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Abstract

Symbolic models play a key role in cognitive sci-
ence, expressing computationally precise hypothe-
ses about how the brain implements a cognitive
process. Identifying an appropriate model typi-
cally requires a great deal of effort and ingenuity
on the part of a human scientist. Here, we adapt
FunSearch (Romera-Paredes et al., 2024), a re-
cently developed tool that uses Large Language
Models (LLMs) in an evolutionary algorithm, to
automatically discover symbolic cognitive mod-
els that accurately capture human and animal be-
havior. We consider datasets from three species
performing a classic reward-learning task that
has been the focus of substantial modeling effort,
and find that the discovered programs outperform
state-of-the-art cognitive models for each. The
discovered programs can readily be interpreted
as hypotheses about human and animal cogni-
tion, instantiating interpretable symbolic learning
and decision-making algorithms. Broadly, these
results demonstrate the viability of using LLM-
powered program synthesis to propose novel sci-
entific hypotheses regarding mechanisms of hu-
man and animal cognition.
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Figure 1. Discovered models outperform human-designed mod-
els. We evaluate the best program discovered by CogFunSearch for
each dataset, using average normalized likelihood of the choices
made by held-out test subjects, and it to the best existing model
from the neuroscience and psychology literature (all p < 0.002,
signed-rank test) Left: Human dataset and model from Eckstein
et al. (2024) Center: Rat dataset and model from Miller et al.
(2021) Right: Fruit fly dataset from (Mohanta, 2022; Rajagopalan
et al., 2023), model from Ito & Doya (2009).

1. Introduction
Symbolic cognitive models are used in neuroscience and
psychology to instantiate precise, mechanistic hypotheses
about the processes used by the brain to control behavior
(Daw et al., 2011; Corrado & Doya, 2007; O’Doherty et al.,
2007). These models readily afford interpretation: inter-
nal variables like “prediction error” or “forgetting rate” are
meaningful in their own right, and suggest possible imple-
mentations in the brain. This ease of interpretation has made
symbolic models a key tool in understanding how brains
produce behavior.

The development of such models has historically been a
hypothesis-first process, in which researchers draw on in-
spiration from the literature and individual human creativity
to specify a model, and then refine it to match the idiosyn-
crasies of behavior. A limitation of this approach is that
the space of symbolic models is vast, and it is far from cer-
tain that the best possible model for a dataset is one that
researchers will have considered (Daw et al., 2011; Wilson
& Collins, 2019). Indeed, recent work has used comparisons
to flexible recurrent neural networks (RNNs; Dezfouli et al.
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Figure 2. Overview of CogFunSearch. A: CogFunSearch uses LLMs to evolve Python programs that are predictive of a behavioral
dataset, and maintains a database of candidate programs which are ranked by their model scores. B: Programs ϕ receive as input the
previous choice ct and reward rt, an evolving hidden state ht, and a set of trained parameters θ. They output predictive probabilities over
the next choice and an updated hidden state. C: The model score for programs is computed by fitting parameters on a subset of the dataset
and evaluating its normalized likelihood on a separate validation set.

2019b; Song et al. 2021; Ger et al. 2023; Eckstein et al.
2024) to show that commonly-used symbolic models tend
to dramatically underfit their datasets.

An appealing alternative is to adopt a data-driven approach,
considering a very large space of possible models and al-
lowing quality-of-fit to guide model selection (Brunton &
Beyeler, 2019; Miller et al., 2021). As applied to human
and animal behavior, this approach has been most broadly
successful with model spaces that are differentiable, such as
neural networks (Dezfouli et al., 2019a; Miller et al., 2023).

In this work, we demonstrate a method which is able to auto-
matically identify symbolic models that are consistent with
a given dataset. We build on advances in program synthesis,
a set of methods for automatically identifying computer pro-
grams that optimize some objective function. Specifically,
we adapt FunSearch (Romera-Paredes et al., 2024), a recent
tool that uses Large Language Models (LLMs) to mutate
programs within an evolutionary optimization process. Our
approach, which we term “CogFunSearch”, augments Fun-
Search with an additional level of optimization. In the outer
optimization loop, FunSearch evolves programs (Fig. 2A),
while in the inner loop, model parameters are fit to data
(Fig. 2C). We apply CogFunSearch to datasets from three
species (humans, rats and fruit flies) performing a classic
reward-guided decision-making task which has been the
focus of substantial human cognitive modeling effort (Fig.
1; Miller et al. 2021; Eckstein et al. 2024; Mohanta 2022;
Rajagopalan et al. 2023). Our discovered programs reliably
outperform the best human-discovered cognitive models of
which we are aware.

Because CogFunSearch uses LLMs for program generation,
it is able to use human-provided information in the prompt
and seed program, with more informative prompts resulting

in higher-scoring and more interpretable discovered pro-
grams. Discovered programs are often surprisingly readable,
for example containing informative variable names and com-
ments. Several unexpected and intriguing motifs are appar-
ent: complex exploration strategies, unconventional value
updates, and idiosyncratic patterns of reward-independent
choice sequences. Each run of CogFunSearch generates
a large number of programs, which show a clear tradeoff
between quantitative performance and program complexity.
While the highest-scoring programs are more complex than
our baseline models, it is possible to identify models for
each dataset that are both higher-performing as well as sim-
pler. Broadly, these results validate the use of LLM-based
program synthesis for data-driven discovery of cognitive
models, and suggest novel hypotheses about reward-guided
learning in humans and animals.

2. Related Work
Data-driven Cognitive Modeling A number of papers
have attempted to invert the traditional theory-first approach
to cognitive model building and adopt a data-driven ap-
proach. Some of these use statistical tools to identify pat-
terns in behavioral data. These include explicitly characteriz-
ing patterns in choice and reward sequences using statistical
models (Lau & Glimcher, 2005; Sugrue et al., 2004; Ito &
Doya, 2009), as well as adding additional degrees of free-
dom to classic cognitive models (Le et al., 2023; Venditto
et al., 2024; Roy et al., 2021). One recent paper has at-
tempted a process of successive model reduction, beginning
with flexible statistical models and ending with a model
that can be interpreted as a cognitive model (Miller et al.,
2021). Related work has applied methods for symbolic
regression (Brunton et al., 2016; Landajuela et al., 2022)
to discover equations describing behavior. One of these
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(Musslick, 2021) considered synthetic data in a variety of
decision-making tasks. Another (LaFollette et al., 2023)
modeled human behavior in an RL task, but, due to limita-
tions of the technique, did not model choices directly but
instead asked subjects to report their internal value estimates
and modeled the dynamics of these reports.

Interpretable Deep Learning Building on the observa-
tion that neural networks often fit data better than symbolic
models, several recent papers have introduced methods that
attempt to add constraints to deep learning methods to ren-
der them more readily interpretable for the purposes of
cognitive modeling. One approach is to integrate neural net-
works into a theoretically-motivated cognitive architecture
(Peterson et al., 2021; Eckstein et al., 2024). Another is to
constrain information flow within the network, either using
explicit information bottlenecks (Miller et al., 2023) or by
simply using a very small network (Ji-An et al., 2023). Like
this work, our approach optimizes models directly to data,
considering a large model space with structural constraints
that we hope will afford interpretability. Importantly, unlike
network weights, the model space we search (Python pro-
grams) is explicitly symbolic, thereby facilitating analysis
and interpretation by humans or indeed LLMs.

Program Synthesis for statistical and agent modeling.
A large body of previous work explores evolutionary meth-
ods for discovering computer programs that optimize some
objective. A family of work in machine learning uses ap-
proaches like these to discover useful algorithms (Real et al.,
2020; Co-Reyes et al., 2021; Ellis et al., 2023; Chen et al.,
2024). Within cognitive science, programs have previously
been proposed as the representational format for learning
and storing complex sequences (Planton et al., 2021), geo-
metric shapes (Sablé-Meyer et al., 2022), concepts (Lake
et al., 2015), rules (Rule et al., 2024) and behavioral strate-
gies (Correa et al., 2024). This body of work highlights
that program synthesis can yield programs that show quali-
tative commonalities with the average human participants’
response patterns. However, to our knowledge, the current
work is the first to synthesize programs that maximize the
predictive fit of individuals’ behavior. Perhaps most simi-
lar to our methodology, Li et al. (2024) and Shojaee et al.
2025 use LLMs to propose statistical models, then fit the
parameters of these models to data.

3. Methods
3.1. Datasets and Human-Discovered Baseline Models

We consider datasets from humans and other species per-
forming reward-learning tasks in which the subject selects
repeatedly between several discrete actions and receives
a reward whose magnitude and probability depends only

on the chosen action and on a set of dynamic environment
parameters that are independent of choice. Such tasks are
often called “Dynamic Multiarmed Bandit Tasks”, and have
been the focus of a great deal of computational modeling
effort (Corrado & Doya, 2007; O’Doherty et al., 2007; Daw
et al., 2011; Wilson & Collins, 2019). We selected diverse
datasets from three different species—humans, rats, and
fruit flies—which share two important properties. First,
each dataset is unusually large, consisting of many individ-
uals, behavioral sessions, or both. This reduces the risk of
overfitting that is inherent in considering a large and flexible
space of possible models. Second, each dataset has been the
focus of past computational modeling efforts, providing a
strong human-discovered baseline against which to compare
our discovered models.

Human Dataset (Fig. 3A; Eckstein et al. 2024) considers
human participants performing a four-alternative task with
graded rewards. Participants performed the task online, and
indicated their choice on each trial by pressing either ‘D’,
‘F’, ‘J’, or ‘K’ on their keyboard. Reward was indicated
by displaying an integer number of ‘points’ between 0 and
100, which subjects were asked to maximize. Available
rewards followed independent bounded random walks with
additional trial-unique noise. Each participant performed up
to five back-to-back sessions of up to 150 trials each. The
dataset contains choices from 862 participants performing
4,134 total sessions and 617,871 total trials.

Eckstein et al. (2024) performed an extensive comparison
of a wide variety of computational cognitive models on this
dataset. The model that performed best in this comparison
was one we refer to as “Perseverative Forgetting Q-Learning”
(PFQ, see Appendix D and Appendix E for details). We
adapt PFQ as the human-discovered baseline model for the
human bandit dataset.

Rat Dataset (Fig. 3B; Miller et al. 2021) considers rats
performing a two-armed bandit task with binary rewards.
Rats indicated their choice on each trial by entering one
of two available nose ports, which were equipped to de-
liver small liquid rewards. Reward probabilities followed
independent bounded random walks. Rats performed daily
sessions of approximately one hour. The dataset contains
choices from 20 rats performing 1,946 total sessions and
1,087,140 total trials.

Miller et al. (2021) performed an intensive human process
of data-driven model discovery on this dataset. This process
began with a set of highly flexible models and several iter-
ations of successive model reduction: identifying patterns
in the fit parameters of a more-flexible model, and propos-
ing a less-flexible model that embeds those patterns into its
structural assumptions. This resulted in a model that we
refer to as “Reward-Seeking/Habit/Gambler-Fallacy” (RHG,
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Figure 3. Illustration of datasets Example behavioral sessions,
showing choices and rewards received, as well as reward contin-
gencies, from A the Human Dataset, B the Rat Dataset, C the Fruit
Fly Dataset (bottom).

see Appendix D and Appendix E for details). Miller et al.
(2021) also performed model comparison between the RHG
model and a wide variety of alternative models from the
literature, and confirmed that it provides a better fit to data.
We adopt RHG as the human-discovered baseline model for
the rat dataset.

Fruit Fly Dataset (Fig. 3C; Mohanta 2022) considers
fruit flies performing a two-armed bandit task with binary
rewards. Flies performed the task in a three-armed “Y-maze”
setup in which separate odors could be delivered to each of
the three arms (Rajagopalan et al., 2023). Flies indicated
their choice on each trial by selecting an odor and walking
to the end of the associated arm. Reward was delivered via
a brief pulse of red light which activated flies’ sugar-sensing
neurons (Haberkern et al., 2019). Reward probabilities fol-
lowed a random block structure with randomly sampled
reward probabilities and block lengths. Each fruit fly per-
formed one behavioral session. The dataset contains choices
from 347 flies performing 68,000 total trials.

Rajagopalan et al. (2023) and Mohanta (2022) have per-
formed extensive model comparison on similar datasets,
and identified a popular model known as “Differential For-
getting Q-Learning” (DFQ; Ito & Doya 2009; see Appendix
D and Appendix E for details) as performing at least as
well as any other. We adopt DFQ as the human-discovered
baseline model for the fruit fly dataset.

3.2. Problem Formulation

We focus on developing models that predict the choice
made by the subject on each trial, using information about
the previous choices made and rewards received. We for-
malize this as follows: On each trial, the subject selects
between n options and receives a reward. Each subject
(indexed i) performs one or more sessions (j) each consist-
ing of a series of trials (t). For each trial t we consider
the discrete choice c ∈ {1, ..., n} made by the subject and
the reward r received, which may be binary (r ∈ {0, 1},
rat and fruit fly datasets) or graded (r ∈ [0, 100], hu-
man dataset). A sequence of T trials constitutes a ses-
sion sj := {(c1, r1), . . . , (cT , rT )}j . Conditional on the
choice, the delivery of rewards is stochastic according to
some experimenter-controlled distribution; in particular,
choice c’s reward is governed by an independent distribution
(Bernoulli or truncated Gaussian, depending on the dataset),
with a mean pi,j,t,c that changes over trials according to a
dataset-dependent process. For each subject i a set of NS

sessions are collected: di := {si,1, . . . si,NS
}i, with testing

conditions reset between sessions. A dataset collects this
for ND subjects: D := {d1, d2, . . . , dND

}. The values of
T , NS , and ND will vary based on the dataset in question,
as we specify below. See Figure 8 for an illustration of this.

We consider models in the form of functions that receive a
choice and reward (ct, rt) and produce a probability distri-
bution over the next choice ct+1, denoted as p̂t+1. Models
typically also maintain a hidden state h that is updated iter-
atively across a sequence of trials, and are finally parameter-
ized by a vector θ which is fixed over trials. If we consider
the state as an external object h that the model updates, we
may formalize a model as ϕ(ct, rt, ht, θ) → (p̂t+1, ht+1).

Following conventions in the literature (which often
capture individual differences via a handful of subject-
specific parameters, such as learning rate), we assume
the model’s parameters θ may vary over subjects, but
are fixed over trials and sessions. Thus, for evaluation
we optimize the parameters per-subject and score the
model by cross-validating across sessions.1 In particu-
lar, for each subject i, we split its sessions into even and
odd sets deven

i := {si,0, si,2, . . . , si,M−1} and di,odd :=
{si,1, si,3, . . . , si,M}, respectively.

For subject i, iterating a model ϕ with parameters θi
over session {(ci,0, ri,0), . . . , (ci,T , ri,T )} will yield the se-
quence {ϕθi(ci,0, ri,0, hi,0) = (p̂i,1, hi,1), . . . (p̂i,T , hi,T )};
for each trial t the accuracy of ϕθi(·) is measured via the
likelihood of the data under output distribution: L(ci,t|p̂i,t).
We use cross-validation to evaluate the overall accuracy of

1For the fruit fly dataset, since we have only one session per
subject, we forego this additional level of variation and treat the
dataset as though it were multiple sessions from a single subject
with a single θ.
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a model as follows. We fit two sets of parameters, θi,even
and θi,odd, on di,even and di,odd, respectively. All the even
parameters θi,even are evaluated on the odd dataset as:

Ωeven
i (ϕ,θeven

i ) := exp

 2

MT

∑
s∈dodd

i

T∑
t=0

logL(ci,t|p̂i,t)


The score Ωodd

i (ϕ,θodd
i ) is computed analogously, and we

define the overall subject score Ωi(ϕ) as the average of the
two. The dataset score over the entire dataset D is computed
by averaging over all subject scores in the dataset. See Sec.
A and B for further specific details of scoring and how the
datasets were divided for cross-validation.

3.3. Evolving Cognitive Models With FunSearch

We use the above score function to evolve programs us-
ing FunSearch (Romera-Paredes et al., 2024). Briefly, Fun-
Search uses large-language models (LLMs)2 to create “muta-
tions” of existing programs. To generate each new program
ϕ′, the LLM is prompted with a pair of existing programs
ϕ0 and ϕ1, along with information about how the programs
will be evaluated and a directive to generate an improved
program ϕ′. The new program is then scored using the pro-
cess described above (Section 3.2) and is added, along with
its score, Ω(ϕ′), to a program database. To select “parent”
programs for each LLM sample, FunSearch stochastically
samples programs from this database based on their scores.
We refer to the combination of FunSearch with our scoring
function and framework for evolving cognitive models as
“CogFunSearch” (Figure 2).

Each CogFunSearch experiment is run with three separate
seeds, each running for seven days, generating 100,000s
to 1,000,000s of programs depending on the dataset. The
produced models have up to ten unique parameters, and no
bound on the hidden state size.

To validate the discovered models, we hold out an additional
test set containing subjects not seen by the FunSearch pro-
cess. The programs that emerge from CogFunSearch are
fit to data from these subjects, and again evaluated using
an even-odd split. Unless otherwise indicated, all reported
scores are performed on these held out test subjects. More
details on how data were structured can be found in Ap-
pendix B.

Our optimization thus effectively nests two levels: the outer-
level CogFunSearch optimizes over Python programs (Fig-
ure 2A), whereas the inner level fits program parameters
over a dataset to evaluate performance (Figure 2C). The
result is that CogFunSearch produces model “templates”
that can be fit on a dataset, capturing across-subject and

2Specifically, we use Gemini 1.5 Flash (Gemini Team, 2024).

within-subject patterns of behavior in an implicitly hierar-
chical way. To the best of our knowledge, this is a novel
application of FunSearch, which has thus far been used as a
single-level evolutionary optimization process.

3.4. Configuring FunSearch

FunSearch is initialized with a prompt that contains an ini-
tial seed program ϕ0 as well as documentation about the
problem and scoring process. We explored four different
initial prompts for CogFunSearch that varied the informa-
tiveness of the seed program from mere “hints” as to what
the programs should do–in code and in natural language
documentation–to more substantive starter code (see Ap-
pendix F).

LowInfo contains function and variable names (model, x, y)
and documentation that describes fitting a generic statistical
model. Structured1 includes informative function and vari-
able names (agent, choice, reward) and documentation
describing the data and modeling framework, but no explicit
suggestions as to the model’s structure. Structured2 mod-
ifies Structured1 to include hints on how to structure and
style the program. Finally, FullModel initializes seed pro-
gram ϕ0 to the baseline program itself, permitting a “warm
start.” These represent different levels of information with
which a researcher might approach a modeling problem in
different settings.

4. Results
We performed three independent runs of CogFunSearch on
each of our three datasets (Human, Rat, Fruit Fly) using
each of the four seed programs described above (LowInfo,
Structured1, Structured2, FullModel; Sec. 3.4). We ran each
of these until it had sampled at least 150,000 new programs.
This left us with a very large library of evolved programs for
each dataset, each of which can in principle be considered a
hypothesis about the cognitive mechanisms at play in that
dataset. Whether a program makes a good cognitive model
is typically evaluated according to two criteria: how well
they match data and how complex they are. Below, we
consider each of these questions in turn.

4.1. Best Discovered Programs Fit Data Well

We first considered the best programs discovered for each
dataset and asked how well they perform at fitting data. To
identify a single best program for each dataset, we selected
the program, from among all CogFunSearch runs across
all seed programs, which earned the highest score on the
training dataset. For the rat and fruit fly datasets the best
performing programs came from runs using the FullModel
seed program, and for the human dataset the best perform-
ing program came from a run using the Structured2 seed
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Figure 4. Quality-of-fit over the course of program evolution.
Results averaged over held-out test subjects, computed at each
timepoint in evolution for the then-best program of each CogFun-
Search run. Individual runs are plotted as light lines, while dark
lines represent the average across all runs.

program. The complete code for these “best programs” can
be found in Appendix G.

We find that the best discovered programs (maximizing
over runs and seed programs) substantially outperform
the human-discovered models for each dataset (Wilcoxon
signed rank tests on score improvement by subject: W =
1772 (Human), 0 (Rat), 1479 (Fruit Fly); all with p <
0.002). Figure 1 shows relative improved likelihood for
each held-out test subject as percentage points between the
top-scoring CogFunSearch program (FS) and the species-
specific baseline model (BL) (Ωi

FS − Ωi
BL). Across datasets,

the majority of test subjects are better fit with the best Cog-
FunSearch program than by the baseline (95.6% for Human,
100% for Rat, and 83.8% for Fruit Fly), with average im-
provements in normalized likelihood score of 5.17± 0.15
(Human), 0.54± 0.06 (Rat), 0.48± 0.05 (Fruit Fly).

Decomposing these results by seed program type and mul-
tiple runs (and aggregating over subjects) to investigate
consistency, we found that CogFunSearch yielded well-fit
models reliably: in 35 of our 36 runs the highest-scoring

Figure 5. CogFunSearch closes the gap with neural networks.
We compare the difference in normalized likelihood between the
RNN and best discovered CogFunSearch programs. Across all
species, the RNN narrowly outperforms best CogFunSearch pro-
gram, although CogFunSearch has bridged the majority of the gap.
Scores can be found in Table 1.

program outperformed its baseline model when evaluated
on held-out data (Figure 4). The performance of the final
programs was broadly similar between runs using the three
informative seed programs (Structured1, Structured2, and
FullModel), but yielded lower-performing programs with
LowInfo (p=0.05, 0.08, 0.05, 0.27, 0.05, 0.05, 0.65, 0.05,
and 0.13, for the nine comparisons between LowInfo and the
other seed programs for the three species; Wilcoxon rank-
sum tests across runs). Runs with different seed programs
also differed in how many cycles of evolution were required
to identify well-fit models (Fig. 4, rat dataset; Fig. 10, hu-
man and fly datasets). These results demonstrate the ability
of CogFunSearch to improve upon a human-specified model
(FullModel), to synthesize a model that fits well given no
information about the specific problem being solved (Low-
Info), as well as to make use of intermediate amounts of
information (Structured1 and Structured2).

To further test whether the best discovered programs pro-
vided a quantitatively good match to data, we compared their
fit to held-out data with that of recurrent neural networks.
Specifically, we train a GRU model (Cho et al., 2014) over
di,even, run a sweep on the number of hidden units (over
{1, 2, 4, 8, 16, 32, 64, 128}), and use early-stopping to se-
lect the best parameters. All the variants were trained with
the Adam optimizer (Kingma & Ba, 2015) with a learning
rate of 1e − 4. We found that the performance of the best
discovered programs is broadly similar to that of the best
RNNs, suggesting that they are capturing nearly all of the
structure that exists in our datasets (Figure 5).

A second measure of the quality of a model is its ability
to generate synthetic datasets which reproduce the scien-
tifically important features of the real datasets (Wilson &
Collins, 2019; Palminteri et al., 2017). To test our best pro-
grams, we used them to generate synthetic datasets, match-
ing the real datasets for number of trials per session, number
of sessions, and reward contingencies. To characterize pat-
terns present in each dataset, we applied a trial-history logis-
tic regression analysis common in behavioral neuroscience
(Lee et al., 2005; Lau & Glimcher, 2005), which quantifies
the extent to which rewards are followed (at various trial
lags) by repeated choices (“reward-seeking”) and the extent
to which choices tend to be repeated (“choice persevera-
tion”). The Rat and Fruit Fly dataset exhibit different pat-
terns of reward-seeeking and choice perseveration, and we
find that the patterns revealed by this analysis match closely
between the synthetic and the real datasets (Fig. 6). This
indicates that our discovered programs are able to match
in detail the relationship between past choices and rewards,
and future choice in our datasets.

A final, very practical feature is that a model should be easy
to work with in the sense of having a likelihood landscape
that facilitates parameter optimization via gradient descent.
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Figure 6. Synthetic datasets generated by discovered programs
match patterns in real data. Red lines show lagged regression
model fit to behavioral data. Blue lines (“Best Program”) show fits
to ten synthetic datasets each generated using the best program,
model parameters fit to the data, and task conditions matched to
the real dataset. Multiple synthetic datasets are shown to illustrate
the variability that results from stochasticity in the model.

Human-designed models often lack this feature, and improv-
ing it is the target of effortful reparameterization (Wilson &
Collins, 2019). We find that our CogFunSearch programs
return stable parameter estimates when fit multiple times, in-
dicating that they have favorable likelihood landscapes (Fig.
17). They also find similar parameters across different splits
of the data, suggesting stable solutions given the variability
in the data (Fig. 18).

4.2. Quality-of-Fit Trades Off With Complexity

To evaluate the complexity of our discovered programs, we
computed two distinct measures for each. The first is one of
the Halstead (1977) measures, used in software engineering
to quantify code complexity. We focus on the “difficulty”
measure, which relates to how difficult the code is for a
human to read and understand, for example during code
review. The second is a novel measure based on prompting
an LLM to rate the relative complexity of our programs
(details in C.3). We have found this measure to align well
with our subjective sense of how easy it is to understand
these programs. We compute these measures both for the
programs returned by CogFunSearch as well as our human-
discovered baseline models.

Figure 7. Quality-of-Fit trades off with Complexity. Two com-
plexity measures (LLM-based, Halstead Difficulty) both show a
tradeoff between program complexity and normalized likelihood
on training data. See Appendix I for example programs from along
the frontier.

Examining these complexity measures (Figure 7 for Rat
Dataset, Structured2 configuration; Figure 12,13 for all
other datasets and configurations), we see a clear tradeoff be-
tween likelihood score and complexity, with higher scoring
programs tending to have higher complexity scores. These
plots also allow us to identify example programs on the
“efficient frontier”, earning the lowest complexity for their
likelihood score. Researchers interested in identifying mod-
els with different tradeoffs between fit and simplicity might
choose to examine programs at different positions along this
frontier. Comparing the frontier to the baseline program
for each dataset, we see that the CogFunSearch programs
include some that are improvements both in quality-of-fit
and in complexity (e.g. “example program 3” in Figure 7),
and that this is true across most seed programs and datasets
(Figures 12 and 13).

5. Discovered programs exhibit novel
strategies

Despite not having been explicitly optimized for inter-
pretability, we find that the best discovered CogFunSearch
programs exhibit intriguing and often interpretable strate-
gies. Moreover, many of the programs involve parameters,
learning updates, and decision-making rules that were not
present in our baselines. Here we aim to understand what
computational motifs characterize our highest-scoring pro-
grams (see Appendix G for full programs).

Top Scoring Human Program A salient feature of this
program was that the bulk of the code—and of the agent’s
internal state—was devoted to choice history rather than re-
ward tracking. In addition to variables tracking the expected
values of the four actions, the best program introduced a
number of novel variables that each track different reward-
independent statistics of previous choices:
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q_values = agent_state[:4]
old_choice = agent_state[4]
trial_since_last_switch = agent_state[5]
exploration_rate = agent_state[6]
cumchoice = agent_state[7:11]

These variable names are largely indicative of their actual
function. (“q values” is standard terminology in reinforce-
ment learning models for tasks of this kind to represent
the reward an agent expects to receive following an action
e.g. Ito & Doya 2009). Together, these variables can cap-
ture behavior motifs on different timescales, such as long
runs of the same choice, and other more complicated choice
patterns such as cycles or switching within vs. between
hands. Such patterns (several of which were also docu-
mented by Eckstein et al. 2024) are evidently prominent in
four-alternative bandit datasets, and not wholly captured by
the simple stay-switch perseverative mechanisms included
in the baseline model, which were inherited from models of
two-alternative bandit tasks (Lau & Glimcher, 2005). This
previously unappreciated aspect of the task may account for
the relatively weak performance of baseline models in the
human dataset relative to the other species.

Three independent runs with the Structured2 seed program,
(highest scoring program for Human), separately discovered
a common (but, to our knowledge, novel) motif whereby
the learned values were decayed, at each step, toward their
average:

# Best Human Bandit Program
q_values = (1 - exploration_rate) * q_values + (

exploration_rate * jnp.mean(q_values))

# Program 2
q_values = (1-bias) * q_values + bias * jnp.mean(q_values)

# Program 3
updated_q_values = (1 - alpha_choice) * updated_q_values + (

alpha_choice * jnp.mean(q_values))

All three of these top programs also introduced a ceiling
on the logit-derived choice probabilities, which was not in-
cluded in the baseline model but has been used in earlier
published models of similar tasks (Shteingart et al., 2013).
Suggestively, variable names from all three programs re-
ferred to this parameter as a “lapse” rate, presumably re-
flecting the prompted LLM’s contextual sensitivity and pre-
training on the psychology literature, where that term is
commonly used (Green et al., 1966). In the reinforcement
learning literature, in contrast, that rule is usually known as
“ϵ-greedy”.

Top Scoring Rat Program The best rat program was
derived from the FullModel seed program. This was the
only dataset for which we found the state variables from
the baseline model still present in the final program, and
supports the notion that RHG (which was derived by a
manual data-driven approach, Miller et al. 2021) is a strong

baseline. The additional state variables implement a learning
rule similar to those found in “Q-learning” models (e.g. Ito
& Doya 2009), updating the value of the chosen action
towards the reward, but which also updates it towards the
value of the unchosen arm:

state_w[choice] = (
alpha_q * state_w[choice] +
(1 - alpha_q) * reward_for_update +
alpha_bias * gamma_w * state_w[1-choice]))

(gamma w and alpha bias are constrained to be posi-
tive). This mechanism somewhat echoes the decay-toward-
average motif discovered above. Other top programs im-
plemented a term tracking recent average reward, which
modulated the exploration rate, reminiscent of several exist-
ing cognitive models (Aston-Jones & Cohen, 2005; Eldar
et al., 2016; Palminteri et al., 2015).

Top Scoring Fruit Fly Program The best Fruit Fly pro-
grams were also derived from FullModel. Similar compu-
tational motifs from the original baseline were present, but
often in altered form. “Forgetting”, which decays the value
of the unchosen action, was modified to apply only when
a positive reward prediction error was present. Differential
learning rates for rewards versus omissions were replaced
by the differential forgetting of values. This program again
exhibited a mixture of exploration strategies that combined
biased softmax and ϵ-greedy.

Subjective Code Quality Broadly, we noted that param-
eters were often assigned names that were meaningful in
the context of RL (e.g. lapse rate, initial values).
These names were often indicative of their role in the pro-
gram, and a sense of the program’s function could be
gleaned by browsing assigned parameters. Moreover, as
indicated above, many lines of code were sufficiently com-
prehensible that they could, with moderate effort, be mean-
ingfully summarized.

However, we note clear room for improvement in terms of
readability and complexity. While variable names tended
to be informative, for all seed programs besides LowInfo,
a number were vague (bias2), unnamed (params[0]), or
misleadingly named (e.g. exploration rate in the best
Human program snippet above actually modulated value for-
getting). Programs frequently attempted to index more pa-
rameters than were available (which does not throw an error
in compiled JAX code, but instead defaults to indexing the
final array element), and occasionally defined state variables
they never used (e.g. the best Rat program defines an 18
dimensional hidden state, and proceeds to update 7 of them).
Programs had occasional tautological lines (agent state
= agent state), or terms that seemed meaningful but
were in fact multiplied by a parameter that always fit to a
value of zero (gamma q in best Rat program). For examples
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of programs that strike a different balance of interpretability
and performance (as in Figure 7, see Appendix I).

6. Conclusion
We introduce CogFunSearch, an extension of FunSearch,
which enables data-driven discovery of cognitive models of
human and animal behavior. We find that CogFunSearch
can discover programs that outperform state-of-the-art base-
lines for predicting animal behavior, while remaining largely
interpretable. By sampling different programs from within
the database generated by CogFunSearch, we can identify
programs with different interpretability / performance trade-
offs.

Future work will aim to close the remaining quantitative gap
between the discovered programs and RNN, and to improve
model interpretability. Hybrid neurosymbolic architectures
with evolutionary architecture search and model distillation
comprise two promising approaches. While we focus on bal-
ancing quality-of-fit with interpretability, future work may
also look at trading off quality-of-fit with other desirable
model qualities, like runtime, optimizability, data efficiency,
or generizability.

An important area for future work is to improve the ef-
ficiency of (Cog)FunSearch, which required hundreds of
thousands of LLM calls to identify the best programs that we
reported here. A simple idea we explored in this direction is
to do a form of rejection sampling during program genera-
tion, which focused the optimization process on promising
programs. Although this approach risks converging to local
optima (due to a lack of exploration), our results indicate that
we were still able to obtain interpretable programs that out-
performed the baseline with only tens of thousand samples.
More sophisticated approaches can potentially improve fur-
ther on this efficiency-accuracy tradeoff. We provide more
details in Appendix C.6. It would also be worthwhile to ex-
plore the efficacy of other LLM models, other AI discovery
methods in the literature, as well as non-differentiable ap-
proaches (Acerbi & Ma, 2017; Ma et al., 2024; Zhou et al.,
2024; Misra & Kim, 2024; Ye et al., 2023; Lu et al., 2024;
Rmus et al., 2025).

Relatedly, the sheer density of programs output by CogFun-
Search also highlights that choice predictiveness alone is
likely not sufficient to identify a single “best” model. This
contrasts against the implicit assumption of much previ-
ous work in this area, which has often focused on ranking
smaller, curated sets of hand-designed models. An impor-
tant question for future work will be systematically explor-
ing similarities and differences between groups of models
with similar predictive power: to what extent are they dif-
ferent expressions of the same input-output relationship, or
notational variants that reparamaterize equivalent param-

eters or hidden states? Further LLM-based analysis (like
the first steps we take with interpretability ranking) may
help to address these questions. Also, to the extent different
expressions of a model are behaviorally equivalent in some
regime, they might suggest additional experimental tests or
measurably different neural implementations.

This work demonstrates the potential of LLM-guided pro-
gram synthesis for discovering novel models of human and
animal behavior. There are exciting opportunities to ap-
ply this to other, potentially more complex behaviors and
cognitive processes. More broadly, these results provide a
promising indication that LLM-guided discovery can be a
generally useful scientific tool in finding predictive models
that are interpretable as well as predictive.

Impact Statement
This work introduces an AI tool for discovering interpretable
predictive models of human and animal cognition. Mod-
els that explain behavior and can offer hypotheses about
underlying mechanisms are useful for psychologists and
neuroscientists, and tools for improving this practice stand
to advance the field considerably. Long-term, tools for build-
ing better predictive models of behavior and cognition also
stand to have a positive impact in the clinical psychology
setting, as they might support diagnosis or intervention.

Modeling human behavior is also associated with a degree
of risk, as models that effectively describe and predict be-
havior could also be deployed to disrupt human behavior in
targeted, adversarial ways. Dezfouli et al. (2020) illustrate
how predictive models of learning and decision-making can
be used to bias decision-making, and a similar risk applies
to our setting as well.

An additional consideration is the compute cost associated
with using LLMs. In discovering these programs, Cog-
FunSearch placed hundreds of thousands of LLM calls per
run. We explore a potentially more efficient approach in
Appendix C.6; however, this remains a limitation of LLM-
based methods.
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Novikov, A., Vũ, N., Eisenberger, M., Dupont, E., Huang,
P.-S., Wagner, A. Z., Shirobokov, S., Kozlovskii, B., Ruiz,
F. J. R., Mehrabian, A., Kumar, M. P., See, A., Chaud-
huri, S., Holland, G., Davies, A., Nowozin, S., Kohli, P.,
and Balog, M. Alphaevolve: A coding agent for scien-
tific and algorithmic discovery. Technical report, Google
DeepMind, 2025.

O’Doherty, J. P., Hampton, A., and Kim, H. Model-based
fmri and its application to reward learning and decision
making. Annals of the New York Academy of sciences,
1104(1):35–53, 2007.

Oliphant, T. E. Python for scientific computing. Computing
in Science & Engineering, 9(3):10–20, 2007. doi: 10.
1109/MCSE.2007.58.

Palminteri, S., Khamassi, M., Joffily, M., and Coricelli,
G. Contextual modulation of value signals in reward
and punishment learning. Nature Communications, 6(1):
8096, 2015. doi: 10.1038/ncomms9096. URL https:
//doi.org/10.1038/ncomms9096.

Palminteri, S., Wyart, V., and Koechlin, E. The impor-
tance of falsification in computational cognitive modeling.
Trends Cogn. Sci., 21(6):425–433, June 2017.

Peterson, J. C., Bourgin, D. D., Agrawal, M., Re-
ichman, D., and Griffiths, T. L. Using large-
scale experiments and machine learning to discover
theories of human decision-making. Science, 372
(6547):1209–1214, 2021. doi: 10.1126/science.
abe2629. URL https://www.science.org/
doi/abs/10.1126/science.abe2629.

Planton, S., van Kerkoerle, T., Abbih, L., Maheu, M.,
Meyniel, F., Sigman, M., Wang, L., Figueira, S., Romano,

S., and Dehaene, S. A theory of memory for binary se-
quences: Evidence for a mental compression algorithm in
humans. PLoS computational biology, 17(1):e1008598,
2021.

Rajagopalan, A. E., Darshan, R., Hibbard, K. L., Fitzgerald,
J. E., and Turner, G. C. Reward expectations direct learn-
ing and drive operant matching in drosophila. Proc. Natl.
Acad. Sci. U. S. A., 120(39):e2221415120, September
2023.

Real, E., Liang, C., So, D., and Le, Q. Automl-zero: Evolv-
ing machine learning algorithms from scratch. In Interna-
tional conference on machine learning, pp. 8007–8019.
PMLR, 2020.

Rmus, M., Jagadish, A. K., Mathony, M., Ludwig, T., and
Schulz, E. Generating computational cognitive models
using large language models, 2025. URL https://
arxiv.org/abs/2502.00879.

Romera-Paredes, B., Barekatain, M., Novikov, A., Balog,
M., Kumar, M. P., Dupont, E., Ruiz, F. J. R., Ellen-
berg, J. S., Wang, P., Fawzi, O., Kohli, P., and Fawzi,
A. Mathematical discoveries from program search with
large language models. Nature, 625(7995):468–475,
2024. doi: 10.1038/s41586-023-06924-6. URL https:
//doi.org/10.1038/s41586-023-06924-6.

Roy, N. A., Bak, J. H., Akrami, A., Brody, C. D.,
and Pillow, J. W. Extracting the dynamics of
behavior in sensory decision-making experiments.
Neuron, 109(4):597–610.e6, 2021. ISSN 0896-
6273. doi: https://doi.org/10.1016/j.neuron.2020.12.
004. URL https://www.sciencedirect.com/
science/article/pii/S0896627320309636.

Rule, J. S., Piantadosi, S. T., Cropper, A., Ellis, K., Nye,
M., and Tenenbaum, J. B. Symbolic metaprogram search
improves learning efficiency and explains rule learning
in humans. Nature Communications, 15(1):6847, 2024.
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A. Extended Methods
A.1. Evaluation

Our models are discovered using a bilevel optimization procedure in which programs are optimized across-subject using
an LLM-powered evolutionary algorithm in the outer loop, and parameters of the model are fit per-subject using gradient
descent in the inner loop (Fig. 8). This necessitates two levels of training and validation test sets: one (for the outer loop)
that splits the data into train and test subjects Dtrain and Dtest and one that splits the data of subject i into sessions di,odd and
di,even used for crossvalidation. For clarity, we refer to validation at the level of the outer loop as “evaluation” and validation
at the level of the inner loop as “scoring.”

In Sec. 3.2, we describe the procedure by which each program is scored on data from each subject using two-fold cross
validation across sessions. For each subject i, we divide sessions into equal splits (even and odd sessions), fit the parameters
of the model ϕ separately to each split, and evaluate the fit parameters θi,even and θi,odd on data from the opposite split. This
gives us two scores per subject: Ωi,even(ϕ,θi,odd) and Ωi,odd(ϕ,θi,even) – the likelihood of data from even sessions given
parameters fit to odd data, and vice versa. We average these scores together to produce a single score Ωi(ϕ) per subject.
These per-subject scores are then aggregated across the data in the training by computing the average across all subjects in
the dataset Ω(ϕ).

During scoring, parameters for the program are fit to the training data with gradient descent. CogFunSearch’s programs
must be implemented in Jax (Bradbury et al., 2018a) so that they are differentiable. This is communicated to the LLM by
including type hints and Jax imports in CogFunSearch’s specification. Non-jittable functions will usually throw an error and
not get added to the program database.

We use the AdaBelief optimizer with learning rate 5× 10−2 which is run until convergence or until 10,000 steps of gradient
descent are reached. In order to test convergence, we compare the current score at iteration k, Ωk to the previously recorded
score Ωk−100 every 100 steps. If the relative change in score |(Ωk − Ωk−100)/Ωk−100| is less than a convergence threshold
10−2, we conclude that parameter fitting has converged. In order to protect against local minima, this parameter fitting
process is repeated from different initial parameters up to 10 times, or until 3 programs have converged to the current best.

We maintain a group of held-out subjects, Dtest, in order to validate our discovered programs. Data from these subjects was
not seen at all during the evolution or scoring of FunSearch programs. In order to score programs on this held out data,
parameters are fit to data from each subject using the cross validation procedure described above.
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Figure 8. Organizing data for train and test. The full dataset D is split into Dtrain and Dtest; each of these is further split into fit and
eval subsets (i.e. Dfit

train and Deval
train). fit and eval will correspond to even and odd sessions, respectively, and then parameter fitting will be

repeated and the scores averaged. In the top panel, generated programs are evaluated by first fitting params on Dfit
train and then evaluating

them on Deval
train. After the evolutionary process has completed, the resulting program is tested on Dtest in an analogous manner. This latter

score is what is used for our comparisons throughout the paper.
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B. Extended Dataset descriptions
Generally, we divided all of our datasets into training and test sets to validate programs, which were then further divided
into even and odd datasets to validate parameters. However, the Human, Rat, and Fruit Fly datasets differed in key structural
ways which affected the data partitioning.
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Figure 9. Organizing data for train and test. In Human and Rat datasets we use half of the subjects for training, and half for testing; for
each train subject, we use half of its sessions for parameter fitting and half for evaluation. For the Fly dataset we use half the subjects for
training and half for testing, and proceed similarly as for the other datasets.

As detailed in Fig. 9, the Human dataset contained a large number of subjects and trials, but only five sessions per
subject. Despite the small number of sessions, we found we could fit the ten parameters of CogFunSearch programs (using
cross-validation given the data splits denoted by the horizontal dashed line in Fig. 9), and programs were optimized using
scores aggregated across subject (validating on the test subjects denoted with the dotted lines). The four parameters of the
PFQ baseline were fit similarly.

However, the small number of sessions meant that attempting to fit the parameters of an RNN to each subject resulted in
extremely low performance. Thus, as described in the main text, we followed the approach of Eckstein et al. (2024) and fit
an across-subject RNN model, joining sessions from each subject to form one long concatenated session. While parameters
are therefore not adapted per-subject for this model, the RNN can adapt in its latent space to reflect subject-specific activity.
The data organization that we used for fitting RNNs ignored the per-subject division into even/odd splits (denoted by a
dashed line in Fig. 9), and only required the train/test split indicated at the across-subject level (like the division illustrated
for Fly). While is not an apples-to-apples comparison, it does compare each model in the regime where they are best set up
to succeed.

The Rat dataset contained an intermediate number of subjects, but with far more sessions and trials per session, permitting
per-subject parameter fitting for all models. An important property of the experiment design is that 20% of trials were
randomly selected to be “instructed”, meaning that the animal was instructed to make a particular choice rather than allowed
to choose freely. Failure to make the instructed choice resulted in adverse outcomes (loud noise and a timeout). This was
included to enforce exploration, and ensure that the animal is receiving informative experience to drive the learning process
that is the targetted object of study. This is similar to “teacher forcing”, which is commonly used for training sequential
models.

The fly dataset contained a large number of subjects, but contained only one session per subject. This precluded any
possibility of fitting parameters per-subject; rather, we followed prior work (Mohanta, 2022; Rajagopalan et al., 2023) and
fit parameters of a metasubject model for CogFunSearch, DFQ baseline, and the GRU. The way we split the data is different
for this data also differed (Fig. 9): rather than having train and test subjects that were divided into sessions, we had train and
test subject populations and only the training subjects were further subdivided into even / odd splits. Model evaluation is
then performed by fitting the parameters of the model to all subjects in the training set, and then reporting performance on
the held-out test subjects.

A nuance about the Human dataset is that what we refer to as “sessions”, for notational consistency , would more accurately
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be referred to as blocks, because they are experienced by the subjects consecutively. Between blocks, subjects received
summary feedback about the previous session and took a short break. The appearance of arms changed after each block and
the drifts reset. Because of the temporal proximity of sessions in this dataset, there are likely dependencies between these
sessions that we are not explicitly capturing.

C. Extended Results
C.1. Normalized likelihoods

Table 1 presents the average absolute likelihoods for the Baseline, RNN, and CogFunSearch methods, with standard errors.

Baseline RNN CogFunSearch

Human 55.77± 0.64 62.04± 0.62 60.93± 0.63
Rat 66.63± 0.53 67.41± 1.21 67.22± 1.25

Fruit Fly 53.99± 0.24 54.71± 0.57 54.62± 0.57

Table 1. Normalized likelihood scores (as percentages) and standard error, as computed over held-out test subjects, for the evaluated
methods on each of the datasets.

The number of samples from the LLM required by CogFunSearch to produce these models was 1.2M (Human), 300K (Rat),
and 200K (Fly).

C.2. Differences across Seed Program

Here, we present extended results on the performance differences induced by the different seed programs considered
throughout training. Figure 10 shows how performance of the best discovered program changes over the first 150,000 LLM
samples for each CogFunSearch (fruit fly and human datasets, corresponding plot for the rat dataset can be found in the
main text as Figure 4). Figure 11 shows the performance of the best program discovered at the end of evolution for each
CogFunSearch run. Performance is often better than in Figures 11 and 10 as many CogFunSearch runs were allowed to
proceed for more steps of evolution.

Figure 10. Impact of seed program on quality and discoverability of models. Evaluation results of (left) fly dataset and on (right)
human dataset, computed at each timepoint in evolution for the best program so far discovered for each CogFunSearch run. Individual
runs are plotted as light lines, while dark lines represent the average across all runs.
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Figure 11. Impact of seed program on final model performance, from different seeds and independent runs, for each of the datasets.
Each dot represents the average normalized likelihood improvement (over baseline) averaged over the held-out test subjects.Each dot
represents an individual run, illustrating the variance incurred from independent runs.

C.3. Complexity Statistics

We evaluate the interpretability of the generated programs as well as the baselines, relative to their scores. To do so, we use
one of the Halstead measures (Halstead, 1977), which is a standard metric for software complexity. Figure 12 plots, for each
dataset, the generated programs from different program seeds, as well as the respective baseline.

Figure 12. Halstead Difficulty for generated programs given different seed programs. Each row represents a different dataset (Human,
Rat, Fly), each column a different seed program, and each point a different program.

We additionally explored a novel measure of complexity by prompting a large language model (LLM) to rate the relative
complexity of our programs (see Appendix C.3.1 for the prompt used). Figure 13 plots the complexity score against their
likelihood, for each of the generated programs from the best seed prompts for each dataset.

Here, to reduce LLM calls, we limit the Human programs to those with values above 56% normalized likelihood, which is
why PFQ Baseline appears to be an outlier in Fig. 13 but not in 12. Far fewer programs were generated for Fruit Fly and Rat
datasets so filtering was not required.
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Figure 13. LLM-based and Halstead Complexity Program Scores for Different Datasets. Each column represents a different dataset
(Human, Rat, Fly), and each point a different program.
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C.3.1. LLM-BASED PAIR-WISE COMPLEXITY SCORES

We use the prompt below to query an LLM to decide which of a pair of programs is less complex. These “preferences” are
then used to compute the scores displayed in Figure 7 and Figure 13.

Below are 2 code snippets. Which of them is easier to understand?.
Code snippet 1:
<program 1>
Code snippet 2:
<program 2>
Please explain your reasoning. End your answer with "Final Answer: <ans>", where ans is 0 if the first,
snippet is simpler and/or easier to understand than the
second snippet. Otherwise, ans is 1. Do not output anything after that.

This comparison operation is applied to all programs in the dataset with MergeSort, which returns a ranked list from least to
most complex. This rank is what is shown as LLM-based complexity score in Fig. 7 and Fig. 13.

C.4. Quantifying variability in discovered models
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Figure 14. Relationship between parameter values fit to even and odd splits of Human dataset. Each color denotes a different
parameter, and each dot a human subject in the dataset. The x-coordinate denotes the values of parameters fit to even sessions, the
y-coordinate the values of parameters fit to odd. (left) Parameters for best CogFunSearch program, (right) parameters for PFQ Baseline.
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parameters fit to odd. (left) Parameters for best CogFunSearch program, (right) parameters for RHG Baseline.
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In order to assess the robustness of the fit parameters under the discovered program, we compare the values of different
experimental parameters found across different data splits (e.g. even v. odd sessions). In Fig. 14, 15, and 16, we show
the parameters recovered for the even/odd split for the best discovered program for each dataset. We see that parameters
discovered across different splits of the data covary closely. We find these parameters to be even more consistent than those
found under the cognitive model.

C.5. Optimizability of the discovered models

A risk of our optimization pipeline is that we may evolve programs that are overadapted for the specific initial parameters
used for optimization, and show extreme sensitivity to the random seed used for parameter fitting. In order to determine
whether this was the case, we performed parameter fitting 50 times with different random seeds for both the best Rat program
and the RHG cognitive model baseline, for comparison.

We explore this for the best Rat programs found with FullModel seed program, and find that the discovered programs do
show a preference for the seed that was used during optimization (normalized likelihood on training seed = 67.206%, mean
normalized likelihood across other seeds = 67.187± 0.029, t = −4.447, p = 5× 10−5, only 15/49 seeds have larger values
than seed=0) (Fig. 17). Regardless, the best Rat program continues to outperform RHG baseline across all seeds, and
also appears to show less dependence on seed than the baseline (normalized likelihood 66.64± 0.079). Thus, while some
specialization for the training seed is evident, we conclude that it does not seem to result in more brittle, hard-to-optimize
programs.

RHG Baseline BestRatBandit
66.4

66.6

66.8

67.0

67.2

No
rm

al
ize

d 
%

 li
ke

lih
oo

d

Fitting Model Parameters
with different seeds

Seed 0
All seeds
All seeds (RHG)

Figure 17. Evaluating whether evolved programs are overadapted to the seed used for optimization, when doing parameter fitting. We
observe less dependence on seed than the baseline, and all random seeds continue to outperform all fits to RHG baseline.

Another risk of our pipeline is that we might learn programs that are overparameterized, with many different parameter
values capable of yielding similar solutions. In this case, we would expect to be substantial variability in the parameters
discovered when using different seeds. However, looking at the best CogFunSearch program, we find that the value of
parameters discovered from different seeds tend to covary with that of the seed used for optimization. Shown in Fig. 18 are
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the parameters discovered from different values.
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Figure 18. Evaluating whether our models are overparameterized. We plot the parameter values found by seed 0 against those found
by other seeds, and find that they are generally covariant, suggesting that our models are not overparameterized.

C.6. Rejection sampling for compute efficiency

We experimented with a form of rejection sampling for reducing the computational expense. Specifically, we maintain a set
of scores Ω = {Ω0,Ω1, . . . ,Ωn} for all programs evaluated thus far (see Section 3.2 for the details on how Ω is computed).
We use the 90th quantile as a threshold τ . When a new program ϕi is generated, we first evaluate it on a small subset of the
subjects (in our experiments we used 20) to produce a proxy score Ω′

i. If Ω′
i ≥ τ , we compute Ωi on the full set of subjects

and add it to Ω; if not, we reject ϕi.

This simple technique has the effect of only evolving promising programs. This myopic strategy naturally trades off
exploration for computational savings, yet as Figure 19 and Table 2 demonstrate, the resulting programs significantly
improve over the baseline (Wilcoxon signed rank tests on score improvement by subject: W = 2203 (human), 4 (rat), 1322
(flies); all with p < 0.02), and are competitive to the full runs.
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Figure 19. Rejection sampling can produce accurate models at a fraction of the compute. Despite trained with an order of magnitude
fewer samples, the discovered models still significantly outperform the baseline (p < 0.02 for all datasets).
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Baseline CogFunSearch (Subsampled) CogFunSearch (Full)

Human 55.77± 0.64 59.38± 0.62 60.93± 0.63
Rat 66.63± 0.53 67.03± 1.27 67.22± 1.25
Fly 53.99± 0.24 54.58± 0.56 54.62± 0.57

Table 2. Normalized likelihood scores (as percentages) and standard error, as computed over held-out test subjects, for the evaluated
methods on each of the datasets.

D. Model Parameters
In this section we present the numerical values and distributions for the parameters in both the baseline and discovered
models, for each dataset.

D.1. Human parameters

Figure 20 displays the distribution of parameter values of the best model discovered by CogFunSearch for the human dataset,
after fitting the parameters to the data. Table 3 displays the average and standard errors for these parameters.
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Figure 20. Distribution of parameter values of the best model discovered by CogFunSearch for the human dataset.

PFQ Baseline BestHumanBandit

Parameter Value Parameter Value Assigned name Transformed Value
βreward 5.9 ± 1.7 θ0 15 ± 4.5 beta r 14 ± 3.7
αlearn 0.19 ± 1.6 θ1 3.1 ± 2.6 lapse 0.83 ± 0.2
αforget -0.6 ± 3.7 θ2 -4.1 ± 1.6 prior 0.044 ± 0.091
persev 0.0018 ± 0.12 θ3 -2.3 ± 2.5 alpha exploration rate 0.2 ± 0.18

θ4 -4.4 ± 1.2 decay rate 0.026 ± 0.05
θ5 -0.5 ± 0.65 attention bias1 -0.5 ± 0.65
θ6 -5.7 ± 1.8 attention bias2 -5.7 ± 1.8
θ7 -0.14 ± 1.1 perseveration strength 0.75 ± 0.48
θ8 -6.6 ± 1.7 switch strength -6.6 ± 1.7
θ9 4.6 ± 0.96 lambda param 1 ± 0.036

gamma 4.6 ± 0.92
temperature 4.6 ± 0.92

beta p 4.6 ± 0.92

Table 3. Parameter values for PFQ Baseline (left) and HumanBanditBest discovered FunSearch program. For the discovered program, we
also show the values after they are transformed inside the FunSearch program, as well as the names they are assigned by the programs.
Shown are the means and standard deviations across all subjects and across both even and odd session splits. Note that θ9 additional
named variables transform θ9 – they typically reflect attempts to index further into the parameter array than the length (which in Jax,
defaults to selecting the last element).
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D.2. Rat parameters

Figure 21 displays the distribution of parameter values of the best model discovered by CogFunSearch for the rat dataset,
after fitting the parameters to the data. Table 4 displays the average and standard errors for these parameters.
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Figure 21. Distribution of parameter values of the best model discovered by CogFunSearch for the rat dataset.

RHG Baseline Best Rat Program

Parameter Value Parameter Value Assigned name Transformed Value
βreward 1.2 ± 0.54 θ0 -1.1 ± 0.46 alpha r 0.35 ± 0.074
βhabit 0.63 ± 0.48 θ1 -0.41 ± 1.4 alpha h 0.55 ± 0.21
βgambler 0.64 ± 0.66 θ2 2 ± 0.2 alpha g 0.98 ± 0.025
αreward -0.084 ± 0.45 θ3 -0.031 ± 0.48 alpha q 0.6 ± 0.1
αhabit 1.5 ± 1.2 θ4 0.72 ± 0.49 beta r 1.1 ± 0.32
αgambler 2.3 ± 2 θ5 0.76 ± 0.87 beta h 1.2 ± 0.46

bias 0.0059 ± 0.16 θ6 1.1 ± 0.74 beta g 1.5 ± 0.56
θ7 -1.7 ± 0.33 beta q 0.18 ± 0.056
θ8 0.27 ± 0.25 bias 0.27 ± 0.25
θ9 -0.26 ± 0.12 beta q bias -0.26 ± 0.12

beta h bias -0.26 ± 0.12
exploration noise 0.57 ± 0.051

lapse rate 0.43 ± 0.028
gamma q 0.57 ± 0.051
gamma w 0.64 ± 0.02

alpha bias 0.43 ± 0.028
reward bias -0.26 ± 0.12

bias 1 -0.26 ± 0.12

Table 4. Parameter values for RHG Baseline (left) and Best Rat Program discovered by CogFunSearch. For the discovered program,
we also show the values after they are transformed inside the CogFunSearch program, as well as the names they are assigned by the
programs. Shown are the means and standard deviations across all subjects and across both even and odd session splits. Note that θ9
additional named variables transform θ9, and typically reflect attempts to index further into the parameter array than the length (which in
Jax, defaults to selecting the last element).

D.3. Fly

Table 5 displays the average and standard errors for the parameters of the best model discovered by CogFunSearch for the
fly dataset, after fitting the parameters to the data.
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DFQ Baseline BestFlyBandit

Parameter Value Parameter Value Assigned name Transformed Value
αlearn -3.8, -4.1 θ0 -3.8, -4.1 params[0]/10 -0.38,-0.41
αforget -1.9, -1.9 θ1 -1.9, -1.9 lr 0.13,0.14
κreward 1.7, 1.5 θ2 1.7, 1.5 temperature 5.3,4.5
bias -3.1, -3.2 θ3 -3.1, -3.2 lapse rate 0.043,0.039

θ4 1, 1.2 alpha 2.8,3.2
θ5 0.083, -0.22 bias[0] 0.74,0.59
θ6 0.14, -0.071 bias[1] 0.76,0.66
θ7 -1.3, -1.3 forget rate 0.24,0.25
θ8 -4.1, -3.8 decay factor 0.98,0.98
θ9 0.47, 0.91 exploitation rate 0.61,0.71

Table 5. Parameter values for DFQ Baseline (left) and FlyBanditBest discovered FunSearch program. For the discovered program, we
also show the values after they are transformed inside the FunSearch program, as well as the names they are assigned by the programs.
The two values shown correspond to the parameter values for (even, odd) subjects. Since only one set of parameters is recovered per
dataset split, no error is provided.
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E. Baseline Programs
E.1. Human Cognitive Model Baseline

We used the following implementation of the PFQ Baseline from Eckstein et al. (2024).

def agent(
params: chex.Array,
choice: int,
reward: int,
agent_state: Optional[chex.Array],

) -> Tuple[chex.Array, chex.Array]:
"""Cognitive model describing human behavior on a multi-armed bandit task.

Assumes the agent is presented with four options on each trial.

Args:
params: a list containing [beta_r, alpha_learn, alpha_forget, and p]
choice: Choice made by the agent on the previous trial. 0, 1, 2, or 3
reward: Reward received by the agent on the previous trial. A scalar between

0 and 100.
agent_state: [Q1, Q2, Q3, Q4, previous_choice] If None, assumes this is the

first trial of a new session and defaults to [0, 0, 0, 0, -1].

Returns:
choice_logits: The probabilities that the agent will choose option 0, 1, 2,

or 3 on the next trial, expressed as logits.
agent_state: New agent state

"""

if agent_state is None:
agent_state = jnp.array(([0, 0, 0, 0, -1]))

qs = agent_state[:4]
prev_choice = jnp.int32(agent_state[5])

beta_r = params[0]
alpha_learn = 1 / (1 + jnp.exp(-params[1]))
alpha_forget = 1 / (1 + jnp.exp(-params[2]))
p = params[3]

# One-back perseveration param should be 0 on the first trial of the session
# We indicate this using prev_choice of -1
p = p * (prev_choice != -1)

# Update Q for chosen action
choice = jnp.int32(choice)
qs = qs.at[choice].set(alpha_learn * (reward - qs[choice]) + qs[choice])

# Update Q for unchosen actions using a mask
mask = jnp.ones_like(qs, dtype=bool)
mask = mask.at[choice].set(False)
qs = jnp.where(mask, qs * alpha_forget, qs)

# Values for choice: Qs plus bonus for p
qs_for_choice = qs.at[prev_choice].set(p + qs[prev_choice])

agent_state = jnp.append(qs, choice)

# Compute choice logits
choice_logits = beta_r * qs_for_choice

return choice_logits, agent_state
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E.2. Rat Cognitive Model Baseline

We used the following implementation of the RHG Baseline model from Miller et al. (2021).

def agent(
params: chex.Array,
choice: int,
reward: int,
agent_state: Optional[chex.Array],

) -> Tuple[chex.Array, chex.Array]:
"""Cognitive model describing rat behavior on a binary two-armed bandit task.

Args:
params: Model params. Different parameters are used for different rats.
choice: Previous choice. Values: 0 or 1.
reward: Previous reward. Values: 0 or 1.
agent_state: Previous state of the agent

Returns:
choice_logits: Vector of shape (2,) with the probabilities that the rat will

choose option 0 or 1 on the next trial, expressed as logits.
agent_state: New state of the agent, after observing the previous choice and

reward.
"""
if agent_state is None:
agent_state = jnp.zeros((3,))

beta_r = params[0]
beta_h = params[1]
beta_g = params[2]
alpha_r = 1 / (1 + jnp.exp(-params[3]))
alpha_h = 1 / (1 + jnp.exp(-params[4]))
alpha_g = 1 / (1 + jnp.exp(-params[5]))
bias = params[6]

# Convert choice and reward 0/1 to +-1
choice_for_update = 2*choice-1
reward_for_update = 2*reward-1

# Update R
agent_state = agent_state.at[0].set(

alpha_r * agent_state[0] +
(1 - alpha_r) * reward_for_update * choice_for_update

)
# Update H
agent_state = agent_state.at[1].set(

alpha_h * agent_state[1] + (1 - alpha_h) * choice_for_update
)
# Update G
agent_state = agent_state.at[2].set(

alpha_g * agent_state[2]
+ (1 - alpha_g)

* (choice_for_update - reward_for_update * choice_for_update)
)

choice_term = 0

# Update choice term from R.
choice_term += beta_r * agent_state[0]

# Update choice term from H.
choice_term += beta_h * agent_state[1]

# Update choice term from G.
choice_term += beta_g * agent_state[2]

# Update choice term from bias.
choice_term += bias

choice_logits = jnp.array([-1, 1]) * choice_term

return choice_logits, agent_state
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E.3. Fly Cognitive Model Baseline

We use the following implementation of the DFQ Baseline model from Ito & Doya (2009). See Ito & Doya (2009) and
Mohanta (2022) for more details.

def agent(
params: chex.Array,
choice: int,
reward: int,
agent_state: Optional[chex.Array]

) -> Tuple[chex.Array, chex.Array]:
"""Cognitive model describing fly behavior on a binary two-armed bandit task.

Args:
params: Fit parameters of the model.
choice: The choice made by a fly on this trial. 0 or 1
reward: The reward received by a fly on this trial. 0 or 1
agent_state: The current state of the cognitive model.

Returns:
choice_logits: The probabilities that the fly will choose option 0 or 1 on

the next trial, expressed as logits.
agent_state: The updated state of the cognitive model.

"""
# Initialize Q-values to 0.5.
if agent_state is None:
agent_state = jnp.array((0.5, 0.5))

# Unpack and rename parameters for readability.
alpha_learn_logit = params[0]
alpha_forget_logit = params[1]
kappa_reward = params[2]
kappa_omission = params[3]
alpha_learn = 1 / (1 + jnp.exp(-alpha_learn_logit))
alpha_forget = 1 / (1 + jnp.exp(-alpha_forget_logit))
qs = agent_state

# Chosen action's Q-value will be updated towards this target value.
learn_target = kappa_reward * reward + kappa_omission * (1 - reward)

# Update Q-value for chosen action.
qs = qs.at[choice].set(

alpha_learn * (learn_target - qs[choice]) + (1 - alpha_learn) * qs[choice]
)
# Update Q-value for unchosen action: decay towards 0.
qs = qs.at[1 - choice].set((1 - alpha_forget) * (qs[1 - choice]))

logits = qs
new_agent_state = qs
return logits, new_agent_state
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F. Seed programs
In this section we list the seed programs provided to CogFunSearch for the rat dataset. Note that the programs used for
human and fly datasets are functionally identical, with the exception of the FullModel seed program.

F.1. LowInfo seed program

"""Fits a model to a dataset."""

def score_function(data_id):
"""Fits parameters of a model and returns the normalized likelihood.

Args:
data_id: Data id.

Returns:
Normalized likelihood of the fit model on held out data, in range [0, 1].

"""
dataset = load_dataset(data_id)
normalized_likelihood = twofold_crossvalidation(dataset, model)
return normalized_likelihood

def model(params, x, y, state):
"""Implements a predictive model.

Args:
params: parameters of the model
x: first input
y: second input
state: current state of the model

Returns:
output: output of the model
state: updated state of the model

"""
if state is None:
state = jnp.zeros((10,))

# Fill in code here

output = jnp.array([0, 0])

return output, state

F.2. Structured1 seed program

"""Finds a likelihood function for a binary bandit task for the rat dataset."""

def score_function(rat_id):
"""Computes normalized likelihood of a dataset given a model.

Retrieves saved datasets from disk. Datasets are stored as JSON files with
keys "choices" and "rewards". Each of these is a list of lists of integers,
representing the choices and rewards made by the rat on each session.

Computes twofold cross-validation, using even-numbered and odd-numbered
sessions.

Args:
rat_id: Rat id.

Returns:
Likelihood of the fit model, in range [0, 1].

"""
dataset = load_rat_data(rat_i=rat_id)

normalized_likelihood = twofold_crossvalidation(dataset, agent)

return normalized_likelihood
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def agent(params, choice, reward, agent_state):
"""Cognitive model describing rat behavior on a binary two-armed bandit task.

Args:
params: Model params. Different parameters are used for different rats.
choice: Previous choice. Values: 0 or 1.
reward: Previous reward. Values: 0 or 1.
agent_state: Previous state of the agent

Returns:
choice_logits: Vector of shape (2,) with the probabilities that the rat will

choose option 0 or 1 on the next trial, expressed as logits.
agent_state: New state of the agent, after observing the previous choice and

reward.
"""
if agent_state is None:
agent_state = jnp.zeros((3,))

param0 = params[0]
param1 = 1 / (1 + jnp.exp(-params[1]))

# Fill in code here

choice_logits = jnp.array([0, 0])

return choice_logits, agent_state

F.3. Structured2 seed program

For conciseness, we use ... to indicate a section of the prompt that is the same as in Structured1.

...

def agent(params, choice, reward, agent_state):
"""
...
"""
# Do not remove comments or TODOs from this program.

# TODO: Initialize agent state.
if agent_state is None:
agent_state = jnp.zeros((3,))

# TODO: Define all parameters.
# Each parameter assignment should be a single line.
# Change the names of the parameters to be descriptive.
# Include comments describing the parameter transformation, if applicable.
param0 = params[0] # Placeholder parameter definition.
param1 = 1 / (1 + jnp.exp(-params[1])) # Placeholder parameter definition with logistic function.

# TODO: Update agent_state.
# Do not update more than one element at a time.
# Each component of the agent state update should be a single line.
# Include comments describing the computation in each line.
# agent_state[i] = ...

# TODO: Compute choice_logits.
# Each component of the choice logit computation should be a single line.
# Include comments describing the computation in each line.
choice_logits = jnp.array([0, 0])

return choice_logits, agent_state

F.4. FullModel seed program

For conciseness, we use ... to indicate a section of the prompt that is the same as in Structured1.

...
def agent(params, choice, reward, agent_state):

"""
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...
"""
if agent_state is None:
agent_state = jnp.zeros((3,))

beta_r = params[0]
beta_h = params[1]
beta_g = params[2]
alpha_r = 1 / (1 + jnp.exp(-params[3]))
alpha_h = 1 / (1 + jnp.exp(-params[4]))
alpha_g = 1 / (1 + jnp.exp(-params[5]))
bias = params[6]

# Convert choice and reward 0/1 to +-1
choice_for_update = 2*choice-1
reward_for_update = 2*reward-1

# Update R
agent_state = agent_state.at[0].set(

alpha_r * agent_state[0] +
(1 - alpha_r) * reward_for_update * choice_for_update

)
# Update H
agent_state = agent_state.at[1].set(

alpha_h * agent_state[1] + (1 - alpha_h) * choice_for_update
)
# Update G
agent_state = agent_state.at[2].set(

alpha_g * agent_state[2]
+ (1 - alpha_g)

* (choice_for_update - reward_for_update * choice_for_update)
)

choice_term = 0

# Update choice term from R.
choice_term += beta_r * agent_state[0]

# Update choice term from H.
choice_term += beta_h * agent_state[1]

# Update choice term from G.
choice_term += beta_g * agent_state[2]

# Update choice term from bias.
choice_term += bias

choice_logits = jnp.array([-1, 1]) * choice_term

return choice_logits, agent_state
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G. Best Discovered Programs
Here we show the best discovered program for each dataset. Quantitative results from these programs are featured in Fig.
1 (see Sec. 4.1). We note that different prompts elicited different best programs depending on the dataset: Best Human
Program was produced with Structured2 prompt, whereas Best Rat Program and Best Fly Program were produced with
FullModel prompt.

G.1. Human Structured2

This program was the overall best discovered program for Human. It was generated using the Structured2 seed program and
occurred after 1, 239, 338 samples.

def agent(params, choice, reward, agent_state = None):
num_params = 13

params = jnp.clip(params, -5, 5)

beta_r = jnp.clip(jax.nn.softplus(params[0]), 0.01, 20)
lapse = jnp.clip(jax.nn.sigmoid(params[1]), 0.01, 0.99)
prior = jnp.clip(jax.nn.softplus(params[2]), 0.01, 0.99)
alpha_exploration_rate = jnp.clip(jax.nn.sigmoid(params[3]), 0.01, 0.99)
decay_rate = jnp.clip(jax.nn.sigmoid(params[4]), 0.01, 0.99)
attention_bias1 = params[5]
attention_bias2 = params[6]
perseveration_strength = jax.nn.softplus(params[7])
switch_strength = params[8]
lambda_param = jnp.clip(jax.nn.softplus(params[9]), 0.0, 1.0)
gamma = jax.nn.softplus(params[10]) # Loss aversion parameter
temperature = jnp.clip(jax.nn.softplus(params[11]) + 1e-6, 1e-6, 100) #Softmax temperature
beta_p = jax.nn.softplus(params[12])

if agent_state is None:
q_values = jnp.ones((4,)) * prior
old_choice = -1
trial_since_last_switch = 0
exploration_rate = alpha_exploration_rate
cumchoice = jnp.zeros((4,))

else:
q_values = agent_state[:4]
old_choice = agent_state[4]
trial_since_last_switch = agent_state[5]
exploration_rate = agent_state[6]
cumchoice = agent_state[7:11]

if choice is not None and reward is not None:
delta = reward - gamma*(1-reward) - q_values[choice]
q_values = q_values.at[choice].set(q_values[choice] + delta)

trial_since_last_switch = jnp.where(choice == old_choice, trial_since_last_switch + 1, 0)
exploration_rate = exploration_rate * (1 - 1e-3) # decay exploration rate slowly
cumchoice = cumchoice.at[choice].set(cumchoice[choice] + 1)

q_values = (1 - exploration_rate) * q_values + exploration_rate * jnp.mean(q_values)
q_values = q_values * decay_rate

choice_probs = (1 - lapse) * jax.nn.softmax(beta_r * q_values / temperature + beta_p * jnp.log(
1 + cumchoice)) + lapse / 4

choice_logits = jnp.log(choice_probs)

if choice is not None:
perseveration_bonus = (choice == old_choice) * perseveration_strength * jax.nn.one_hot(

choice, num_classes=4)
switch_bonus = (choice != old_choice) * switch_strength * jax.nn.one_hot(choice, num_classes=4)
attention_bonus1 = attention_bias1 * jax.nn.one_hot(old_choice, num_classes=4)
attention_bonus2 = attention_bias2 * jax.nn.one_hot((choice + 2) % 4, num_classes=4)

choice_logits = (
choice_logits + perseveration_bonus + switch_bonus + attention_bonus1 + attention_bonus2 +
jax.nn.one_hot(choice, 4) * jnp.log(trial_since_last_switch + 1))

agent_state = jnp.concatenate(
[q_values, jnp.array([choice, trial_since_last_switch, exploration_rate]),
cumchoice])

return choice_logits, agent_state
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G.2. Rat FullModel

This program was the overall best discovered program for Rat. It was generated using the FullModel seed program and
occurred after 292, 690 samples.

def agent(params, choice, reward, agent_state = None):
if agent_state is None:
agent_state = jnp.zeros(18)

alpha_r = jax.nn.sigmoid(params[0])
alpha_h = jax.nn.sigmoid(params[1])
alpha_g = jax.nn.sigmoid(params[2])
alpha_q = jax.nn.sigmoid(params[3])
beta_r = jax.nn.softplus(params[4])
beta_h = jax.nn.softplus(params[5])
beta_g = jax.nn.softplus(params[6])
beta_q = jax.nn.softplus(params[7])
bias = params[8]
beta_q_bias = params[9]
beta_h_bias = params[10]
exploration_noise = jax.nn.softplus(params[11])
lapse_rate = jax.nn.sigmoid(params[12])
gamma_q = jax.nn.softplus(params[13])
gamma_w = 1./(1+jax.nn.softplus(params[14]))
alpha_bias = jax.nn.sigmoid(params[15])
reward_bias = params[16]
bias_1 = params[17]

alpha_r = alpha_r + 0.1
alpha_h = alpha_h + 0.1
alpha_g = alpha_g + 0.1
alpha_q = alpha_q + 0.1

choice_for_update = 2 * choice - 1
reward_for_update = 2 * reward - 1 + reward_bias

agent_state = agent_state.at[0].set(
alpha_r * agent_state[0] + (1 - alpha_r) * reward_for_update * choice_for_update

)
agent_state = agent_state.at[1].set(

alpha_h * agent_state[1] + (1 - alpha_h) * choice_for_update
)
agent_state = agent_state.at[2].set(

alpha_g * agent_state[2]
+ (1 - alpha_g) * choice_for_update * (1 - reward_for_update)

)

state_q = agent_state[3:5]
state_w = agent_state[5:7]

state_q = state_q.at[choice].set(alpha_q * state_q[choice] + (
(1 - alpha_q) * reward_for_update +
alpha_bias * gamma_q * state_w[1-choice]))

state_w = state_w.at[choice].set(alpha_q * state_w[choice] + (
(1 - alpha_q) * reward_for_update +
alpha_bias * gamma_w * state_w[1-choice]))

agent_state = agent_state.at[3:5].set(state_q)
agent_state = agent_state.at[5:7].set(state_w)

Q = agent_state[3:5]
W = agent_state[5:7]
choice_term = (

beta_r * agent_state[0]
+ beta_h * agent_state[1]
+ beta_g * agent_state[2]
+ beta_q * (W[0] * Q[0] - W[1] * Q[1])
+ bias
+ beta_q_bias * (Q[0] - Q[1])
+ beta_h_bias * agent_state[1] + bias_1

)
choice_logits = (

lapse_rate * jnp.log(jnp.array([0.5, 0.5])) +
(1 - lapse_rate) * jnp.array([-1, 1]) * choice_term)

return choice_logits, agent_state
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G.3. Fruit Fly FullModel

This program was the overall best discovered program for FlyBandit. It was generated using the FullModel seed program
and occurred after 195, 962 samples.

def agent(params, choice, reward, agent_state = None):
n_params_v2 = 10
if agent_state is None:
agent_state = jnp.repeat(params[0] / n_params_v2, 2)

else:
agent_state = agent_state

lr = jax.nn.softplus(params[1])
temperature = jnp.exp(params[2])
lapse_rate = jax.nn.sigmoid(params[3])
alpha = jnp.exp(params[4]) # alpha > 0
bias = jax.nn.softplus(params[5:7]) # Bias should be positive
forget_rate = jax.nn.softplus(params[7])
decay_rate = jax.nn.softplus(params[8])
exploitation_rate = jax.nn.sigmoid(params[9])

q_vals = agent_state
rpe = reward - q_vals[choice]
p_choice = jax.nn.sigmoid(bias[1] * (q_vals[1 - choice] - q_vals[choice]))

decay_factor = jnp.exp(-decay_rate)
delta_qval = lr * rpe * p_choice
updated_q_values_choice = q_vals.at[choice].set(q_vals[choice] + delta_qval)

updated_q_values = jax.lax.select(
reward, updated_q_values_choice, jnp.copy(q_vals) * decay_factor)

updated_q_values = updated_q_values.at[1 - choice].set(
updated_q_values[1 - choice]
- forget_rate * jnp.maximum(0, rpe * (1 - p_choice) * decay_factor)

) # Changed this line to reduce overwriting

updated_q_values = jnp.clip(updated_q_values, -alpha, alpha)
updated_q_values = updated_q_values * (1 - lapse_rate)

choice_logits = (
exploitation_rate * jnp.exp(bias + temperature * updated_q_values)
+ (1 - exploitation_rate) * jnp.exp(bias)
+ 1e-5

)

return choice_logits, updated_q_values

H. Seed program comparison
Here we show example best CogFunSearch programs that are discovered for the Rat dataset under different seed programs
(Sec. F). We note that these programs differ from the best found programs, as they use a later cutoff. This earlier cutoff was
used here to permit comparison with programs from other prompts given a similar number of samples.

H.1. Rat LowInfo

Best LowInfo program given a cutoff of 165,000 samples.

def model(params, x, y, state = None):
nparams = len(params)
z = jnp.max(jnp.array([jnp.abs(x * y) * 0.5, jnp.tanh(x * y) * 0.5]))
z1 = jnp.sqrt(jnp.abs(x))
z2 = jnp.sqrt(jnp.abs(y))
x_clip = jnp.clip(x, -20, 20)
y_clip = jnp.clip(y, -10, 10)
z_clip = jnp.clip(z, -20, 20)

if state is None:
state = jnp.zeros((3,))

state_mean = jnp.mean(state)
x1 = (params[0] * z_clip + params[1] * x_clip + params[2] * y_clip +
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params[3] * state_mean + params[4])
x2 = (params[5] * x_clip + params[6] * jnp.sin(y_clip) + params[7] * z_clip +

params[8] * state[1] + params[9])
output = jnp.array([x1, x2])
alpha = 0.2
beta = 0.7
gamma = 0.8
state = jnp.array([

gamma * (x1 + 1) + (1 - gamma) * state[0] + params[10] * x_clip * x_clip +
params[11] * y_clip * y_clip,
beta * (x2 + 1) + (1 - beta) * state[1] + params[12] * z_clip +
params[13] * z1,
alpha * (

params[14] * x_clip + params[15] * y_clip + params[16] * state[2]) * (
1 + jnp.abs(x_clip) + jnp.abs(y_clip)) - (
alpha * (state[2] + 2) + params[17] * x_clip * y_clip)

])
return output, state

H.2. RatBandit Structured1

Best Structured1 program given a cutoff of 165,000 samples.

def agent(params, choice, reward, agent_state = None):
num_params = 16
alpha = jax.nn.softplus(params[0])
beta = jax.nn.softplus(params[1])
decay = jax.nn.sigmoid(params[2])
initial_bias = jax.nn.softplus(params[3])
bias_decay = jax.nn.softplus(params[4])
exploration_noise = jax.nn.softplus(params[5])
alpha_pe_pos = jax.nn.softplus(params[6])
alpha_pe_neg = jax.nn.softplus(params[7])
decay_pe = jax.nn.softplus(params[8])
temperature = jax.nn.softplus(params[9]) + 0.1
lapse_rate = jax.nn.sigmoid(params[10])
initial_q_value = jax.nn.softplus(params[11])
choice_bias = params[12]
exploration_ratio = jax.nn.softplus(params[13])
initial_bias_direction = params[14]
beta_pe = jax.nn.softplus(params[15])

if agent_state is None:
initial_Q = jnp.full(2, initial_q_value)
initial_bias = jax.nn.sigmoid(initial_bias * jnp.array(

[initial_bias_direction, 1 - initial_bias_direction])) * 5
initial_pe = jnp.zeros(2)
agent_state = {

'Q_values': initial_Q,
'bias': initial_bias,
'PE': initial_pe,

}

delta = reward - agent_state['Q_values'][choice]

Q_values = agent_state['Q_values'].at[choice].set(
agent_state['Q_values'][choice] + alpha * delta)

Q_values = (1 - decay) * Q_values + decay * initial_q_value

bias = (1 - bias_decay) * agent_state['bias']
bias += initial_bias * jnp.array([1 - choice, choice])

pe_pos = jnp.maximum(delta, 0)
pe_neg = -jnp.minimum(delta, 0)
pe = (1 - decay_pe) * agent_state['PE']
pe += alpha_pe_pos * pe_pos * jnp.array([1 - choice, choice])
pe -= alpha_pe_neg * pe_neg * jnp.array([1 - choice, choice])

exploration_noise = exploration_noise * jax.random.beta(
jax.random.PRNGKey(0), 1, exploration_ratio, shape=(2,))

exploration_noise = exploration_noise - jnp.mean(exploration_noise)

choice_logits = beta * (Q_values + bias
) / temperature + exploration_noise + pe + choice_bias * jnp.array(

[1, -1]) + beta_pe * pe
choice_logits = jnp.clip(choice_logits, -10, 10)
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#Add Lapse Rate
lapse_prob = lapse_rate /2
choice_logits = choice_logits + lapse_prob + lapse_prob

agent_state = {
'Q_values': Q_values,
'bias': bias,
'PE': pe,

}
return choice_logits, agent_state

H.3. Rat Structured2

Best Structured2 program given a cutoff of 165,000 samples.

def agent(params, choice, reward, agent_state = None):

alpha = jax.nn.softplus(params[0:2])
inv_temp = jax.nn.softplus(params[2])
lapse_rate = jax.nn.softplus(params[3]) # Changed sigmoid to softplus
stickiness = jax.nn.softplus(params[4])
decay_rate = jax.nn.softplus(params[5]) # Changed sigmoid to softplus
omega = jax.nn.softplus(params[6:8]) # two omega params
bias = params[8]
init_q = params[9:11]
sigma = jax.nn.softplus(params[11])
exploration_rate = jax.nn.softplus(params[12])
momentum = jax.nn.softplus(params[13])
omega_factor = jax.nn.softplus(params[14])
lapse_mode = jax.nn.softplus(params[15])
lapse_alpha = jax.nn.softplus(params[16])

if agent_state is None:
agent_state = jnp.concatenate(

[init_q, jnp.zeros(2) + 0.5,
jnp.array([0.5]), jnp.array([0])])

q_values = agent_state[:2]
stickiness_state = agent_state[2:4]
lapse_rate_state = agent_state[4]
trial_count = agent_state[5]

reward_noisy = reward + lapse_mode * jax.random.normal(
jax.random.PRNGKey(0), shape=()) * sigma

reward_noisy = jnp.clip(reward_noisy, 0, 1)
delta = reward_noisy - q_values[choice]

q_values_updated = jnp.where(
choice == 0,
jnp.array(

[q_values[0] + alpha[0] * delta,
q_values[1] - omega[0] * alpha[0] * delta * omega_factor]),

jnp.array(
[q_values[0] - omega[1] * alpha[1] * delta * omega_factor,
q_values[1] + alpha[1] * delta]),

)

# Updated stickiness calculation
stickiness_state = (

(1 - decay_rate) * stickiness_state +
stickiness * (1 - reward_noisy) * jax.nn.one_hot(choice, 2))

choice_logits = inv_temp * (
q_values_updated + stickiness_state +
bias * jnp.array([1.0, -1.0]))

exploration_term = (
exploration_rate * jnp.exp(-trial_count / 20) * jnp.array([q_values_updated[1],
q_values_updated[0]])

choice_logits = choice_logits + exploration_term
updated_lapse_rate = (

(1 - lapse_alpha) * lapse_rate_state +
lapse_alpha * jnp.clip(lapse_rate, 0.001, 0.999))

p = (
(1 - updated_lapse_rate) * jax.nn.softmax(choice_logits) +
updated_lapse_rate * jnp.array([0.5, 0.5]))
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p = jnp.clip(p, 1e-8, 1 - 1e-8)
choice_logits = jnp.log(p / (1 - p))

q_values = momentum * q_values_updated + (1 - momentum) * q_values
q_values = (1 - decay_rate) * q_values + decay_rate * init_q

trial_count += 1

agent_state = jnp.concatenate(
[q_values, stickiness_state,
lapse_rate_state[None],
trial_count[None]])

return choice_logits, agent_state

H.4. Rat FullModel

Best FullModel program given a cutoff of 165,000 samples.

def agent(params, choice, reward, agent_state = None):
alphas = jax.nn.sigmoid(params[:5]) + 0.05
betas = params[5:10]
bias_term = params[10]
tau = jax.nn.softplus(params[11]) + 1.
lapse_rate = jax.nn.sigmoid(params[12]) * 0.25 + 0.0

if agent_state is None:
agent_state = jnp.array([0., 0., 0., 0., 0.5, 0.5])

choice_for_update = 2 * choice - 1
reward_for_update = 2 * reward - 1

reward_prediction_error = reward_for_update - agent_state[4]

agent_state = agent_state.at[0].set(
alphas[0] * agent_state[0] +
(1 - alphas[0]) * reward_prediction_error *
choice_for_update * (1 - agent_state[5])

)
agent_state = agent_state.at[1].set(

alphas[1] * agent_state[1] +
(1 - alphas[1]) * choice_for_update

)
agent_state = agent_state.at[2].set(

alphas[2] * agent_state[2] + (1 - alphas[2]) * (
reward_for_update * choice_for_update -
choice_for_update)

)
agent_state = agent_state.at[3].set(

alphas[3] * agent_state[3] +
(1 - alphas[3]) * reward_prediction_error * (1 - agent_state[5])

)
agent_state = agent_state.at[4].set(

alphas[4] * agent_state[4] +
(1 - alphas[4]) * reward_prediction_error * (1 - agent_state[5])

)
agent_state = agent_state.at[5].set(

alphas[4] * agent_state[5] +
(1 - alphas[4]) * reward_prediction_error * (1-agent_state[5])

)

choice_term = (
betas[0] * agent_state[0] +
betas[1] * agent_state[1] +
betas[2] * agent_state[2] +
betas[3] * agent_state[3] +
betas[4] * agent_state[4] +
bias_term) / tau

#choice_term = (betas[0] * agent_state[0] + betas[1] * agent_state[1] +
#betas[2] * agent_state[2] + betas[3] * agent_state[3] +
#betas[4] * jnp.maximum(agent_state[4], 0) + bias_term) / tau

choice_logits = (1 - lapse_rate) * jnp.array(
[choice_term, -choice_term]) + lapse_rate * jnp.log(jnp.array([0.5, 0.5]))

return choice_logits, agent_state
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I. Example Programs that vary in Complexity
These are all programs sampled from the complexity/accuracy frontier, as discussed in Section 4.2 and illustrated in Figures
7, 13.

I.1. Human Example Programs

Here we share the Example Programs for the Human dataset, indicated in Fig. 13. These programs are ordered from least
complex / lowest scoring to most complex / highest scoring, along the frontier. We provide a brief description of the code’s
function, for convenience. These programs were all generated with the Structured2 seed program, which also generated the
best Human CogFunSearch programs.

Example Program 1. This program substantially overlaps with the PFQ baseline, exhibiting Q-learning and forgetting.
Interestingly, it does not exhibit any perseveration (it records previous choice in its state, but never uses it). The key addition
in this program is optimistic initialization in which all Q-values start at 1.

def agent(params, choice, reward, agent_state):

if agent_state is None:
agent_state = jnp.ones((5,)) # start all Q-values at 1

beta_r = jnp.exp(params[0])
alpha_learn = jax.nn.softplus(params[1])
alpha_forget = jax.nn.softplus(params[2])

q_values = agent_state[:4]

# Update Q values
updated_qvalues = q_values * (1 - alpha_learn) + alpha_learn * reward
updated_qvalues = updated_qvalues.at[choice].set(

updated_qvalues[choice] +
alpha_learn * (reward - q_values[choice]))

# Decay Q values
decaying_qvalues = updated_qvalues * jnp.exp(-alpha_forget)

# Compute choice probabilities using softmax
choice_logits = beta_r * decaying_qvalues

# Update agent state.
new_agent_state = jnp.concatenate([decaying_qvalues, jnp.array([choice])])

return choice_logits, new_agent_state

Example Program 2. Example Program 2 is similar to 1, except that initial Q-values are now a fittable parameter instead of
optimistically initialized to 1, and forgetting decays toward 0.5 rather than 0 (as in Example Program 1) or the mean Q-value
(as in the best CogFunSearch program). This program introduces an additional parameter compared to Example Program 1,
lapse rate, which is also found in the highest scoring CogFunSearch runs and evokes the classic psychology literature.

def agent(params, choice, reward, agent_state):

# Define parameters
beta_r = jax.nn.softplus(params[0])
alpha_learn = jax.nn.sigmoid(params[1])
alpha_forget = jax.nn.sigmoid(params[2])
lapse_rate = jax.nn.sigmoid(params[3])

initial_q = jax.nn.sigmoid(params[4]) # Initialize Q values close to 0.5

#Initialize state
if agent_state is None:
agent_state = jnp.repeat(initial_q, 4)

q_vals = agent_state
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# Update Q-values
prediction_error = reward - q_vals[choice]
q_vals = q_vals.at[choice].set(

(1 - alpha_learn) * q_vals[choice] + alpha_learn * reward
)
# Forgetting process
q_vals = q_vals * (1 - alpha_forget) + 0.5 * alpha_forget # Adds in forgetting that favors 0.5

# Incorporate lapse rate
choice_probs = (

(1 - lapse_rate) * jax.nn.softmax(beta_r * q_vals) +
lapse_rate * (1.0 / 4.0) * jnp.ones(4))

choice_logits = jnp.log(choice_probs)

return choice_logits, q_vals

Example Program 3. is considerably higher scoring and more complex Figure 13.

Like Example Program 2, this program also includes fittable initial Q-values. Both programs also track previous state, but
don’t actually use it to inform any computation. The practice of decaying Q-values of chosen actions toward the mean
Q-value, which is present in all of the top CogFunSearch programs, is also introduced in this program. This program uses
recent reward to modulate exploration, with more exploitation if the immediately preceding trial was rewarded.

def agent(params, choice, reward, agent_state):

param_names = ['beta_r', 'alpha_learn', 'alpha_forget', 'omega', 'inverse_temperature', 'init_q']
params_dict = dict(zip(param_names, params))

if agent_state is None:
# Default values
agent_state = jnp.ones(5) * 0 # Initialize
agent_state = agent_state.at[:4].set(jax.nn.softplus(params_dict['init_q'])) # Set the Q values
agent_state = agent_state.at[4].set(-1)

#Define parameters
beta_r = jax.nn.softplus(params_dict['beta_r']) + 0.1
alpha_learn = jax.nn.sigmoid(params_dict['alpha_learn'])
alpha_forget = jax.nn.sigmoid(params_dict['alpha_forget'])
omega = jax.nn.softplus(params_dict['omega'])
inverse_temperature = jax.nn.softplus(params_dict['inverse_temperature']) + 0.01
init_q = jax.nn.softplus(params_dict['init_q'])

# Update agent state
q_values = agent_state[:4]
previous_choice = agent_state[4]

q_values = q_values.at[choice].set(
q_values[choice] + alpha_learn * (reward - q_values[choice])) # Update Q value for chosen arm

alpha_forget_mult = 1.0 - alpha_forget
q_values = (

q_values * alpha_forget_mult +
alpha_forget * jnp.mean(q_values)) # Apply forgetting weighted by overall mean Q value

#Compute choice logits
# Apply inverse temperature and reward modulation
choice_logits = beta_r * q_values / inverse_temperature * (1 + omega * reward**2)
choice_probabilities = jax.nn.softmax(

choice_logits,axis = 0) #Apply softmax for probabilities

choice_logits = jnp.log(choice_probabilities + 1e-8)

final_state = jnp.concatenate(
(q_values, jnp.array([choice]))) # Update the final state

return choice_logits, final_state

I.2. Rat Example Programs

Example Programs for the Rat dataset, indicated in Figs. 7, 13. These programs are ordered from least complex / lowest
scoring to most complex / highest scoring, along the frontier. We provide a brief description of the code’s function, for
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convenience. These programs were all generated with the FullModel seed program, which also generated the best Rat
CogFunSearch programs.

Example Program 1. This program preserves the terms R, H, and G, expanding them to reward, habit, and guess. It is
notable that the LLM maps H in the seed program to habit, as the word habit is not included anywhere in the seed program
or initial prompt documentation. It maps G to guess, which is different from the RHG baseline where it refers to gambler’s
fallacy. This program has only 5 parameters, compared to the RHG’s model’s seven, and the same learning rate is used
across all state updates. The code shows a similar update to RHG, except instead of tracking the recently rewarded choice, it
simply tracks recent reward. Then, all state variables are summed.

def agent(params, choice, reward, agent_state):

if agent_state is None:
agent_state = jnp.zeros((3,))

v_reward = params[0]
v_habit = params[1]
v_guess = params[2]
bias = params[3]
learning_rate = jax.nn.sigmoid(params[4])

prev_choice = 2 * choice - 1
prev_reward = 2 * reward - 1

# Update reward prediction.
agent_state = agent_state.at[0].set(

(1 - learning_rate) * agent_state[0] + learning_rate * prev_reward
)

# Update choice value.
agent_state = agent_state.at[1].set(

(1 - learning_rate) * agent_state[1] + learning_rate * prev_choice
)

# Update guessing value.
agent_state = agent_state.at[2].set(

(1 - learning_rate) * agent_state[2] +
learning_rate * (prev_choice - prev_reward * prev_choice)

)

# Compute choice logits.
choice_term = (
v_reward * agent_state[0] + v_habit * agent_state[1] + v_guess * agent_state[2] +
bias)
choice_logits = jnp.array([-1, 1]) * choice_term

return choice_logits, agent_state

Example Program 2. uses the same parameters as the RHG baseline, plus an additional temperature parameter controlling
exploration. It also defines 7 additional state variables that separately track reward and omission rates, as well as a complex
interaction of reward and choice.

def agent(params, choice, reward, agent_state):

n_params = params.shape[0]
if agent_state is None:
agent_state = jnp.zeros((10,))

alpha_r = jax.lax.clamp(0.001, 0.999, jax.nn.sigmoid(params[0]))
alpha_h = jax.lax.clamp(0.001, 0.999, jax.nn.sigmoid(params[1]))
alpha_g = jax.lax.clamp(0.001, 0.999, jax.nn.sigmoid(params[2]))
beta_r = jax.nn.softplus(params[3])
beta_h = jax.nn.softplus(params[4])
beta_g = jax.nn.softplus(params[5])
bias_params = params[6:8] # bias is now a vector
inverse_temperature = jax.nn.softplus(params[8])

choice_for_update = 2 * choice - 1
reward_for_update = 2 * reward - 1

delta_r = reward_for_update * choice_for_update
agent_state = agent_state.at[0].set(alpha_r * agent_state[0] + (1 - alpha_r) * delta_r)
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delta_h = choice_for_update
agent_state = agent_state.at[1].set(alpha_h * agent_state[1] + (1 - alpha_h) * delta_h)
delta_g = choice_for_update - reward_for_update * choice_for_update
agent_state = agent_state.at[2].set(alpha_g * agent_state[2] + (1 - alpha_g) * delta_g)

# Separate parameters for biases.
# Exponential decay, with a dynamic decay rate depending on the reward expectation.
decay_rate_for_reward = jnp.clip(0.2 + 0.5*jnp.tanh(agent_state[6]), 0.1, 0.9)
decay_rate_for_punishment = jnp.clip(0.5 + 0.5*jnp.tanh(agent_state[7]), 0.1, 0.9)

agent_state = agent_state.at[3].set(
decay_rate_for_reward * (

agent_state[3] + reward_for_update * choice_for_update * bias_params[0])
) # Bias for choice 1
agent_state = agent_state.at[4].set(

decay_rate_for_punishment * (
agent_state[4] + reward_for_update * choice_for_update * bias_params[1])

) # Bias for choice -1
agent_state = agent_state.at[6].set(

0.99 * agent_state[6] + 0.01 * reward_for_update)
agent_state = agent_state.at[7].set(

0.99 * agent_state[7] + 0.01 * (1-reward_for_update))

state_1 = agent_state[3] + agent_state[4] #changed line

choice_term = (beta_r * agent_state[0] + beta_h * agent_state[1] +
beta_g * agent_state[2] + state_1 + params[-1])

choice_logits = jnp.array([-1, 1]) * choice_term * inverse_temperature

return choice_logits, agent_state

Example Program 3. This program has very similar code to the RHG baseline. It includes a different parameterization of
the parameters, which constrains all learning rates to be clamped at 0.01 and 0.99, lacks a bias term, and includes a step
where tanh applied to the choice term. Charmingly, this tanh step is accompanied by a comment claiming: “This is different
from the other version, potentially an important improvement”. Verifying this claim would require future investigation.

def agent(params, choice, reward, agent_state):

if agent_state is None:
agent_state = jnp.zeros((3,))

alpha_r = jax.lax.clamp(0.01, 0.99, jax.nn.softplus(params[0]))
alpha_h = jax.lax.clamp(0.01, 0.99, jax.nn.softplus(params[1]))
alpha_g = jax.lax.clamp(0.01, 0.99, jax.nn.softplus(params[2]))
beta_r = jax.nn.softplus(params[3])
beta_h = jax.nn.softplus(params[4])
beta_g = jax.nn.softplus(params[5])

# Convert choice and reward 0/1 to +-1
choice_for_update = 2 * choice - 1
reward_for_update = 2 * reward - 1

# Update of values R, H, G.
delta_r = reward_for_update * choice_for_update
agent_state = agent_state.at[0].set(alpha_r * agent_state[0] + (1 - alpha_r) * delta_r)
delta_h = choice_for_update
agent_state = agent_state.at[1].set(alpha_h * agent_state[1] + (1 - alpha_h) * delta_h)
delta_g = choice_for_update - reward_for_update * choice_for_update
agent_state = agent_state.at[2].set(alpha_g * agent_state[2] + (1 - alpha_g) * delta_g)

# This is different from the other versions, potentially an important improvement.
choice_term = jnp.tanh(

beta_r * agent_state[0] +
beta_h * agent_state[1] +
beta_g * agent_state[2]) +
params[6] +
params[7] * choice_for_update +
params[8] * reward_for_update

)

choice_logits = jnp.array([-1, 1]) * choice_term * 2 # this is a better softmax
return choice_logits, agent_state
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I.3. Fruit Fly Example Programs

Example Programs for the Fruit Fly dataset, indicated in Figure 13. These programs are ordered from least complex / lowest
scoring to most complex / highest scoring, along the frontier. We provide a brief description of the code’s function, for
convenience. These programs were all generated with the FullModel seed program, which also generated the best Rat
CogFunSearch programs.

Example Program 1. This program closely imitates the DFQ baseline, adding a bias toward which the Q-value of the
unchosen action decays.

def agent(params, choice, reward, agent_state):

if agent_state is None:
agent_state = jnp.array([0.0, 0.0])

# Unpack and rename parameters for readability.
alpha_learn = jax.nn.softplus(params[0]) # Ensures alpha_learn is positive
alpha_forget = jax.nn.softplus(params[1]) # Ensures alpha_forget is positive
kappa_reward = jax.nn.softplus(params[2]) # Ensures kappa_reward is positive
kappa_omission = jax.nn.softplus(params[3]) # Ensures kappa_omission is positive
bias = params[4]
qs = agent_state

# Chosen action's Q-value will be updated towards this target value.
learn_target = kappa_reward * reward + kappa_omission * (1 - reward)

# Update Q-value for chosen action.
new_q = qs[choice] + alpha_learn * (learn_target - qs[choice])
qs = qs.at[choice].set(new_q)
# Update Q-value for unchosen action: decay towards bias.
qs = qs.at[1 - choice].set(qs[1 - choice] - alpha_forget * (qs[1 - choice] - bias))

# Add a bias to account for initial preference.
logits = jax.nn.softplus(qs + bias)
new_agent_state = qs
return logits, new_agent_state

Example Program 2. This program closely imitates the DFQ baseline, adding a bias toward which the Q-value of the
unchosen action decays. Like other discovered programs, including the best CogFunSearch Fruit Fly program, it includes a
lapse rate term. Like the best CogFunSearch program, this program includes a somewhat unusually complex exploration
policy.

def agent(params, choice, reward, agent_state):

if agent_state is None:
agent_state = jnp.array((0.5, 0.5))

# Unpack parameters
alpha_learn_logit = params[0]
beta_logit = params[1]
kappa_reward_logit = params[2]
kappa_omission_logit = params[3]
tau_logit = params[4]
lapse_rate_logit = params[5]
alpha_forget_logit = params[6]

alpha_learn = jax.nn.softplus(alpha_learn_logit)
beta = jnp.exp(beta_logit) # enforce beta > 0
kappa_reward = jax.nn.softplus(kappa_reward_logit)
kappa_omission = jax.nn.softplus(kappa_omission_logit)
tau = jax.nn.softplus(tau_logit)
lapse_rate = jax.nn.sigmoid(lapse_rate_logit)
alpha_forget = jax.nn.softplus(alpha_forget_logit)

qs = agent_state

# update q value.
learn_target = kappa_reward * reward + kappa_omission * (1 - reward)
error = (learn_target - qs[choice])

qs = qs.at[choice].set(qs[choice] + alpha_learn * error)
qs = qs.at[1 - choice].set(qs[1 - choice] - alpha_forget * error)
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qs = jnp.clip(qs, 0., 1.)
qs = qs + 0.001

# add lapse rate, ensure that lapse_rate is not 1.0
logit = (1. - lapse_rate) * tau * (qs[0] ** beta - qs[1] ** beta) + lapse_rate * jnp.log(0.5)

new_agent_state = qs
choice_logits = jnp.array([logit, -logit])
return choice_logits, new_agent_state

Example Program 3. This program again includes the functionality from the DFQ baseline, and in fact closely resembles
Example Program 1. It also includes an unusual, dynamically updated exploration term which aggregates the difference
between the reward and the lapse rate, and uses this to scale eploration.

def agent(params, choice, reward, agent_state):

if agent_state is None:
agent_state = jnp.array((0.5, 0.5, 0., 0.))

# Unpack parameters
alpha_learn_logit = params[0]
beta_logit = params[1]
kappa_reward_logit = params[2]
kappa_omission_logit = params[3]
tau_logit = params[4]
lapse_rate_logit = params[5]
alpha_forget_logit = params[6]
alpha_lapse_logit = params[7]

alpha_learn = jax.nn.softplus(alpha_learn_logit)
beta = jnp.exp(beta_logit) # enforce beta > 0
kappa_reward = jax.nn.softplus(kappa_reward_logit)
kappa_omission = jax.nn.softplus(kappa_omission_logit)
tau = jax.nn.softplus(tau_logit)
lapse_rate = jax.nn.sigmoid(lapse_rate_logit)
alpha_forget = jax.nn.softplus(alpha_forget_logit)
alpha_lapse = jax.nn.softplus(alpha_lapse_logit)

qs = agent_state[:2]
lapse = agent_state[2]
lapse_rate_ = agent_state[3]

# update q value.
learn_target = kappa_reward * reward + kappa_omission * (1 - reward)
error = (learn_target - qs[choice])

qs = qs.at[choice].set(qs[choice] + alpha_learn * error)
qs = qs.at[1 - choice].set(qs[1 - choice] - alpha_forget * error)

qs = jnp.clip(qs, 0., 1.)
qs = qs + 0.001

# update lapse rate.
lapse = lapse + alpha_lapse * (reward - lapse)

# add lapse rate, ensure that lapse_rate is not 1.0
logit = (1. - lapse) * tau * (qs[0] ** beta - qs[1] ** beta) + lapse_rate_ * jnp.log(0.5)

new_agent_state = jnp.array([qs[0], qs[1], lapse, lapse_rate])
choice_logits = jnp.array([logit, -logit])
return choice_logits, new_agent_state
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