 2.06
ODIN 56.77 83.62 100.00 36.95 100.00 0.14 100.00 0.00
Mahalanobis 42.63 87.86 95.92 42.96 95.44 15.87 99.86 2.08
SOFL 43.36 91.21 99.93 45.23 100.00 0.35 100.00 0.27
OE 49.21 88.05 99.96 45.01 100.00 0.94 100.00 0.59
ACET 50.93 89.29 99.53 54.19 76.27 59.45 99.71 38.63
CCU 43.04 90.95 99.90 48.34 100.00 0.75 100.00 0.48
ROWL 93.35 53.02 100.00 49.69 100.00 49.69 100.00 49.69
NTOM (ours) 36.94 92.61 98.17 65.70 99.97 0.76 100.00 0.16
ATOM (ours) 32.30 93.06 93.15 71.96 38.72 88.03 93.44 69.15

Table 1: Comparison with competitive OOD detection methods. We use DenseNet as network architecture
for all methods. We evaluate on four types of OOD inputs: (1) natural OOD, (2) corruption attacked OOD, (3)
L∞ attacked OOD, and (4) compositionally attacked OOD inputs. The description of these OOD inputs can
be found in Section 5.1. ↑ indicates larger value is better, and ↓ indicates lower value is better. All values are
percentages and are averaged over six different OOD test datasets described in Section 5.1. Bold numbers are
superior results. Additional results on a different architecture, WideResNet, are provided in Appendix B.9.

perturbations by Ω∞,ε(x), where ε is the adversarial budget. We provide attack algorithms
for all eight OOD detection methods in Appendix B.4.
• Corruption attacked OOD (black-box): We consider a more realistic type of attack based

on common corruptions (Hendrycks & Dietterich, 2019), which could appear naturally in
the physical world. For each OOD image, we generate 75 corrupted images (15 corruption
types × 5 severity levels), and then select the one with the lowest OOD score.
• Compositionally attacked OOD (white-box): Lastly, we consider applying L∞-norm

bounded attack and corruption attack jointly to an OOD input x, as considered in (Laidlaw
& Feizi, 2019).

Evaluation Metrics. We measure the following metrics: the false positive rate (FPR) at 5% false
negative rate (FNR) and the area under the receiver operating characteristic curve (AUROC).

5.2 RESULTS

How does ATOM compare to existing solutions? We show in Table 1 that ATOM outperforms
competitive OOD detection methods on both classic and adversarial OOD evaluation tasks. First,
on classic OOD evaluation task (clean OOD data), ATOM achieves comparable or often even
better performance than the current state-of-the-art methods. Second, on the existing adversarial
OOD evaluation task – L∞ OOD, ATOM outperforms current state-of-the-art method ACET (Hein
et al., 2019) by a large margin (e.g. on CIFAR-10, our method outperforms ACET by 53.9%
measured by FPR). Third, while ACET is somewhat brittle under the new Corruption OOD evaluation
task, our method can generalize surprisingly well to the unknown corruption attacked OOD inputs,
outperforming the best baseline by a large margin (e.g. on CIFAR-10, by up to 30.99% measured
by FPR). Finally, while almost every method fails under the hardest compositional OOD evaluation
task, our method still achieves impressive results (e.g. on CIFAR-10, reduces the FPR by 57.99%).
The performance is noteworthy since our method is not trained explicitly on corrupted OOD inputs.
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Dtest
in Model

FPR AUROC FPR AUROC FPR AUROC FPR AUROC
(5% FNR) (5% FNR) (5% FNR) (5% FNR)
↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

Natural OOD Corruption OOD L∞ OOD Comp. OOD

SVHN

ATOM (rand. sample) 0.35 99.91 13.09 97.50 11.72 96.63 98.66 40.48
ATOM (q=0.0) 0.07 99.97 5.47 98.52 7.02 98.00 96.33 49.52
ATOM (q=0.125) 1.30 99.63 34.97 94.97 39.61 82.92 99.92 6.30
ATOM (q=0.25) 1.36 99.60 41.98 94.30 52.39 71.34 99.97 1.35
ATOM (q=0.5) 2.11 99.46 44.85 93.84 59.72 65.59 99.97 3.15
ATOM (q=0.75) 2.91 99.26 51.33 93.07 66.20 57.16 99.96 2.04

CIFAR-
10

ATOM (rand. sample) 2.65 99.11 42.28 91.94 44.31 68.64 65.17 72.62
ATOM (q=0.0) 2.24 99.20 40.46 92.86 36.80 73.11 66.15 73.93
ATOM (q=0.125) 1.69 99.20 25.26 95.29 20.55 88.94 38.89 86.71
ATOM (q=0.25) 2.34 99.12 22.71 95.29 24.93 94.83 41.58 91.56
ATOM (q=0.5) 4.03 98.97 33.93 93.51 22.39 95.16 45.11 90.56
ATOM (q=0.75) 5.35 98.77 41.02 92.78 21.87 93.37 43.64 91.98

CIFAR-
100

ATOM (rand. sample) 51.50 89.62 99.70 58.61 70.33 58.84 99.80 34.98
ATOM (q=0.0) 44.38 91.92 99.76 60.12 68.32 65.75 99.80 49.85
ATOM (q=0.125) 26.91 94.97 98.35 71.53 34.66 87.54 98.42 68.52
ATOM (q=0.25) 32.43 93.93 97.71 72.61 40.37 82.68 97.87 65.19
ATOM (q=0.5) 32.30 93.06 93.15 71.96 38.72 88.03 93.44 69.15
ATOM (q=0.75) 38.56 91.20 97.59 58.53 62.66 78.70 97.97 54.89

Table 2: Ablation study on informative outlier mining. We use DenseNet as network architecture. ↑ indicates
larger value is better, and ↓ indicates lower value is better. All values are percentages and are averaged over six
natural OOD test datasets mentioned in section 5.1. We do not use OOD test set for tuning q. Please refer to
Table 5 for validation results.

Our training method leads to improved OOD detection while preserving classification performance
on in-distribution data. Consistent performance improvement is observed on other in-distribution
datasets (SVHN and CIFAR-100), alternative network architecture (WideResNet), and with alternative
auxiliary dataset (ImageNet-RC).
How does ATOM compare to NTOM? We perform an ablation study that isolates the effect of
adversarial training. In Table 1, we show that NTOM achieves comparable performance as ATOM on
natural OOD and corruption OOD. However, NTOM is less robust under L∞ OOD (with 79.35%
reduction in FPR on CIFAR-10) and compositional OOD inputs. This underlies the importance of
having both adversarial training and outlier mining (ATOM) for overall good performance.
How does the sampling parameter affect performance? Table 2 shows the performance with
different sampling parameter q. For all three datasets, training on OOD inputs primarily with large
OOD scores (i.e., too easy examples with q = 0.75) worsens the performance, which suggests the
necessity to include examples on which the OOD detector is uncertain about. We also show that
using informative outlier mining overall works better than random sampling under properly chosen
q. Interestingly, in setting where the in-distribution data and auxiliary OOD data are disjoint (e.g.,
SVHN/TinyImages), q = 0 is optimal, which suggests that the hardest outliers are mostly useful for
training. However, in a more realistic setting, the auxiliary OOD data can almost always contain data
similar to in-distribution data (e.g., CIFAR/TinyImages). Even without removing near-duplicates
exhaustively, ATOM can adaptively avoid training on those near-duplicates of in-distribution data
(e.g. using q = 0.125 for CIFAR-10 and q = 0.5 for CIFAR-100).
How does the choice of auxiliary OOD dataset affect the performance? To see this, we addition-
ally experiment with using ImageNet-RC as auxiliary OOD data. We observe consistent improvement
of ATOM, and in many cases with performance better than using TinyImages. For example, on
CIFAR-100, the FPR under natural OOD inputs is reduced from 32.20% (w/ TinyImages) to 15.49%
(w/ ImageNet-RC). Interestingly, in all three datasets, using q = 0 (hardest outliers) yields the
optimal performance since there is substantially less near-duplicates between ImageNet-RC and
in-distribution data. This ablation suggests that ATOM’s success does not depend on a particular
auxiliary dataset. Full results are provided in Table 6 (Appendix B.8).

6 RELATED WORK

Robustness of OOD Detection. Worst-case aspects of OOD detection have previously been studied
in (Hein et al., 2019; Sehwag et al., 2019). However, these papers are primarily concerned with L∞
norm bounded adversarial attacks, while our evaluation also includes common image corruption
attacks. Besides, Meinke & Hein; Hein et al. only evaluate adversarial robustness of OOD detection
on random noise images, while we also evaluate it on natural OOD images. Hein et al. (2019) has
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theoretically analyzed why ReLU networks can yield high-confidence but wrong predictions for
OOD data. Meinke & Hein has shown the first provable guarantees for worst-case OOD detection on
some balls around uniform noise, and Bitterwolf et al. recently studied the provable guarantees for
worst-case OOD detection not only for noise but also for images from related but different image
classification tasks. In this paper, we propose ATOM which achieves state-of-the-art performance on
a broader family of clean and perturbed OOD inputs. The key difference of our method compared to
prior work is introducing the informative outlier mining technique, which could significantly improve
the generalization and robustness of OOD detection.
Discriminative Based Out-of-Distribution Detection. Hendrycks & Gimpel introduced a baseline
approach for OOD detection using the maximum softmax probability from a pre-trained network.
Several works attempt to improve the OOD uncertainty estimation by using deep ensembles (Laksh-
minarayanan et al., 2017), the calibrated softmax score (Liang et al., 2018), and the Mahalanobis
distance-based confidence score (Lee et al., 2018). Some methods also modify the neural networks
by re-training or fine-tuning on some auxiliary anomalous data that are either realistic (Hendrycks
et al., 2018; Mohseni et al., 2020; Papadopoulos et al., 2019) or artificially generated by GANs (Lee
et al., 2017). Many other works (Subramanya et al., 2017; Malinin & Gales, 2018; Bevandić et al.,
2018) also regularize the model to have lower confidence for anomalous examples.
Generative Modeling Based Out-of-distribution Detection. Generative models (Dinh et al., 2016;
Kingma & Welling, 2013; Rezende et al., 2014; Van den Oord et al., 2016; Tabak & Turner, 2013) can
be alternative approaches for detecting OOD examples, as they directly estimate the in-distribution
density and can declare a test sample to be out-of-distribution if it lies in the low-density regions.
However, as shown by Nalisnick et al., deep generative models can assign a high likelihood to out-
of-distribution data. Deep generative models can be more effective for out-of-distribution detection
using alternative metrics (Choi & Jang, 2018), likelihood ratio (Ren et al., 2019; Serrà et al., 2019),
and modified training technique (Hendrycks et al., 2018). Recently, Pope et al. shows that flow-
based generative models are sensitive under adversarial attacks. Note that we mainly considered
discriminative-based approaches, which can be more competitive due to the availability of label
information (and, in some cases, auxiliary OOD data (Hein et al., 2019; Hendrycks et al., 2018;
Meinke & Hein, 2019; Mohseni et al., 2020)).
Adversarial Robustness. Adversarial examples (Goodfellow et al., 2014; Papernot et al., 2016;
Biggio et al., 2013; Szegedy et al., 2013) have received considerable attention in recent years. Many
defense methods have been proposed to mitigate this problem. One of the most effective methods
is adversarial training (Madry et al., 2017), which uses robust optimization techniques to render
deep learning models resistant to adversarial attacks. Carmon et al.; Najafi et al.; Zhai et al.; Uesato
et al. show that unlabeled data can improve adversarial robustness for classification. In particular,
the analysis in Carmon et al. (2019) has inspired our analysis in the Gaussian data model. But these
studies are for robust classification, while our work focuses on roubst OOD detection where the key
challenge is that the auxiliary OOD and test OOD distributions can differ.
Hard Example Mining. Hard example mining was introduced in the work (Sung, 1996) for training
face detection models, where they gradually grow the set of background examples by selecting those
examples for which the detector triggers a false alarm. The idea has been used extensively for object
detection literature (Felzenszwalb et al., 2009; Gidaris & Komodakis, 2015; Shrivastava et al., 2016).
It also has been used extensively in deep metric learning (Cui et al., 2016; Simo-Serra et al., 2015;
Wang & Gupta, 2015; Suh et al., 2019) and deep embedding learning (Yuan et al., 2017; Smirnov
et al., 2018; Wu et al., 2017; Duan et al., 2019). To the best of our knowledge, we are the first to
explore hard example mining for out-of-distribution detection.

7 CONCLUSION

In this paper, we propose Adversarial Training with informative Outlier Mining (ATOM), a method
that enhances the robustness of the OOD detector. We show the merit of adaptively selecting the
OOD training examples which the OOD detector is uncertain about. Extensive experiments show
ATOM can significantly improve the decision boundary of the OOD detector, achieving state-of-
the-art performance under a broad family of clean and perturbed OOD evaluation tasks. We also
provide theoretical analysis that justifies the benefits of outlier mining. Further, our unified evaluation
framework allows future research to examine the robustness of the OOD detector. We hope our
research can raise more attention to a broader view of robustness in out-of-distribution detection.
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Supplementary Material
Informative Outlier Matters: Robustifying Out-of-distribution Detection

Using Outlier Mining

A THEORETICAL ANALYSIS

In this section, we provide theoretical analysis to the following two questions: 1) Why are auxiliary
OOD data useful for training, even when they come from a different distribution than the test OOD
distribution? 2) For practical auxiliary OOD data which contain non-informative samples, how can
we make use of the auxiliary data to significantly improve the detection performance?

For the first question, we provide an error bound to justify the benefit of auxiliary OOD data.
We notice that a key difference of OOD detection from typical classification is that the test OOD
distribution is not accessible for training, so one need to use the auxiliary OOD data from a different
distribution. This makes OOD detection more challenging. Our intuition is that even if the auxiliary
data are different from test OOD data, they can still calibrate detectors in quite general situations, then
the detector can generalize to the test OOD data. To formalize this, we adopt the domain adaption
framework for our analysis.

For the second question, we provide analysis in a generative model of the data and motivate the
importance of careful selection of informative auxiliary OOD data (i.e., informative outlier mining).
Intuitively, since the auxiliary OOD data are different from the test OOD data, they may not be all
useful. However, it is unclear why outlier mining can lead to significant improvements (see our
experimental results in Section 5) and how to formalize this. Our intuition is that some of the auxiliary
OOD data can be non-informative or even harmful, and they can overwhelm the benefit of informative
outliers, leading to drastic drop in detection performance. To formalize it, one needs distributional
assumptions on the data. We thus use a Gaussian data model and derive concrete bounds to illustrate
our intuition.

A.1 GENERALIZATION FROM AUXILIARY OOD DATA TO TEST OOD DATA

To see why detectors trained on the auxiliary OOD dataUX can generalize to the test OOD distribution
QX, we adopt the domain adaption framework (Ben-David et al., 2010). Recall that in domain
adaptation there are two domains s, t, each being a distribution over the input space X and label
space {−1, 1}. A classifier is trained on s then applied on t. At a high level, we view our OOD
detection problem as classification, where the source domain s is PX with labels 1 and UX with
labels −1, and the target domain t is PX with labels 1 and QX with label −1.

We focus on the FPR metric below; the argument for FNR is similar. Suppose we learn the OOD
detector from a hypothesis class G. Following Ben-David et al. (2010), we define (a variant) of the
divergence of QX and UX w.r.t. the hypothesis class G as

dG(QX, UX) = sup
G,G′∈G

v(G,G′;QX)− v(G,G′;UX)

where

v(G,G′;D) = FPR(G;D,Ω)− FPR(G′;D,Ω)

is the error difference of G and G′ on the distribution D.

The divergence upper bounds the change of the hypothesis error difference between QX and UX.
If it is small, then for any G,G′ ∈ G where G has a smaller error than G′ in UX, we know that G
will also have a smaller (or not too larger) error than G′ in QX. That is, if the divergence is small,
then the ranking of the hypotheses w.r.t. the error is roughly the same in both distributions. This
rank-preserving property thus makes sure that a good hypothesis learned in UX will also be good for
QX.

Now we show that, if dG(QX, UX) is small (i.e., QX and UX are aligned w.r.t. the class G), then a
detector G with small FPR on UX will also have small FPR on QX.
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Figure 3: An illustration example to explain why UX helps to get a good detector Gr . With UX, we can
prune away hypotheses Gr for any r ≥ 1.9. Thus, the resulting detector Gr can detect OOD samples from QX

successfully and robustly.

Proposition 2. For any G ∈ G,

FPR(G;QX,Ω) ≤ inf
G∗∈G

FPR(G∗;QX,Ω) + FPR(G;UX,Ω) + dG(QX, UX).

Proof. For simplicity, we omit Ω from FPR(G;QX,Ω). For any G∗ ∈ G, we have

FPR(G;QX) = FPR(G∗;QX) + FPR(G;QX)− FPR(G∗;QX) (8)
= FPR(G∗;QX) + FPR(G;UX)− FPR(G∗;UX) (9)
+ [(FPR(G;QX)− FPR(G∗;QX))− (FPR(G;UX)− FPR(G∗;UX))]. (10)

The last term is

(FPR(G;QX)− FPR(G∗;QX))− (FPR(G;UX)− FPR(G∗;UX)) (11)
= v(G,G∗;QX)− v(G,G∗;UX) (12)
≤ dG(QX, UX). (13)

Therefore,

FPR(G;QX) ≤ FPR(G∗;QX) + FPR(G;UX) + dG(QX, UX). (14)

Taking inf over G∗ ∈ G completes the proof.

The error of the detector is bounded by three terms: the best error, the error on the training distributions,
and the divergence between QX and UX. Assuming that there exists a ground-truth detector with
a small test error, and that the optimization can lead to a small training error, the test error is then
characterized by the divergence. So in this case, as long as the rankings of the hypotheses (according
to the error) on QX and UX are similar, detectors learned on UX can generalize to QX.

An illustration example. In this example, the in-distribution PX is uniform over the disk around
the origin in R2 with radius 1, UX is uniform over the disk around (0, 3) with radius 1, and QX

is uniform over the disk around (3, 0) with radius 1. Assume the adversary budget is ε = 0.1, i.e.,
Ω∞,ε = {‖δ‖∞ ≤ 0.1}. The hypothesis class for the detector contains all functions of the form
Gr(x) = 2I[‖x‖2 ≤ r]− 1 with parameter r. See Figure 3.

The example first shows the effect of the auxiliary OOD data: UX helps prune away hypotheses Gr
for any r ≥ 1.9. Furthermore, it also shows how learning over UX can generalize to QX. Although
QX and UX have non-overlapping supports, UX helps to calibrate the error of the hypotheses, so any
good detector trained on PX and UX can be used for distinguishing PX and QX. Formally, the dG is
small in Proposition 2.
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The analysis also shows the importance of training on perturbed instances from the auxiliary OOD
data UX. Not using perturbation is equivalent to using Ω = {0}. In this case, the analysis shows
that it only guarantees the error on unperturbed instances from QX, even if QX and UX has small
divergence and the learned detector can have small training error on UX.

A.2 IMPORTANCE OF OUTLIER MINING: ANALYSIS IN A GAUSSIAN DATA MODEL

To understand how the outlier training data affect the generalization, we study a concrete distributional
model, which is inspired by the models in (Schmidt et al., 2018; Carmon et al., 2019). In this model,
we establish in Section A.2.2 a separation of the in-distribution sample sizes needed in the two cases:
with and without auxiliary OOD data for training. We also demonstrate in Section A.2.3 the benefit
of outlier mining when the auxiliary OOD data consists of uninformative outliers.

While the theoretical model is simple (in fact, much simpler than the practical data distributions),
its simplicity is actually desired for our analytical purpose. More precisely, the separation of the
sample sizes under this simple model suggests the same phenomenon can happen in more complicated
models. This then means the auxiliary OOD data not only help training but are necessary for obtaining
detectors with reasonable performance when in-distribution data is limited.

Gaussian Model. To specify a distributional model for our robust OOD formulation, we need
in-distribution PX, family of OOD distributions Q, and the hypothesis classH for the OOD detector
G. When auxiliary OOD data is available, we also need to specify their distribution UX. Let
µ ∈ Rd be the mean vector, σ > 0 be the variance parameter, and ν > 0 be a parameter. In our
(µ, σ, ν)-Gaussian model:

• PX is N (µ, σ2I).

• Q = {N (−µ+ v, σ2I) : v ∈ Rd, ‖v‖2 ≤ ν}.

• H = {Gθ(x) = sign(θ>x) : θ ∈ Rd}. Here Gθ(x) = 1 means it predicts x to be an
in-distribution example, and Gθ(x) = −1 means it predicts an OOD example.

We are interested in the False Negative Rate FNR(G) and worst False Positive Rate
supQX∈Q FPR(G;QX,Ω∞,ε(x)) over QX ∈ Q under `∞ perturbations of magnitude ε. For sim-
plicity, we denote them as FNR(G) and FPR(G;QX) in our proofs.

Parameter Setting. The model parameters are set such that:

1. There exists a classifier that achieves very low errors FPR and FNR.

2. We need n in-distribution data from PX to learn a classifier with non-trivial robust errors.

3. Using n0 in-distribution examples from PX and n′ auxiliary OOD data from UX where n0

is much smaller than n, we can learn a classifier with non-trivial robust errors.

Here n0, n, n
′ are sample sizes whose values are specified later in our analysis.

The family of instances of the Gaussian data model used for our analysis is as follows. First, fix an
integer n0 > 0, and an ε ∈ (0, 1/2), then set the following parameter values:

d� n0/ε
4 + n0 log2 d, ‖µ‖22 ∈

(
9d

10
,

11d

10

)
, σ2 =

√
dn0, ν ≤ ‖µ‖2/4. (15)

To interpret the parameter setting, one can view n0, ε as fixed and d/n0 as a large number.

A.2.1 EXISTENCE OF ROBUST CLASSIFIERS

We give closed forms of the errors, and show that using θ = µ gives small errors under the chosen
setting in equation 15. The calculation largely follows that in (Carmon et al., 2019) with some slight
modification.
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Closed Forms of the Errors. By definition, the FNR of a detector Gθ (on PX) is:

FNR(Gθ) = Px∼PX
[θ>x ≤ 0] = Px∼PX

[
N
(
µ>θ

σ‖θ‖2
, 1

)
≤ 0

]
=: Φ

(
µ>θ

σ‖θ‖2

)
(16)

where

Φ(x) :=
1√
2π

∫ ∞
x

e−t
2/2dt (17)

is the Gaussian error function.

Given a test OOD distribution Qv = N (−µ+ v, σ2I), the robust FPR of Gθ on Qv is:

FPR(Gθ;Qv) = Px∼Qv

[
inf

‖δ‖∞≤ε
θ>(x + δ) ≥ 0

]
(18)

= Px∼Qv
[
θ>x + ε‖θ‖1 ≥ 0

]
(19)

= Px∼Qv
[
N ((µ+ v)>θ, (σ‖θ‖2)2) ≥ −ε‖θ‖1

]
(20)

= Φ

(
(µ+ v)>θ

σ‖θ‖2
− ε‖θ‖1
σ‖θ‖2

)
. (21)

Then the worst robust FPR of Gθ on Q is:

sup
Qv∈Q

FPR(Gθ;Qv) = sup
‖v‖2≤ν

Φ

(
(µ+ v)>θ

σ‖θ‖2
− ε‖θ‖1
σ‖θ‖2

)
(22)

= Φ

(
µ>θ

σ‖θ‖2
− ν

σ
− ε‖θ‖1
σ‖θ‖2

)
(23)

≤ Φ

(
µ>θ

σ‖θ‖2
− ν

σ
− ε
√
d

σ

)
. (24)

Small Errors of Gµ. Given the closed forms, we can now show that Gµ achieves small FNR and
FPR in our parameter setting.

FNR(Gµ) = Φ

(
‖µ‖2
σ

)
≤ Φ

(√
11

10

(
d

n0

)1/4
)
≤ e− 11

20

√
d/n0 . (25)

sup
Qv∈Q

FPR(Gµ;Qv) ≤ Φ

(
‖µ‖2
σ
− ν

σ
− ε
√
d

σ

)
(26)

≤ Φ

((√
11

10
− 1

4
− ε

)(
d

n0

)1/4
)
≤ e− 1

32

√
d/n0 . (27)

Therefore, in the regime d/n0 � 1, the detector Gµ achieves both small FNR on PX and robust FPR
on any test OOD distribution in Q.

A.2.2 BENEFIT OF AUXILIARY OOD DATA

We will first consider the case when auxiliary OOD data are not available, and give a lower bound
(Proposition 3). We will then consider the case when auxiliary OOD data are used, and give an upper
bound (Proposition 4). Comparing Proposition 3 and Proposition 4 will then justify the benefit of the
auxiliary OOD data.

Learning Without Auxiliary OOD Data. Given in-distribution data x1,x2, . . . ,xn, we consider
the detector Gθ̂n given by

θ̂n =
1

n

n∑
i=1

xi. (28)
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Next we show a lower bound of the in-distribution data needed for the case without auxiliary outliers.

That is, a sample size of order n0 ·
ε2
√
d/n0

log d is necessary for all algorithms to obtain both non-trivial
robust FPR and FNR. We emphasize that this lower bound is information theoretic, i.e., it holds
without restriction on the computational power of the learning algorithm and the hypothesis class
used for the OOD detector.
Proposition 3. (Bound without auxiliary data) Consider the same family of instances as in Preposi-

tion 1, without any auxiliary OOD data. If n ≤ n0 ·
ε2
√
d/n0

16 log d , then for any algorithm An, there exists
an instance in the family with

E
{

FNR(An(S)) + sup
QX∈Q

FPR(An(S);QX,Ω∞,ε(x))

}
≥ 1

4
(1− d−1). (29)

Proof. The key for the proof is the observation that robust classification is a special case of our
robust OOD problem. More precisely, consider the following robust classification problem. The data
(x, y) with x ∈ Rd and y ∈ {−1,+1} is generated as follows: first draw y uniformly at random,
and then draw x from N (y · µ, σ2I). Given training data {(xi, yi)}ni=1, the goal is to find classifier
fθ(x) = sign(θ>x) with small robust classification error

err∞,ε(fθ) = E(x,y) max
‖δ‖∞≤ε

I[fθ(x + δ) 6= y]

under `∞ perturbation of magnitude ε. It has been shown that (Theorem 6 in (Schmidt et al., 2018)

or Theorem 1 in (Carmon et al., 2019)) that when µ ∼ N (0, I) and n ≤ n0 ·
ε2
√
d/n0

8 log d and with the
parameter setting equation 15, for any learning algorithm An

Eerr∞,ε(An(S)) ≥ 1

2
(1− d−1). (30)

Now consider the following variant of the robust OOD problem in the proposition. Suppose µ ∼
N (0, I). Suppose besides the data from PX, we also have n i.i.d. samples from a test OOD
distribution Q0 = N (−µ, σ2I). Then the above robust classification problem can be reduced to this
variant of robust OOD, by viewing the in-distribution data as with label +1 and viewing outliers as
with label −1. Furthermore, it is clear that the sum of the FNR and FPR is larger than the robust
classification error. Then

E {FNR(An(S)) + FPR(An(S);Q0)} ≥ 1

2
(1− d−1). (31)

When d is sufficiently large, we have µ satisfies the condition in equation 15 with probability at least
9/10. Then

E
{

FNR(An(S)) + FPR(An(S);Q0)
∣∣ ‖µ‖22 ∈ (9d/10, 11d/10)

}
≥ 1

4
(1− d−1). (32)

After conditioning, this variant can be reduced to the original robust OOD problem in the proposition
and furthermore Q0 ∈ Q. Furthermore, the fact that the expectation over the conditional distribution
of µ is large implies that there exist an instance of µwith a large error. The statement then follows.

Learning With Auxiliary OOD Data. Assuming we have access to auxiliary OOD data from a
distribution UX where:

• UX is defined by the following distribution: first draw v uniformly at random from the ball
{v : v ∈ Rd, ‖v‖2 ≤ ν}, then draw x̃ from N (−µ+ v, σ2I).

Roughly speaking, UX is a uniform mixture of distributions in Q.

Given in-distribution data x1,x2, . . . ,xn from PX and auxiliary OOD data x̃1, x̃2, . . . , x̃n′ from
UX, we consider the detector Gθ̂n,n′ given by

θ̂n,n′ =
1

n

n∑
i=1

xi −
1

n′

n′∑
i=1

x̃i. (33)
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We will show that with n = n0 and sufficiently large n′, the detector has small errors.

Again, as shown in the closed form solutions, the key factor determining the errors is µ>θ̂n,n′

σ‖θ̂n,n′‖2
. The

following lemma bounds this term.
Lemma 1. There exist numerical constants c0, c1, c2 such that under parameter setting equation 15
and d/n0 > c0,

µ>θ̂n,n′

σ‖θ̂n,n′‖2
≥ 9

10

(√
n0

d
+

n0

n+ n′

(
1 + c1

(n0

d

)1/8
))−1/2

(34)

with probability ≥ 1− e−c2(d/n0)1/4 min{n+n′,(d/n0)1/4} − e−c2n′ .

Proof. The proof follows the argument of Lemma 1 in (Carmon et al., 2019) but needs some
modifications accommodating the difference in learning θ. Recall the generation of x′i: first draw vi
uniformly at random from the ball B(ν) := {v : v ∈ Rd, ‖v‖2 ≤ ν}, then draw x̄′i from N (µ, σ2I),
and finally let x′i = vi − x̄′i. So we have

θ̂n,n′ =
1

n+ n′

 n∑
i=1

xi +

n′∑
i=1

x̄′i

− 1

n+ n′

 n′∑
i=1

vi

 (35)

= µ+ δ + δv (36)

where

δ =
1

n+ n′

 n∑
i=1

xi +

n′∑
i=1

x̄′i

− µ ∼ N (0,
σ2

n+ n′
I), (37)

δv = − 1

n+ n′

 n′∑
i=1

vi

 . (38)

To lower bound the term µ>θ̂n,n′

‖θ̂n,n′‖2
, we upper bound its squared inverse:

‖θ̂n,n′‖22
(µ>θ̂n,n′)2

=
‖µ+ δ + δv‖22

(‖µ‖22 + µ>δ + µ>δv)2
(39)

=
1

‖µ‖22
+
‖δ + δv‖22 − 1

‖µ‖22
(µ>δ + µ>δv)

2

(‖µ‖22 + µ>δ + µ>δv)2
(40)

≤ 1

‖µ‖22
+

2‖δ‖22 + 2‖δv‖22
(‖µ‖22 + µ>δ + µ>δv)2

. (41)

For δ, we have

‖δ‖22 ∼
σ2

n+ n′
χ2
d and

µ>δ

‖µ‖2
∼ N

(
0,

σ2

n+ n′

)
. (42)

So standard concentration bounds give

P
(
‖δ‖22 ≥

σ2

n+ n′

(
d+

1

σ

))
≤ e−d/8σ

2

and P
(
µ>δ

‖µ‖2
≥ (σ‖µ‖)1/2

)
≤ 2e−(n+n′)‖µ‖2/2σ.

(43)

For δv , by subguassian concentration bounds, we have

P
(
‖δv‖2 ≥

Cν√
n′

)
≤ e−cn

′
(44)

for some numeric constants c and C. Suppose the event ‖δv‖2 < Cν√
n′

is true. Then

|µ>δv| ≤ ‖µ‖2‖δv‖2 ≤
Cν‖µ‖2√

n′
. (45)
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Plugging the concentration bounds in equation 39 and doing the same manipulation leads to the
bound. To finish the proof, we also need to show µ>θ̂n,n′ > 0, which can be shown by a similar
argument as above.

We then get the following guarantee. Again, the error bound 10−3 is chosen for simplicity of the
statement, but it can be made to arbitrarily small values.
Proposition 4. (Error bound with ideal auxiliary data) Consider the same family of instances as
in Preposition 1, with n′ auxiliary OOD data from UX specified above. If n ≥ n0 and n′ ≥
n0 · 4ε2

√
d/n0, then

Eθ̂n,n′FNR(Gθ̂n,n′
) ≤ 10−3, Eθ̂n,n′ sup

QX∈Q
FPR(Gθ̂n,n′

;QX,Ω∞,ε(x)) ≤ 10−3. (46)

Proof. The proposition comes from Lemma 1, the parameter setting equation 15, and the closed form
expressions equation 16 and equation 22 of the errors.

A.2.3 BENEFIT OF OUTLIER MINING

The above Gaussian example shows the benefit of having auxiliary OOD data for training. All the
auxiliary OOD data given in the example are implicitly related to the ideal parameter for the detector
θ∗ = µ and thus are informative for learning the detector. However, this may not be the case in
practice: typically only part of the auxiliary OOD data are informative, while the remaining are
not very useful or even can be harmful for the learning. In this section, we study such an example,
and shows that how outlier mining can help to identify informative data and improve the learning
performance.

Suppose the algorithm gets n in-distribution data {x1,x2, . . . ,xn} i.i.d. from PX and n′ auxiliary
OOD data {x̃1, x̃2, . . . , x̃n′} for training. Instead of from UX specified above, the auxiliary OOD
data are i.i.d. from the distribution Umix.

• Umix is a uniform mixture of N (−µ, σ2I) and N (µo, σ
2I) for µo = 10µ.

That is, the distribution is defined by the following process: with probability 1/2 sample the outlier
from the informative part N (−µ, σ2I), and with probability 1/2 sample the outlier from the unin-
formative part N (µo, σ

2I). We also note that µ0 = 10µ is chosen for simplicity of analysis. µ0 can
also be cµ for some sufficiently large c > 1, or even µo = cµ+ c′µ⊥ for a sufficiently large c > 1, a
small c′ and a unit vector µ⊥ perpendicular to µ. Our analysis still go through with such assumptions.

Naı̈ve Method Without Outlier Mining. It is clear that naı̈vely applying the method in the previ-
ous section can lead to high errors: with n in-distribution examples from PX and n′ = n auxiliary
OOD data from Umix, when n→∞, we have θ̂n,n′ → −7µ/4 which has the worst errors among all
detectors.

With Outlier Mining. Here we analyze the following algorithm using the outlier mining approach.
The algorithm is simpler than what we used in Section 4 but shares the same intuition.

First, we use the n in-distribution data points to get an intermediate solution:

θ̂int =
1

n

n∑
i=1

xi. (47)

We define the confidence score of a point x̃ being in-distribution as:

f(x̃) = σ(t) =
1

1 + e−t
, where t(x̃) =

x̃>θ̂int

d
. (48)

Here σ(t) = 1
1+e−t is the sigmoid function. We then select outlier training data whose confidence

fall into an interval [a, b] and use them to learn the final solution:

θ̂om =

∑n′

i=1(−x̃i)I{f(x̃i) ∈ [a, b]}∑n′

i=1 I{f(x̃i) ∈ [a, b]}
(49)

where I{·} is the indicator function.
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Proposition 1. (Error bound with outlier mining.) For any ε ∈ (0, 1/2) and any integer n0 > 0,
there exist a family of instances of the Gaussian data model such that the following is true. n′ auxiliary
OOD data from Umix specified above. There exist thresholds a and b for θ̂om and a universal constant
c > 0 such that if the number of in-distribution data n ≥ c(n0 log d +

√
dn0) and the number of

auxiliary data n′ ≥ (d+ n0 · 4ε2)
√
d/n0, then θ̂om has small errors:4

Eθ̂omFNR(Gθ̂om) ≤ 10−3, Eθ̂om sup
QX∈Q

FPR(Gθ̂om ;QX,Ω∞,ε(x)) ≤ 10−3. (3)

Proof. Let a = σ(−3/2), b = σ(−1/2). By definition we have

δom := θ̂om − µ =

∑n′

i=1(−µ− x̃i)I{f(x̃i) ∈ [a, b]}∑n′

i=1 I{f(x̃i) ∈ [a, b]}
. (50)

By the closed form expressions equation 16 and equation 22 of the errors, it is sufficient to lower
bound the key term µ>θ̂om

‖θ̂om‖2
, which comes down to show that δom is small.

First, let’s consider θ̂int. Let δint := θ̂int − µ. Then

‖δint‖22 ∼
σ2

n
χ2
d and

µ>δint

‖µ‖2
∼ N

(
0,
σ2

n

)
. (51)

So standard concentration bounds give

P
(
‖δint‖22 ≥

σ2

n

(
d+

1

σ

))
≤ e−d/8σ

2

and P

(
|µ>δint|
‖µ‖2

≥
√
d

n

)
≤ 2e−d/2σ

2

. (52)

So with probability ≥ 1− 3e−d/8σ
2

over the randomness of the n in-distribution points, we have the

good event Gint: ‖δint‖22 ≤ σ2

n

(
d+ 1

σ

)
and |µ

>δint|
‖µ‖2 ≤

√
d
n .

Now, condition on a fix θ̂int satisfying Gint, and consider θ̂om. Define

zi := −µ− x̃i, (53)
I0i := I{f(x̃i) ∈ [a, b]}, (54)

I1i := I{x̃i is from N (−µ, σ2I)}, (55)

I2i := I{x̃i is from N (µo, σ
2I)}. (56)

For simplicity, let’s omit the subscript i and consider a sample x̃ from Umix, and the corresponding
variables z, I0, I1, and I2. Since I1 + I2 = 1,

(−µ− x̃)I{f(x̃) ∈ [a, b]} = zI0I1 + zI0I2. (57)

Case 1. Let’s first consider the case when x̃ is from N (−µ, σ2I). More precisely, we condition
on a fixed θ̂int and condition on I1 = 1. Then z ∼ N (0, σ2I) and it can be decomposed along the
direction θ̄int := θ̂int/‖θ̂int‖2 as follows:

z = s · θ̄int + z2 (58)

where s ∼ N (0, σ2) and z2 is a Gaussian distribution in the subspace orthogonal to θ̄int. Then

t(x̃) =
x̃>θ̂int

d
= −µ

>θ̂int

d
− s‖θ̂int‖2

d
. (59)

Therefore, we have

E[zI0I1|I1 = 1, θ̂int] = E[s · θ̄intI0|I1 = 1, θ̂int] + E[z2I0|I1 = 1, θ̂int] (60)

4The error bound in the proposition can be made arbitrarily small and with high probability. The current
bound is presented for simplicity.
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Clearly the second term is 0 since z2I0 is symmetric. So

E[zI0I1|I1 = 1, θ̂int] = E[s · θ̄intI{f(x̃) ∈ [a, b]}|I1 = 1, θ̂int] (61)

= E
[
s · I{s ∈ [a′, b′]}|I1 = 1, θ̂int

]
· θ̄int (62)

= E [s · I{s ∈ [a′, b′]}] · θ̄int (63)

where

a′ = − µ
>θ̂int

‖θ̂int‖2
− σ−1(b)d

‖θ̂int‖2
(64)

=
−2µ>θ̂int + d

2‖θ̂int‖2
(65)

=
−2µ>δint − 2‖µ‖22 + d

2‖θ̂int‖2
, (66)

b′ = − µ
>θ̂int

‖θ̂int‖2
− σ−1(a)d

‖θ̂int‖2
(67)

=
−2µ>θ̂int + 3d

2‖θ̂int‖2
(68)

=
−2µ>δint − 2‖µ‖22 + 3d

2‖θ̂int‖2
. (69)

By the bound on |µ>δint|, we have

|E [s · I{s ∈ [a′, b′]}] | ≤
∫ d

2σ‖θ̂int‖2
(12/10+4/

√
n)

d
2σ‖θ̂int‖2

(8/10−4/
√
n)

σt
1√
2π
e−t

2/2dt (70)

≤ d

2σ‖θ̂int‖2
· σ · 2d

2σ‖θ̂int‖2
· 1√

2π
e
− 1

2

(
d

4σ‖θ̂int‖2

)2

. (71)

Given the bound on ‖δint‖22, we have

‖θ̂int‖2 ≤ ‖µ‖2 + ‖δint‖2 ≤ ‖µ‖2 +

√
σ2

n

(
d+

1

σ

)
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n
, (72)

‖θ̂int‖2 ≥ ‖µ‖2 − ‖δint‖2 ≥ ‖µ‖2 −

√
σ2

n

(
d+

1

σ

)
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2σ2d

n
. (73)

Since n ≥ Cn0 log d and d ≥ C2n0 log2 d for a sufficiently large C, we have

σ2‖θ̂int‖22
d2

≤
σ2d(11/10 +

√
2σ2/n)2

d2
≤ 4

√
n0

d
+

8n0

n
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C log d
(74)

and thus

|E [s · I{s ∈ [a′, b′]}] | ≤ d2

σ‖θ̂int‖22

1√
2π
e
− 1

2

(
d

4σ‖θ̂int‖2

)2

(75)

≤ d2

σ‖θ̂int‖22
e
− d2

32σ2‖θ̂int‖22 (76)

≤ 1

d2
. (77)

Combining with E[zI0I1|I1 = 0, θ̂int] = 0 we get

E[zI0I1|θ̂int] = c1 · θ̄int (78)
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for some c1 satisfying |c1| ≤ 1/d2. Furthermore, zI0I1 | θ̂int is truncated Gaussian and thus is
sub-Gaussian with sub-Gaussian norm bounded by σ. Then by sub-Gaussian concentration bounds,
we have

P

∣∣∣∣∣∣
n′∑
i=1

µ>ziI0iI1i −
n′∑
i=1

µ>E[ziI0iI1i|θ̂int]

∣∣∣∣∣∣ ≥ √n′d | θ̂int

 ≤ e−cd/σ2

, (79)

P
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ziI0iI1i
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2

≥ 4σ
√
n′d+ 2

√
n′d | θ̂int

 ≤ e−d/σ2

. (80)

for some constant c > 0. In other words, with probability ≥ 1− 2e−cd/σ
2

, we have∣∣∣∣∣∣
n′∑
i=1

µ>ziI0iI1i

∣∣∣∣∣∣ ≤ √n′d+
n′

d3/2
, (81)
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n′∑
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2

≤ 6σ
√
n′d. (82)

Conditioned on I1 = 1, we also have

E[I0I1|I1 = 1, θ̂int] = P(s ∈ [a′, b′]) (83)

≥
∫ d
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. (87)

Let m = n′

2

(
1− 1

d

)
. Then by Chernoff’s bound, we have

P

∣∣∣∣∣∣
n′∑
i=1

I0iI1i −m

∣∣∣∣∣∣ ≥ 1

2
m

 ≤ e−c′m (88)

for an absolute constant c′ > 0. That is, with probality ≥ 1− e−cn′ , we have
∑n′

i=1 I0iI1i ≥ n′/5.

Case 2. Next, let’s consider the case when x̃ is from N (µo, σ
2I). More precisely, we condition on

a fixed θ̂int and condition on I2 = 1. Similar to case 1, we have

z = −11µ+ s · θ̄int + z2 (89)

where s ∼ N (0, σ2) and z2 is a Gaussian distribution in the subspace orthogonal to θ̄int. So

E[(z + 11µ)I0I2|I2 = 1, θ̂int] = E[sI0|I2 = 1, θ̂int] · θ̄int. (90)

For this,

E[sI{f(x̃) ∈ [a, b]}|I2 = 1, θ̂int] · θ̄int = E [s · I{s ∈ [a′′, b′′]}] · θ̄int (91)

where

a′′ =
−20µ>δint − 20‖µ‖22 + d

2‖θ̂int‖2
, (92)

b′′ =
−20µ>δint − 20‖µ‖22 + 3d

2‖θ̂int‖2
. (93)
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By the bound on |µ>δint| and ‖δint‖2, we have

|E [s · I{s ∈ [a′′, b′′]}] | ≤

∣∣∣∣∣∣
∫ −d

2σ‖θ̂int‖2
(15−20/

√
n)

−d
2σ‖θ̂int‖2

(21+20/
√
n)

σt
1√
2π
e−t

2/2dt

∣∣∣∣∣∣ (94)

≤ 8d

2σ‖θ̂int‖2
σ

22d

2σ‖θ̂int‖2
1√
2π
e
− 1

2

(
14d

2σ‖θ̂int‖2

)2

(95)
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We also have ∣∣∣E [I0I2|I2 = 1, θ̂int

]∣∣∣ = |E [I{s ∈ [a′′, b′′]}] | (98)
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. (101)

Combining the above, we have

E[(z + 11µ)I0I2|θ̂int] = c1 · θ̄int (102)

for a constant c1 satisfying |c1| ≤ 1/d2. Furthermore, (z + 11µ)I0I2 | θ̂int is truncated Gaussian and
thus is sub-Gaussian with sub-Gaussian norm bounded by σ. Then by sub-Gaussian concentration
bounds, we have
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for some constant c > 0. Also by Hoeffding’s bound, we have

P

∣∣∣∣∣∣
n′∑
i=1

I0iI2i −
n′∑
i=1

E[I0iI2i|θ̂int]

∣∣∣∣∣∣ ≥√n′d/σ2 | θ̂int

 ≤ 2e−2d/σ2

. (105)

In other words, with probability ≥ 1− 4e−cd/σ
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Combining equation 79, equation 80, equation 88 and equation 106, equation 107 together, we get
with probability ≥ 1− Ce−cd/σ2

,

|µ>δom| ≤ C
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, (108)
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Then µ>θ̂om
‖θ̂om‖2

can be lower bounded by
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The proof is completed by plugging the above into the closed form expressions equation 16 and
equation 22 of the errors.

B DETAILS OF EXPERIMENTS

B.1 EXPERIMENTAL SETTINGS

Software and Hardware. We run all experiments with PyTorch and NVIDIA GeForce RTX 2080Ti
GPUs.
Number of Evaluation Runs. We run all experiments once with fixed random seeds.
In-distribution Datasets. We use SVHN (Netzer et al., 2011), CIFAR-10 and CIFAR-
100 (Krizhevsky et al., 2009) as in-distribution datasets. SVHN has 10 classes and contains 73,257
training images. CIFAR-10 and CIFAR-100 have 10 and 100 classes, respectively. Both datasets
consist of 50,000 training images and 10,000 test images.
Auxiliary OOD Datasets. We provide the details of auxiliary OOD datasets below. For each
auxiliary OOD dataset, we use random cropping with padding of 4 pixels to generate 32× 32 images,
and further augment the data by random horizontal flipping. We don’t use any image corruptions to
augment the data.

1. TinyImages. 80 Million Tiny Images (TinyImages) (Torralba et al., 2008) is a dataset
that contains 79,302,017 images collected from the Web. The images in the dataset are
stored as 32× 32 color images. Since CIFAR-10 and CIFAR-100 are labeled subsets of the
TinyImages dataset, we need to remove those images in the dataset that belong to CIFAR-10
or CIFAR-100. We follow the same deduplication procedure as in (Hendrycks et al., 2018)
and remove all examples in this dataset that appear in CIFAR-10 or CIFAR-100. Even after
deduplication, the auxiliary OOD dataset may still contain some in-distribution data if we
use CIFAR-10 or CIFAR-100 as in-distribution datasets, but the fraction of them is low.

2. ImageNet-RC. We use the downsampled ImageNet dataset (ImageNet64×64) (Chrabaszcz
et al., 2017), which is a downsampled variant of the original ImageNet dataset. It contains
1,281,167 images with image size of 64× 64 and 1,000 classes. Some of the classes overlap
with CIFAR-10 or CIFAR-100 classes. Since we don’t use any label information from the
dataset, we can say that the auxiliary OOD dataset is unlabeled. Since we randomly crop
the 64× 64 images into 32× 32 images with padding of 4 pixels, with high probability, the
resulting images won’t contain objects belonging to the in-distribution classes even if the
original images contain objects belonging to those classes. Therefore, we still can have a
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lot of OOD data for training and the fraction of in-distribution data in the auxiliary OOD
dataset is low. We call this auxiliary OOD dataset ImageNet-RC.

OOD Test Datasets. We provide the details of OOD test datasets below. All images are of size
32× 32.

1. SVHN. The SVHN dataset (Netzer et al., 2011) contains color images of house numbers.
There are ten classes of digits 0-9. The original test set has 26,032 images. We randomly
select 1,000 test images for each class and form a new test dataset of 10,000 images for
evaluation.

2. Textures. The Describable Textures Dataset (DTD) (Cimpoi et al., 2014) contains textural
images in the wild. We include the entire collection of 5640 images for evaluation.

3. Places365. The Places365 dataset (Zhou et al., 2017) contains large-scale photographs of
scenes with 365 scene categories. There are 900 images per category in the test set. We
randomly sample 10,000 images from the test set for evaluation.

4. LSUN (crop) and LSUN (resize). The Large-scale Scene UNderstanding dataset (LSUN)
has a testing set of 10,000 images of 10 different scenes (Yu et al., 2015). We construct two
datasets, LSUN-C and LSUN-R, by randomly cropping image patches of size 32× 32 and
downsampling each image to size 32× 32, respectively.

5. iSUN. The iSUN (Xu et al., 2015) consists of a subset of SUN images. We include the entire
collection of 8925 images in iSUN.

6. CIFAR-10. We use the test set of CIFAR-10, which contains 10,000 images.

7. Gaussian Noise. The synthetic Gaussian noise dataset consists of 10,000 random 2D
Gaussian noise images, where each RGB value of every pixel is sampled from an i.i.d
Gaussian distribution with mean 0.5 and unit variance. We further clip each pixel value into
the range [0,1].

8. Uniform Noise. The synthetic uniform noise dataset consists 10,000 images where each
RGB value of every pixel is independently and identically sampled from a uniform distribu-
tion on [0,1].

Architectures and Training Configurations. We use the state-of-the-art neural network architecture
DenseNet (Huang et al., 2017) and WideResNet (Zagoruyko & Komodakis, 2016). For DenseNet,
we follow the same setup as in (Huang et al., 2017), with depth L = 100, growth rate k = 12
(Dense-BC) and dropout rate 0. For WideResNet, we also follow the same setup as in (Zagoruyko
& Komodakis, 2016), with depth of 40 and widening parameter k = 4 (WRN-40-4). All neural
networks are trained with stochastic gradient descent with Nesterov momentum (Duchi et al., 2011;
Kingma & Ba, 2014). We set momentum 0.9 and `2 weight decay with a coefficient of 10−4 for all
model training. Specifically, for SVHN, we train the networks for 20 epochs and the initial learning
rate of 0.1 decays by 0.1 at 10, 15, 18 epoch; for CIFAR-10 and CIFAR-100, we train the networks
for 100 epochs and the initial learning rate of 0.1 decays by 0.1 at 50, 75, 90 epoch. In ATOM and
NTOM, we use batch size 64 for in-distribution data and 128 for out-of-distribution data. To solve
the inner max of the robust training objective in ATOM, we use PGD with ε = 8/255, the number of
iterations of 5, the step size of 2/255, and random start.

B.2 AVERAGE RUNTIME

We run our experiments using a single GPU on a machine with 4 GPUs and 32 cores. The estimated
average runtime for each method is summarized in Table 3.

B.3 OOD DETECTION METHODS

We consider eight common OOD detection methods listed in Table 4 and describe each method in
detail below.

Maximum Softmax Probability (MSP). Hendrycks & Gimpel propose to use maxi Fi(x) as
confidence scores to detect OOD examples, where F (x) is the softmax output of the neural network.
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Method Training Evaluation
MSP 2.5 h 4 h
ODIN 2.5 h 4 h
Mahalanobis 2.5 h 20 h
SOFL 14 h 4 h
OE 5 h 4 h
ACET 17 h 4 h
CCU 6.7 h 4 h
ROWL 24 h 4 h
ATOM (ours) 21 h 4 h

Table 3: The estimated average runtime for each result. We use DenseNet as network architecture. h means
hour. For MSP, ODIN, and Mahalanobis, we use standard training. The evaluation includes four OOD detection
tasks listed in Section 2.

ODIN. Liang et al. computes calibrated confidence scores using temperature scaling and input
perturbation techniques. In all of our experiments, we set temperature scaling parameter T = 1000.
We choose perturbation magnitude η by validating on 1000 images randomly sampled from in-
distribution test set Dtest

in and 1000 images randomly sampled from auxiliary OOD dataset Dauxiliary
out ,

which does not depend on prior knowledge of test OOD datasets. For DenseNet, we set η = 0.0006
for SVHN, η = 0.0016 for CIFAR-10, and η = 0.0012 for CIFAR-100. For WideResNet, we set
η = 0.0002 for SVHN, η = 0.0006 for CIFAR-10, and η = 0.0012 for CIFAR-100.

Mahalanobis. Lee et al. propose to use Mahalanobis distance-based confidence scores to detect
OOD samples. Following Lee et al., we use 1000 examples randomly selected from in-distribution
test set Dtest

in and adversarial examples generated by FGSM (Goodfellow et al., 2014) on them with
perturbation size of 0.05 to train the Logistic Regression model and tune the noise perturbation
magnitude η. η is chosen from {0.0, 0.01, 0.005, 0.002, 0.0014, 0.001, 0.0005}, and the optimal
parameters are chosen to minimize the FPR at FNR 5%.

Outlier Exposure (OE). Outlier Exposure (Hendrycks et al., 2018) makes use of a large, auxiliary
OOD dataset Dauxiliary

out to enhance the performance of existing OOD detection. We train from scratch
with λ = 0.5, and use in-distribution batch size of 64 and out-distribution batch size of 128 in our
experiments. Other training parameters are specified in Section B.1.

Self-Supervised OOD Feature Learning (SOFL). Mohseni et al. add an auxiliary head to the
network and train in for the OOD detection task. They first use a full-supervised training to learn
in-distribution training data for the main classification head and then a self-supervised training with
OOD training set for the auxiliary head. Following the original setting, we set λ = 5 and use an
in-distribution batch size of 64 and an out-distribution batch size of 320 in all of our experiments.
In SVHN and CIFAR-10, we use 5 reject classes, while in CIFAR-100, we use 10 reject classes.
We first train the model with the full-supervised learning using the training parameters specified in
Section B.1 and then continue to train with the self-supervised OOD feature learning using the same
training parameters. We use the large, auxiliary OOD dataset Dauxiliary

out as out-of-distribution training
dataset.

Adversarial Confidence Enhancing Training (ACET). Hein et al. propose Adversarial Confidence
Enhancing Training to enforce low model confidence for the OOD data point, as well as worst-case
adversarial example in the neighborhood of an OOD example. We use the large, auxiliary OOD
dataset Dauxiliary

out as an OOD training dataset instead of using random noise data for a fair comparison.
In all of our experiments, we set λ = 1.0. For both in-distribution and out-distribution, we use a batch
size of 128. To solve the inner max of the training objective, we also apply PGD with ε = 8/255,
the number of iterations of 5, the step size of 2/255, and random start to a half of a minibatch while
keeping the other half clean to ensure proper performance on both perturbed and clean OOD examples
for a fair comparison. Other training parameters are specified in Section B.1.

Certified Certain Uncertainty (CCU). Certified Certain Uncertainty (Meinke & Hein, 2019) gives
guarantees on the confidence of the classifier decision far away from the training data. We use the
same training set up as in the paper and code, except we use our training configurations specified in
Section B.1.
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MSP ODIN Mahalanobis SOFL OE ACET CCU ROWL ATOM
(ours)

Natural OOD 3 3 3 3 3 3 3 3 3
L∞ OOD 7 7 7 7 7 3 3 3 3
Corruption OOD 7 7 7 7 7 7 7 7 3
Comp. OOD 7 7 7 7 7 7 7 7 3

Table 4: Common OOD detection methods and a family of natural and perturbed OOD examples we considered.

Robust Open-World Deep Learning (ROWL). Sehwag et al. propose to introduce additional
background classes for OOD datasets and perform adversarial training on both the in- and out-of-
distribution datasets to achieve robust open-world classification. When an input is classified as the
background classes, it is considered as an OOD example. Thus, ROWL gives binary OOD scores
(either 0 or 1) to the inputs. In our experiments, we only have one background class and randomly
sample data points from the large, auxiliary OOD datasetDauxiliary

out to form the OOD dataset. To ensure
data balance across classes, we include 7,325 OOD data points for SVHN, 5,000 OOD data points
for CIFAR-10 and 500 OOD data points for CIFAR-100. During training, we mix the in-distribution
data and OOD data, and use a batch size of 128. To solve the inner max of the training objective,
we use PGD with ε = 8/255, the number of iterations of 5, the step size of 2/255, and random start.
Other training parameters are specified in Section B.1.

B.4 ADVERSARIAL ATTACKS FOR OOD DETECTION METHODS

We propose adversarial attack objectives for different OOD detection methods. We consider a family
of adversarial perturbations for the OOD inputs: (1) L∞-norm bounded attack (white-box attack);
(2) common image corruptions attack (black-box attack); (3) compositional attack which combines
common image corruptions attack and L∞ norm bounded attack (white-box attack).
L∞ norm bounded attack. For data point x ∈ Rd, the L∞ norm bounded perturbation is defined as

Ω∞,ε(x) = {δ ∈ Rd
∣∣ ‖δ‖∞ ≤ ε ∧ x + δ is valid}, (114)

where ε is the adversarial budget. x + δ is considered valid if the values of x + δ are in the image
pixel value range.

For MSP, ODIN, OE, ACET, and CCU methods, we propose the following attack objective to generate
adversarial OOD example on a clean OOD input x:

x′ = arg max
x′∈Ω∞,ε(x)

− 1

K

K∑
i=1

logF (x′)i (115)

where F (x) is the softmax output of the classifier network.

For Mahalanobis method, we propose the following attack objective to generate adverasrial OOD
example on OOD input x:

x′ = arg max
x′∈Ω∞,ε(x)

− log
1

1 + e−(
∑
` α`M`(x′)+b)

, (116)

where M`(x
′) is the Mahalanobis distance-based confidence score of x′ from the `-th feature layer,

{α`} and b are the parameters of the logistic regression model.

For SOFL method, we propose the following attack objective to generate adversarial OOD example
for an input x:

x′ = arg max
x′∈Ω∞,ε(x)

− log

K+R∑
i=K+1

F̄ (x′)i (117)

where F̄ (x) is the softmax output of the whole neural network (including auxiliary head) and R is
the number of reject classes.
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For ROWL and ATOM method, we propose the following attack objective to generate adverasrial
OOD example on OOD input x:

x′ = arg max
x′∈Ω∞,ε(x)

− log F̂ (x′)K+1 (118)

where F̂ (x) is the softmax output of the (K+1)-way neural network.

Due to computational concerns, by default, we will use PGD with ε = 8/255, the number of iterations
of 40, the step size of 1/255 and random start to solve these attack objectives. We also perform
ablation study experiments on the attack strength for ACET and ATOM, see Appendix B.10.
Common Image Corruptions attack. We use common image corruptions introduced in (Hendrycks
& Dietterich, 2019). We apply 15 types of algorithmically generated corruptions from noise, blur,
weather, and digital categories to each OOD image. Each type of corruption has five levels of severity,
resulting in 75 distinct corruptions. Thus, for each OOD image, we generate 75 corrupted images
and then select the one with the lowest OOD score (or highest confidence score to be in-distribution).
Note that we only need the outputs of the OOD detectors to construct such adversarial OOD examples;
thus it is a black-box attack.
Compositional Attack. For each OOD image, we first apply common image corruptions attack, and
then apply the L∞-norm bounded attack to generate adversarial OOD examples.

B.5 VISUALIZATIONS OF FOUR TYPES OF OOD SAMPLES

We show visualizations of four types of OOD samples in Figure 4.

B.6 HISTOGRAM OF OOD SCORES

In Figure 5, we show histogram of OOD scores for model snapshots trained on CIFAR-10 (in-
distribution) using objective (4) without informative outlier mining. We plot every ten epochs for a
model trained for a total of 100 epochs. We observe that the model quickly converges to a solution
where OOD score distribution becomes dominated by easy examples with scores closer to 1. This is
exacerbated as the model is trained for longer.

B.7 CHOOSE BEST Q USING VALIDATION DATASET

We create a validation OOD dataset by sampling 10,000 images from the 80 Million Tiny
Images (Torralba et al., 2008), which is disjoint from our training data. We choose q from
{0, 0.125, 0.25, 0.5, 0.75}. The results on the validation dataset are shown in Table 5. We se-
lect the best model based on the average FPR at 5% FNR across four types of OOD inputs. Based on
the results, the optimal q is 0 for SVHN, 0.125 for CIFAR-10 and 0.5 for CIFAR-100.

B.8 EFFECT OF AUXILIARY OOD DATASETS

We present results in Table 6, where we use an alternative auxiliary OOD dataset ImageNet-RC. The
details of ImageNet-RC is provided in Section B.1. We use the same hyperparameters as used in
training with TinyImages auxiliary data. For all three in-distribution datasets, we find that using
q = 0 results in the optimal performance.

B.9 EFFECT OF NETWORK ARCHITECTURE

We perform experiments to evaluate different OOD detection methods using WideResNet, see Table 7.
For both ATOM and NTOM, we use the same hyperparameters as those selected for DenseNet and
find that it also leads to good results.

B.10 EFFECT OF PGD ATTACK STRENGTH

To see the effect of using stronger PGD attacks, we evaluate ACET (best baseline) and ATOM on L∞
attacked OOD and compositionally attacked OOD inputs with 100 iterations and 5 random restarts.
Results are provided in Table 8. Under stronger PGD attack, ATOM outperforms ACET.
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(a) Natural OOD (b) L∞ OOD

(c) Corruption OOD (d) Comp. OOD

Figure 4: Examples of four types of OOD samples.

B.11 EVALUATION ON RANDOM NOISE OOD DATA

We report the performance of OOD detectors using DenseNet on random noise OOD test datasets in
Table 9 (SVHN), Table 10 (CIFAR-10) and Table 11 (CIFAR-100).

B.12 PERFORMANCE OF OOD DETECTOR AND CLASSIFIER ON IN-DISTRIBUTION DATA

We summarize the performance of OOD detector G(x) and image classifier f(x) on in-distribution
test data. See Table 12 for DenseNet and Table 13 for WideResNet. From the results, we can see
that ATOM improves the OOD detection performance while achieving in-distribution classification
accuracy that is on par with a pre-trained network.

B.13 COMPLETE EXPERIMENTAL RESULTS

We report the performance of OOD detectors using DenseNet on each of the six natural OOD test
datasets in Table 14 (SVHN), Table 15 (CIFAR-10) and Table 16 (CIFAR-100).
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Dtest
in Method

FPR AUROC FPR AUROC FPR AUROC FPR AUROC
(5% FNR) (5% FNR) (5% FNR) (5% FNR)
↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

Natural OOD Corruption OOD L∞ OOD Comp. OOD

SVHN

ATOM (q=0.0) 0.01 99.97 4.02 98.50 8.08 98.14 96.79 43.77
ATOM (q=0.125) 2.16 99.39 36.62 94.79 62.38 73.20 99.98 4.62
ATOM (q=0.25) 1.87 99.38 41.86 94.20 75.85 57.75 100.00 1.26
ATOM (q=0.5) 2.73 99.18 45.02 93.85 83.01 49.38 99.99 1.96
ATOM (q=0.75) 4.97 98.83 56.51 92.13 85.98 40.89 100.00 1.16

CIFAR-
10

ATOM (q=0.0) 5.34 98.35 43.61 91.85 22.08 92.81 59.17 83.56
ATOM (q=0.125) 4.77 98.31 27.49 94.24 5.42 98.19 29.02 93.76
ATOM (q=0.25) 5.70 98.11 28.13 93.68 19.28 95.71 40.68 91.17
ATOM (q=0.5) 8.83 97.66 39.74 91.53 9.80 97.42 44.10 90.45
ATOM (q=0.75) 12.42 97.02 45.85 90.53 13.40 96.83 46.30 90.42

CIFAR-
100

ATOM (q=0.0) 44.85 91.58 98.76 64.78 53.17 85.26 98.95 58.38
ATOM (q=0.125) 36.75 92.90 96.22 73.33 38.79 91.42 96.33 71.74
ATOM (q=0.25) 34.66 92.62 94.13 73.86 35.84 91.24 94.33 70.35
ATOM (q=0.5) 35.04 91.36 89.28 71.78 36.76 90.21 89.57 70.62
ATOM (q=0.75) 43.49 87.95 91.80 62.47 59.34 78.00 92.94 58.53

Table 5: Evaluate models on validation dataset. We use DenseNet as network architecture. ↑ indicates larger
value is better, and ↓ indicates lower value is better. All values are percentages and are averaged over six different
OOD test datasets mentioned in section 5.1. Bold numbers are superior results.

Dtest
in Method

FPR AUROC FPR AUROC FPR AUROC FPR AUROC
(5% FNR) (5% FNR) (5% FNR) (5% FNR)
↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

Natural OOD Corruption OOD L∞ OOD Comp. OOD

SVHN

MSP 38.84 93.57 99.68 68.48 99.89 1.39 100.00 0.19
ODIN 31.45 93.52 97.11 63.21 99.86 0.61 100.00 0.05
Mahalanobis 22.80 95.57 93.14 60.78 97.33 8.89 99.89 0.23
SOFL 0.02 99.99 5.93 98.57 58.53 68.85 67.34 61.42
OE 0.13 99.96 15.76 97.51 68.76 49.57 98.80 6.21
ACET 0.31 99.94 29.02 95.65 2.37 99.51 30.58 95.20
CCU 0.17 99.96 18.64 96.94 45.38 69.14 92.30 20.88
ROWL 2.04 98.87 55.03 72.37 77.24 61.27 99.79 50.00
NTOM (ours) 0.02 99.99 6.39 98.54 59.27 68.53 58.12 72.08
ATOM (ours) 0.02 99.99 7.03 98.38 0.14 99.95 7.30 98.32

CIFAR-
10

MSP 50.54 91.79 100.00 58.35 100.00 13.82 100.00 13.67
ODIN 21.65 94.66 99.37 51.44 99.99 0.18 100.00 0.01
Mahalanobis 26.95 90.30 91.92 43.94 95.07 12.47 99.88 1.58
SOFL 6.96 98.71 22.30 95.89 97.61 12.39 99.74 7.49
OE 9.70 98.35 49.84 91.76 91.30 43.88 98.82 31.12
ACET 10.72 98.01 53.85 90.19 17.10 96.01 55.21 89.78
CCU 10.30 98.25 44.42 92.34 93.02 20.88 99.17 9.95
ROWL 25.03 86.96 94.34 52.31 99.98 49.49 100.00 49.48
NTOM (ours) 4.01 99.17 15.13 97.14 96.89 11.42 99.87 3.18
ATOM (ours) 4.08 99.14 16.17 96.94 7.46 98.50 18.35 96.60

CIFAR-
100

MSP 78.05 76.11 100.00 30.04 100.00 2.25 100.00 2.06
ODIN 56.77 83.62 100.00 36.95 100.00 0.14 100.00 0.00
Mahalanobis 42.63 87.86 95.92 42.96 95.44 15.87 99.86 2.08
SOFL 20.95 96.06 73.33 83.31 93.41 12.90 99.98 3.36
OE 18.52 95.27 86.83 66.95 96.27 18.79 99.97 4.88
ACET 19.79 94.76 81.63 70.04 26.23 91.46 81.95 69.67
CCU 19.44 95.05 84.11 69.09 84.89 35.85 99.61 15.67
ROWL 93.35 53.02 100.00 49.69 100.00 49.69 100.00 49.69
NTOM (ours) 18.09 96.74 66.61 87.97 86.88 15.40 99.98 0.77
ATOM (ours) 15.49 97.18 57.79 89.49 18.32 96.57 58.49 89.36

Table 6: Comparison with competitive OOD detection methods. We use ImageNet-RC as the auxiliary OOD
dataset (see section B.1 for the details) for SOFL, OE, ACET, CCU, NTOM and ATOM. We use DenseNet as
network architecture for all methods. We evaluate on four types of OOD inputs: (1) natural OOD, (2) corruption
attacked OOD, (3) L∞ attacked OOD, and (4) compositionally attacked OOD inputs. ↑ indicates larger value is
better, and ↓ indicates lower value is better. All values are percentages and are averaged over six natural OOD
test datasets described in section 5.1. Bold numbers are superior results.
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Figure 5: On CIFAR-10, we train the model with objective (4) for 100 epochs without informative outlier
mining. For every 10 epochs, we randomly sample 400,000 data points from the large auxiliary OOD dataset
and use the current model snapshot to calculate the OOD scores.
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Dtest
in Method

FPR AUROC FPR AUROC FPR AUROC FPR AUROC
(5% FNR) (5% FNR) (5% FNR) (5% FNR)
↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

Natural OOD Corruption OOD L∞ OOD Comp. OOD

SVHN

MSP 42.78 91.15 99.99 51.84 100.00 0.15 100.00 0.05
ODIN 43.65 89.37 99.85 44.43 100.00 0.06 100.00 0.00
Mahalanobis 6.94 98.47 80.91 78.92 93.44 39.42 99.70 2.69
SOFL 0.02 99.99 2.41 99.36 85.25 39.32 99.28 2.85
OE 0.58 99.87 21.97 96.00 70.66 47.36 96.63 5.87
ACET 0.43 99.92 18.12 97.11 20.75 89.55 99.66 1.80
CCU 0.71 99.86 30.96 94.40 73.37 41.82 99.83 0.44
ROWL 1.46 99.13 45.18 77.28 86.95 56.39 99.94 49.90
NTOM (ours) 0.02 99.99 2.46 99.27 70.38 52.43 99.79 1.01
ATOM (ours) 0.08 99.96 4.18 98.65 5.93 98.47 95.50 62.00

CIFAR-
10

MSP 53.81 91.10 100.00 50.30 100.00 5.48 100.00 5.43
ODIN 36.25 91.18 99.95 31.78 100.00 0.04 100.00 0.00
Mahalanobis 23.93 92.48 86.78 56.90 85.75 42.63 99.22 17.51
SOFL 2.15 99.14 38.03 93.35 99.99 0.43 100.00 0.24
OE 3.03 98.83 56.00 91.19 99.97 0.26 100.00 0.04
ACET 3.19 98.74 35.78 94.25 40.22 89.52 56.08 87.76
CCU 2.61 98.75 36.31 93.75 99.93 0.86 99.99 0.41
ROWL 17.21 90.79 86.09 56.35 99.94 49.43 99.99 49.40
NTOM (ours) 1.86 99.10 23.77 94.58 99.92 0.84 99.96 0.33
ATOM (ours) 1.50 98.87 13.17 96.36 33.66 90.89 40.07 88.99

CIFAR-
100

MSP 81.92 74.32 100.00 28.10 100.00 3.20 100.00 3.14
ODIN 68.76 79.13 100.00 26.44 100.00 0.15 100.00 0.01
Mahalanobis 43.48 86.02 95.78 42.25 95.83 17.41 99.92 3.55
SOFL 66.57 89.11 99.99 59.64 99.99 0.30 100.00 0.10
OE 46.14 91.16 99.96 58.55 100.00 1.80 100.00 1.69
ACET 46.79 91.67 99.76 62.48 95.66 41.38 99.99 36.65
CCU 48.35 91.41 99.95 57.94 100.00 0.44 100.00 0.38
ROWL 96.93 51.34 100.00 49.81 100.00 49.81 100.00 49.81
NTOM (ours) 37.94 92.14 97.09 66.93 99.99 1.04 99.99 0.13
ATOM (ours) 30.52 93.90 94.46 74.96 44.30 89.68 95.06 74.25

Table 7: Comparison with competitive OOD detection methods. We use WideResNet as network architecture
for all methods. We evaluate on four types of OOD inputs: (1) natural OOD, (2) corruption attacked OOD,
(3) L∞ attacked OOD, and (4) compositionally attacked OOD inputs. ↑ indicates larger value is better, and ↓
indicates lower value is better. All values are percentages and are averaged over six different OOD test datasets
described in section 5.1. Bold numbers are superior results.

Dtest
in Method

FPR AUROC FPR AUROC
(5% FNR) (5% FNR)
↓ ↑ ↓ ↑
L∞ OOD Comp. OOD

SVHN ACET 33.64 83.89 99.90 2.84
ATOM (ours) 8.33 97.37 98.56 35.32

CIFAR-
10

ACET 76.66 76.29 97.08 51.35
ATOM (ours) 26.88 83.78 42.86 83.56

CIFAR-
100

ACET 87.13 48.77 99.82 33.67
ATOM (ours) 45.11 82.32 93.74 65.88

Table 8: Evaluation on L∞ attacked OOD and compositionally attacked OOD inputs with strong PGD attack
(100 iterations and 5 random restarts). We use DenseNet as network architecture for all methods. ↑ indicates
larger value is better, and ↓ indicates lower value is better. All values are percentages and are averaged over six
different OOD test datasets described in section 5.1. Bold numbers are superior results.
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Dtest
out Method

FPR AUROC FPR AUROC FPR AUROC FPR AUROC
(5% FNR) (5% FNR) (5% FNR) (5% FNR)
↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

Natural OOD Corruption OOD L∞ OOD Comp. OOD

Gaussian
Noise

MSP 56.30 90.16 100.00 55.70 100.00 5.25 100.00 0.14
ODIN 58.49 88.24 100.00 44.91 100.00 0.87 100.00 0.01
Mahalanobis 0.00 99.92 97.34 77.03 1.51 98.73 100.00 0.00
SOFL 0.00 100.00 0.02 99.93 0.00 99.98 100.00 0.42
OE 0.00 100.00 0.93 99.74 0.00 100.00 98.71 2.20
ACET 0.00 100.00 0.00 99.98 0.00 99.99 98.80 17.98
CCU 0.00 99.99 0.11 99.94 0.00 99.97 34.14 65.91
ROWL 0.00 99.89 3.83 97.97 0.00 99.89 91.98 53.90
NTOM (ours) 0.00 100.00 0.03 99.94 0.00 100.00 100.00 0.72
ATOM (ours) 0.00 100.00 0.00 99.96 0.00 100.00 63.53 93.40

Uniform
Noise

MSP 53.63 90.75 100.00 52.67 100.00 0.05 100.00 0.00
ODIN 59.07 87.96 100.00 39.84 100.00 0.00 100.00 0.00
Mahalanobis 0.00 99.73 99.99 56.02 100.00 20.33 100.00 0.00
SOFL 0.00 100.00 0.35 99.74 39.53 91.58 100.00 0.01
OE 0.00 100.00 5.83 98.88 0.09 99.98 99.97 0.16
ACET 0.00 100.00 0.32 99.70 0.00 99.99 100.00 1.17
CCU 0.00 100.00 4.04 99.19 0.00 99.97 99.82 0.18
ROWL 0.00 99.89 17.44 91.17 0.19 99.80 100.00 49.89
NTOM (ours) 0.00 100.00 0.11 99.86 0.22 99.87 100.00 0.01
ATOM (ours) 0.00 100.00 0.00 99.92 0.00 100.00 99.79 74.58

Table 9: Comparison with competitive OOD detection methods. We use SVHN as in-distribution dataset and
use DenseNet as network architecture for all methods. We evaluate the performance on all four types of OOD
inputs: (1) natural OOD, (2) corruption attacked OOD, (3) L∞ attacked OOD, and (4) compositionally attacked
OOD inputs. ↑ indicates larger value is better, and ↓ indicates lower value is better. All values are percentages.
Bold numbers are superior results.

Dtest
out Method

FPR AUROC FPR AUROC FPR AUROC FPR AUROC
(5% FNR) (5% FNR) (5% FNR) (5% FNR)
↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

Natural OOD Corruption OOD L∞ OOD Comp. OOD

Gaussian
Noise

MSP 100.00 77.69 100.00 73.29 100.00 69.73 100.00 52.56
ODIN 97.30 89.00 100.00 81.48 100.00 71.12 100.00 34.99
Mahalanobis 0.00 100.00 0.00 99.95 0.00 100.00 85.03 23.21
SOFL 0.00 99.99 48.06 94.12 0.03 98.83 100.00 4.42
OE 0.00 99.91 0.05 98.48 0.00 99.08 99.65 32.44
ACET 0.00 99.94 0.00 99.74 0.00 99.87 0.04 99.40
CCU 0.00 98.84 0.09 98.09 0.85 97.21 84.47 69.56
ROWL 0.71 99.13 100.00 49.48 99.99 49.48 100.00 49.48
NTOM (ours) 0.00 99.97 0.08 98.90 0.00 99.87 99.12 37.97
ATOM (ours) 0.00 99.93 0.00 99.65 0.00 99.93 0.21 99.54

Uniform
Noise

MSP 99.67 86.55 100.00 76.54 100.00 71.48 100.00 36.82
ODIN 91.48 90.73 100.00 79.19 100.00 51.93 100.00 13.86
Mahalanobis 0.00 100.00 0.00 99.94 0.00 100.00 99.84 22.25
SOFL 0.00 99.75 95.82 86.22 100.00 69.89 100.00 4.39
OE 0.00 99.89 0.02 98.62 33.05 92.41 99.98 29.62
ACET 0.00 99.95 0.00 99.22 0.00 99.88 36.48 95.06
CCU 0.00 98.50 0.87 97.78 94.68 86.27 99.70 48.18
ROWL 97.14 50.91 100.00 49.48 100.00 49.48 100.00 49.48
NTOM (ours) 0.00 99.97 1.42 98.08 28.41 95.94 100.00 2.88
ATOM (ours) 0.00 99.93 0.00 99.07 0.00 99.93 91.81 45.48

Table 10: Comparison with competitive OOD detection methods. We use CIFAR-10 as in-distribution dataset
and use DenseNet as network architecture for all methods. We evaluate the performance on all four types of
OOD inputs: (1) natural OOD, (2) corruption attacked OOD, (3) L∞ attacked OOD, and (4) compositionally
attacked OOD inputs. ↑ indicates larger value is better, and ↓ indicates lower value is better. All values are
percentages.
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Dtest
out Method

FPR AUROC FPR AUROC FPR AUROC FPR AUROC
(5% FNR) (5% FNR) (5% FNR) (5% FNR)
↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

Natural OOD Corruption OOD L∞ OOD Comp. OOD

Gaussian
Noise

MSP 100.00 18.62 100.00 11.90 100.00 5.29 100.00 2.04
ODIN 100.00 16.53 100.00 12.57 100.00 2.57 100.00 1.55
Mahalanobis 0.00 100.00 0.00 99.82 0.00 100.00 99.18 81.79
SOFL 0.00 100.00 100.00 70.93 4.56 98.30 100.00 0.17
OE 3.69 97.53 100.00 64.71 67.00 92.45 100.00 1.60
ACET 0.00 99.02 22.38 95.49 0.14 97.68 99.71 75.87
CCU 100.00 50.78 100.00 47.92 100.00 37.06 100.00 35.25
ROWL 0.54 99.42 100.00 49.69 99.37 50.01 100.00 49.69
NTOM (ours) 0.00 99.95 30.60 95.57 0.00 99.92 100.00 30.10
ATOM (ours) 0.00 99.98 0.00 99.06 0.00 99.98 86.43 52.84

Uniform
Noise

MSP 99.99 37.86 100.00 16.59 100.00 2.45 100.00 1.67
ODIN 100.00 31.77 100.00 20.56 100.00 0.48 100.00 0.40
Mahalanobis 0.00 100.00 0.00 99.69 0.00 100.00 100.00 32.70
SOFL 0.00 99.99 100.00 68.28 99.98 79.63 100.00 0.59
OE 0.19 99.21 100.00 57.39 100.00 55.40 100.00 0.62
ACET 0.00 99.43 64.94 93.48 95.10 91.27 98.47 57.60
CCU 30.96 95.93 100.00 71.51 100.00 46.37 100.00 5.29
ROWL 98.45 50.46 100.00 49.69 100.00 49.69 100.00 49.69
NTOM (ours) 0.00 99.79 64.35 94.08 99.97 87.14 100.00 18.81
ATOM (ours) 0.00 99.98 0.04 98.44 0.00 99.98 89.90 41.34

Table 11: Comparison with competitive OOD detection methods. We use CIFAR-100 as in-distribution dataset
and use DenseNet as network architecture for all methods. We evaluate the performance on all four types of
OOD inputs: (1) natural OOD, (2) corruption attacked OOD, (3) L∞ attacked OOD, and (4) compositionally
attacked OOD inputs. ↑ indicates larger value is better, and ↓ indicates lower value is better. All values are
percentages.
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Dtest
in Method FNR Pred. End-to-end.

Acc. Pred. Acc.

SVHN

MSP 5.01 95.83 93.00
ODIN 5.01 95.83 92.44
Mahalanobis 5.01 95.83 91.50
SOFL 5.01 96.45 92.81
OE 5.01 95.93 93.11
ACET 5.01 95.58 92.79
CCU 5.01 95.85 92.95
ROWL 0.22 95.23 95.23
NTOM (ours) 5.01 95.75 91.99
ATOM (ours) 5.01 96.09 91.95

CIFAR-10

MSP 5.01 94.39 91.76
ODIN 5.01 94.39 91.00
Mahalanobis 5.01 94.39 89.72
SOFL 5.01 95.11 91.60
OE 5.01 94.79 91.86
ACET 5.01 91.48 88.61
CCU 5.01 94.89 91.88
ROWL 1.04 93.18 93.18
NTOM (ours) 5.01 95.42 91.57
ATOM (ours) 5.01 95.20 91.33

CIFAR-100

MSP 5.01 75.05 73.87
ODIN 5.01 75.05 73.72
Mahalanobis 5.01 75.05 71.12
SOFL 5.01 74.37 72.62
OE 5.01 75.28 73.74
ACET 5.01 74.43 72.72
CCU 5.01 76.04 74.60
ROWL 0.62 72.51 72.51
NTOM (ours) 5.01 74.88 72.47
ATOM (ours) 5.01 75.06 72.72

Table 12: The performance of OOD detector and classifier on in-distribution test data. We use DenseNet for all
methods. We use three metrics: FNR, Prediction Accuracy and End-to-end Prediction Accuracy. We pick the
threshold for the OOD detectors such that 95% of in-distribution test data points are classified as in-distribution.
Prediction Accuracy measures the accuracy of the classifier on in-distribution test data. End-to-end Prediction
Accuracy measures the accuracy of the open world classification system (detector+classifier), where an example
is classified correctly if and only if the detector treats it as in-distribution and the classifier predicts its label
correctly.
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Dtest
in Method FNR Pred. End-to-end.

Acc. Pred. Acc.

SVHN

MSP 5.01 95.61 92.91
ODIN 5.01 95.61 92.49
Mahalanobis 5.01 95.61 91.34
SOFL 5.01 95.65 92.34
OE 5.01 95.76 92.91
ACET 5.01 95.96 93.13
CCU 5.01 95.83 93.05
ROWL 0.27 95.87 95.87
NTOM (ours) 5.01 95.76 91.98
ATOM (ours) 5.01 95.96 91.82

CIFAR-10

MSP 5.01 94.92 92.38
ODIN 5.01 94.92 91.60
Mahalanobis 5.01 94.92 90.27
SOFL 5.01 95.98 92.45
OE 5.01 95.51 92.35
ACET 5.01 95.33 92.47
CCU 5.01 95.63 92.46
ROWL 1.21 93.91 93.91
NTOM (ours) 5.01 95.89 91.97
ATOM (ours) 5.01 95.89 92.20

CIFAR-100

MSP 5.01 76.61 75.46
ODIN 5.01 76.61 75.16
Mahalanobis 5.01 76.61 72.61
SOFL 5.01 75.12 73.78
OE 5.01 75.58 74.47
ACET 5.01 75.61 74.60
CCU 5.01 76.36 75.34
ROWL 0.39 75.94 75.94
NTOM (ours) 5.01 76.30 74.04
ATOM (ours) 5.01 77.51 75.32

Table 13: The performance of OOD detector and classifier on in-distribution test data. We use WideResNet for
all methods. We use three metrics: FNR, Prediction Accuracy and End-to-end Prediction Accuracy. We pick the
threshold for the OOD detectors such that 95% of in-distribution test data points are classified as in-distribution.
Prediction Accuracy measures the accuracy of the classifier on in-distribution test data. End-to-end Prediction
Accuracy measures the accuracy of the open world classification system (detector+classifier), where an example
is classified correctly if and only if the detector treats it as in-distribution and the classifier predicts its label
correctly.
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Dtest
out Method

FPR AUROC FPR AUROC FPR AUROC FPR AUROC
(5% FNR) (5% FNR) (5% FNR) (5% FNR)
↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

Natural OOD Corruption OOD L∞ OOD Comp. OOD

LSUN-
C

MSP 33.90 94.01 99.59 68.76 99.94 0.82 100.00 0.11
ODIN 28.40 93.77 97.37 59.61 99.90 0.38 100.00 0.01
Mahalanobis 0.20 99.64 79.20 80.24 98.01 10.95 99.99 0.07
SOFL 0.00 100.00 2.10 99.38 68.89 54.15 99.98 0.31
OE 0.00 100.00 23.06 96.38 54.03 77.79 99.91 0.52
ACET 0.00 100.00 20.48 96.75 0.09 99.97 99.85 4.76
CCU 0.00 100.00 22.26 96.46 35.10 80.37 99.92 0.55
ROWL 2.50 98.64 75.48 62.15 96.22 51.78 99.99 49.90
NTOM (ours) 0.00 100.00 2.64 99.06 54.69 75.51 99.99 0.17
ATOM (ours) 0.00 100.00 16.71 96.91 0.00 100.00 97.85 39.64

LSUN-
R

MSP 44.84 92.75 99.93 66.82 100.00 1.22 100.00 0.11
ODIN 36.84 92.91 98.53 62.91 100.00 0.25 100.00 0.01
Mahalanobis 18.35 96.64 98.92 54.27 99.04 10.01 100.00 0.00
SOFL 0.00 100.00 0.55 99.75 49.23 77.50 99.88 4.77
OE 0.02 100.00 9.44 98.34 41.86 79.82 99.91 1.54
ACET 0.00 100.00 5.36 98.87 2.60 99.35 99.96 7.00
CCU 0.00 100.00 9.44 98.46 12.25 94.36 98.90 2.78
ROWL 0.01 99.89 22.57 88.61 39.54 80.12 99.68 50.05
NTOM (ours) 0.00 100.00 0.12 99.82 22.97 91.97 99.97 2.34
ATOM (ours) 0.00 100.00 0.13 99.67 0.09 99.97 96.08 63.20

iSUN

MSP 40.78 93.57 99.85 68.88 99.99 1.37 100.00 0.14
ODIN 31.98 93.97 97.70 64.77 99.99 0.29 100.00 0.01
Mahalanobis 19.73 96.25 98.35 56.95 98.73 10.21 100.00 0.01
SOFL 0.00 100.00 0.75 99.70 56.78 69.82 99.87 4.39
OE 0.01 100.00 9.50 98.36 45.45 76.08 99.76 1.72
ACET 0.01 100.00 6.17 98.84 4.90 98.52 99.92 6.96
CCU 0.02 100.00 9.94 98.32 17.36 90.54 99.13 2.56
ROWL 0.04 99.87 24.43 87.68 44.62 77.58 99.29 50.24
NTOM (ours) 0.00 100.00 0.38 99.77 30.90 87.40 99.98 2.26
ATOM (ours) 0.00 100.00 0.24 99.59 0.25 99.94 95.20 61.70

Textures

MSP 41.91 92.08 99.33 61.77 99.45 2.84 100.00 0.44
ODIN 40.48 89.91 97.36 52.69 99.29 2.14 100.00 0.27
Mahalanobis 24.34 94.15 85.94 62.00 88.83 17.73 99.38 1.27
SOFL 0.34 99.91 11.83 97.47 89.36 23.54 99.20 2.42
OE 2.73 99.50 43.05 92.51 84.36 26.88 98.32 2.72
ACET 2.55 99.54 32.55 94.67 64.57 58.46 99.40 5.73
CCU 2.22 99.57 41.86 92.46 78.09 31.94 98.58 2.31
ROWL 7.85 95.96 71.17 64.30 89.73 55.02 99.77 50.01
NTOM (ours) 0.27 99.90 9.18 97.97 81.17 35.06 98.76 2.74
ATOM (ours) 0.41 99.83 11.31 97.66 28.81 90.97 91.61 49.35

Places365

MSP 36.14 94.37 99.60 71.71 99.99 1.03 100.00 0.14
ODIN 26.84 95.01 96.25 68.40 99.99 0.32 100.00 0.01
Mahalanobis 34.83 93.95 98.14 55.70 99.64 1.97 100.00 0.00
SOFL 0.00 99.99 3.46 99.09 94.58 26.96 99.96 1.98
OE 0.37 99.91 27.78 95.86 94.97 26.54 99.99 0.47
ACET 0.15 99.96 19.28 97.06 49.09 83.63 99.99 2.65
CCU 0.27 99.95 29.12 95.65 83.26 39.88 100.00 0.59
ROWL 0.97 99.41 67.26 66.26 96.67 51.56 100.00 49.89
NTOM (ours) 0.00 99.99 2.39 99.21 87.35 46.68 99.99 0.48
ATOM (ours) 0.00 99.99 2.31 98.59 5.60 98.71 98.74 38.95

CIFAR-
10

MSP 35.45 94.66 99.79 72.97 100.00 1.07 100.00 0.19
ODIN 24.15 95.54 95.45 70.89 100.00 0.28 100.00 0.01
Mahalanobis 39.35 92.80 98.28 55.52 99.70 2.47 100.00 0.01
SOFL 0.01 99.99 3.99 99.03 93.00 28.70 99.95 2.60
OE 0.48 99.89 27.79 95.92 95.49 26.02 99.98 0.63
ACET 0.21 99.94 18.32 97.18 54.71 80.56 99.98 3.69
CCU 0.47 99.91 32.40 95.34 86.98 36.35 99.98 0.79
ROWL 0.84 99.47 69.28 65.25 96.68 51.55 100.00 49.89
NTOM (ours) 0.00 99.98 2.53 99.17 84.60 47.74 100.00 0.99
ATOM (ours) 0.00 99.98 2.14 98.72 7.39 98.42 98.51 44.28

Table 14: Comparison with competitive OOD detection methods. We use SVHN as in-distribution dataset and
use DenseNet as network architecture for all methods. We evaluate the performance on all four types of OOD
inputs: (1) natural OOD, (2) corruption attacked OOD, (3) L∞ attacked OOD, and (4) compositionally attacked
OOD inputs. ↑ indicates larger value is better, and ↓ indicates lower value is better. All values are percentages.
Bold numbers are superior results.
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Dtest
out Method

FPR AUROC FPR AUROC FPR AUROC FPR AUROC
(5% FNR) (5% FNR) (5% FNR) (5% FNR)
↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

Natural OOD Corruption OOD L∞ OOD Comp. OOD

LSUN-
C

MSP 27.34 96.30 100.00 71.57 100.00 13.75 100.00 13.68
ODIN 1.89 99.50 98.94 71.86 100.00 0.06 100.00 0.00
Mahalanobis 14.82 94.63 93.31 46.23 98.07 8.04 99.99 1.36
SOFL 0.39 99.40 56.07 93.02 100.00 2.36 100.00 1.96
OE 0.97 99.52 40.85 93.99 99.99 0.36 100.00 0.19
ACET 1.76 99.42 31.46 95.40 45.54 90.57 88.09 70.84
CCU 0.62 99.65 33.44 94.56 99.97 0.31 100.00 0.05
ROWL 10.92 94.02 91.67 53.64 100.00 49.48 100.00 49.48
NTOM (ours) 0.27 99.59 20.32 96.31 99.95 3.12 100.00 0.36
ATOM (ours) 0.25 99.53 16.38 96.75 0.38 99.49 17.27 96.49

LSUN-
R

MSP 43.89 93.93 100.00 64.26 100.00 13.74 100.00 13.66
ODIN 3.29 99.20 98.96 63.83 100.00 0.14 100.00 0.00
Mahalanobis 7.43 97.88 98.71 39.24 94.59 16.62 100.00 0.45
SOFL 1.67 99.29 56.41 90.62 100.00 0.55 100.00 0.43
OE 0.99 99.43 51.55 92.25 99.99 0.15 100.00 0.02
ACET 3.87 99.10 77.90 87.37 70.50 84.01 99.87 48.53
CCU 1.53 99.28 57.03 90.53 100.00 0.04 100.00 0.10
ROWL 36.03 81.47 98.72 50.12 100.00 49.48 100.00 49.48
NTOM (ours) 0.38 99.57 17.84 96.76 100.00 0.20 100.00 0.27
ATOM (ours) 0.41 99.33 16.77 96.63 52.76 71.84 50.33 75.18

iSUN

MSP 46.18 93.58 100.00 62.76 99.99 13.95 100.00 13.67
ODIN 4.45 99.00 98.90 62.14 100.00 0.33 100.00 0.01
Mahalanobis 8.58 98.00 98.10 42.96 89.64 22.78 100.00 0.74
SOFL 2.24 99.22 53.99 90.97 100.00 0.51 100.00 0.50
OE 1.14 99.40 48.25 92.46 99.97 0.13 100.00 0.02
ACET 6.16 98.59 75.36 87.00 78.59 79.84 99.63 47.11
CCU 1.74 99.27 52.44 91.10 100.00 0.05 100.00 0.08
ROWL 35.44 81.76 97.02 50.97 100.00 49.48 100.00 49.48
NTOM (ours) 0.63 99.59 16.25 96.90 99.99 0.32 100.00 0.38
ATOM (ours) 0.66 99.34 15.10 96.79 52.48 68.44 51.94 72.08

Textures

MSP 64.66 87.64 100.00 51.85 100.00 14.14 100.00 13.72
ODIN 52.45 84.81 99.56 38.20 99.95 0.56 100.00 0.07
Mahalanobis 25.39 92.20 71.42 61.60 88.85 17.24 99.27 3.60
SOFL 3.78 99.04 56.81 89.38 99.88 2.06 99.98 1.36
OE 6.24 98.43 53.32 88.83 99.68 1.40 99.95 0.68
ACET 11.74 97.96 54.41 90.52 64.49 77.66 94.26 55.24
CCU 5.83 98.45 54.61 86.33 99.49 1.68 99.84 0.99
ROWL 19.33 89.82 82.87 58.04 99.89 49.53 99.98 49.49
NTOM (ours) 2.27 99.42 24.66 95.09 99.49 3.63 99.95 1.67
ATOM (ours) 1.81 99.47 20.05 95.92 10.05 96.47 29.01 91.40

Places365

MSP 62.03 88.29 100.00 57.68 100.00 13.66 100.00 13.66
ODIN 43.84 90.45 99.89 52.81 100.00 0.01 100.00 0.00
Mahalanobis 85.77 65.76 99.47 22.75 99.79 1.93 100.00 0.66
SOFL 7.73 97.81 61.66 88.07 100.00 0.47 100.00 0.27
OE 11.08 97.00 67.91 87.39 100.00 0.03 100.00 0.01
ACET 18.63 95.97 79.42 85.00 93.09 66.83 99.61 46.19
CCU 8.49 97.63 67.68 85.75 100.00 0.03 100.00 0.03
ROWL 43.76 77.60 97.67 50.64 100.00 49.48 100.00 49.48
NTOM (ours) 6.63 97.94 37.01 92.75 100.00 0.06 100.00 0.04
ATOM (ours) 6.30 97.92 31.44 93.41 6.96 97.78 32.99 92.93

SVHN

MSP 59.15 90.99 100.00 41.97 100.00 13.67 100.00 13.66
ODIN 23.96 95.00 100.00 19.78 100.00 0.00 100.00 0.00
Mahalanobis 19.73 93.33 90.52 50.89 99.48 8.18 100.00 2.67
SOFL 0.85 99.47 87.50 79.85 100.00 0.13 100.00 0.07
OE 1.55 99.16 75.62 89.02 100.00 0.01 100.00 0.02
ACET 31.50 94.99 83.04 85.25 94.49 69.42 99.81 54.36
CCU 2.14 99.25 75.34 88.01 100.00 0.00 100.00 0.00
ROWL 4.73 97.12 98.09 50.43 100.00 49.48 100.00 49.48
NTOM (ours) 1.06 99.59 67.40 90.23 100.00 0.01 100.00 0.00
ATOM (ours) 0.69 99.63 51.84 92.22 0.69 99.63 51.81 92.18

Table 15: Comparison with competitive OOD detection methods. We use CIFAR-10 as in-distribution dataset
and use DenseNet as network architecture for all methods. We evaluate the performance on all four types of
OOD inputs: (1) natural OOD, (2) corruption attacked OOD, (3) L∞ attacked OOD, and (4) compositionally
attacked OOD inputs. ↑ indicates larger value is better, and ↓ indicates lower value is better. All values are
percentages. Bold numbers are superior results.
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Dtest
out Method

FPR AUROC FPR AUROC FPR AUROC FPR AUROC
(5% FNR) (5% FNR) (5% FNR) (5% FNR)
↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

Natural OOD Corruption OOD L∞ OOD Comp. OOD

LSUN-
C

MSP 62.03 84.78 100.00 32.47 100.00 2.52 100.00 2.31
ODIN 15.47 97.34 100.00 42.25 100.00 0.20 100.00 0.01
Mahalanobis 47.44 93.47 98.80 58.23 98.94 15.07 99.97 3.01
SOFL 17.38 96.66 100.00 51.59 100.00 1.10 100.00 0.58
OE 14.75 97.33 99.91 54.29 100.00 1.61 100.00 0.64
ACET 14.60 97.41 98.65 67.81 23.07 95.35 98.88 56.02
CCU 12.03 97.84 99.60 61.24 100.00 0.86 100.00 0.50
ROWL 88.67 55.35 100.00 49.69 100.00 49.69 100.00 49.69
NTOM (ours) 20.61 96.58 95.91 83.28 100.00 1.31 100.00 0.25
ATOM (ours) 21.40 96.31 79.72 87.67 21.50 96.26 79.98 87.11

LSUN-
R

MSP 77.48 76.40 100.00 32.21 100.00 1.94 100.00 1.78
ODIN 34.81 93.37 100.00 45.41 100.00 0.22 100.00 0.00
Mahalanobis 14.87 97.06 99.89 31.14 94.81 24.18 100.00 0.37
SOFL 50.27 90.28 99.88 50.12 100.00 0.11 100.00 0.20
OE 56.25 84.35 99.96 41.17 100.00 0.70 100.00 0.52
ACET 56.35 88.17 99.50 51.85 98.67 18.64 99.74 22.45
CCU 38.44 91.83 99.94 50.62 100.00 0.59 100.00 0.47
ROWL 88.25 55.57 100.00 49.69 100.00 49.69 100.00 49.69
NTOM (ours) 37.92 94.31 99.11 65.00 100.00 0.36 100.00 0.06
ATOM (ours) 17.93 96.94 95.72 71.51 31.39 87.38 95.87 66.15

iSUN

MSP 78.87 75.69 100.00 31.83 100.00 2.08 100.00 1.82
ODIN 38.92 92.15 100.00 43.43 100.00 0.31 100.00 0.00
Mahalanobis 16.46 96.75 99.76 33.38 89.71 28.16 100.00 0.38
SOFL 53.51 89.27 99.96 48.75 100.00 0.19 100.00 0.21
OE 61.59 81.51 99.99 39.94 100.00 0.81 100.00 0.54
ACET 60.49 86.80 99.70 49.61 98.54 19.92 99.94 23.51
CCU 40.97 90.89 99.98 49.21 100.00 0.79 100.00 0.44
ROWL 90.42 54.48 100.00 49.69 100.00 49.69 100.00 49.69
NTOM (ours) 43.66 93.24 99.51 61.40 100.00 0.41 100.00 0.02
ATOM (ours) 20.09 96.62 97.05 68.31 35.70 85.87 97.13 63.16

Textures

MSP 85.57 70.08 100.00 25.93 100.00 2.63 100.00 2.28
ODIN 83.58 70.71 100.00 27.30 100.00 0.11 100.00 0.01
Mahalanobis 34.59 89.82 78.35 62.36 89.27 20.33 99.18 5.43
SOFL 57.00 87.35 99.73 44.11 99.98 0.59 100.00 0.34
OE 59.86 86.17 99.88 42.95 99.98 1.45 100.00 0.73
ACET 62.02 86.26 99.70 49.02 83.17 63.61 99.86 40.58
CCU 60.80 86.34 99.88 44.90 100.00 1.39 100.00 0.62
ROWL 97.00 51.19 100.00 49.69 100.00 49.69 100.00 49.69
NTOM (ours) 38.21 91.06 95.34 66.86 99.82 2.43 100.00 0.60
ATOM (ours) 40.11 90.28 90.21 69.99 47.27 82.52 91.45 65.91

Places365

MSP 83.65 73.71 100.00 32.13 100.00 1.83 100.00 1.91
ODIN 79.19 76.48 100.00 39.16 100.00 0.00 100.00 0.00
Mahalanobis 94.64 59.52 99.80 19.43 99.96 1.13 100.00 0.50
SOFL 60.49 87.57 100.00 40.25 100.00 0.06 100.00 0.15
OE 58.37 86.39 100.00 50.83 100.00 0.57 100.00 0.54
ACET 56.26 86.75 99.66 57.36 83.60 72.35 99.83 44.27
CCU 55.23 87.21 100.00 44.03 100.00 0.46 100.00 0.43
ROWL 96.86 51.26 100.00 49.69 100.00 49.69 100.00 49.69
NTOM (ours) 56.54 84.27 99.33 57.32 100.00 0.01 100.00 0.02
ATOM (ours) 56.52 84.53 96.65 63.43 58.68 82.50 96.68 62.36

SVHN

MSP 80.71 76.00 100.00 25.69 100.00 2.47 100.00 2.29
ODIN 88.66 71.65 100.00 24.17 100.00 0.00 100.00 0.00
Mahalanobis 47.78 90.54 98.93 53.25 99.96 6.34 100.00 2.78
SOFL 21.50 96.15 100.00 36.59 100.00 0.07 100.00 0.16
OE 44.47 92.58 100.00 40.86 100.00 0.53 100.00 0.57
ACET 55.86 90.36 100.00 49.51 70.55 86.86 99.99 44.93
CCU 50.79 91.59 100.00 40.01 100.00 0.41 100.00 0.40
ROWL 98.88 50.25 100.00 49.69 100.00 49.69 100.00 49.69
NTOM (ours) 24.67 96.20 99.83 60.37 100.00 0.01 100.00 0.00
ATOM (ours) 37.78 93.68 99.54 70.86 37.78 93.68 99.55 70.23

Table 16: Comparison with competitive OOD detection methods. We use CIFAR-100 as in-distribution dataset
and use DenseNet as network architecture for all methods. We evaluate the performance on all four types of
OOD inputs: (1) natural OOD, (2) corruption attacked OOD, (3) L∞ attacked OOD, and (4) compositionally
attacked OOD inputs. ↑ indicates larger value is better, and ↓ indicates lower value is better. All values are
percentages. Bold numbers are superior results.
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